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Chapter 1

Introduction

1.1 Understanding of Soft Computing and Intelligent

System

The currently existing complex plants cannot be accurately described by traditional rig-

orous mathematical models, and there are increasing needs for highly accurate control

and autonomous behavior in control, robotics and artificial life communities. The con-

ventional approaches for understanding and predicting the behavior of such systems based

on analytical techniques can prove to be inadequate. These difficulties lead to a number

of challenging problems, i.e., embed the human intelligence into a machine, because there

is a huge gap between the human intelligence and the machine intelligence.

Scientist and researchers have benefit from the researches of the human/natural in-

telligence. A number of computational models have also been developed by imitating

the human/natural intelligence, i.e., evolutionary computation (EC) realizes intelligence

through the simulated evolution [1], artificial neural networks (ANNs) realize intelligence

through the simulated behavior of neurons in brain [2], fuzzy logic (FL) realizes intelli-

gence through the simulated behavior of human reasoning process [3], and the artificial

immune systems realize intelligence through the simulated behavior of the immune-logical

mechanisms with the antigens and the antibodies[4].

In order to cope with the difficulties mentioned above, an emerging framework- soft

computing has been developed recently, which has the following properties:

• Soft computing is oriented towards the analysis and design of intelligent systems. It

contains fuzzy logic, artificial neural networks and probabilistic reasoning including

evolutionary algorithms, chaos theory and parts of machine learning and has the

attributes of approximation and dispositionality;

1
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• Soft computing is aimed at a formalization of the remarkable human ability to make

rational decision in uncertain and imprecise environment;

• The constituents of soft computing are complementary rather than competitive.
The experiments gained over the past decade have indicated that it can be more

effective to use them in a combined manner, rather than exclusively;

• Soft computing is an open framework. This means that the newly created techniques

come from the imitating of the human/natural intelligence always appropriated to

be added to the soft computing framework.

Soft computing, according to the ideas of Prof. Zadeh, differs from conventional hard

computing in that it is tolerant of imprecision, uncertainty, partial truth, and approxima-

tion. The guiding principle of soft computing is to exploit the tolerance for imprecision,

uncertainty, partial truth, and approximation in order to achieve tractability, robustness

and low cost solutions [3]. Here the flexible information processing capability and effective

or efficient computation methodology are two key properties of soft computing.

So far, more and more researches and engineering applications show that soft com-

puting can play a key role in the designing of the intelligent systems, i.e., in knowledge

representation and processing, in sensor fusion, in prediction and classification, in the

identification and control of nonlinear systems and robotics, in image and signal pro-

cessing and so on. A recent survey paper has been discussed the hybrid soft computing

systems and their industrial and commercial applications [58], in which some combinations

of hybrid soft computing systems, such as fuzzy logic controller tuned by neural networks

and evolutionary computing, neural network tuned by evolutionary computing or fuzzy

logic system, and evolutionary computing tuned by fuzzy logic systems were given, and

three applications in diagnostics, control and prediction were summarized. Also a growing

number of consumer products, for example, washing machines and air conditioners, are

released with the embedded soft computing techniques.

An intelligent system means that it has human-like abilities, e.g., recognition, predic-

tion, imprecision reasoning, high-performance computation, self-learning, self-diagonal,

self-repairing, tolerant of error, and higher autonomous behavior and so on. It is valu-

able to partition an intelligent system into different levels. We assume that an intelligent

system is developed with a life-long period via learning and evolution not created sud-

denly. A beautiful intelligent system may appear once a complete body of the system

has been constructed, in which each constituent of the body may not be intelligent but it

has specified functions. In fact, some intelligent behaviors only exist in the harmonious

body. Therefore, in order to construct an intelligent system, we not only need construct
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or develop the separate constituent of the intelligent body, but also need construct or

develop the organic relationship between the components.

The current researches in intelligent systems, e.g., intelligent control, intelligent agent,

intelligent robotics, shown that only partial intelligence were extended or embedded to the

system with the utilization of soft computing approaches, i.e., artificial neural networks are

useful to handle the nonlinearities and unknown function approximation problems, based

on fuzzy logic systems, expert’s knowledge can be utilized to design intelligent systems,

evolutionary algorithms are helpful to find global solutions in a complex search space.

Up to date, the harmonious body of the intelligent system have not been understood

efficiently. This is indeed a challenging problem.

1.2 Overview of Soft Computing in System Identifi-

cation and Control

A survey of existing techniques of nonlinear system identification prior to 1980s is given

by Billings [5], a survey of the structure detection of input-output nonlinear systems can

be obtained in [6], and a recent survey of nonlinear black-box modeling in system identi-

fication can be found in Sjoberg et al. [7]. Several methods have been developed for the

identification and control of nonlinear system, including nonlinear autoregressive moving

average with exogenous (NARMAX), Hammerstein, Wiener or Hannerstein-Wiener struc-

tures, but these methods suffer the difficulty of representing the behavior of the system

over its full range of operation [8].

In what follows, we briefly review the recently developed approaches of the identifica-

tion and control of nonlinear systems by utilizing the soft computing methodologies.

1.2.1 Neural networks and its variations

ANNs are one of alternative methods for nonlinear system identification and control. The

early researches in system identification and control using ANNs can be found in [9]-[14],

in which multilayer perceptron (MLP), radial basis function networks, recurrent neural

networks and back-propagation learning algorithm (gradient decent method) are usually

employed to approximate the input/output map of nonlinear systems. The main problems

it suffered are that it is a time-consuming procedure and the learnt network may be not

optimal due to there is no a prior knowledge to select the proper network structure.

Identification

Several improvements have been made recently for dealing with these problems. In
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[15], a robust training algorithm of ANNs is proposed in which dead zone technique is

used to adjust the weights of ANNs in the presence of disturbance. In [16], high-order NN

and recurrent NN are used for the identification of nonlinear systems and the global con-

vergence, stability and robustness of learning laws are derived in mathematics. Guoping

Liu et al. proposed an online identification method by using Volterra polynomial basis

function network (VPBF) with a structure selection procedure and a recursive learning

algorithm [17], and in [18] the multiobjective criteria and genetic algorithm are used for

the structure selection and parameter optimization of the VPBF networks and Gaussian

radial basis function networks, respectively.

Other researchers attempt to change the structure of ANNs to get accurate precision

of identification. In [19], a functional link ANN (FL-ANN) is proposed in which the input

pattern is enhanced by using the nonlinear functional expansion technique, the results

show that FL-ANN performs as good as and in some case even better than MLP net-

works. In [20] a sum-of-product neural network (SOP-NN) is proposed, it can be viewed as

a basis function network with a flexible form of the basis functions. Learning start with

a small set of submodules and have new submodels added when it becomes necessary.

The research shows that SOP-NN have excellent learning convergence characteristics and

requires small memory space. D.T. Pham et al. recently successfully described the use of

GA to train the modified Elman and Jordan recurrent neural networks for system iden-

tification [21][22]. In [23], a Bayesian-Gaussian neural network (BG-NN) and its learning

algorithm is proposed for the system identification, in which the training of BG-NN is a

minimization process to optimize the input factors rather than the connection weights plus

thresholds of the back-propagation neural network or its variations and therefore could

save a large amount of time in training. A comparative study of soft-computing method-

ologies in identification of robotic manipulators have been proposed in [24], in which four

kinds of soft computing models: feedforward neural network architecture (FNN), RBF-

NN, Rung-Kutta NN (RK-NN) and adaptive neuro-fuzzy inference systems (ANFIS) have

been used for the system identification at same conditions. The results show that for the

tracking error performance, ANFIS showed the best performance, and the RBF-NN and

FNN are the simplest approaches in the sense of computational complexity.

Wavelets are alternative universal approximators; Pati and Krishnaprasad discussed

using wavelets for linear system identification [43]. Wavelet networks have been inves-

tigated in [44]-[46] for nonlinear system identification. In [49], based on the orthogonal

wavelets a system identification scheme is proposed, in which better accuracy of estimation

is obtained by adding more terms (according to the regions of interest) to the wavelet

based identifier, and these terms do not alter the coefficients of the existing terms. A
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training algorithm for wavelet neural networks is proposed in [51], in which an original

initialization procedure is presented that takes the locality of the wavelet functions into

account.

Control

In the past several years, active research has been carried out in neural network con-

trol. Most of these works use neural networks as nonlinear models for the underlying

nonlinearity [177][196][197]. For stable and efficient NN control, off-line training phases

were usually required before the NN controller can be put into operation. To overcome

such a problem, Lyapunov’s stability theory was applied in the controller design and

several adaptive NN control schemes were developed [170][199][198][200],[202]-[205]. To

elude the instability during the on-line adaptation, radial basis functions are used [199]

[201], where the network output is linearly parameterized, and the nonlinear system is

for the special case of the affine system. The dynamic neural controller is proposed in

[198], where Lyapunov approach is used to assure the input-to-state stability. In [200],

the so called θ-adaptive neural networks are utilized to satisfy conditions that guarantee

boundedness of the closed-loop systems, allowing a larger stability region compared with

others [199]. It is valuable noting that the most of above neural control schemes need

some types of matching conditions, i.e., the unknown nonlinearities appear in the same

equation as the control input in a state-space representation. Recently, using the idea of

adaptive backstepping, an interesting neural based adaptive controller without satisfying

matching condition has been proposed [206], which also ensures the semi-global stability

of the closed-loop systems. This design technique is further studied in [207]-[210].

Another active field of research is the combination of neural network and sliding mode

control. Recently a number of neural network based sliding mode control schemes with

guaranteed stability analysis have been proposed, e.g., in [211]-[213]. The advantage of

this control scheme is that it is insensitivity to parameter variation and disturbances.

1.2.2 Fuzzy and/or neurofuzzy systems

Fuzzy and/or neurofuzzy systems is another alternative approaches for the identification

and control of nonlinear systems due to the universal approximation capability of these

systems. The early works in system identification and control by using fuzzy methods can

be found in [25][26]. But there remains some problems to be solved, for example, how to

automatically partition the input space for each variables, how many fuzzy rules are really

needed for properly approximating the unknown nonlinear systems. As is well known, the

curse-of-dimensionality is an unsolved problem in the fields of fuzzy systems, neurofuzzy

networks, B-spline neural networks, wavelet neural networks and so on. In designing
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of fuzzy and/or neurofuzzy systems, the structure discovery and parameter learning are

also two coupled problems like the cases of designing of ANNs. The structure of a fuzzy

and/or neurofuzzy system can be designed by expert’s knowledge, fixed the rule base and

the automatically find the rule base. The parameters used in fuzzy and/or neurofuzzy

systems such that centers, widths, and slopes, and weights of neurofuzzy networks, can

be optimized by gradient decsent method (error backpropagation) [27], reinforcement

learning [28], approximate least square estimator [29] and evolutionary algorithms (EA)

[30][31].

Recently some considerable developments in the area of system identification using

fuzzy and/or neurofuzzy approaches have been achieved [32][33][51]. In [32], a method

for determining the number of rules of fuzzy model is introduced by utilizing the concept

of terminal attractors, and then a fast online learning rule to adjust free parameters is

proposed. S. Barada et al. proposed a method of generating optimal adaptive neuro-

fuzzy models [33], in which the structure of Takagi-Sugeno-Kang (TSK) fuzzy model is

determined via a combination of modified mountain clustering algorithm, recursive least-

squares estimation and a group method of data handling. FuGeNeSys is proposed by M.

Russo [31], which is a kind of neurofuzzy system learned by Genetic Algorithm (GA).

In [234], the use of genetic programming to identify the input variables, the rule base

and the involved membership functions of a fuzzy model is proposed. Based on evolving

fuzzy neural networks (EFu-NN), N. Kasabov recently proposed a new neurofuzzy model

entitled evolving connectionist systems (ECOS)[34]-[36] in which incremental evolution,

hybrid (supervised/unsupervised), on-line learning are used to build on-line, adaptive in-

telligent systems. Most recently, Y. Shi et al. discussed the limitations of conventional

neuro-fuzzy learning algorithms and proposed a new learning algorithm, in which the

advantages of new algorithms are that the tuning parameters of the fuzzy rules can be

learned without changing the form of fuzzy rule table and the case of weak-firing or non-

firing can be avoided [52][53]. Q. Gan and C. J. Harris proposed a modified algorithm

for adaptive spline modeling of observation data (MASMOD) for determining the number

of necessary B-splines and their knot positions. This research shown that fuzzy local

linearization models have several advantages over local basis function expansion based

models in nonlinear system modeling [59].

There exist two different types of fuzzy controller: the Mamdani type [235][236] and

the Takagi-Sugeno type [25]. They mainly differ in the fuzzy rule consequent: a Mamdani

fuzzy controller utilizes fuzzy sets as the consequent whereas a TS fuzzy controller employs

linear functions of input variables. Significant effort has been made to analytical study

Mamdani fuzzy controllers (e.g., [237]-[246]). In contrast, analytical results of TS fuzzy



CHAPTER 1. INTRODUCTION 7

controllers are still rather limited [247]-[249].

The combination of the fuzzy control and the PID control has been extended in [250]-

[253] recently. In fact, a fuzzy controller is nothing but a nonlinear PID controller with

time-dependent variable gains as discussed in [254].

Robust stability problem of fuzzy control systems has been discussed in [255]. An

improved fuzzy gain-schedule controller is proposed in [256]. An output tracking problem

by using fuzzy neural networks with guaranteed stability has been proposed in [257].

Evolutionary algorithms assistant fuzzy logic controller design can be found in [258]-[260].

Recent developments of the fuzzy sliding mode control schemes have been discussed in

[229]-[231][261]-[263].

1.2.3 Evolutionary algorithms

There are also some works in the area of system identification and control by using evolu-

tionary algorithms. K. Kristinn’s research first showed that GA can be applied for system

identification and control of both continuous- and discrete-time systems. In this research,

GA is directly employed to identify the physical parameters or poles and zeros [37]. The

genetic adaptive identification and control, genetic adaptive state estimation have been

proposed and further researched in [217][218]. In [38], the author demonstrated that both

a GA and the method of approximating nonlinearity with piecewise linears can be used

to estimate a Hammerstain model. Systems identification by using genetic programming

(GP) and PIPE algorithms have been reported in [39]-[41]. P.J. Angeline proposed mul-

tiple interacting program evolution algorithm which involved the simultaneous evolution

of a set of equations represented as parse tree, and successfully applied it to system iden-

tification of nonlinear system [42]. Andrew proposed a system identification method by

using genetic programming [219]. Howley used GP to get a sub-optimal control law for

simulated specific spacecraft attitude maneuvers [220]. Dracopoulos used GP to derive

an attitude control law to de-tumble a spinning satellite and discussed the stability by

the Lyapunov method [221]. Dominic et al. used GP to design a discrete-time dynamic

controller of chemical process that offers similar performance as PID controller [222].

Chellapilla used tree-structure-based evolutionary programs to derive nonlinear control

laws for broom balancing problem and backing up a truck-and-trailer problem [223].

Most of the other works for system identification and controller design are the com-

bination of evolutionary algorithms with other soft computing methodologies [54]-[56].

B.-T. Zhang proposed the evolutionary induction of sparse tree, in which a higher order

neural network is coded as a neural tree, and the structure and parameters of higher order

neural networks are evolved by GP and GA, respectively. In [139] a learning algorithm is



CHAPTER 1. INTRODUCTION 8

proposed, in which the parameter optimization and structure adaptation of MLP neural

networks are dealt with a modified PIPE and a random search algorithm, respectively,

and the results show that the proposed method can be usefully applied to evolve the

non-regular ANNs. Yun L. and his group have been interested in the controller design of

nonlinear systems, in which the NN controller or fuzzy/neuro-fuzzy controller are trained

by a GA [214]-[216]. An evolutionary algorithm for optimizing local control of chaos is

proposed in [233]. In this scheme, based on a Lyapunov approach, a linear control law

and the state-space region in which this control law is activated are determined by an

evolutionary algorithm.

1.3 Some of Unsolved Problems

Some of the unsolved problems related to this thesis are those as follows.

• Is there a unified framework in which various soft computing models can be calcu-
lated, evolved and evaluated?

• A bigger ANN may have poor generalization capability, meanwhile a smaller ANN
cannot achieve the high level of approximation accuracy. Can we determine an

optimal architecture of ANN automatically? Can we design a non-regular ANN

automatically?

• In the designing of fuzzy model and neuro-fuzzy model, the problems are that
how to automated partition the input space? How many fuzzy rules are really

needed for properly approximating a nonlinear function? How to solve the Curse-

of-dimensionality problem?

• Can we design a flexible hierarchical T-S fuzzy model automatically with a small
rule base and a high level of approximation accuracy?

• In the basis function neural networks, how many of the basis functions are proper for
approximating an unknown system, which type of basis function is good (globally

or locally)? How to select these basis functions?

• Can we enhance the control performance of the traditional control system by em-

bedding the soft computing approach into it ?

• Neural and fuzzy models have been used for the design of stable adaptive control
system in different ways. Is there a common design principle for designing of soft

computing based control systems with guaranteed stability?
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1.4 Aim of the Thesis

The objective of this thesis is to investigate the ability of soft computing approaches

to learn how to identification and control of nonlinear systems. A hybrid soft comput-

ing framework is constructed and applied to the identification and control of nonlinear

systems.

This study makes following contributions. The main contributions are

• A hybrid learning algorithm for evolving various soft computing models is developed.

• A computational framework based on tree structural representation is developed.

With this framework, a number of soft computing models can be constructed flexibly.

• The proposed soft computing models for the identification of nonlinear systems
include those as follows

– Additive model and re-construction of polynomials.

– Evolving non-regular MLP neural networks.

– Optimization the basis function neural networks (include the fuzzy basis func-

tion, the wavelet basis function, the Volterra polynomial basis function, the

Gaussian radial basis function, the B-spine basis function, the recurrent fuzzy

basis function and the local radial basis function networks).

– Evolutionary design of hierarchical T-S fuzzy models.

• Some of soft computing based controller design principles are discussed.

• A probabilistic incremental program evolution (PIPE) based identification and con-
trol scheme is developed.

• A hybrid soft computing approach based direct feedback adaptive control scheme is
developed.

1.5 Organization of the Thesis

In chapter 2, the basic elements of soft computing technique are listed and discussed

which include the evolutionary algorithms (genetic algorithm, evolutionary programming,

probabilistic incremental program evolution and random search algorithm), neural net-

works (the main topic focus on its training methods), and a simple T-S fuzzy model, all

of these contents will be used in the following chapter.
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In chapter 3, a unified framework is constructed in which various hybrid soft comput-

ing models can be calculated, evolved and evaluated. In this framework, the proposed hy-

brid soft computing models include: the additive model and reconstruction of polynomials,

the non-regular multilayer perceptron, the basis function networks, and the hierarchical

T-S fuzzy models. A hybrid learning algorithm is also proposed in which the architecture

of the hybrid soft computing models is evolved by a modified probabilistic incremental

program evolution (PIPE), and the parameters used in hybrid soft computing models are

optimized by hybrid or non-hybrid parameter optimization strategy, respectively.

In chapter 4, Firstly, some common soft computing based controller design principle

are discussed briefly. Then we proposed a new control scheme for nonlinear systems based

on PIPE algorithm. Finally, based on the basis function neural networks a uniformly

framework for control of affine and non-affine nonlinear systems is presented with the

guaranteed stability analysis. Also in this research, we pay much attention to the online

training methods of soft computing controller in ord er to gain the real implementation

of the soft computing control schemes.

In chapter 5, the soft computing based identification and control schemes developed in

Chapter 3 and 4 are applied to the drilling system. In order to control thrust force (cutting

torque) in the drilling process, a number of thrust force (cutting torque) identification

methods are developed. Based on the soft computing models of the thrust force, a neural

control scheme of the thrust force is presented. Real time implementations show that the

soft computing based estimation models of thrust force (cutting torque) are efficient and

effective.

Finally in chapter 6, the results obtained in previous chapters are summarized, and

a number of topics for the future research in this direction are given.



Chapter 2

A Review of Soft Computing

Approaches

2.1 Evolutionary Algorithms and Random Search Al-

gorithm

2.1.1 Genetic Algorithm

Genetic algorithms (GAs) are globally stochastic search technique that emulates the laws

of evolution and genetics to try to find optimal solutions to complex optimization prob-

lems. GAs are theoretically and empirically proven to provide to robust search in complex

spaces, and they are widely applied in engineering, business and scientific circles.

GAs are different from more normal optimization and search procedures in four ways

[60]:

• GAs work with a coding of the parameter set, not the parameter themselves.

• GAs search from a population of points, not a single point.

• GAs use objective function information, not derivatives or other auxiliary knowl-
edge, but with modifications they can exploit analytical gradient information if it

is available.

• GAs use probabilistic transition rules, not deterministic rules.

Coding and Decoding

Coding referred to the representation of the parameter used in the optimization problem.

The usually used coding methods in GAs are base-2, base-10 and floating-point coding

11
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methods. In a base-2 representation, alleles (values in the position, genes on the chro-

mosome) are 0 and 1. In base-10, the alleles take on integer values between 0 and 9. In

floating-point representation, the alleles are real-valued number. In base-2 and base-10

representations, the relationship between the real value of a parameter and its integer

representation can be expressed by

x = a+ x̄
range

resolution
(2.1)

where x is the real value of the parameter, x̄ is the integer value corresponding to the x, a

is the lowest value assumed by x̄, range is the interval of definition of the parameters, and

resolution is the number that take in account the number of bits used, i.e., 2number of bits−
1.

Genetic Operators

A simple Genetic algorithm that yields good results in many practical problems consists

of three genetic operators:

• Reproduction is a process in which individual strings are copied according to their

objective or fitness function values. Fitness function can be imagined as some mea-

sure of profit, utility, or goodness to be optimizes. For example, in curve fitting

problem, the fitness function cab be mean square error

Fitness =
1

n

n∑
i=1

(yi − f(yi, ai))
2 (2.2)

where the yi are experimental data, f(yi, ai) is the function chosen as model and ai

are the model parameters to be optimized by GA. When GA is used to optimize an

adaptive controller, the error and change in error information can be taken account

into the designing of a proper fitness function. In general, operator of reproduction

guarantee survival of the better individual to the next generation with a higher

probability, which is an artificial version of natural selection.

• Crossover is a partial exchange of the genetic content between couples of mem-

bers of the population. This task can be done in several different ways and it

also depends on the representation scheme chosen. In integer representation, the

simple way to do it, is to choose a random value with a uniform distribution as

[1, length of chromosome]. This number represents a marker inside the two strings

of bits representing the couple of chromosomes. It cuts both the chromosomes into
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two parts. Then, the left or the right parts of the two chromosomes are swapped.

This occurs in such a way that both the two new chromosomes will contain a part

of the genetic information of both the parents. In floating-point representation, the

crossover should be realized by

new1 = a · old1 + (1− a) · old2, (2.3)

new2 = (1− a) · old1 + a · old2, (2.4)

where new1 and new2 are the chromosomes after the crossover, old1 and old2 are the

chromosomes before the crossover, a is a random number with uniform distribution

in [0,1].

• Mutation is needed because, even through reproduction and crossover effectively

search and recombine extant notions, occasionally they may become overzealous

and lose some potentially useful genetic materials. In GA, the mutation operator

protects against such an irrecoverable loss. In other words, mutation tries to escape

from a local maximum or minimum of the fitness function, and it seeks to explore

other areas of the search space in order to find a global maximum or minimum of

the fitness function. In integer representation, the mutation of gene in a position of

the chromosome is randomly changed form one integer to another. In floating-point

representation, mutation will randomly change the value of the chromosome within

a range of definition.

The flow chart of simple genetic algorithm can be seen in Fig. 2.1.

Design Concerns

When a GA is used to solve optimization problems, it is valuable to keep the following

points in mind.

• Choice of an optimization problem and understand what you can change to achieve

the solutions.

• Select a proper representation. Too detailed a representation increases computa-
tional complexity, while too coarse a representation decreases the accuracy of the

problem.

• Try to use other genetic operators, e.g., elitist, this means that most fit individ-
ual will be copied into next generation without being perturbed by crossover or

mutation. This usually leads to a fast convergence speed.
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Figure 2.1: The flow chat of the genetic algorithm

2.1.2 Evolutionary Programming

EP is a population based random optimization algorithm, which imitate the principles

of natural evolution that maintains a population of individuals for a specific generation

[1][26]-[30]. According to our experiments, the convergence speed of EP depends largely

on the search steps. Therefore in order to control the convergence speed and the perfor-

mance of EP search, we introduced a scale factor α, and a dynamic factor σ(k) shown

in the Eq.(2.6) into the classical evolutionary programming. Our modified EP can be

implemented as follows:

i) Generate the initial population of µ individuals, and set k = 1. Each individual is

taken as a pair of real-valued vectors, (xi, ηi), ∀i ∈ {1, . . . , µ}.
ii) Evaluate the fitness score for each individual of the population based on the fitness

function.

iii) Each parent (xi, ηi), i = 1, . . ., µ, creates a single offspring (x̄i, η̄i) by

η̄i(j) = ηi(j)exp(τ̄N(0, 1) + τNj(0, 1)) (2.5)

σ(k) = α ∗ (1− 0.9 ∗ k

K
) (2.6)

x̄i(j) = xi(j) + σ(k) ∗ η̄i(j) ∗Nj(0, 1), (2.7)

for j = 1, . . ., n, where xi(j), x̄i(j), ηi(j) and η̄i(j) denote the j-th component of the
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vectors xi, x̄i, ηi and η̄i, respectively. The scale factor α is used to control the step length

of the search, the variable term (1−0.9 ∗ k
K
) showed in Eq.(2.6) is used for further tuning

of the search precision, where k is the current generation number varying from 0 to K, K

is the maximum generation number of EP search. N(0, 1) denotes a normally distributed

random number. Nj(0, 1) indicates that the random number is generated anew for each

value of j. And τ = (
√
2
√

n)−1, τ̄ = (
√
2n)−1.

iv) Calculate the fitness of each offspring.

v) Conduct pairwise comparison over union of parents and offspring. For each in-

dividual, Q opponents are chosen randomly from all the parents and offspring with an

equal probability. For each comparison, if the individual’s fitness is no smaller than the

opponent’s, it receives a win.

vi) Select the µ individual out of parents and offsprings, that have the most wins to

be parents of the next generation.

vii) Stop if the number of EP search steps is reached; otherwise, k = k + 1 and go to

step iii).

2.1.3 Random Search Algorithm

A random search algorithm scheme, random search with intensification and diversification

(RasID) has been proposed for parameter optimization in [61]. RasID does an intensified

search where it is easy to find good solutions locally, and a diversified search to escape

from local minimum under a pure random search scheme. In doing so, a sophisticated

probability density function (PDF) is used for generating search vectors. The PDF has

two adjustable parameters, which are used to control the local search range and direction

efficiently. Adjusting these parameters according to past success-failure information yields

intensified and diversified search.

Given a parameter vector θ(k) = [λ1(k), λ2(k), . . . , λN(k)], where k is random search

step. Let x(k) = [x1(k), x2(k), . . . , xN(k)] denotes the small random disturbance vector

which is generated according a probability density function. The random search algorithm

can be summarized as follows.

1. Choose an initial value of the parameter vector to be optimized randomly, θ(0),

calculate the objective function, F (θ(0)), and set k = 0.

2. Generate random search vector x(k).

– calculate F (θ(k) + x(k)). If F (θ(k) + x(k)) < F (θ(k)), the current search is

said to be success and then set y(k) = 1 and θ(k + 1) = θ(k) + x(k). else,
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θ(k+1)=θ(k)-x(k)
y(1)=1(success) 

Ker
+ > Ker  and Ker

- >  Ker 

       Start 
        k=1

Generate x(k)

F(θ(k)+x(k))<F(θ(k))

F(θ(k)-x(k))<F(θ(k))

Ker
-=F(θ(k)-x(k))/F(θ(k))

y(1)=0 (failure)

Ker
+=F(θ(k)+x(k))/F(θ(k))

Ker
+ < Ker

-

Stop

θ(k+1)=θ(k)+x(k)
y(1)=1(success) 

θ(k+1)=θ(k)+x(k)

θ(k+1)=θ(k)-x(k)

k=k+1

N

Y

N

Y

N

Y

N

Y

N

Y Random Search 
Steps Reached

Figure 2.2: The flow chat of the random search algorithm

– calculate F (θ(k)−x(k)). If F (θ(k)−x(k)) < F (θ(k)), the current search is said

to be success too and then set y(k) = 1 and θ(k + 1) = θ(k)− x(k). otherwise,

– the search is said to be failure and then set y(k) = 0, and

θ(k + 1) =




θ(k) If K+
er > Ker and K−

er > Ker

θ(k) + x(k) If K+
er < K−

er

θ(k)− x(k) If K+
er ≥ K−

er

(2.8)

where Ker ≥ 1 is the maximum error ratio, K+
er and K−

er are defined by

K+
er =

F (θ(k) + x(k))

F (θ(k))
(2.9)
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Figure 2.3: A specific probability distribution function in which the shape of the function
depends on the parameters β and q. The larger the β is, the smaller the local search
range is (left). The larger the qm is, the higher the search probability in positive direction
is (right).

K−
er =

F (θ(k)− x(k))

F (θ(k))
(2.10)

3. If satisfied solution found then stop, else set k = k + 1 and go to step 2.

The flow chart of the random search algorithm is also shown in Fig. 2.2.

It can be seen that the effectiveness of the random search depends largely on the

random search vector x(k). In usually used random search the Gaussian PDFs are used

to generate the random search vector [63][64]. In RasID, the used PDF is

f(xm) =


 (1− qm)βeβxm, if xm ≤ 0

qmβe−βxm, if xm > 0
(2.11)

where adjustable parameters qm ∈ [0, 1] and β are used to control the range and direction

of the intensification and the diversification search. Two example graphs of the PDF are

shown in Fig. 2.3 (left and right), from which we can see that the larger the β is, the

smaller the local search range is; the larger the qm is, the higher the search probability

in positive direction is. qm = 0.5 means that there is same search probability in positive

and in negative direction.

By using the above probability distribution function the random search vector x(k)

can be obtained as follows.
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xi(k) =




1
β
ln
(

zi(k)
1−qi(k)

)
, if (0 < zi(k) ≤ 1− qi(k))

− 1
β
ln
(

1−zi(k)
qi(k)

)
, if (1− qi(k) ≤ zi(k) < 1)

(2.12)

where zi(k) is the random real number uniformly distributed at [0,1], qi(k) = 0.5 and

i = 1, 2, . . . , N .

The next problem is that how to adapted tuning the parameters β and qi(k) in order

to quickly and efficiently find the global minimum of the search space. In our experiments,

the parameter qi(k) is fixed as qi(k) = 0.5. The parameter β is adaptive changed according

to the following equation

β = β0 + (β1 − β0) e
−φIsf (2.13)

where φ is designed to realize an intensified search and the index Isf for diversified search,

β0 and β1 are the lower and upper bound of β, respectively.

In addition, the adjustment of the parameters φ, Isf and qi(k) are given in Eq. (2.14),

(2.15) and (2.16), respectively.

φ =




ciφ Psf > Psf0

φ Psf = Psf0 or φ ≤ φmin

cdφ Psf < Psf0 and φ > φmin

φ0 k = pre− specified integers

(2.14)

where ci ≥ 1.0, 0 < cd ≤ 1.0 are two coefficients assigned with appropriate value, φ0 and

φmin the initial and minimum values of φ.

Isf =




φ > φmin or

Isf0,
(
y(k) = 1 and Isf > Isfmax

)
or

k = pre− specified integers

Isf −�Isf1, y(k) = 1 and φ ≤ φmin

Isf −�Isf2, y(k) = 0 and φ ≤ φmin

(2.15)

where Isf0 is the initial value of Isf , �Isf1 and �Isf2 are two appropriate positive

values with �Isf1 < �Isf2.
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qi(k) =




αqi(k), if xi(k) < 0 or ∂+F
∂λi

> 0

qi, if xi(k) = 0 or ∂+F
∂λi

= 0

αqi + (1 + α), if xi(k) > 0 or ∂+F
∂λi

< 0

(2.16)

where α ∈ [0, 1] is an appropriate value and ∂+F
∂λi(k)

is the ordered derivative of F for

λi(k).

2.1.4 Probabilistic Incremental Program Evolution (PIPE)

PIPE is a recent discrete method for automated program synthesis, which contains prob-

ability vector coding of program instructions, population based incremental learning and

tree-coded programs like those used in variants of GP. The main principle of PIPE algo-

rithm is that it increases the probability of the best program to be found by using the

adaptive tuning of the probability distribution for choosing the proper instructions.

Given the instruction set I which contains a function set F={f1 , f2, · · · , fk} and a
terminal set T = {t1, t2, · · · , tl}. Each node Nd,w of the tree contains a random constant

Rd,w or an instruction Id,w. P (Id,w) denotes the probability of choosing instruction Id,w ∈
F ∪ T at node Nd,w.

The general flow chart of PIPE algorithm is shown in Fig.2.4. The detailed procedure

of the PIPE algorithm including initialization, population based learning, elitist learning

and termination criterion are discussed in the following.

Initialization

1) Set the elitist program as NULL and its fitness value as a biggest positive real

number of the computer at hand.

2) Set the initial value of parameters including population size PS, initial terminal

probability PT , elitist learning probability Pel, learning rate lr, fitness constant ε,

overall mutation probability PM , mutation ratemr, prune threshold TP , and random

constant threshold TR.

3) Read the training data, the numbers of input and output and the number of training

data.

4) Allocate the initial Probabilistic Prototype Tree (PPT ) node, and set the initial

probability of selecting the instructions as follows

Pd,w (I) =
PT
l

, ∀I ∈ T (2.17)
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Elitist learning
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Figure 2.4: The flow chart of PIPE algorithm

Pd,w (I) =
1− PT

k
, ∀I ∈ F (2.18)

where l and k are the numbers of instruction in the terminal set T and function set

F , respectively.

5) Set the initial value of generation is equal to zero.

6) In every generation, create a uniformly random number r at [0,1], and one decision

is made according to the values of elitist learning probability Pel and r. That is, if

Pel is bigger than r and the generation is not equal to zero, then do elitist learning,

otherwise do population based learning.

Population Based Learning

1) Create the initial population PROGj
(0 < j ≤ PS) by using PPT .
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2) Calculate the fitness value FIT
(
PROGj

)
, which reflects the program’s performance

on a given task.

3) Let PROGb
and PROGel

be the best program of the current generation (best program)

and the one found so far (elitist program), respectively. Define the probability and

the target probability of best program as

P (PROGb
) =

∏
Id,w :used to

generate PROGb

P (Id,w) (2.19)

and

PTARGET = P (PROGb
) + (1− P (PROGb

)) · lr · ε+ FIT (PROGel)

ε+ FIT (PROGb
)

(2.20)

where FIT (PROGb
) and FIT (PROGel) denote the fitness of the best and elitist

program. In order to increase the probability P (PROGb
), repeat the following process

until P (PROGb
) ≥ PTARGET :

P (Id,w) = P (Id,w) + clr · lr · (1− P (Id,w)) (2.21)

where clr is a constant influencing the number of iterations. This procedure is called

adapt− PPT − towards (PROGb
).

4) Define the mutation probability as

PMp =
PM

(l + k) ·
√
|PROGb

|
(2.22)

where |PROGb
| denotes the number of nodes in program. All the probabilities P (Id,w)

are mutated with probability PMP
according to

P (Id,w) = P (Id,w) +mr · (1− P (Id,w)) (2.23)

5) Prune the subtrees attached to nodes that contain at least one probability vector

above a predefined prune threshold TP .

Elitist Learning

In order to search the previously discovered promising parts of the search space and

increase the probability of elitist program, the elitist learning is realized by adapt −
PPT − towards (PROGel

). That is, get the elitist program, and calculate the probability
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and the target probability of elitist program. Finally increase the probability of elitist

program according to Eq.(2.21) until P (PROGel
) ≥ PTARGET .

Termination Criterion

The termination criterion of PIPE is that either a fixed number of iteration (time con-

straint) achieved or until found a solution with fitness better than the satisfactory fitness

(quality constraint).

Remark

The instructions used in PIPE algorithm must be properly selected. The usually used

instruction set for function approximation is

{+,−, ∗,%,sin,con,exp,rlog}

where +,−, ∗,%, sin, con, exp and rlog denote addition, subtraction, multiplication, pro-

tected division (∀x, y ∈ R, y �= 0 : x%y = x/y and x%0 = 1), sine, cosine, exponent

and protected logarithm (∀x ∈ R, x �= 0 : rlog (x) = log (abs (x)) and rlog (0) = 0), and

taking 2, 2, 2, 2, 1, 1, 1 and 1 arguments respectively. But due to different nonlinear

system may have different characteristics, the further research about how to select the

proper instructions for different nonlinear system is needed.

Example

As is well known, sin(x) have the standard Taylor Series

sin (x) = x − x3

3!
+

x5

5!
− x7

7!
+ . . . , for x ∈ R (2.24)

from which, the instruction set can be selected as

I = F ∪ T = {+,−, ∗,%} ∪ {x,R}

where R is a random number R ∈ [0, 1]. Next, design a fitness function (sum of absolute

error between the desired output and evolved output in this experiment) to evaluate the

fitness of individual for the problem at hand. Finally, the best individual can be found

after the end of PIPE run by using above learning algorithm. The control parameters

of PIPE run for this experiment are shown in Table 2.1. A comparison of evolved sine

function (dotted line) and true sine function (solid line) is shown in Fig.2.5.
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Table 2.1: PIPE parameters

Population Size PS 10
Initial Terminal Probability PT 0.8
Elitist Learning Probability Pel 0.01
Learning Rate lr 0.01
Fitness Constant ε 0.000001
Overall Mutation Probability PM 0.4
Mutation Rate mr 0.4
Prune Threshold TP 0.999999
Random Constant Threshold TR 0.3

0 5 10 15 20 25 30 35 40 45 50
-1.5
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-0.5

0
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1

1.5

X

f(
X

)

Evolved output
Real output
Fitting error

Figure 2.5: Curve fitting of the simple sine function by PIPE

2.2 Artificial Neural Networks

ANNs are computer programs or mathematical representation loosely inspired by the

massively connected set of neurons that form the biological neural networks in brain.

The earlier experimental research works about ANNs include:

• McCulloch and Pitts studied the potential and capabilities of the interconnection
of several basic components based on the model of a neuron in 1943 [64].

• The name of Perceptron was proposed by Rosenblatt in 1958 [65].

• The Perceptron was analyzed, its properties and limitations were given by Minsky
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Figure 2.6: The processing unit of an ANN- a neuron

and Papert in 1969 [66].

• A number of neural processing models were proposed include learn matrix [67]

in 1960’s, associative content addressable memory (ACAM) networks [68], and

cooperative-competitive neural network models in 1970’s [69] .

• A particular dynamic network structure was proposed by Hopfield in 1982 [70].

ANNs are the alternative computing technologies that have been proven useful in a

variety of function approximation, pattern recognition, signal processing, system identifi-

cation and control.

In this section, a brief discuss of artificial neural networks (ANNs) is given. Only a

few network topologies, tuning techniques and properties are referred according to their

utility in following chapters.

The properties and functions of ANNs depend on:

• The properties of single neuron model. Currently, the usually used single neuron

model is shown in Fig. 2.6, in which the output of the neuron is the weighted sum

of its input xi, ui =
∑
j ωijxj , biased by a threshold value θi and passed through an

activation function f .

yi = f(
∑
j

ωijxj − θi) (2.25)

The activation function is selected differently in different applications. Some com-

mon choices of selecting activation function in function approximation, system iden-

tification and control are shown Table 2.2.

• The topologies of the neural nets are referred to the number of layers and the ways of

the connections of the neurons. Different topologies or architectures of neural nets



CHAPTER 2. A REVIEW OF SOFT COMPUTING APPROACHES 25

Table 2.2: The Activation functions

Name Formula

Sigmoid Function f(x) = 1
1+e−x

Gaussian Function f(x) = exp(−x2

σ2 )

Symmetric Sigmoid Function f(x) = 1−e−x

1+e−x

Hyperbolic Tangent Function f(x) = ex−e−x

ex+e−x

Augmented Ratio of Squares f(x) = x2

1+x2 sgn(x)

Flexible Unipolar Sigmoid Function f(x, a) = 2|a|
1+e−2|a|x

Flexible Bipolar Sigmoid Function f(x, a) = 1−e−2xa

a(1+e−2xa)

should have different performance and different computational structure. Some

network topologies are shown in Fig. 2.7.

• Parameter tuning techniques are referred to update the adjustable parameters in-

cluding the weights, bias, and the parameters used in flexible activation functions.

In general, the performance of a certain algorithm for adaptively tuning the param-

eters in neural network training stage can be evaluated by its convergence speed,

stable properties, robustness and generalization ability. Recently, more and more

researches have been focus on the stable training problem of ANNs. To some extend,

neural network learning problem can be posed as a control problem, therefore, some

of adaptive control strategies can be introduced directly into the training of ANNs.

Up to date, a number of kinds of neural network architectures have been developed.

Among of them, the multilayer perceptron (MLP), the recurrent neural network (RNN),

the fuzzy neural network (FNN), the radial basis function network (RBF) and the wavelet

neural network (WNN) are most used neural networks in function approximation, system

identification and controller design. In what follows, the MLP, recurrent neural networks

and fuzzy neural networks are discussed briefly and the tuning strategies of MLP are

analyzed in detail.

2.2.1 Multilayer Perceptron

MLP is a completely connected feedforward neural network as shown in Fig. 2.8. By

properly selecting the number of hidden neurons, and the activation function in the hidden

layer (i.e., hyperbolic tangent, f) and in the output layer (i.e., flexible sigmoid F ), the
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Figure 2.7: Some network topologies. (a) A fully connected single-layer perceptron (SLP).
(b) A fully connected multilayer perceptron (MLP). (c) A modular MLP. (d) A fully con-
nected recurrent network. (e) A sparsely connected recurrent network. (f) A feedforward
network with sparse connections.

output of the MLP can be calculated as follows

yk(t|θ) = Fk(
nh∑
j=0

wk,jhj(t)) = Fk(
nh∑
j=1

wk,jfj(
ni∑
l=0

wj,lxl(t)) + wk,0) (2.26)

where yk(t|θ), (k = 1, 2, . . . , no) is the k-th output of neural network, fj is the j-th acti-

vation function for the unit j in the hidden layer and Fk specifies the activation function

for output k. hj(t) is the j-th output of the hidden layer. wk,j and wj,l are the hidden-to-

output and input-to-hidden layer weights, respectively. In addition, the bias are regarded

as additional weights, i.e., h0(t) = x0(t) = 1.

Back-Propagation

Assume that the used activation functions in the hidden and output layers of the neural

network are hyperbolic tangent and flexible bipolar sigmoid function (see Table. 2.2).

The derivatives of F (x, a) with respect to the variable x and the parameter a can be

obtained as

F
′
(x, a) = 1− a2F 2(x, a) (2.27)

F ∗(x, a) =
1

a
[F

′
(x, a)x− F (x, a)] (2.28)
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Figure 2.8: A 3-inputs 2-outputs three-layers perceptron

A batch version of momentum backpropagation algorithm can be easily derived as

follows. Given a set of data

ZN = {[u(t), y(t)], t = 1, . . . , N} (2.29)

Define the objective function as

J =
1

2N

N∑
t=1

no∑
k=1

(yk(t)− yk(t|θ))2 = 1

2N

N∑
t=1

no∑
k=1

ε2
k(t, θ) (2.30)

The general gradient of the least squares criterion takes form

∂J

∂θ
= − 1

N

N∑
t=1

no∑
k=1

∂yk(t|θ)
∂θ

[yk(t)− yk(t|θ)] (2.31)

The partial derivatives of the network output with respect to the weights in hidden-

to-output layer

∂J

∂wk,j

= − 1

N

N∑
t=1

hj(t)F
′
k(

nh∑
j=0

wk,jhj(t))(yk(t)− yk(t|θ)) = − 1

N

N∑
t=1

hj(t)δk(t) (2.32)

where

δk(t) = F
′
k(

nh∑
j=0

wk,jhj(t))(yk(t)− yk(t|θ)) (2.33)

Similarly, the partial derivatives of the network output with respect to the weights in

input-to-hidden layer cab be obtained as

∂J

∂wj,l
= − 1

N

N∑
t=1

xl(t)f
′
j(

ni∑
l=0

wj,lxl(t))
no∑
k=1

wk,jδk(t) = − 1

N

N∑
t=1

xl(t)δj(t) (2.34)
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where

δj(t) = f
′
j(

ni∑
l=0

wj,lxl(t))
no∑
k=1

wk,jδk(t) (2.35)

The partial derivatives of the network output with respect to the parameter ak in

output layer cab be obtained as

∂J

∂ak
= − 1

N

N∑
t=1

F ∗
k (

nh∑
j=0

wk,jhj(t))(yk(t)− yk(t|θ)) (2.36)

Therefore, the weights in hidden-to-output layer and in input-to-hidden layer, and

parameters in output layer can be updated by

wk,j = wk,j + η1
∂J

∂wk,j

+ α1∆wk,j (2.37)

wj,l = wj,l + η2
∂J

∂wj,l
+ α2∆wj,l (2.38)

ak = ak + η3
∂J

∂ak
+ α3∆ak (2.39)

Modification of the Back-Propagation

BP algorithm has some disadvantages, such as, slow convergence speed, sensitivity to

initial conditions, trapping in local minima, instability if the settings of the learning rate

are not appropriate. In general, the performance of a MLP network can be improved by

following ways.

• Approximation accuracy and generalization. The higher approximation accuracy

can be obtained by increasing the number of hidden layer neurons as the universal

approximation theory has been said. But, if the number of hidden layer neurons

is increased too large, the generalization should be decreased. Therefore, some

researchers attempt to find the alternative methods for improving the approximation

accuracy and generalization ability. Some of the techniques be and should be

– Different neurons have different activation functions, especially, the use of flex-

ible activation functions may increases the probability of finding a good MLP

net for curve fitting.

– The techniques of finding a sparse feedforward neural net will decrease the size

of MLP net efficiently and improve the generalization ability.

– In the training of MLP net, embed the structure information, i.e., the number

of neurons in MLP net, into the optimization of the objective function should
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improve the generalization ability of the MLP net. Simultaneously optimizing

the objective function and the norm of the weight vector by a multiobjective

optimization algorithm can also enhance the performance of the MLP net.

• Convergence Speed. Some of the methodologies have been proposed in order to speed

up the convergence speed of the BP algorithm, such as, adaptive learning rate [71],

quickpropagation [72], resilient propagation [73], backpropagation with adaptive

gains [74], and delta-bar-delta method [75]. Heuristically, the search step should be

increased when search process is far away from the global minima and decreased if

the search is near to the minima. There is no common recognition now about what

can be based for setting an adaptive learning rate. Some methods based on the

network architecture and training data, some methods based on the error function.

Most recently, the learning rate adaptation methods have been summarized by G.D.

Magoulas with three algorithms [76]. These are

– Algorithm-1: BP with Adaptive Learning Rate

∗ 1. Set η = η0, m = 1, and go to the next step.

∗ 2. If E(ωk − ηg(ωk)) ≤ −1
2
η‖ � E(ωk)‖2, go to step 4; otherwise, set

m = m+ 1 and go to the next step.

∗ 3. Set η = η0
qm−1 , and return to step 2.

∗ 4. Set ωk+1 = ωk − ηg(ωk).

∗ 5. If the convergence criterion E(ωk− ηg(ωk)) ≤ ε is met, then terminate;

otherwise go to next step.

∗ 6. If k < MIT , increase k and begin recursion; otherwise terminate.

where ωk is the weight vector at search step k, q is reduction factor, MIT

is the maximum number of allowed iterations. E is the batch error measure

defined as the sum-of-squared-differences error function over the entire training

set. g(ω) defines the gradient �E(ω) of the sum-of-squared-differences error

function E at ω.

– Algorithm-2: BP with Adaptation of a Self-Determined Learning Rate

∗ 1. Set m = 1, and go to the next step.

∗ 2. Set η0 =
E(ωk)

‖�E(ωk)‖2 ; also set η = η0.

∗ 3. If E(ωk − ηg(ωk))−E(ωk) ≤ −1
2
η‖�E(ωk)‖2, go to step 5; otherwise,

set m = m+ 1 and go to the next step.

∗ 4. Set η = η0
qm−1 , and return to step 3.
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∗ 5. Set ωk+1 = ωk − ηg(ωk).

∗ 6. If the convergence criterion E(ωk− ηg(ωk)) ≤ ε is met, then terminate;

otherwise go to next step.

∗ 7. If k < MIT , increase k and begin recursion; otherwise terminate.

– Algorithm-3: BP with Adaptive Learning Rate for Each Weight

∗ 1. Set γ = γ0, m = 1, and go to the next step.

∗ 2. If k ≥ 1 set Λki =
|∂iE(ωk)−∂iE(ωk−1)|

|ωk
i −ωk−1

i | , i = 1, 2, . . . , n; otherwise set

Λk = η−1
0 I.

∗ 3. IfE(ωk−γdiag{ 1
Λk

1
, . . . , 1

Λk
n
}�E(ωk))−E(ωk) ≤ −1

2
γ‖diag{ 1

Λk
1
, . . . , 1

Λk
n
}�

E(ωk)‖2, go to step 5; otherwise, set m = m+ 1 and go to the next step.

∗ 4. Set γ = γ0
qm−1 , and return to step 3.

∗ 5. Set ωk+1 = ωk − γdiag{ 1
Λk

1
, . . . , 1

Λk
n
} � E(ωk).

∗ 6. If the convergence criterion E(ωk − γdiag{ 1
Λk

1
, . . . , 1

Λk
n
} �E(ωk)) ≤ ε is

met, then terminate; otherwise go to next step.

∗ 7. If k < MIT , increase k and begin recursion; otherwise terminate.

where γ is the relaxation coefficient.

• Stable Training. As it is well known that if the setting of the learning rate is

not appropriate the unstable problem may occur in the training of MLP by using

backpropagation. Some techniques have been proposed in order to cope with this

problem recently. St. Maruster discussed the stability problem of gradient-like

method in the mathematics sense [77]. A training strategy for computationally

intelligent systems based on variable structure systems with stability analysis in

Lyapunou sense has been proposed in [78][79].

• Robustness. MLP is usually referred to as a universal approximator. Nevertheless,

if the used training data are corrupted by noise, such as outliers, standard back-

propagation learning scheme may not always come up with acceptable performance.

A number of robust training algorithms have been proposed for dealing with the

specific problems [15][80].

Second Order Training Methods

Second order gradient methods make use of second derivations of the error function with

respect to the weights. These derivations consist of the Hessian matrix. The Hessian

matrix contains information about how the gradient changes in different directions in
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weight space. The mainly used second order methods include Newton, Gaussian New-

ton, Levenberg-Marquardt, Quickprop and Conjugate Gradient Descent methods. The

Levenberg-Marquardt algorithm is briefly described as follows.

It is known that an algorithm with second-order convergence, such as Newton’s method

can greatly improve the convergence of the optimization. The parameter update rule of

Newton’s algorithm is

ωi+1 = ωi −
[
∂2J

∂ω2
i

]−1
∂J

∂ωi
(2.40)

where J is the objective or cost function, ∂
2J
∂ω2

i
= [ ∂f

∂ωi
][ ∂f
∂ωi
]T + δ(ωi) is the Hessian matrix

that contains the second-order derivative terms. If the higher-order derivative term δ(ωi) is

assumed to be omitted, then the algorithm becomes the so-called Gauss-Newton method,

i.e.,

ωi+1 = ωi −

( ∂f

∂ωi

)(
∂f

∂ωi

)T
−1

∂J

∂ωi
(2.41)

The main problem in using Newton’s and Gauss-Newton’s methods is that these meth-

ods may have ill-conditioning if Hessian matrix is close to or is singular. The Levenberg-

Marquardt modification to Gauss-Newton algorithm is to introduce a factor λ ≥ 0 into

the algorithm, i.e.,

ωi+1 = ωi −

( ∂f

∂ωi

)(
∂f

∂ωi

)T
+ λI



−1

∂J

∂ωi
(2.42)

The factor λ can be changed from zero to a very large value. If λ is very small,

the algorithm is reduced to being the Gauss-Newton method. While λ is sufficiently

large, the algorithm approaches a steepest descent search. Moreover, λ can enhance

the numerical stabilization if the algorithm is converging towards a saddle point where

∂f/∂ωi may approach zero. In this singular case, λ �= 0 will considerably improve the

numerical stability. In detail, the Levenberg-Marquardt algorithm for training MLP may

be implemented as follows.

• 1. Select an initial parameter vector θ(0), and an initial value λ(0).

• 2. Determine the search direction from [R(θ(i)) + λ(i)I ] = −G(θ(i)).

• If r(i) > 0.75, then λ(i) = λ(i)

2
; if r(i) < 0.25, then λ(i) = 2λ(i).
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• If J(θ(i) + f (i)) < J(θ(i)) then accept θ(i+1) = θ(i) + f (i) as a new iterate and let

λ(i+1) = λ(i).

• If the stopping criterion is not satisfied go to step 2.

where f (i) is search direction at search step i, and G(θ(i)) and R(θ(i)) are defined as follows.

Let L(i)(θ) = 1
2N

∑N
t=1 ε

2(t, θ) and ψ(t, θ) = ∂y(t|θ)
dθ

, then

G(θ(i)) =
dL(i)(θ)

dθ
|θ=θ(i)=

1

N

N∑
t=1

ψ(t, θ(i))[y(t)− y(t|θ(i))] (2.43)

R(θ(i)) =
d2L(i)(θ)

dθ2
|θ=θ(i) =

1

N

N∑
t=1

ψ(t, θ(i))ψT (t, θ(i)). (2.44)

Recursive Least Square (RLS)

MLP net can also be trained by recursive least square algorithm both in offline and online

ways as some researchers have been pointed [81][82]. Where a simple three layer multi-

input single-output MLP net is online trained by RLS in order to show the art of the

technique.

Suppose the output of the MLP net is

y(t) =
nh∑
j=0

w1,jhj(t) =
nh∑
j=1

w1,jfj(
ni∑
l=0

wj,lxl(t)) + w1,0 (2.45)

where w1,j denotes the hidden-to-output layer weights, 1 denotes that there is only one

output of the MLP net. hj(t) denotes the outputs of the hidden layer.

Define an objective function as

E(t) =
1

2
e2(t) =

1

2
(y(t)− yr(t))

2 (2.46)

where yr(t) and y(t) are the desired and model output at time t.

Firstly, the regression vectors of input-to-hidden and hidden-to-output layer can be

formed as

φTh (t) = [x1(t), x2(t), . . . , xni
(t), 1] (2.47)

φTo (t) = [h1(t), h2(t), . . . , hnh
(t), 1] (2.48)

where ni and nh are the number of neurons in the input and hidden layer, respectively.
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The weights in the input-to-hidden and the hidden-to-output can be formed the fol-

lowing vector form

W T
h,l(t) = [wh1l(t), wh2l(t), . . . , whnil(t), w0,l(t)] (2.49)

W T
o,1(t) = [wo11(t), wo21(t), . . . , wonh1(t), wo,0(t)] (2.50)

where h and o denote the hidden and output layer, respectively.

Then, the sum of the l-th hidden unit and the output unit are

Shl(t) = φTh (t)Whl(t) (2.51)

So1(t) = φTo (t)Wo1(t) (2.52)

Secondly, define the errors for the l-th hidden units and the output unit as

ehl(t) = S∗
hl(t)− Shl(t) (2.53)

eo1(t) = S∗
o1(t)− So1(t) (2.54)

where S∗
hl(t) and S∗

o1(t) are the desired values and unknown. So the above errors cannot

be calculated. But based on the plant Jacobian and the objective function, the errors can

be approximated by

eo1(t) ∼= − ∂E(t)

∂So1(t)
∼= e(t)J(t) (2.55)

where J(t) is the plant Jacobian, it can be calculated in real implementation as follows

J(t) =
∂F (t)

∂u(t − 1)
∼= sign(F (t)− F (t− 1)) · sign(u(t− 1)− u(t− 2)) (2.56)

The error for the hidden layer can be obtained as

ehl(t) ∼= − ∂E(t)

∂Shl(t)
∼= eo1(t)wol1(t)f

′
hl(t) (2.57)

where f
′
hl is the derivative of the hidden layer activation functions.

Finally the weights of MLP net can be update according to

Whl(t) =Whl(t− 1) + Ph(t)φh(t)(ehl(t)) (2.58)

Wo1(t) =Wo1(t− 1) + Po(t)φo(t)(eo1(t)) (2.59)
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where Ph and Po are the P -matrices of the hidden and output layers respectively. The

P -matrice is update according to

P (t) =
1

λ
P (t− 1){Im − φ(t)φT (t)P (t− 1)

λ+ φT (t)P (t− 1)φ(t)} (2.60)

Evolutionary Algorithm based Training

Some global optimization techniques like evolutionary programming, simulated annealing

[83] and genetic algorithms have also been used for the training of ANNs. A recent survey

of such research can be found in X. Yao [84]. It has been shown that the binary coding

scheme used in GA is neither necessary nor beneficial [85][86]. In addition, Fogel and

Ghozeil [87] showed that under some fairly general assumptions, there are fundamental

equivalences between various representations. Several successful studies using real values

instead of binary coding scheme include Montana and Davis [88] and Sexton et al., [89]

for GA and porto et al., [90] and Saravanan et al., [91] for other evolutionary algorithms.

Most recently, R.S. Sexton et al., compared the use of BP and the GA for training of

MLP net [92]. Their empirical results shown that the GA is superior to BP in effectiveness,

ease-of-use and efficiency for training MLP net for the five chaotic time series prediction

problems. Where effectiveness refers to the accuracy of each algorithm to estimate the

true functional form. Ease-of-use deals with the effort needed for optimal algorithm

settings for the problems at hand. Efficiency of an algorithm is computed by comparing

the CPU time needed for converging upon the best found solutions.

Further researches are needed from a wide range of learning algorithms in order to

evaluate the performance of various tuning strategies for MLP net training, and evaluate

the applicability, generalization ability of each training algorithm for various scientific and

engineering problems.

Control Strategy Based Training

Viewing the network learning process as the control problem results in the use of some

control strategies to optimize and control the learning process of NN training. The basic

considerations behind this technique are those as follows:

• The objective of the MLP training is that find a global minima in the weight space
for a certain objective criterion through an iteration procedure. This forms the aim

of the control problem of the MLP training.

• In order to reduce the error function, an iteration process is usually needed in
the MLP training, but, the iteration process may become unstable under some



CHAPTER 2. A REVIEW OF SOFT COMPUTING APPROACHES 35

PID Controller Objective Function+
-

Zero J

ωe
eωe

eJ

ω

Figure 2.9: Architecture of PID gradient optimization

conditions, i.e., the large learning rate in the backpropagation training. In these

cases, the aim of the control may not be achieved or it is time consuming process.

• A natural problem arises like this: Can we control the process of MLP training by

using some control strategies in order to achieve the control objective fastest and

stably ?

Some characteristics of the control problem of the MLP training, such as observer-

ability, controllability, robustness and stability have not been perfectly understood now.

But some encouraging research works have been made recently. Typical examples of this

technique are

• Online PID Gradient Optimization [93]. In this approach, a PID controller is em-

bedded into the learning process of the MLP training as shown in Fig. 2.9. The

output of the PID controller is the weight ω, the controlled process is objective

function, i.e., J(t) = 1
2
(y(t) − ŷ(t))2 in instantaneous gradient descent algorithm

and J = 1
2

∑K
t=1

∑P
i=1(yt(i)− ŷt(i))

2 for batch version of gradient method. The feed-

back signal is the gradient of the objective function with respect to weight ω, i.e.,

∂J(t)/∂ω. The set point of the control system is zero which is the target of the

control system since it will force the feedback signal ∂J(t)/∂ω to track this target.

It is known that a stable and fast control response can be obtained by choosing

proper gains of the PID controller. Motivated by PID control, the gradient descent

algorithm with incremental PID tuning can be formulated as follows:

ω(t) = ω(t− 1)−Ki
∂J(t)

∂ω
−Kp

[
∂J(t)

∂ω
− ∂J(t − 1)

∂ω

]

−Kd

[
∂J(t)

∂ω
− 2∂J(t − 1)

∂ω
+

∂J(t − 2)
∂ω

]
(2.61)
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where Kp, Ki and Kd are proportional, integral and derivative gains of the PID

controller. Obviously, if Kp and Kd are zero, the algorithm is the standard instanta-

neous gradient descent algorithm. Therefore, this algorithm provides more freedom

to improve the convergence of MLP training by choosing proper gains.

• Neural Networks Learning with Sliding Mode Control [94]. In this scheme, sliding

mode theory, which is a simple but robust control technique is used to optimize the

direction of weight updates in the standard backpropagation algorithm. Two key

points of this technique are:

– The absolute value of the error is used instead of the actual error of the standard

backpropagation.

– Since the absolute value is considered above, the sign of ∆ω is now given

by the sign of the sliding surface at the current state. Since the sign of the

surface defines the control action in sliding mode control, the learning problem

has now been reduced to a standard sliding mode control problem. Network

learning is now governed by the control actions of the sliding mode algorithm.

Convergence in the learning process is therefore guaranteed because general

sliding mode control theory results can now be applied to the controlled neural

network learning process.

2.2.2 Recurrent Neural Network

RNN and MLP are different in that the information can flow in the both directions of

feedforward and feedback in RNN and information can be propagated in only one direction

in MLP. There are apparently many architectures of RNN by using different combinations

of feeding back the states to the neurons in each layer. The typical recurrent neural

networks include Jordan, Elman and their modifications.

Fig. 2.10 shows the original Elamn and Jordan recurrent neural network. One of

the modifications of Elman and Jordan networks are such as Pham and Liu, where self-

connections are introduced in the context units.

Let the external inputs to the Elamn net are represented by u(k) and the network

outputs by y(k). The activation of the hidden units are x(k). The outputs of the context

units are represented by x′(k). Now the output of the Elman net can be calculated in a

matrix form as follows.

y(k) = ω3x(k) (2.62)
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Figure 2.10: Original Elman net (left) and Jordan net (right).

x(k) = ω2x
′(k) + ω1u(k) (2.63)

x′(k) = x(k − 1) (2.64)

where ω1 is the weight vector of external input to hidden units, ω2 is the recurrent weight

vector, and ω3 is the hidden-to-output weight vector.

The recurrent neural networks can be easily trained by backpropagation through time

or global learning algorithm, such as genetic algorithm.

2.2.3 Fuzzy Neural Network

A flowchart of the fuzzy neural network is shown in Fig. 2.11, which is organized into

n input variables, m-term nodes for each input variable, 1 output node, and m × n rule

nodes.

Let uki denotes the ith input of a node in the kth layer, Ok
i denotes the ith node output

in layer k. The signal propagation process can be described as follows.

• Layer 1: The nodes in this layer only transmit input values to next layer directly.

O1
i = u1

i = xi. (2.65)

• Layer 2: Assume that the used membership function is Gaussian function. Then

we have

O2
ij = exp(−(O

1
i −mij)

2

(σij)2
) (2.66)

wheremij and σij are the center and the width of the Gaussian membership function.
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Figure 2.11: A fuzzy neurak network

• Layer 3: The calculation of the ”firing strength” of the corresponding rule.

O3
i =

∏
i

u3
i (2.67)

• Layer 4: Output Layer

yj = O4
j =

m∑
i

u4
ijω

4
i (2.68)

Finally, the overall representation of input x and the mth output y is

ym(k) =
m∑
j=1

ωmj
n∏
i=1

exp(−(xi(k)−mij)
2

(σij)2
). (2.69)

A gradient descent method can be used for tuning the parameters in FNN as follows.

Let the objective function is given by

E(k) =
1

2
(y(k)− ŷ(k))2 (2.70)
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The learning rules can be easily derived as follows.

ωij(k) = ωij(k − 1)− ηω
∂E(k)

∂ωij
(2.71)

mij(k) = mij(k − 1)− ηm
∂E(k)

∂mij

(2.72)

σij(k) = σij(k − 1)− ησ
∂E(k)

∂σij
(2.73)

where

∂E(k)

∂ωij
= −e(k) ·O3

i (2.74)

∂E(k)

∂mij

= −∑
k

e(k)ωik ·O3
k ·
2(xi −mij)

(σij)2
(2.75)

∂E(k)

∂σij
= −∑

k

e(k)ωik ·O3
k ·
2(xi −mij)

2

(σij)3
(2.76)

2.3 Fuzzy Logic System

Fuzzy sets were introduced in 1965 by Lotfi Zadeth with a view to reconcile mathematical

modeling and human knowledge in the engineering sciences. Since then, a considerable

body of literature has blossomed around the concept of fuzzy sets in an incredibly wide

range of areas, from mathematics and logics to traditional and advanced engineering

methodologies.

2.3.1 The Definition of Fuzzy Sets

Fuzzy sets were introduced by Lotfi Zadeth in 1965. To introduce them consider the

X = {x1, x2, x3, x4, x5} crisp set that will be called universe, or universal set and let
Y ⊂ x = {x1, x2, x3} is its crisp subset.
By using the characteristic function defined as

µY (x) =


 1, if x ∈ Y

0, otherwise
(2.77)

The subset Y can be uniquely represented by ordered pairs

Y = {(x1, 1), (x2, 1), (x3, 0), (x4, 0), (x5, 1)} (2.78)
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In his original paper Zadeth proposed that the second member of an ordered pair

(which is called the membership grade of the appropriate element) can take its value not

only from the set {0, 1} but from the closed interval [0, 1] as well. By using this idea fuzzy
sets are defined as follows.

Definition. Let X a universal crisp set. The set of ordered pairs

Y = {(x, µY (x))|x ∈ X, µY : X → [0, 1]} (2.79)

is said to be the fuzzy subset of X. The µY : X → [0, 1] function is called as membership

function and its vlaue is said to be the membership grade of x.

2.3.2 Takagi-Sugeno Fuzzy Model

A fuzzy model proposed by Takagi and Sugeno [25] is described by fuzzy if-then rules

whose consequent parts are represented by linear equations. This fuzzy model is of the

following form:

Ri : If x1 is Ai1 . . . , xn is Ain then yi = ci0 + ci1x1 + . . .+ cinxn (2.80)

where i = 1, 2, . . . , N , N is the number of if-then rules, cik(k = 0, 1, . . . , n) are the

consequent parameters, yi is the output from the ith if-then rule, and Aik is a fuzzy set.

Given an input (x1, x2, . . . , xn), the final output of the fuzzy model is referred as

follows:

y =

∑N
i=1 ωiyi∑N
i=1 ωi

=

∑N
i=1 ωi(ci0 + ci1x1 + . . .+ cinxn)∑N

i=1 ωi
=

∑n
k=0

∑N
i=1 ωicikxk∑N
i=1 ωi

(2.81)

where x0 = 1, ωi is the weight of the ith IF-THEN rule for the input and is calculated as

ωi =
n∏
k=1

Aik(xk), (2.82)

where Aik(xk) is the grad of membership of xk in Aik.

2.3.3 Universal Approximation Property

To Takagi-Sugeno approach, the universal approximation property was proved in [95][96].

In addition, a natural further generalization of this approach was proposed in [97][98],

in which in the conclusion of each rule, the desired output y is given not by an explicit

formula, but by a (crisp) dynamical systems, i.e., by a system of differential equations
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that determine the time derivative of the output variable (i.e., its change in time) as a

function of the inputs and of the previous values of output. This generalization also has

universal approximation property.

A simplified Takagi-Sugeno fuzzy model proposed by Ying Hao [99] has the following

rule base.

Ri : If x1 is Ai1 . . . , xn is Ain then yi = ki(c0 + c1x1 + . . .+ cnxn) (2.83)

where i = 1, 2, . . . , N , N is the number of if-then rules. From this it can be seen that the

free parameters in the consequent part of the IF-THEN rules are reduced significantly.

The universal approximation property of this simplified T-S fuzzy model has also been

proved, and successfully applied to the identification and control of nonlinear systems

[100].

2.3.4 Design Problems

Fuzzy logic systems [25][101] have been successfully applied to a vast number of scientific

and engineering problems in recent years. The advantage of solving the complex nonlinear

problems by utilizing fuzzy logic methodologies is that the experience or expert’s knowl-

edge described as a fuzzy rule base can be directly embedded into the systems for dealing

with the problems. A number of improvements have been made in the aspects of enhanc-

ing the systematic design method of fuzzy logic systems [102]-[107]. In these researches,

the needs for effectively tuning the parameters and structure of fuzzy logic systems are

increased. Many researches focus on the automatically finding the proper structure and

parameters of fuzzy logic systems by using genetic algorithms [103][106][107], evolutionary

programming [105], tabu search [108], and so on. But there still remains some problems

to be solved, for example, how to automatically partition the input space for each input-

output variables, how many fuzzy rules are really needed for properly approximating the

unknown nonlinear systems, and how to determine it automatically. As is well known, the

curse-of-dimensionality is an unsolved problem in the fields of fuzzy and/or neurofuzzy

systems.



Chapter 3

Hybrid Soft Computing for

Identification

The general task of system identification problem is to approximate automatically the

behavior of an unknown plant using an appropriate model. The identification techniques

of nonlinear systems can be divided into two categories: parametric and nonparametric.

The former assume that the functional form of the system model is known (usually based

on physical modeling principles), the aim of identification is the estimation of the unknown

parameters of the model. In the latter case, both of the functional form and the parameters

of the system model is unknown. Therefore, the designer must specify the structure and

parameters of the system to be identified by an appropriate method.

The nonparametric system identification has been studied under a variety of titles

including neural networks, fuzzy systems and evolutionary computation approaches as

discussed in Section 1.2. The basic idea of these methods is that the nonlinear sys-

tem identification problem can be posed as a nonlinear function approximation problem.

Therefore, the performance of the identification depends largely on the characteristics

of the approximators. The usually used approximators include the multilayer percep-

tron networks, RBF networks, CMAC networks, T-S fuzzy systems, B-spline networks,

neurofuzzy networks, wavelet networks and so on.

The researches in the areas of neural and fuzzy for function approximation shown

that a number of nonlinear systems can be represented by a weighted sum of a number

of Basis Functions (or influence functions) [113] [114]. This is also the modification and

generalization of the Gabor-Kolmogrov approximation theory, which can be represented

as[115]

f(x) = f0 +
n∑
i=1

fi(xi) +
n−1∑
i=1

n∑
j=i+1

fij(xi, xj) + . . .+ f1,2,...,n(x1, x2, . . . , xn) (3.1)

42
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where fj(.), etc. represent additive univariate, bivariate, ... components of f(.). In

neurofuzzy approaches, each component is represented by a separate neurofuzzy system

with reduced dimension [116]. In the case of basis function networks, each component

can be represented/approximated by a basis functions.

But there are still some problems to be solved, for example, how many basis functions

are proper for approximating an unknown nonlinear system, which type of basis functions

is good (globally or locally), how to select these basis functions including its structure

and parameters, how to automatically partition the input space into the minimal set of

local models which offer maximal approximation capability. As it is well known that the

curse-of-dimensionality is an un-solved problem in the fields of B-spline networks, wavelet

neural networks, fuzzy systems and neurofuzzy networks.

In this chapter, a unified framework for automatically evolving the hybrid soft com-

puting models is proposed firstly. The basic ideas behind this technique are that the

architecture of the various hybrid soft computing models can be created automatically by

using a modified PIPE algorithm with the tree structural representation, and the parame-

ters used in hybrid soft computing models can be simultaneously optimized by parameter

optimization techniques. This technique has been implemented to optimize four kinds of

hybrid soft computing models. They are:

• Additive model and Reconstruction of polynomials.

• Evolving non-regular MLP nets.

• Evolving the basis function networks

• Evolutionary design of hierarchical T-S fuzzy models

3.1 A Unified Framework of Hybrid Soft Computing

Models

PIPE as discussed in Section 2.1.4 can be used for the automated program synthesis.

This means that given a data set a symbolic express can be found by PIPE for accurately

fitting a data set. But, same as genetic programming, the symbolic express evolved by

PIPE is usually redundant, long, and no meaningful sense to some extend. This is because

the used function operator has some limitations. Motivated by this disadvantage, a new

method is proposed in this chapter, in which a valuable symbolic express, such as, an

approximation polynomial, a neural network, a fuzzy T-S model, a basis function neural



CHAPTER 3. HYBRID SOFT COMPUTING FOR IDENTIFICATION 44

Π

Σ

G� G� G�.�.�.� G� G� G�.�.�.�

Π Π

x1 xn

y

.� �.� �.� �.� �.� �.�

G�Z-1

wθij

Figure 3.1: A recurrent fuzzy neural network (RFNN)

network and a hierarchical T-S fuzzy model, can be formulated by using the modified

PIPE algorithm with specified instruction sets..

3.1.1 Representation and Calculation with Tree: An Example

If a soft computing model, i.e., recurrent fuzzy neural network (RFNN), can be represented

as a tree and can be calculated same as the usually used way, some advantages may be

appeared. First the different architecture of the RFNN can be created via creating the

different tree. And then some tree-based evolutionary algorithms can be used to evolve

the architectures of the RFNN, e.g., a modified PIPE algorithm.

RFNN and Tree

The architecture of a RFNN is shown in Fig.3.1 [178], which is the extension of the

usually used fuzzy neural network (FNN). In RFNN, the feedback connections are added

in the second layer of the FNN. This results in more flexibly adjustable parameters for

approximating a nonlinear map by using RFNN than FNN.
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The input/output representation of RFNN can be described as follows

y(k) =
N∑
j=1

ωj
n∏
i=1

exp(−(xi(k) +O2
ij(k − 1) · θij −mij)

2

(σij)2
) (3.2)

O2
ij(k − 1) = exp(−(x(k − 1) +O2

ij(k − 2) · θij −mij)
2

(σij)2
) (3.3)

where n is the number of input variables, N denotes the rule number. The used member-

ship function is the Gaussian function,

µij = exp

(
−(xij −mij)

2

(σij)2

)
(3.4)

where mij and σij are the center and the width of Gaussian membership function. The

subscript ij indicates the j-th term of the i-th input xi.

xi xn

+N

+n +n +n

x1 x2 xi xn x1 x2 xi xn

w
w

w

... ...

(2)   Create the parameters in the conclusion part 
        of the fuzzy rules, and attach it to the root 
        node.
(3)   Each node in the middle of the above tree 
        represents a fuzzy rule.

1 N
j

x1 x2

(1) Create the center, width and recurrent weight
for each input vraiable and attach it to the each 
neuron in middle layer of the tree.

Figure 3.2: Tree structural representation of a RFNN



CHAPTER 3. HYBRID SOFT COMPUTING FOR IDENTIFICATION 46

The RFNN can be represented as a tree, which is shown in Fig. 3.2 with some necessary

data structure. The used instruction sets for generating the tree are I0 = {+2, . . . ,+N},
I1 = {+n} and I2 = {x1, x2, . . . , xn}. N is used to control the number of hidden neurons

which is also the number of rules in the RFNN, and n is the number of inputs in the

RFNN.

As mentioned above, the tree (RFNN model) can be generated in a recursive way

(deepest first) as follows:

(1) Select a root node from the instruction set I0 according to the probability of

selecting instructions. If the number of arguments of the selected instruction is larger

than one, e.g., +i, then create i weights and attach it to the root node.

(2) Create the left sub-node of the root node from the instruction set I1. If the

number of arguments of the selected instruction is larger than one, then create a number

of parameters (include the center, width and recurrent weight) and attach them to the

node, and then create its left sub-node as same way from the instruction set I2. Otherwise,

if the instruction of the node is an input variable, return to upper layer of the tree in

order to generate the right part of the tree.

(3) Repeat this process until a full tree is generated.

Remark: There are two key points in the generation of the tree. The one is that the

instruction is selected according to the initial probability of selecting instructions, and

the probability will be changed with generation by a modified probabilistic incremental

algorithm. The other is that if the selected node is a non-terminal node, then generate

the corresponding data structure (parameters used in RFNN model) and attach it to the

node.

Calculate the output of RFNN by tree

In order to calculate the output of the RFNN presented as a tree, we need first calculate

the output of each node in the middle layer of the tree as follows

yj(k) =
n∏
i=1

exp(−(xi(k) +O2
ij(k − 1) · θij −mij)

2

(σij)2
) (3.5)

It is can be implemented by a recursive way. And then calculate the output of the

tree at root node as follows

y(k) =
N∑
j=1

ωjyj(k). (3.6)
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3.1.2 Structure Optimization by MPIPE

PIPE and MPIPE

In this research, in order to create and optimize the specific type constrained sparse trees

which represent some of hybrid soft computing models, the standard PIPE are modified

as follows:

• The instruction set is modified from one instruction set used in PIPE to two or

three instruction sets in MPIPE. In addition, in order to formulate a meaningful

hybrid soft computing model some instructions are removed from the usually used

instruction set of PIPE, i.e., sin, cos, exp, log, and new instructions, i.e., +n are

added to the instruction sets of the MPIPE.

• The initial probability of selecting instructions in each of the instruction sets is
modified as follows

P (Id,w) =
1

li
, ∀Id,w ∈ Ii, i = 0, 1, 2 (3.7)

where Id,w denotes the instruction of the node with depth d and width w, li(i =

0, 1, 2) is the number of instructions in the instruction set Ii.

• To our knowledge, PIPE cannot be used for the parameter optimization in gen-

eral. And finding an optimal hybrid oft computing model needs searches in the

architecture and parameter space simultaneously. To cope with the specified prob-

lem in designing of the hybrid soft computing model, the specified data structure

(parameters) are added to the node of the tree in MPIPE.

• The mutation probability of selecting instructions in PIPE is modified as shown in
Eq.(3.11).

Although some modifications are made in MPIPE in order to form a hybrid soft

computing model, the key learning principle of PIPE are maintained. MPIPE with the

population based probabilistic incremental learning and elitist learning are used for se-

lecting the proper instructions of the tree in order for evolving an optimal architecture of

the hybrid soft computing model finally.

The learning procedure of the MPIPE

The main learning procedure of MPIPE can be summarized as follows:
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1) Initially a population of the tree (include the parameters attached to the nodes) is

randomly generated according to the predefined the probability of selecting instructions.

2) Let PROGb
and PROGel

be the best program of the current generation (best program)

and the one found so far (elitist program), respectively. Define the probability and the

target probability of best program as

P (PROGb
) =

∏
Id,w :used to

generate PROGb

P (Id,w) (3.8)

and

PTARGET = P (PROGb
) + (1− P (PROGb

))
ε+ FIT (PROGel)

ε+ FIT (PROGb
)

(3.9)

where FIT (PROGb
) and FIT (PROGel) denote the fitness of the best and elitist program.

In order to increase the probability P (PROGb
), repeat the following process until

P (PROGb
) ≥ PTARGET :

P (Id,w) = P (Id,w) + clr · lr · (1− P (Id,w)) (3.10)

where clr is a constant influencing the number of iterations and ε is the fitness constant.

3) Define the mutation probability as

PMp =
PM

(l0 + l1 + l2) ·
√
|PROGb

|
(3.11)

where |PROGb
| denotes the number of nodes in program. All the probabilities P (Id,w) are

mutated with probability PMP
according to

P (Id,w) = P (Id,w) +mr · (1− P (Id,w)) (3.12)

4) Repeat this process according to the new probability of selecting instructions in

the instruction sets until the best structure found or the maximum number of MPIPE

algorithm is reached.

3.1.3 Parameter optimization

The parameters used in hybrid soft computing model such as weights, centers and widths

formulate the parameter search space. Weight is linear-in-parameter, and center and

width are the nonlinear-in-parameter.
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Parameter Tuning Strategy:

Some of parameter optimization strategies are those described as follows.

• Non-hybrid parameter optimization strategy. In this approach, the parameters can

be optimized by unified learning algorithm, e.g., gradient descent method, evolu-

tionary programming, random search algorithm and so on.

• Hybrid parameter optimization strategy. In this strategy, the suggestion is that the

weight (linear-in-parameter) can be optimized by a fast parameter learning algo-

rithm, e.g., least-squares, Lyapunov-based algorithms, robust learning algorithms,

and the center and width (nonlinear-in-parameter) are optimized by a global opti-

mization technique, e. g., GA, EP and random search algorithms.

Some Candidate Parameter Tuning Methods:

• Gradient algorithm is one of the most straightforward and widely used approach for

parameter estimation [113]. The main idea behind the gradient method is to update

at each time t the parameter estimate θ̂(t) in the direction where the cost function

J(θ̂) decreases the most. Assume that the approximation function is linearly pa-

rameterized as follows

y(t) = θ(t)T ζ(t) + σ(t) (3.13)

Then, the deterministic, continuous-time version of the gradient learning algorithm

can be described as

˙̂
θ(t) = −∇J(θ̂(t)). (3.14)

If we minimize the cost function associate with the instantaneous error,

J(θ̂) =
1

2
(y(t)− θ̂T (t)ζ(t))T (y(t)− θ̂T (t)ζ(t)) (3.15)

then the following gradient estimation algorithm can be obtained

˙̂
θ(t) = Γζ(t)(y(t)− θ̂T (t)ζ(t)) (3.16)

where γ is a positive-definite symmetric matrix representing the learning rate matrix

and the initial condition is given by θ̂(0) = θ̂0. In the special case where the same

learning rate γ is used for each parameter estimate, then Γ = γI, where I is the

identity matrix.
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The normalized gradient algorithm, which is sometimes used to improve the stability

and convergence properties of the algorithm is described by

˙̂
θ(t) =

Γζ(t)(y(t)− θ̂T (t)ζ(t))

1 + βζT (t)ζ(t)
(3.17)

where β > 0 is a design constant.

• Least-squares algorithm is to fit a mathematical model to a sequence of observed

data by minimizing the sum of the squares of the difference between the observed

data and computed data. Assume that the cost function is given by

J(θ̂) =
∫ t

0
(y(τ)− θ̂T (t)ζ(τ))T (y(τ)− θ̂T (t)ζ(τ)) (3.18)

where y(τ) is the measured data at time τ , and ζ(τ) is the regressor vector at time

τ . The above cost function penalizes all the past errors y(τ)− ζT (τ)θ̂(t) for τ = 0

up to τ = t, relative to the current parameter estimate θ̂(t). By setting to zero the

gradient of the cost function (∇J(θ̂) = 0), we obtain the least-squares estimate for

θ̂(t):

θ̂(t) =
[∫ t

0
ζ(τ)ζT (τ)dτ

]−1 ∫ t

0
ζ(τ)yT (τ)dτ. (3.19)

This is the batch version of least-squares algorithms. The recursive version of the

least-squares algorithm is given by

˙̂
θ(t) = P (t)ζ(t)

(
yT (t)− ζT (t)θ̂(t)

)
, θ̂(0) = θ̂0 (3.20)

˙P (t) = −P (t)ζ(t)ζT (t)P (t), P (0) = P0, (3.21)

where P (t) is a square matrix of the same dimension as the parameter estimate θ̂.

The initial condition of P0 of the P is chosen to be positive-definite.

• Lyapunov-based algorithm. In this scheme, the problem of designing an adaptive

law is formulated as a stability problem in which the differential equation of the

adaptive law is chosen so that certain stability properties can be established using

Lyapunov theory.

For the parameter estimation problem of Eq.(3.13), the following adaptive law can
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be generated by using Lyapunov method:

˙̂
θ(t) = Γζ(t)(y(t)− θ̂T (t)ζ(t)) (3.22)

which is essentially of the same form as the gradient algorithm and the stability and

convergence properties of the two algorithms are also similar.

• Robust learning algorithm. Some modifications to the standard parameter learning

algorithm in order to provide stability and improve performance in the presence of

modeling errors have been proposed. These modifications lead to what is known as

robust learning algorithms. The term robust is used to indicate that the learning

algorithm is such that in the presence of modeling errors it retains its stability

properties.

To illustrate the various options for enhancing the robustness of the adaptive laws,

we consider a generic adaptive law

˙̂
θ(t) = Γξ(t)ε(t), (3.23)

where Γ is the learning rate matrix, ξ(t) is the regression vector, ε(t) is the estimation

error.

Some modifications in order to prevent the parameter drift can be summarized as

follows.

– Projection modification: In this approach, an effective way to prevent

parameter drift is to restrain the parameter estimates within a predefined

bounded and convex region P . The projection modification implements this

idea as follows: If the parameter estimate θ̂ is inside the desired region P , or is

on the boundary and directed inside the region P , then the standard adaptive

law (3.23) is implemented. In the case that θ̂ is on the boundary of P and its

derivative is directly outside the region, then it is projected onto the tangent

hyperplane.

– σ-modification: In this approach, the adaptive law (3.23) is modified to

˙̂
θ(t) = Γξ(t)ε(t)− Γσθ̂(t) (3.24)

where σ is a small positive constant. The additional term Γσθ̂ acts as a stabiliz-

ing component for adaptive law. If the parameter estimate θ̂(t) starts drifting
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to large positive values, then Γσθ̂ becomes large and negative, thus forcing the

parameter estimate to decrease.

– ε-modification: The ε-modification was motivated as an attempt to eliminate

some of the drawbacks associated with the sigma-modification. It is given by

˙̂
θ(t) = Γξ(t)ε(t)− Γ|ε|νθ̂(t) (3.25)

where ν > 0 is a design constant. The idea behind this approach is to retain

the convergence properties of the adaptive scheme by forcing the additional

term Γ|ε|νθ̂ to be zero in the case that ε(t) = 0. In the case that the parameter
estimate vector θ̂(t) starts drifting to large values, then the ε-modification again

acts as a stabilizing force.

– Dead-zone modification: In the presence of approximation errors, the adap-

tive law (3.23) tries to minimize the estimation error ε, sometimes at the ex-

pense of increasing the magnitude of the parameter estimates. The idea behind

the dead-zone modification is to enhance robustness by tuning off adaptation

when the estimation error becomes relatively small compared to the approxi-

mation error. The dead-zone modification is given by

˙̂
θ(t) =


 Γξ(t)ε(t), if |ε| ≥ δ0

0, if |ε| < δ0

(3.26)

where δ0 is a positive design constant that depends on the approximation error.

One of the drawbacks of the dead-zone modification is that the designer needs

an upper bound on the approximation error, which is usually not available.

3.1.4 The Proposed Algorithm for Designing of Hybrid Soft

Computing Models

Combining the self-organizing and learning characteristics in the aspects of structure

optimization of MPIPE and the some parameter optimization strategies, a hybrid learning

algorithm (see Fig. 3.3) for designing of hybrid soft computing models is proposed as

follows.

1) Set the initial values of parameters used in the MPIPE and parameter learning

algorithms. Set the elitist program as NULL and its fitness value as a biggest

positive real number of the computer at hand. Create the initial population (tree)

and corresponding parameters used in hybrid soft computing model.
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Figure 3.3: The flow chart of the proposed algorithm for designing of hybrid soft comput-
ing models

2) Recall the MPIPE sub-program for structure optimization, in which the fitness

function can be calculated by the mean square error (MSE) or the sum of absolute

error (SAE)

Fit(i) =
1

P

P∑
j=1

(yj1 − yj2)
2 (3.27)

Fit(i) =
P∑
j=1

|yj1 − yj2|2 (3.28)
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where P is the total number of samples, yi1 and yi2 are the actual and model output

of i-th sample Fit(i) denotes the fitness value of i-th individual.

3) If the better structure found, then go to step 4), otherwise go to step 2). The

criterion concerning with better structure found is distinguished as follows: if the

fitness value of the best program is smaller than the fitness value of the elitist

program, or the fitness values of two programs are equal but the nodes of the former

is lower than the later, then we say that the better structure is found. Where the

best and elitist programs are the best program at current generation and the one

found so far, respectively.

4) Recall the parameter optimization strategy sub-program for parameter optimiza-

tion. In this step, the tree structure or architecture of the hybrid model is fixed,

and it is the best tree taken from the end of run of MPIPE search. All of the

parameters used in the best tree or the corresponding hybrid soft computing model

formulate a vector which to be optimized by parameter optimization strategy in

order to decrease the fitness value of best program.

5) If the maximum number of parameter search is reached, then go to step 6); otherwise

go to step 4).

6) If satisfied solution is found, then stop; otherwise go to step 2).

3.2 Additive Model and Reconstruction of Polyno-

mials

3.2.1 Additive Model and Tree

In function approximation, an arbitrary nonlinear function can be approximated by many

techniques such as polynomial regression, artificial neural networks, fuzzy systems, wavelet

analysis and so on. One common feature of these methods is that the nonlinear function

to be approximated can be usually represented as a linear combination of nonlinear terms

(base functions). The approximation accuracy depends largely on the selection of the

base functions and the weights of the linear combination terms. In fact, the problem of

base function selection corresponding to the model structure selection problem, and the

determination of the weight same as the parameter identification problem.

Based on this idea, the candidate solution (symbolic expression) can be represented as

a partially weighted sparse tree (Fig.3.4), in which the root node returns the weighted sum

of a number of linear/nonlinear terms (base function or linear/nonlinear components).
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Figure 3.4: Interpretation of a sparse tree and its symbolic expression

In order to create above specific tree, two instruction sets I0 and I1 are used in the

modified PIPE. The instruction set I0 is used for creating the instruction of the root

node and the instructions of the remained node are selected from the instruction set I1

by MPIPE.

I0 = {+2,+3, . . . ,+N} (3.29)

I1 = F ∪ T = {∗,%, sin, cos, exp, rlog, x,R} (3.30)

where F = {∗,%, sin, cos, exp, rlog} and T = {x,R} are function set and terminal set.
+N , ∗, %, sin, con, exp, rlog, x, and R denote addition, multiplication, protected division

(∀x, y ∈ R, y �= 0 : x%y = x/y and x%0 = 1), sine, cosine, exponent, protected logarithm

(∀x ∈ R, x �= 0 : rlog (x) = log (abs (x)) and rlog (0) = 0), system inputs, and random

constant number, and taking N , 2, 2, 1, 1, 1, 1, 0 and -1 arguments respectively.

It is interesting to mention that if the instruction set I1 only contains the random real

number, input variables, and product operator, i.e., I1 = {R, x1, x2, . . . , xn, ∗, ∗3}, then
we can evolve the polynomials for realizing the polynomial regression.
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3.2.2 Implementation and Experiments

Some simulations have been made in order to verify the effectiveness of the proposed

method for the identification of linear/nonlinear system. In this experiments, the archi-

tecture and parameters of the additive model are evolved by MPIPE and least squares,

respectively. It can be seen that for the polynomial regression problem, an almost true

model of the system can be obtained by using the proposed method.

Linear system identification

A benchmark ARMAX system often used to test various identification methods is given

by

y(k) = b0u(k − 5) + b1u(k − 6) + a0y(k − 1) + a1y(k − 2)

+c0e(k) + c1e(k − 1) + c2e(k − 2) (3.31)

where a0 = 1.5, a1 = −0.7, b0 = 1.0, b1 = 0.5, c0 = 1.0, c1 = −1.0, c2 = 0.2. The objective

here is to optimally identify the structure and parameters of the system in the presence

of the noise. The input u(k) is randomly generated at [-5, 5]. The e(k) is Gaussain-

distributed random variable with mean 0 and deviation 1. 400 samples are generated by

using the above input u(k) and Eq.(3.17), in which 200 data used for training and the

other 200 data used for validation.

The used instruction set I1 = {+2, +3, +4, +5, +6, +7, +8, +9, +10} and I2 = {∗,
u(k − 5), u(k − 6), y(k), y(k − 1), y(k − 2), e(k), e(k − 1), e(k − 2)}.
The used fitness function is the sum of absolute error between the actual and evolved

output of the plant. The control parameters of the proposed method are shown in Table

3.1.

The following model are obtained at generation 123 with the fitness 0.669568:

y(k) = 1.000307u(k − 5) + 0.505093u(k − 6) + 1.499481y(k− 1)

−0.699698y(k − 2) + 0.998582e(k)− 1.001312e(k − 1) + 0.198232e(k − 2) (3.32)

Fig. 3.5 presents the outputs of actual system and evolved model for the validation

set, and the identification error is shown in Fig. 3.6.
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Table 3.1: Parameters of the proposed Algorithm

Population Size PS 10
Initial Terminal Probability PT 0.8
Elitist Learning Probability Pel 0.01
Learning Rate lr 0.01
Fitness Constant ε 0.000001
Overall Mutation Probability PM 0.4
Mutation Rate mr 0.4
Prune Threshold TP 0.999999
Random Constant Threshold TR 0.3
Initial Weights [-1, 1]
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Figure 3.5: Actual and evolved output
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Figure 3.6: Error of the identification

Chaotic time series prediction

Given Henon map as follows

x(k + 1) = α− x(k)2 + βx(k − 1) (3.33)

where x(k) ∈ [−2.0, 2.0], α = 1.4 and β = 0.3.

100 training data are generated at initial conditions of x(0) = 1.2 and x(1) = 0.8

by using Eq.(3.19). The structure and parameters of the system are identified by using

proposed method with the instruction set I1 = {+2,+3,+4,+5,+6,+7,+8} and I2 =

{∗, x, R}. The parameters of PIPE and random search are same as those described in

above.

The evolved Henon map as the best solution is obtained at generation 127 with fitness
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Figure 3.7: Actual and evolved output
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0.007911:

x(k + 1) = 1.400015− 1.000050x(k)2 + 0.300007x(k − 1) (3.34)

Fig.3.7 presents the outputs of actual system and evolved model, and the identification

error is shown in Fig. 3.8. It is obviously that the generalization ability of evolved model

is very well due to the evolved model is almost same with the original system model.

In addition, in order to learn about how to select the number of instructions in the

instruction set I0, we vary the instruction set I0 as follows

case 1: I0 = {+2,+3}
case 2: I0 = {+2,+3, · · · ,+5}
case 3: I0 = {+2,+3, · · · ,+10}
case 4: I0 = {+2,+3, · · · ,+15}
Four independent experiments were done. Simulation results show that a nonlinear

system can be identified by proposed method with a proper selected instruction set I0,

in which the number of instructions in the instruction set I0 (the number of nonlinear

terms of a nonlinear system to be approximated) will affect the convergence speed of the

hybrid method. The smaller the number of instructions is, the fast the convergence speed

is. But it is valuable to note that the nonlinear system may not be identified while the

number of instructions is too small. The bigger the number of instructions is, the slow

the convergence speed is. In our experiments, with the increase of number of instructions,

it need 132 generations to get a solution with fitness value 0.028245 at case 3, and 2217

generations with fitness value 0.016810 at case 4. The detailed procedure of structure and
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Figure 3.9: The procedure of structure and parameter evolution at instruction set I0 =
{+2,+3}

parameters evolution of the proposed method at case 1 and case 2 are shown in Fig.3.9

and Fig.3.10, respectively.

Complex nonlinear system identification

The plant to be identified is given by

y = 0.2 + 0.3 ∗ x1 + 0.4 ∗ x2 + 0.5 ∗ x3 + 0.6 ∗ x2
1 + 0.7 ∗ x2

2 + 0.8 ∗ x2
3

+0.9 ∗ x1 ∗ x2 + 0.1 ∗ x1 ∗ x3 + 0.2 ∗ x2 ∗ x3; (3.35)
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Figure 3.11: Actual and evolved outputs for training data
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Figure 3.12: Actual and evolved outputs for test data

The objective here is to optimally identify the structure and parameters of the nonlinear

system. 400 samples are randomly generated at interval [0,1]. The first 200 data points

are used for the training and the remind data used for validation.

The used instruction set I1 = {+10,+11,+12} and I2 = {∗, x1, x2, x3}.
The used fitness function is the sum of absolute error between the actual and evolved

output of the plant. The control parameters of the proposed method are shown in Table

3.1.

The identification results are shown in Fig. 3.11 and Fig. 3.12 for training data set

and test data set, respectively.

From above simulation results, it can be seen that the proposed method works very

well for generating of the system model, especially for the reconstructing the polynomials.
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3.3 Evolving the Non-Regular MLP Neural Networks

3.3.1 MLP Net and Tree

The usually used representation/encoding methods for evolutionary training of ANNs are

direct encoding scheme and indirect encoding scheme. The former uses a fixed structure

(connection matrix or bitstrings) to specify the architecture of the corresponding ANN

[109][110]. The latter uses rewrite rules (cellular encoding [111] and graph generation

grammars [112]) to specify a set of construction rules that are recursively applied to yield

the ANN.

In order to evolve the architecture and parameters of MLP network simultaneously,

the candidate solution is represented as a type constrained sparse tree (Fig.3.13), and the

corresponding MLP network is shown in Fig.3.14. The layer 0 and layer 1 of the tree

denote the output and hidden layer of the corresponding MLP network. The other layers

of the tree denote the input layer of the corresponding MLP network. It can be seen that

the node ∗ in the tree is used for creating the higher order terms in the corresponding
ANN. In addition, every node of layer 0 and layer 1 have a bias and a activation function

which is randomly selected from a predefined activation function set.

The output of each node in the layer 0 and layer 1 is calculated same as the output of

neurons in the hidden layer and output layer of MLP. For example, the output of node +2

in the layer 1 of the tree is f(w6 ∗ x1 ∗ x2 +w7 ∗ x3 − θ), where f and θ are the activation

function and bias of node +2.

Three instruction sets I0, I1 and I2 are used in this approach. The instructions of the

node in the layer 0, and layer 1 of the tree are selected from instruction sets I0 and I1,

respectively. The instructions of the node in other layer is randomly selected from the

instruction set I2.

I0 = {+2,+3, . . . ,+N} (3.36)

I1 = {+3, . . . ,+M} (3.37)

I2 = {∗, x1, x2, . . . , xn} (3.38)

where +N , ∗ and xn denote addition, multiplication and nth system inputs, and taking

N , 2, 1 arguments respectively. It can be seen that the instruction ∗ determine the higher
order input in the tree or corresponding MLP networks.

N is an integer number, and is used to determine the maximum number of hidden

neurons in the MLP network. The instructions in the instruction set I1 are used to select

the numbers of inputs of the hidden neurons. Each node Nd,w of the subtree contains an
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Figure 3.13: A type constrained sparse tree (genotype)
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Figure 3.14: Corresponding MLP network of above type constrained sparse tree (pheno-
type)

instruction Id,w, where d and w denote the node’s depth and horizontal position of the

tree. P (Id,w) denotes the probability of choosing instruction Id,w at node Nd,w.

In addition, the activation functions used in the layer 0 and layer 1 of the tree is ran-

domly selected from the predefined activation function set F = {f0(x), f1(x), f2(x), f3(x)}.
In our experiments, the used activation functions are

f0(x) =
1

1 + exp(−x)
(3.39)

f1(x) =
1− exp(−x)

1 + exp(−x)
(3.40)

f2(x) =
1− exp(−2.0 ∗ x)

1 + exp(−2.0 ∗ x)
(3.41)

f3(x) =
exp(x)− exp(−x)

exp(x) + exp(−x)
. (3.42)
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Figure 3.15: The evolved MLP neural network (Experiment 1)
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Figure 3.16: The actual and evolved output (Experiment 1)

3.3.2 Implementation and Experiments

In the simulation, the architecture of the non-regular MLP is evolved by MPIPE and

the parameters used in the MLP are optimized by random search algorithm. The initial

values of parameters used in random search are shown in Table 3.2.

Experiment 1

The first plant to be identified is a benchmark nonlinear autoregressive time series [9]

y(k) = (0.8− 0.5exp(−y2(k − 1)))y(k − 1)− (0.3 + 0.9exp(−y2(k − 1)))y(k − 2)
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Table 3.2: Parameters used in random search algorithm

β0 β1 α φ0 φmin Isf0 Psf0

0.1 1000 0.995 0.1 0.001 10 0.3
�Isf1 �Isf2 Ismax Ker ci cd

0.02 0.1 100 1.001 1.01 0.995

+0.1sin(3.1415926y(k − 1)) + e(k) (3.43)

where the noise e(k) was a Gaussian white sequence with mean zero and variance 0.02.

600 data points were generated and the first 500 points were used as training data set.

The remaining data were used as a validation data set. The input vector is set as x =

[y(k − 1), y(k − 2)].
The used instruction sets are I0 = {+2,+3, . . . , +10}, I1 = {+2} and I2 = {∗, x0, x1}.
The MSE for training and test data sets are 0.000907 and 0.000821, respectively.

Fig.3.16 shows the evolved MLP network. From Fig.3.15, it can be seen that the evolved

MLP has incomplete interconnections, higher order inputs and different activation func-

tions. The comparison of actual and evolved output for validation data set is shown in

Fig.3.16.

Experiment 2

The plant to be identified is given by the following equation [22]

y(k + 1) =
y(k)y(k − 1)y(k − 2)u(k − 1)(y(k − 2)− 1) + u(k)

1 + y2(k − 1) + y2(k − 2) (3.44)

The input and output of system are x(k) = [u(k), u(k − 1), y(k), y(k − 1), y(k − 2)]

and y(k + 1), respectively.

The data sets for training and test are generated using input signals shown in Eq.

(3.45) and Eq. (3.46), respectively.

u(k) =


 sin

(
2πk
250

)
, if (k < 500)

0.8sin
(

2πk
250

)
+ 0.2sin

(
2πk
25

)
, if (k >= 500)

(3.45)

u(k) = 0.3sin(kπ/25) + 0.1sin(kπ/32) + 0.1sin(kπ/10) (3.46)

The used instruction sets are I0 = {+2,+3, . . . , +15}, I1 = {+2,+3,+4,+5} and
I2 = {∗, x0, x1, x2, x3, x4}.
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Figure 3.17: The evolved MLP neural network (Experiment 2)
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Figure 3.18: The actual and evolved output (Experiment 2)

The MSE for training and test data sets are 0.000091 and 0.000104, respectively.

Fig.3.17 shows the evolved MLP network. From this figure, it can be seen that the size

of evolved sparse MLP neural network is smaller (it only has 7 hidden neurons and 35

parameters including weights and biases). The comparison of actual and evolved output

of is shown in Fig. 3.18.

Experiment 3

In this experiment, the unified framework is used to evolve the flexible non-regular MLP

neural networks. The used activation function is the flexible bipolar sigmoid function as
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Figure 3.19: Input signals for generating the excitation and test data sets of the dynamic
system. The left-hand side shows the input signal for creating the training data set and
the right-hand side the test data set
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Figure 3.20: Comparison between process and simulated model output on training data
set (left) and test data set (right)

shown in Table 2.2. The flexible parameter a is also optimized together with the other

parameters by using random search algorithm.

A second-order non-minimum phase system with gain 1, time constants 4s and 10s, a

zero at 1/4s, and output feedback with a parabolic nonlinearity is chosen to be identified.

With sampling time T0 = 1s this system follows the nonlinear difference equation

y(k) = −0.07289[u(k − 1)− 0.2y2(k − 1)] + 0.09394[u(k − 2)− 0.2y2(k − 2)]
+1.68364y(k− 1)− 0.70469y(k − 2). (3.47)

where the input lie in the interval [-1,1].



CHAPTER 3. HYBRID SOFT COMPUTING FOR IDENTIFICATION 68

The training data and test data are generated using input signals shown in Fig. 3.19.

The used instruction sets are I0 = {+3, . . . ,+8}, I1 = {∗, u(k−1), u(k−2), y(k−1), y(k−
2)}, and I2 = {u(k − 1), u(k − 2), y(k − 1), y(k − 2)}. The evolved flexible MLP network
has 3 hidden neurons. The used cost function is the sum of the absolute error (SAE).

The SAE for training data and test data are 1.873652 and 2.349801, respectively. A

comparison between process and simulated model output on training data set and test

data set is shown in Fig. 3.20.

From above simulation results, it can be seen that the proposed approach works very

well for generating the incomplete MLP networks and it can effectively used for the

identification of nonlinear systems. In this sense, the proposed method can be seen as a

power tool for evolving the non-regular MLP networks.

3.4 Optimization of the Basis Function Networks

3.4.1 Volterra Polynomial Basis Function Net

Volterra Polynomial Basis Function Network and Tree

A network whose basis functions consist of the Volterra polynomials is named as the

Volterra polynomial basis function network (VPBF-NN) [17][18]. For function approxi-

mation, the usually used Volterra polynomial basis functions is

φ = {φ0(x), φ1(x), . . . , φN(x)} = {1, x0, x1, . . . , xn, x0x1, x0x2, . . . , x0xn, x1x2, x1x3,

. . . , x1xn, . . . , xn−1xn, x0
2, x1

2, . . . , xn
2} (3.48)

where N = (n+1)(n+2)/2 is the number of Volterra polynomial basis functions. n is the

number of inputs. Therefore, the nonlinear function can be represented/approximated as

f(x) =
N∑
i=0

ωi ∗ φi(x) +O(x3) (3.49)

where O(x3) represents the model mismatch. For complex approximation problems, the

higher order Volterra polynomial basis functions may be needed.

One of the type constrained sparse tree that represented as a VPBF-NN is shown in

Fig.3.21. The used instruction sets for generating the tree are I0 = {+2, . . . ,+N}, I1

= {R, x0, x1, . . . , xn, ∗2, ∗3} and I2 = {x0, x1, . . . , xn}, where instruction +N is used to

control the number of Volterra polynomial basis functions for approximating the nonlinear

functions at hand, the instruction ∗2 and ∗3 are used to select the higher components of
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Figure 3.21: A tree structural representation of the VPBF network

the Volterra polynomial basis function set.

The main problem of optimizing the VPBF-NN is determination of network architec-

ture which is also a model selection problem, that is, which Volterra basis functions are

proper for the unknown nonlinear system, and estimating the corresponding parameters

of each Volterra polynomial function.

3.4.2 GRBF, B-spline, Wavelet, Fuzzy Basis, Recurrent Fuzzy

Neural, and Local linear GRBF Net and Trees

One of the type constrained sparse tree and its corresponding GRBF (B-spline, wavelet

and fuzzy basis function) network are shown in Fig.3.22 and Fig.3.23, respectively. The

used instruction sets for generating the tree are I0 = {+2, . . . ,+N}, I1 = {+n} and I2

= {x1, x2, . . . , xn}. N is used to control the numbers of hidden neurons which is also the

number of basis functions in the hidden layer of GRBF (B-spline, wavelet and fuzzy basis

function) networks, and n is the number of inputs of GRBF (B-spline, wavelet and fuzzy

basis function) networks.

• GRBF Network

The used Gaussian radial basis function is given by

φi(x) = exp(−‖ x − ci ‖2

di
2 ) (3.50)

where φi(x) is i-th Gaussian radial basis function, x is input vector, x ∈ Rn, ci and

di are the center and width of i-th basis function. Thus, the output of whole tree



CHAPTER 3. HYBRID SOFT COMPUTING FOR IDENTIFICATION 70

+N

+n +n +n

x1 x2 xn x1 x2 xn x1 x2 xn

w0 w1
wN-1

Figure 3.22: A type constrained sparse tree (genotype)
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Figure 3.23: Corresponding GRBF(B-spline and fuzzy basis function) network of the type
constrained sparse tree (phenotype)

in the Fig.3.22 is calculated as

y =
N−1∑
i=0

ωi ∗ exp(−‖ x − ci ‖2

di
2 ) (3.51)

The objective of optimization of GRBF networks is determination of a number of

basis functions, the center and width of each Gaussian radial basis functions by

appropriate methods.

• B-spline Network

The B-spline functions can be defined in a recursive way,

B0(t) =


 1, t ∈ [−1

2
, 1

2
]

0, otherwise
(3.52)

Bm(t) = (Bm−1 ∗B0)(t) (3.53)
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The translation and dilation of the order 2 B-spline function is given by

fa,b(t) = B2(
t− b

a
) =




9
8
+ 3

2
( t−b
a
) + 1

2
( t−b
a
)2, t ∈ [−3

2
a + b,−1

2
a+ b)

3
4
− ( t−b

a
)2, t ∈ [−1

2
a + b, 1

2
a+ b)

9
8
− 3

2
( t−b
a
) + 1

2
( t−b
a
)2, t ∈ [1

2
a+ b, 3

2
a+ b]

0, otherwise

(3.54)

The single input B-spline basis function is given by Eq.(3.54). For the n-dimensional

input space x = [x0, x1, . . . , xn−1], the multivariate B-spline functions is selected by

the product of single B-spline functions

Ni(x) =
n−1∏
j=0

B2(
xj − bj

aj
) (3.55)

Thus, the output of whole tree in the Fig.3.22 is calculated as

y =
N−1∑
i=0

ωi ∗Ni(x) =
N−1∑
i=0

ωi ∗
n−1∏
j=0

B2(
xj − bj

aj
) (3.56)

The objective of optimization of B-spline networks is determination of a number of

basis functions, the center and width of each B-spline basis functions by appropriate

methods. It can be seen that in contrast to the usually methods the pre-dividing of

input space is not needed in our approach.

• Wavelet Neural Network

Given the mother wavelet, a family of equally shaped functions by shifts in time

(translation) and scaling (dilation) can be obtained as

ψa,b(t) =
1√
|a|

ψ(
t − b

a
), a �= 0, a, b ∈ R (3.57)

This is a single variable wavelet basis function. For the n-dimensional input space

x = [x1, x2, . . . , xn], the multivariate wavelet basis function is calculated by the

product of n single wavelet basis functions

si(x) =
n∏
j=1

1√
|aj |

ψ(
xj − bj

aj
) (3.58)
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Thus, the overall output of the wavelet basis function network is calculated as

y =
N−1∑
i=0

ωi ∗ si(x) =
N−1∑
i=0

ωi ∗
n−1∏
j=0

1√
|aj|

ψ(
xj − bj

aj
) (3.59)

The problem in designing the wavelet basis function network is to determine an

optimal network size (the numbers of the wavelet basis functions), the parameter

aj and bj (j = 0, 1, . . . , (N − 1) ∗ (n − 1)) for each single wavelet basis function.

It can be seen that in contrast to the usually methods the pre-determining of the

parameter aj and bj is not needed in our approach.

• Fuzzy basis function Networks

In adaptive fuzzy systems, the fuzzy rule is represented as (T-S Model)

if x0 is Ai0 and x1 is Ai1 ... and xn−1 is Ai(n−1)

then yi = bi0x0 + bi1x1 + ...+ bi(n−1)xn−1 + bin

(i=0, 1, ... N-1)

When algebraic operator are used to implement fuzzy logic functions, the real valued

inputs are represented via fuzzy membership function, and a center of defuzzification

method is used, then the output of fuzzy basis function network is given by

y =
N−1∑
i=0

φi(x) ∗ ωi (3.60)

where φi(x) is the multivariate fuzzy basis function. It is calculated as

φi(x) =

∏n−1
j=0 µAij

(xj)∑N−1
i=0

∏n−1
j=0 µAij

(xj)
(3.61)

Thus, the output of the fuzzy basis function networks or corresponding tree is cal-

culated as

y =
N−1∑
i=0

ωi ∗
∏n−1
j=0 µAij

(xj)∑N−1
i=0

∏n−1
j=0 µAij

(xj)
(3.62)

The objective are that directly learning and evolving a number of fuzzy rules, de-

termining the parameters of each fuzzy membership functions, and optimizing the

corresponding weight of each fuzzy basis functions for fitting a given data set. In

our experiments of this research the selected fuzzy membership function is Cauchy
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function. It is also valuable to mention that the initial fuzzy partition of input space

is not needed in our approaches.

• Recurrent Fuzzy Neural Network

The difference between the FNN and RFNN can be clearly distinguished as follows:

– The input/output representation of FNN

y(k) =
m∑
j=1

ωmj
n∏
i=1

exp(−(xi(k)−mij)
2

(σij)2
) (3.63)

– The input/output representation of RFNN

y(k) ==
m∑
j=1

ωmj
n∏
i=1

exp(−(xi(k) +O2
ij(k − 1) · θij −mij)

2

(σij)2
) (3.64)

O2
ij(k − 1) = exp(−(x(k − 1) +O2

ij(k − 2) · θij −mij)
2

(σij)2
) (3.65)

where n is the number of input variables, m is the number of term nodes for each

input variable. The used membership function is the Gaussian function,

µij = exp(−(xij −mij)
2

(σij)2
) (3.66)

where mij and σij are the center and the width of Gaussian membership function.

The subscript ij indicates the j-th term of the i-th input xi.

• Local Linear Gaussian Basis Function Network

Local linear Gaussian basis function network is an extended radial function network

that is obtained by replacing the output layer weights with a linear function of the

network inputs. Each neuron represents a local linear model with its corresponding

validity function. Further more, the radial basis function network is normalized,

that is the sum of all validity functions for a specific input combination sums up to

one. The Gaussian validity functions determine the regions of the input space where

each neuron is active. The input space of the net is divided into N hyper-rectangles

each represented by a linear function.

The output of a local linear Gaussian basis function network with n inputs x1,x2,. . .,
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xn is calculated by summing up the contributions of all N local linear models

y =
N∑
i=1

(ωi0 + ωi1x1 + . . .+ ωinxn)φi(x) (3.67)

where ωij are the parameters of the ith linear regression model and xi is the model

input. The validity functions φi are typically chosen as normalized Gaussian weight-

ing function:

φi(x) =
µi∑N
j=1 µj

(3.68)

with

µi = exp(−1
2

(x1 − ci1)
2

σ2
i1

− . . .− 1

2

(xn − cin)
2

σ2
in

) (3.69)

3.4.3 Implementation and Experiments

In this experiments, the structure of the basis function networks is evolved by MPIPE, and

the parameters used in basis function networks are optimized by a hybrid learning strategy,

that is, the weight (linear-in-parameter) is optimized by least square algorithm, and the

center and width (nonlinear-in-parameter) are optimized by random search algorithm.

The used parameters in PIPE are shown in Table 3.1. The initial values of parameters in

random search are shown in Table 3.2.

Example 1

The first plant to be identified is a benchmark nonlinear autoregressive time series [26]

y(k) = (0.8− 0.5exp(−y2(k − 1)))y(k − 1)− (0.3 + 0.9exp(−y2(k − 1)))y(k − 2)

+0.1sin(3.1415926y(k − 1)) + e(k) (3.70)

where the noise e(k) was a Gaussian white sequence with mean zero and variance 0.02.

600 data points were generated and the first 500 points were used as an estimation data

set. The remaining data were used as a validation data set. The input vector is set as

x = [y(k − 1), y(k − 2)].
Experiment 1: VPBF Network

The used instruction sets are I0 = {+5,+6, . . . , +15}, I1 = {R, x0, x1, ∗2, ∗3} and
I2 = {x0, x1}.
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The optimal model (shown in Eq. (3.71)) is obtained with the mean square errors

(MSE) for training data set and test data set are 0.000587 and 0.000596, respectively.

f(x0, x1) = −0.0024− 1.23x0 + 0.60x1 − 0.001x0
2

+0.003x1x2 + 0.65x0x1
2 + 0.056x0

3 (3.71)

Experiment 2: GBRF Network

The used instruction sets are I0 = {+5,+6, . . . , +15}, I1 = {+2} and I2 = {x0, x1}.
The optimal model is obtained with the mean square errors (MSE) for training data

set and test data set are 0.000602 and 0.000653, respectively. The evolved model has 18

Gaussian basis functions.

Experiment 3: B-Spline Network

The used instruction sets are I0 = {+5,+6, . . . , +15}, I1 = {+2} and I2 = {x0, x1}.
The optimal model is obtained with the mean square errors (MSE) for training data

set and test data set are 0.000523 and 0.000618, respectively. The evolved model has 16

B-spline basis functions.

Experiment 4: Wavelet basis Network

The used instruction sets are I0 = {+3,+4, . . . , +12}, I1 = {+2} and I2 = {x0, x1}.
The optimal model is obtained with the mean square errors (MSE) for training data

set and test data set are 0.000471 and 0.000537, respectively. The evolved model has 15

wavelet basis functions.

Experiment 5: Fuzzy basis Network

The used instruction sets are I0 = {+5,+6, . . . , +15}, I1 = {+2} and I2 = {x0, x1}.
The optimal model is obtained with the mean square errors (MSE) for training data

set and test data set are 0.000662 and 0.000570, respectively. The evolved model has 16

fuzzy basis functions.

Experiment 6: Recurrent fuzzy neural network

The used instruction sets are I0 = {+5,+6, . . . , +15}, I1 = {+2} and I2 = {x0, x1}.
The optimal model is obtained with the mean square errors (MSE) for training data

set and test data set are 0.000362 and 0.000371, respectively. The evolved model has 14

fuzzy basis functions.

Experiment 7: Local RBF neural network

The used instruction sets are I0 = {+5,+6, . . . , +15}, I1 = {+2} and I2 = {x0, x1}.
The optimal model is obtained with the mean square errors (MSE) for training data

set and test data set are 0.000427 and 0.000450, respectively. The evolved model has 12

fuzzy basis functions.
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Example 2

The second plant to be identified is given by the following equation

y(k + 1) =
y(k)y(k − 1)y(k − 2)u(k − 1)(y(k − 2)− 1) + u(k)

1 + y2(k − 1) + y2(k − 2) (3.72)

The input and output of system are x(k) = [u(k), u(k − 1), y(k), y(k − 1), y(k − 2)]

and y(k + 1), respectively.

The training samples and the test data set are generated using following input signals,

respectively.

u(k) =




sin
(

2πk
250

)
, if (k < 500)

0.8sin
(

2πk
250

)
+ 0.2sin

(
2πk
25

)
, if (k >= 500)

(3.73)

u(k) = 0.3sin(kπ/25) + 0.1sin(kπ/32) + 0.1sin(kπ/10) (3.74)

Experiment 1: VPBF Network

The used instruction sets are I0 = {+5,+6, . . . , +15}, I1 = {R, x0, x1, x2, x3, x4, ∗2}
and I2 = {x0, x1, x2, x3, x4}.
The optimal model (shown in Eq. (3.75)) is obtained with the mean square errors

(MSE) for training data set and test data set are 0.000041 and 0.000071, respectively.

f(x0, x1, x2, x3, x4) = 0.0003− 0.63x0 + 0.64x1 − 0.28x2 + 0.46x3 + 0.8x4 − 0.49x3
2

+0.28x0x2 + 0.19x3x4 − 0.14x1x4 − 0.12x1x3 − 0.05x1x2 + 0.34x2x4 (3.75)

Experiment 2: GBRF Network

The used instruction sets are I0 = {+8,+6, . . . , +18}, I1 = {+5} and I2 = {x0, x1,

x2, x3, x4}.
The optimal model is obtained with the mean square errors (MSE) for training data

set and test data set are 0.000151 and 0.000126, respectively. The evolved model has 11

Gaussian basis functions.

Experiment 3: B-Spline Network

The used instruction sets are I0 = {+8,+6, . . . , +18}, I1 = {+5} and I2 = {x0, x1,

x2, x3, x4}.
The optimal model is obtained with the mean square errors (MSE) for training data

set and test data set are 0.000133 and 0.000097, respectively. The evolved model has 19

B-spline basis functions.
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Experiment 4: Wavelet basis Network

The used instruction sets are I0 = {+5,+6, . . . , +15}, I1 = {+2} and I2 = {x0, x1,

x2, x3, x4}.
The optimal model is obtained with the mean square errors (MSE) for training data

set and test data set are 0.000179 and 0.000121, respectively. The evolved model has 19

wavelet basis functions.

Experiment 5: Fuzzy basis Network

The used instruction sets are I0 = {+5,+6, . . . , +18}, I1 = {+5} and I2 = {x0, x1,

x2, x3, x4}.
The optimal model is obtained with the mean square errors (MSE) for training data

set and test data set are 0.000662 and 0.000570, respectively. The evolved model has 16

fuzzy basis functions.

Experiment 6: Recurrent fuzzy neural network

The used instruction sets are I0 = {+5,+6, . . . , +15}, I1 = {+5} and I2 = {x0, x1,

x2, x3, x4, x5}.
The optimal model is obtained with the mean square errors (MSE) for training data

set and test data set are 0.000113 and 0.000055, respectively. The evolved model has 10

fuzzy basis functions.

Experiment 7: Local RBF neural network

The used instruction sets are I0 = {+5,+6, . . . , +15}, I1 = {+5} and I2 = {x0, x1,

x2, x3, x4, x5}.
The optimal model is obtained with the mean square errors (MSE) for training data

set and test data set are 0.000124 and 0.000087, respectively. The evolved model has 12

fuzzy basis functions.

From the above simulation results it can be seen that the proposed methods works

very well for generating the different basis function networks. For the comparison (see

Table 3.3), the VPBF network in general has smaller number of parameters, good ap-

proximation ability and fast convergence speed. In addition, the evolved GBRF,B-spline,

fuzzy, recurrent fuzzy neural, wavelet and local RBF basis function networks have smaller

size and parameters than the conventional methods.
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Table 3.3: The number of parameters, the training and test error of the evolved basis
function networks

Experiment No. of parameters MSE for MSE for
training validation

Ex. 1 VPBF-NN 7 0.000587 0.000596
Ex. 1 GRBF-NN 72 0.000602 0.000653
Ex. 1 B-spline-NN 80 0.000523 0.000618
Ex. 1 Wavelet-NN 75 0.000471 0.000537
Ex. 1 FNN 80 0.000662 0.000570
Ex. 1 RFNN 96 0.000362 0.000371
Ex. 1 Local-RBF-NN 96 0.000427 0.000450
Ex. 2 VPBF-NN 13 0.000041 0.000071
Ex. 2 GRBF-NN 77 0.000151 0.000126
Ex. 2 B-spline-NN 209 0.000133 0.000097
Ex. 2 Wavelet-NN 209 0.000179 0.000121
Ex. 2 FNN 176 0.000141 0.000065
Ex. 2 RFNN 156 0.000113 0.000055
Ex. 2 Local-RBF-NN 149 0.000124 0.000087

3.5 Evolutionary Design of Hierarchical T-S Fuzzy

Models by Modified PIPE and Evolutionary Pro-

gramming

3.5.1 Introduction

Fuzzy logic systems [117][118] have been successfully applied to a vast number of scientific

and engineering problems in recent years. The advantage of solving the complex nonlinear

problems by utilizing fuzzy logic methodologies is that the experience or expert’s knowl-

edge described as the fuzzy rule base can be directly embedded into the systems for dealing

with the problems. A number of improvements have been made in the aspects of enhanc-

ing the systematic design method of fuzzy logic systems [119]-[124]. In these researches,

the needs for effectively tuning the parameters and structure of fuzzy logic systems are

increased. Many researches focus on the automatically finding the proper structure and

parameters of fuzzy logic systems by using genetic algorithms [120][123][124], evolutionary

programming [122], tabu search [125], and so on. But there still remains some problems

to be solved, for example, how to automatically partition the input space for each input-

output variables, how many fuzzy rules are really needed for properly approximating the

unknown nonlinear systems, and how to determine it automatically. As is well known, the
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curse-of-dimensionality is an unsolved problem in the fields of fuzzy and/or neurofuzzy

systems.

The problems mentioned above can be partially solved by the recent developments of

hierarchical fuzzy systems [125]-[133]. As a way to overcome the curse-of dimensionality,

it was suggested in [133] to arrange several low-dimensional rule base in a hierarchical

structure, i.e. a tree, causing the number of possible rules to grow in a linear way with a

number of inputs. But no method was given on how the rules for these hierarchical fuzzy

systems could be determined automatically. In [131] the author describes a new algorithm,

which derives the rules for hierarchical fuzzy associative memories that are structured as

a binary tree. In Ref. [128][127][134], a specific hierarchical fuzzy system is proposed and

its universal approximation property was proved. But the main problems in fact lies that

this is a specific hierarchical fuzzy systems which lack of the flexibility in the structure

adaptation, and it is difficult to arrange the input variables due to there is no general

method to determine which inputs to the hierarchical fuzzy system are more influential

to the output. In [135], a genetic algorithm-based evolutionary learning approach to the

search for the best hierarchical structure of the five input-variable fuzzy controller and

the parameters of the combined controller is proposed for the low-speed control.

In intuition, the hierarchical fuzzy logic systems not only provide a more complex and

flexible structure for modeling the nonlinear systems, but can also reduce the size of rule

base in some extend. But there is no systematic method for designing of the hierarchical

T-S fuzzy systems now. The problems in designing of hierarchical fuzzy logic system lie

that:

• Selecting a proper hierarchical structure;

• Selecting the inputs for each partial fuzzy model;

• Determining the rule base of each fuzzy logic T-S model;

• Optimizing the parameters used in the fuzzy membership functions and the then-
part of T-S fuzzy model.

In this sense, finding a proper hierarchical T-S fuzzy model can be posed as a search

problem in the structure and parameter space. Fig. 3.24 shows some possible hierarchical

T-S fuzzy models for the number of input variables 4 and the number of hierarchical layers

3. It can be seen that

• It is important to select a proper hierarchical T-S fuzzy model structure for approx-
imating a unknown nonlinear system;
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Figure 3.24: Example of possible hierarchical fuzzy logic models, number of inputs: 4,
number of layers: 3.

• It is important to select a proper hierarchical T-S fuzzy model structure for approx-
imating a unknown nonlinear system;

• Due to there is no general conclusion about which inputs are more influential to the
system output, thus it is important to select the appropriate input in hierarchical T-

S fuzzy model. In fact, different inputs selection can form the different hierarchical

models (see Fig. 3.24 (c) and (d));

• If each variable is divided into 2 fuzzy sets, then the number of fuzzy rules in each
of hierarchical fuzzy systems (Fig.3.24 (a), (b), (c) and (d)) is 12 which is in general

smaller than the number of rules in non-hierarchical fuzzy systems with complete

rule set.

In this section, a method for automatically designing of hierarchical T-S fuzzy systems

is proposed. The structure discovery and parameter adjustment of the hierarchical T-S

fuzzy model is addressed by a hybrid technique of type constrained sparse tree, MPIPE

and EP algorithms. Our researches demonstrate that the model structure selection and

parameters optimization of the hierarchical T-S fuzzy model can be flexibly coded as a

type constrained sparse tree. Therefore, the optimal nonparametric model of nonlinear

systems can be obtained by the evolutionary induction of the type constrained sparse tree.

Furthermore, the architecture of the hierarchical T-S fuzzy model is evolved by MPIPE
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Figure 3.25: Tree structural representation of hierarchical T-S fuzzy models shown in
Fig.3.24 (a), (b), (c) and (d).

algorithm [126]-[130], and the corresponding parameters are optimized by modified EP

algorithm, respectively.

3.5.2 Representation and Calculation of Hierarchical T-S fuzzy

model

In this section, we focus on the tree structural representation of the hierarchical T-S

fuzzy model, in which each of the hierarchical T-S fuzzy model can be coded as a type

constrained sparse tree. There is no need to encode and decode between the tree and the

hierarchical T-S fuzzy model in the calculation of the hierarchical T-S fuzzy model due to

we put a flexible data structure into the nodes of the tree which can be directly calculated

in a recursive way. Therefore, the optimization of the hierarchical T-S fuzzy model can

be directly replaced by the evolutionary induction of the type constrained sparse tree.
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Creation of the Tree and Its Data Structure

Suppose that the hierarchical T-S fuzzy models have three hierarchical layers. In this case,

three instruction sets I0, I1 and I2 can be used for generating the tree. In general, the

used instruction sets are I0 = {+2,+3, . . . ,+n1}, I1 = { x1, x2, . . . , xn, +2,+3, . . . ,+n2}
and I2 = {x1, x2, . . . , xn}, where the instruction +ni

(i = 2, 3, . . . , n1) in the instruction

set I0 means that there are ni input variables in the output layer of the T-S fuzzy model,

which is also the number of branches of the root node. The instructions in the instruction

set I1 are used to generate the hidden layer of the T-S fuzzy models. It can be seen that

if all the instructions used in the hidden layer are input variables the T-S hierarchical

model becomes an usually used non-hierarchical fuzzy model. In contrast, if there is one

instruction which is not any one of the input variables x1, x2, . . . , xn, a hierarchical T-S

fuzzy model is created. This means that the non-input variable instruction becomes a

sub-T-S fuzzy model, which has its input variables come from the instruction set I2 and

it’s output is the input of the next layer of the T-S fuzzy model. The instructions used

in the layer 0, 1 and 2 of the tree are randomly selected from instruction set I0, I1 and

I2, respectively. The initial probability of selecting instructions is given by

P (Id,w) =
1

li
, ∀Id,w ∈ Ii, i = 0, 1, 2 (3.76)

where Id,w denotes the instruction of the node with depth d and width w, li(i = 0, 1, 2) is

the number of instructions in the instruction set Ii.

As mentioned above, the tree (T-S hierarchical fuzzy model) can be generated in a

recursive way (deepest first) as follows:

(1) Select a root node from the instruction set I0 according to the probability of

selecting instructions. If the number of arguments of the selected instruction is larger

than one, for example, in the Fig. 3.25 (a∗) the root node +3 has three arguments, which

means that this is a three inputs T-S fuzzy model, then create a number of parameters

(including the fuzzy membership function parameters for each input variable, the THEN-

part parameters in each fuzzy rule) attached to the node.

(2) Create the left sub-node of root from the instruction set I1. If the number of argu-

ments of the selected instruction is larger than one, then create a number of parameters

attached to the node, and then create its left sub-node as same way from the instruction

set I2. Otherwise, if the instruction of the node is an input variable, return to upper layer

of the tree in order to generate the right part of the tree.

(3) Repeat this process until a full tree is generated.
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Remark

There are two key points in the generation of the tree. The one is that the instruction is

selected according to the initial probability of selecting instructions, and the probability

will be changed with generation by a probabilistic incremental algorithm (see Section

3.1). The other is that if the selected node is a non-terminal node, then generate the

corresponding data structure (parameters used in hierarchical T-S fuzzy model) attached

to the node.

Fig. 3.25 shows tree structural representation of the hierarchical T-S fuzzy models

shown in Fig. 3.24.

Calculation of the Tree

The value of the tree is calculated in a recursive way. In the following the calculation

process of the tree (Fig. 3.25 (a∗)) is given for displaying the method.

Suppose that each input variable is divided into two fuzzy sets and the used fuzzy

membership function is

µ(a, b;x) =
1.0

1.0 + (x−a
b
)2

(3.77)

Firstly the corresponding fuzzy rules of node +2 can be formed as follows [31]:

R1 : if x3 is A11 and x4 is A21 then y1 = k1 ∗ (a1x3 + a2 ∗ x4)

R2 : if x3 is A11 and x4 is A22 then y2 = k2 ∗ (a1x3 + a2 ∗ x4)

R3 : if x3 is A12 and x4 is A21 then y3 = k3 ∗ (a1x3 + a2 ∗ x4)

R4 : if x3 is A12 and x4 is A22 then y4 = k4 ∗ (a1x3 + a2 ∗ x4)

The output of node +2 can be calculated based on the T-S fuzzy model:

y =
µA11(x3)µA21(x4)y1 + µA11(x3)µA22(x4)y2 + µA12(x3)µA21(x4)y3 + µA12(x3)µA22(x4)y4

µA11(x3)µA21(x4) + µA11(x3)µA22(x4) + µA12(x3)µA21(x4) + µA12(x3)µA22(x4)

(3.78)

Now the overall output of tree in Fig.3.24 (a∗) can be calculated based on the following

fuzzy rules:
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R1 : if x1 is B11 and x2 is B21 and y is B31 then z1 = c1 ∗ (d1x1 + d2x2 + d3y)

R2 : if x1 is B11 and x2 is B21 and y is B32 then z2 = c2 ∗ (d1x1 + d2x2 + d3y)　

R3 : if x1 is B11 and x2 is B22 and y is B31 then z3 = c3 ∗ (d1x1 + d2x2 + d3y)

R4 : if x1 is B11 and x2 is B22 and y is B32 then z4 = c4 ∗ (d1x1 + d2x2 + d3y)

R5 : if x1 is B12 and x2 is B21 and y is B31 then z5 = c5 ∗ (d1x1 + d2x2 + d3y)

R6 : if x1 is B12 and x2 is B21 and y is B32 then z6 = c6 ∗ (d1x1 + d2x2 + d3y)

R7 : if x1 is B12 and x2 is B22 and y is B31 then z7 = c7 ∗ (d1x1 + d2x2 + d3y)

R8 : if x1 is B12 and x2 is B22 and y is B32 then z8 = c8 ∗ (d1x1 + d2x2 + d3y)

The overal output of the tree is

z =

∑8
j=1 µjzj∑8
j=1 µj

(3.79)

where

µ1=µB11(x1)µB21(x2)µB31(y)

µ2=µB11(x1)µB21(x2)µB32(y)

µ3=µB11(x1)µB22(x2)µB31(y)

µ4=µB11(x1)µB22(x2)µB32(y)

µ5=µB12(x1)µB21(x2)µB31(y)

µ6=µB12(x1)µB21(x2)µB32(y)

µ7=µB12(x1)µB22(x2)µB31(y)

µ8=µB12(x1)µB22(x2)µB32(y)

where all the parameters ki (i=1,2,3,4), a1, a2, and the shape parameters used in fuzzy

sets A11, A12, A21 and A22 are attached to the node +2. The parameters cj (j=1,2. . . 8),

d1, d2, d3 and the shape parameters used in fuzzy sets B11, B12, B21, B22, B31 and B32 are

attached to the node +3 of the tree. All these parameters are randomly generated alone

with the creation of the tree at initial step, and will be optimized by EP algorithm.

3.5.3 Implementation and Experiments

In this section, we give some simulation results to verify the effectiveness of the proposed

method for the identification of nonlinear system. The architecture of the hierarchical T-S

fuzzy model is evolved by MPIPE and the parameters such as the membership function

parameters and the parameters used in conclusion part of the fuzzy rule, are optimized

by a global search algorithm- modified evolutionary programming.

The used parameters in MPIPE are shown in Table 3.4. The parameters used in

EP: population size is 20, opponent number Q = 12, α = 0.3. In each generation, the
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Table 3.4: Parameters used in MPIPE Algorithm

Population Size PS 10
Elitist Learning Probability Pel 0.01
Learning Rate lr 0.01
Fitness Constant ε 0.000001
Overall Mutation Probability PM 0.4
Mutation Rate mr 0.4

(a) (b)
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x2
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x5

x2

x0
x1

x0
x1

x2

x3

x0

x2

(c)

Figure 3.26: The evolved hierarchical T-S fuzzy models, (a) plant 1, (b) plant 2, and (c)
plant 3

maximum number of EP search is

step = β ∗ (1 + generation) (3.80)

where β is the basic steps of EP search.

Example 1

Let’s the plant be given by [25],

y(k + 1) = 2.627771y(k)− 2.333261y(k − 1) + 0.697676y(k − 2) + 0.017203u(k)
−0.030862u(k − 1) + 0.014086u(k − 2) (3.81)

400 data points were generated with the randomly selected input signal u(k) between

-1.0 and 1.0. The first 200 points were used as an estimation data set and the remaining

data were used as a validation data set. The input vector is set as x = [y(k), y(k−1), y(k−
2), u(k), u(k − 1), u(k − 2)]. The used instruction sets are I0 = {+2,+3, . . . , +6}, I1
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= {x0, x1, x2, x3, x4, x5,+2,+3} and I2 = {x0, x1, x2, x3, x4, x5}. The evolved hierarchical
T-S fuzzy model is shown in Fig.3.26 (a). The output of the evolved model and the actual

output for validation data set are shown in Fig.3.28, and the identification error is shown

in Fig. 3.27.

Example 2

Let’s the plant be given by

y(k + 1) =
y(k)

1.5 + y2(k)
− 0.3y(k − 1) + 0.5u(k) (3.82)

The input and output of system are x(k) = [u(k), u(k−1), y(k), y(k−1)] and y(k+1),

respectively.

The training samples and the test data set are generated using the same sequence of

random input signals as mentioned previously. The used instruction sets are I0 = {+2,+3,

. . . , +5}, I1 = {x0, x1, x2, x3,+2, x3} and I2 = {x0, x1, x2, x3}.
The evolved hierarchical T-S fuzzy model is shown in Fig. 3.26 (b). The output of the

evolved model and the actual output for validation data set are shown in Fig.3.30, and

the identification error is shown in Fig. 3.29.

Example 3

Let’s the plant be given by

y(k + 1) = 1.752821y(k)− 0.818731y(k− 1) + 0.011698u(k) + 0.010942 u(k − 1)
1 + y2(k − 1)

(3.83)

The input and output of system are x(k) = [u(k), y(k), y(k − 1)] and y(k + 1), re-

spectively. The training samples and the test data set are generated using the same

sequence of random input signals as mentioned previously. The used instruction sets are

I0 = {+2,+3,+4}, I1 = {x0, x1, x2,+2,+3} and I2 = {x0, x1, x2}. The evolved hierarchi-
cal T-S fuzzy model is shown in Fig. 3.26 (c). The output of the evolved model and the

actual output for validation data set are shown in Fig. 3.32, and the identification error

is shown in Fig. 3.31.

For the comparison, the result obtained by Elman nets, Jordan nets [21], the wavelet

neural networks [23] and the proposed hierarchical T-S fuzzy model is shown in Table.
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Figure 3.27: The test error (Plant 1)
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Figure 3.28: The actual and evolved outputs of the plant for the test data set (Plant 1)
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Figure 3.29: The test error (Plant 2)
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Figure 3.30: The actual and evolved outputs of the plant for the test data set (Plant 2)
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Figure 3.31: The test error (Plant 3)
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Figure 3.32: The actual and evolved outputs of the plant for the test data set (Plant 3)
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Table 3.5: The comparison of the MSE values for modified Elman nets [21], modified
Jordan nets [21], wavelet neural networks (WNN)[138] and hierarchical T-S fuzzy models
(HFTS).

Example Elman Jordan WNN HFTS

1 0.0000548 0.0000492 0.000000459 0.0000000432

2 0.0004936 0.0003812 0.000002728 0.0000007065

3 - - 0.000000732 0.0000000473

3.5.

From above simulation results, it can be seen that the proposed method works very

well for generating a proper hierarchical T-S fuzzy models.

3.5.4 Section summary

The hierarchical architecture and inputs of the hierarchical fuzzy systems can be selected

and optimized using MPIPE algorithm, and the parameters used in hierarchical T-S

fuzzy models are optimized by a modified EP algorithm. Simulation results shown that

the evolved hierarchical T-S fuzzy models are effective for the identification of nonlinear

systems.

The simulations are constructed under the assumption of that the hierarchical layer is

three and each input variable is divided into two fuzzy sets. But generalize the proposed

method to the complex case is direct.

3.6 Conclusion in this Chapter

Based on a novel representation and calculation of the hybrid soft computing models, a

unified framework for evolving the hybrid soft computing models is proposed in this chap-

ter. In this flexible unified framework, various hybrid soft computing models and various

parameter tuning strategies can be combined in order to find a proper soft computing

model efficiently.

Four kinds of hybrid soft computing models have been evolved successfully by using

the proposed method. The key points of this technique are those as follows:

• Almost of all the soft computing models can be represented and calculated by the
type constrained sparse tree with pre-specified data structure which is attached to

the node of the tree.
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• In this sense, the soft computing models are created automatically not pre-designed,
therefore, the difficulties in determining of the architecture of soft computing models

can be avoided to some extend.

• It is also very important to mention that based on this idea the architecture and
parameters used in the hybrid soft computing models can be evolved and optimized

by using proper learning algorithm, i.e., the architecture of the hybrid soft comput-

ing models can be evolved by MPIPE or genetic programming and the parameters

can be optimized by many parameter optimization techniques.

Simulation results show that the proposed method works very well for the nonlinear

system identification problems.



Chapter 4

Hybrid Soft Computing for Control

To control a system is to make it behavior in a desired manner [268]. How to express

this desired behavior depends primarily on the task to be solved, but the dynamics of the

system, the actuators, the measurement equipment, the available computational power,

etc., influence the formulation of the desired behavior as well. Two basic types of control

problems are those as follows:

• Regulation problems. The fundamental desired behavior is to keep the output of the

system at a constant level regardless of the disturbances acting on the system.

• Servo problems. The fundamental desired behavior is to make the output of the

system follow a reference trajectory closely.

As it is known that many control applications involve significant nonlinearities. Al-

though linear control design methods can sometimes be applied to nonlinear systems over

limited operating regions through the process of linearization, the level of performance

desired in other applications requires that the nonlinearities be directly addressed in the

control system design. The challenge of addressing nonlinearities during the control de-

sign process is further complicated when the description of the nonlinearities involves

significant uncertainty. In such applications, the level of achievable performance may be

enhanced using off- or on-line function approximation techniques to increase the accuracy

of the model of the nonlinearities. So far, a number of off- or on-line function approxima-

tors, such as those discussed in Section 2 and 3, have been proposed under the framework

of soft computing methodologies.

There are in general two approaches of approximation based control, named as direct

control and indirect control. In the first approach, the approximator is used to estimate the

unknown nonlinearities of the plant. Based on this estimate, the control law is computed

by treating the estimates as if they were the true part of the unknown plant according to
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the certainty equivalence principle. In the second approach, the approximator is used to

estimate directly the unknown nonlinear controller functions.

In this chapter, some of soft computing based control schemes are investigated. The

design principle and the performances of soft computing based control schemes are given

in detail.

4.1 Soft Computing Model Based Control: Some De-

sign Principles

4.1.1 First-Order Taylor Approximation Based Design

This scheme is a generalization of the method proposed in [265] in which the used ap-

proximator is a diagonal recurrent neural network. But other soft computing models can

also be used in order to formulate a unified controller design framework.

Let a MISO nonlinear process be described by

y(k + 1) = f(y(k), y(k − 1), . . . , y(k − ny), u(k), u(k − 1), . . . , u(k − nu)) (4.1)

where y(k + 1) and u(k) = [u1(k), u2(k), . . . , um(k)]
T represent the process output and

the process inputs, respectively, f(·) is a nonlinear function vector, and ny and nu are the

process orders. Eq. (4.1) can be rewritten compactly as

y(k + 1) = f(Y (k), u(k), U(k − 1)) (4.2)

where Y (k) and U(k−1) are the vectors consisting of the process outputs y(k) to y(k−ny)

and the process inputs u(k − 1) to u(k − nu), respectively.

The control objective is to determine u(k) such that the following quadratic function,

consisting of the one-step-ahead-tracking error and the norm of the change in the control

inputs, is minimized:

J(u(k)) = |y∗(k + 1)− y(k + 1)|2 + λ ‖ u(k)− u(k − 1) ‖2 (4.3)

where y∗(k + 1) is the process desired output and λ is a weighting factor.

This is a nonlinear optimization problem and it is not easy to find the optimal solution

for Eq. (4.3). One simple method for finding the solution can be described as follows.

Eq. (4.2) can be expanded by the Taylor series with respect to the argument u(k) at the
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point u(k − 1), neglecting the higher-order terms. Then we have

y(K + 1) ≈ f(Y (k), u(k − 1), U(k − 1)) + ∂fT

∂u(k)
|u(k)=u(k−1)[u(k)− u(k − 1)] (4.4)

Substituting Eq.(4.4) into Eq. (4.3) and then minimizing Eq. (4.3), we can obtain

u(k) = u(k − 1) + ∂f/∂u(k)|u(k)=u(k−1)

λ+ ‖∂f/∂u(k)|u(k)=u(k−1)‖2

×(y∗(k + 1)− f(Y (k), u(k − 1), U(k − 1))) (4.5)

Remark 4.1: With a linear process, the control law (4.5) becomes the well-known

generalized minimum variance control.

Remark 4.2: Note that the first-order Taylor approximation is only accurate if the

higher-order terms of the Taylor expansion can be neglected.

Remark 4.3: The weighting factor λmay be chosen to provide a compromise between

the closed-loop performance and stability. A small λ generally improves the performance

but may result in stability problem. A large λ normally has better closed-loop stability,

but more sluggish output response.

Remark 4.4: If f(·) is unknown, soft computing models can be used to approximate
the function off-line or on-line. Therefore, a soft computing based control scheme can be

formulated by estimating the sensitivity function ∂f/∂u(k) and the quasi-one-step-ahead

predictive output of f(Y (k), u(k − 1), U(k − 1)).

4.1.2 Linear Feedback Design After Cancellation of Nonlinear-

ities

This design scheme is a generalization of the method proposed in [266], in which the

chaotic dynamical system is decomposed into a sum of linear and nonlinear part, and a

radial basis function network is used to approximate the nonlinear part of the system. The

resulting system then dominated by the linear system, therefore, linear controller design

methods can be easily used for controlling the systems. We argue that it is valuable to

design and compare the hybrid soft computing models based design method in order to

formulate a unified controller design framework finally.

Consider a dynamic system of the form

ẋ = f(x) = fL(x) + fN (x) (4.6)
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Figure 4.1: A linear state feedback controller in which a soft computing model is used to
approximate the nonlinear part of dynamic system

where fL(x) = Ax is the linear part and fN(x) is the nonlinear part of the system dynamics

f(x), respectively. In Eq. (4.6), fL(s) is assumed to be known so that the controller for

it can be designed and fN(x) is assumed unknown but the inputs and outputs of it can

be measured.

Assume that the fN(x) can be approximated by a soft computing model f̂N(x) with

the approximation error f̃N(x) = fN(x)− f̂N (x). If the approximator f̂N (x) is subtracted

from system (4.6), then is result in

ẋ = Ax+ fN(x)− f̂N(x) = Ax+ f̃N(x) (4.7)

If the approximation error identically zero, then the resulting dynamics is purely linear

for which a linear controller can be used

ẋ = Ax+ bu(t) (4.8)

where {A, b} is assumed to be controllable and u(t) is a scalar control input of the form

u(t) = −kTx+ v(t) (4.9)

in which v(t) is an external input (reference signal) and k = [k1, k2, . . . , kn] is a constant



CHAPTER 4. HYBRID SOFT COMPUTING FOR CONTROL 96

feedback gain vector to be designed. k can be obtained by the standard state feedback,

i.e., pole-placement method. With this control law, the closed-loop control system is

ẋ = ACx+ bv(t) (4.10)

where AC = A − bkT is a stable matrix obtained by a suitable choice of the k. If the

approximation error is not zero, then the closed-loop control system is

ẋ = ACx+ bv(t) + f̃N (x) (4.11)

Without loss generality, assume that the equilibrium point of the controlled system is

the origin when v(t) = 0. Then, the following well-known stable condition result holds

for Eq. (4.11).

Theorem The zero equilibrium of Eq. (4.11) is asymptotically stable if

‖f̃N(x)‖
‖x‖ → 0 as ‖x‖ → 0, (4.12)

where ‖ · ‖ denotes the Euclidean norm of a vector.

Proof. Refer to Theorem 4.3 of [224].

Remark 4.5: In this control scheme, the plant to be controlled can be decomposed

into a sum of a linear and a nonlinear part. This is not the always cases for arbitrary

nonlinear systems.

Remark 4.6: If the nonlinearities can be cancelled by an approximation based soft

computing model, a simple linear state-feedback controller can be devised to force the

system response to a desired one. So, it is important to design a proper approximator,

especially on-line trained soft computing model.

4.1.3 Sliding Mode Control Based Design

Consider a SISO nth-order nonlinear system described by following differential equation

x(n) = f(x, ẋ, . . . , x(n−1)) + g(x, ẋ, . . . , x(n−1))u+ d(t); y = x (4.13)

where f and g are unknown continuous functions, d is a bounded unknown external

disturbance; u ∈ R, y ∈ R are the input and output of the system, respectively. Set

x1 = x, x2 = ẋ, . . ., xn = x(n−1) and x = [x1, x2, . . . , xn]
T , then Eq.(4.13) can be expressed
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as state and output equation as follows:

ẋ = Ax+ b[f(x) + g(x)u+ d(t)] (4.14)

y = cx (4.15)

where

A =




0 1 0 . . . 0

0 0 1 . . . 0
...
...
...

...
...

0 0 0 . . . 1

0 0 0 . . . 0




(4.16)

b =




0

0
...

0

1




(4.17)

c =
[
1 0 . . . 0

]
(4.18)

The control problem is to design an adaptive control law such that the output y(t) of

the closed-loop system can asymptotically track a desired signal yd(t), i.e.,

lim
t→∞[y(t)− yd(t)] = 0 (4.19)

In order for system (4.14) to be controllable following assumptions are usually needed.

Assumption 1: g(x) ≥ α > 0, ∀x ⊂ Q ⊂ Rn, where Q is a neighborhood of zero.

Assumption 2: |d(t)| ≤ d0, ∀t ≥ 0, where d0 is regarded as an unknown constant.

Define the tracking error:

ε(t) = y(t)− yd(t) (4.20)

and ei(t) = ε(i−1)(t), 1 ≤ i ≤ n. Then e(t) = [e1, e2, . . . , en]
T ∈ Rn. It follows from (4.14)



CHAPTER 4. HYBRID SOFT COMPUTING FOR CONTROL 98

that

ė = Ae+ b[f(x) + g(x)u+ d(t)− y
(n)
d ] (4.21)

Define the generalized error

s(t) = (
d

dt
+ λ)n−1ε(t) = ΛT e(t) (4.22)

where λ > 0, Λ = [Λ1,Λ2, . . . ,Λn−1, 1], and Λj ∈ R, 1 ≤ j ≤ n − 1, are determined once
the parameter λ has been specified. Obviously, on the sliding surface, s = 0, the tracking

error ε(t)→ 0, as t → ∞. Differentiation of s with respect to t, yields

ṡ = ΛT ė = Λ̄T e+ (f + gu+ d− y
(n)
d ) = f − w + d+ gu (4.23)

where Λ̄ = [0,Λ1,Λ2, . . . ,Λn−1]
T , w = −Λ̄T e+ y

(n)
d .

If f and g were known, and the external disturbance d were zero, the equivalent control

u = −f − w

g
(4.24)

would render ṡ = 0. However, since f and g are unknown, some proper approximators,

f̂ , ĝ, for f and g, respectively, should be employed and the certainty equivalent control

law would be the form

û = − f̂ − w

ĝ
. (4.25)

Remark 4.7: In this design scheme, the main problems are that how to select a

proper approximator, tuning the parameters of the approximator off-line or on-line, and

analysis the stability of the closed-loop system.

Remark 4.8: So far, a number of approximation based sliding mode controller have

been successfully designed. The most used approximators are neural networks [225]-[228]

and fuzzy logic systems [229]-[231].

4.1.4 Backstepping Design

Consider a strict-feedback nonlinear system in the following form:

ẋi = fi(x1, x2, . . . , xi) + gi(x1, x2, . . . , xi)xi+1, 1 ≤ i ≤ n − 1
ẋn = fn(x) + gn(x)u
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y = x1 (4.26)

where x = [x1, x2, . . . , xn] ∈ Rn, u ∈ R, y ∈ R are the state variables, system input and

output, respectively; fi(·) and gi(·), i = 1, 2, . . . , n are unknown smooth functions.
The control objective is to design an adaptive controller for system (4.26) such that

the output y follows a desired trajectory yd, while all signals in the closed-loop systems

are bounded. From now onwards, the following assumptions are satisfied.

Assumption 1. The signs of gi(xi) are known, and there exist constants gi0, and

known smooth functions Gi(xi) such that Gi(xi) ≥ |gi(xi)| ≥ gi0, ∀xi ∈ Ri, where

xi = [x1, x2, . . . , xi]
T .

Assumption 2. The desired trajectory vectors xdi with i = 2, . . . , n+1 are continuous

and available, where xd(i+1) = [yd, ẏd, . . . , y
(i)
d ]

T .

Adaptive control for first-order systems:

Let us firstly consider the Eq.(4.26) when i = 1, i,e.,

ẋ = f1(x1) + g1(x1)u1 (4.27)

with u1 as control input, and define z1 = x1 − yd, β1(x1) = G1(x1)/g1(x1) and a smooth

scalar function

Vz1 =
∫ z1

0
σβ1(σ + yd)dσ (4.28)

Let σ = θz1, the Vz1 can be rewritten as Vz1 = z2
1

∫ 1
0 θβ1(θz1 + yd)dθ. According to

Assumption 1, the following condition holds,

1 ≤ β1(θz1 + yd) ≤ G1(θz1 + yd)/g10 (4.29)

Then,

z2
1

2
≤ Vz1 ≤ z2

1

g10

∫ 1

0
θG1(θz1 + yd)dθ (4.30)

This means that Vz1 is a positive-define function with respect to z1, therefore, it can be

used as a candidate Lyapunov function. Furthermore, if the control signal u1 is selected

as follows

u∗
1 =

1

G1(x1)
(−k(t)− h1(Z1)) (4.31)

where the smooth function h1(Z1) = β1(x1)f1(x1)− ẏd
∫ 1
0 β1(θz1+yd)dθ, Z1 = [x1, yd, ẏd]

T ,
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therefore, we have

V̇z1 = z1

[
G1(x1)u1 + β1(x1)f1(x1)− ẏd

∫ 1

0
β1(θz1 + yd)dθ

]
. (4.32)

Substituting u1 = u∗
1 into Eq.(4.32), we obtain V̇z1 = −k(t)z2

1 ≤ −k ∗ z2
1 ≤ 0. Hence, Vz1

is a Lyapunov function and the tracking error z1 → 0 as t → ∞ asymptotically.

If the functions f1(x1) and g1(x1) are unknown, the desired controller u
∗
1 is not available

due to the unknown function h1(Z1). However, h1(Z1) is a smooth function and may be

approximated by a soft computing model. Therefore, a soft computing model based

controller can be realized as follows

u1 =
1

G1(x1)
[−k1(t)z1 − SOFT1] (4.33)

By carefully selecting of the parameter tuning strategy of the soft computing model,

above adaptive controller can be implemented with guaranteed stability (see, for e.g., a

used soft computing model is a NN and related weight tuning formula in [209]).

In order to control the higher-order strict-feedback nonlinear system (4.26), a back-

stepping design scheme can be used as follows.

Backstepping Design:

Step 1: The system (4.26) for i = 1 is given by

ẋ = f1(x1) + g1(x1)x2 (4.34)

x2 can be viewed as a virtual control input, and define error variable z2 = x2 − α1 with

α1 = u1 defined in Eq.(4.33), then

ż1 = f1(x1) + g1(x1)(z2 + α1)− ẏd (4.35)

Taking Vz1 given in Eq.(4.28) as a Lyapunov function candidate, then we have

V̇z1 = z1[G1(x1)(z2 + α1) + h1(Z1)]. (4.36)

Step 2: The system (4.26) for i = 2 is given by

ẋ2 = f2(x2) + gx(x2)x3. (4.37)

Again, by viewing x3 as a virtual control, we may design a control input α2 for Eq.(4.37).
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Define z3 = x3 − α2, then

ż2 = ẋ2 − α̇1 = f2(x2) + g2(x2)(z3 + α2)− α̇1 (4.38)

Choosing a Lyapunov candidate

Vs2 = Vz1 +
∫ z2

0
σβ2(x1, σ + α1)dσ (4.39)

Its time derivative becoms

V̇s2 = V̇s1 + z2β2(x2)ż2 +
∫ z2

0
σ

[
∂β2(x1, σ + α1)

∂x1

ẋ1 +
∂β2(x1, σ + α1)

∂α1

α̇1

]
dσ (4.40)

Selecting the controller α2 as

α2 =
1

G2(x2)
[−G1(x1)− k2(t)z2 − SOFT2] (4.41)

with an appropriate parameter tuning strategy of the soft computing model, the system

(4.37) can be controlled with guaranteed stability.

Step n: For system (4.26), consider zn = xn − αn−1, we have

żn = ẋn − α̇n−1 = fn(x) + gn(x)u− α̇n−1. (4.42)

Taking the following Lyapunov function candidate

Vsn = Vs(n−1) +
∫ zn

0
σβn(xn−1, σ + αn−1)dσ (4.43)

Its time derivative becoms

V̇sn = V̇s(n−1) + znβn(xn)żn

+
∫ zn

0
σ

[
∂βn(xn−1, σ + αn−1)

∂xn−1
ẋn−1 +

∂βn(xn−1, σ + αn−1)

∂αn−1
α̇n−1

]
dσ (4.44)

Selecting the controller u as

u =
1

Gn(x)
[−Gn−1(xn−1)− kn(t)zn − SOFTn] (4.45)

with an appropriate parameter tuning strategy of the soft computing model, the system

(4.26) can be controlled with guaranteed stability.
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Remark 4.9: It can be seen that it is important for designing of appropriate Lya-

punov function in order to guarantee the stability of the closed-loop system. In fact,

the Lyapunov function is not unique for a given nonlinear system and therefore finding a

proper Lyapunov function becomes a challenging problem in the backstepping design.

Remark 4.10: In each step of the backstepping design, a soft computing model is

used for approximating nonlinear function, so it is important for selecting an appropriate

parameter tuning strategy.

Remark 4.11: So far, the used soft computing models in approximation based back-

stepping controller design include neural networks [209][210][264] and fuzzy systems [232].

4.2 Nonlinear System Identification and Control by

using PIPE Algorithm

4.2.1 Introduction

For the identification and control problem of nonlinear dynamic system, the evolutionary

identification/control of nonlinear system has received much attention during the last few

yeas. In these researches, a novel method in which the optimal control of nonlinear sys-

tem can be directly derived by using tree-structure-based evolutionary algorithm (TSEA)

was proposed. Andrew proposed a system identification method by using genetic pro-

gramming [171] (GP). Howley used GP to get a sub-optimal control law for simulated

specific spacecraft attitude maneuvers [172]. Dracopoulos used GP to derive an attitude

control law to de-tumble a spinning satellite and discussed the stability by the Lyapunov

method [173]. Dominic et al. used GP to design a discrete-time dynamic controller of

chemical process that offers similar performance as PID controller [174]. Chellapilla used

tree-structure-based evolutionary programs to derive nonlinear control laws for broom

balancing problem and backing up a truck-and-trailer problem [175]. Angeline recently

proposed multiple interacting program algorithm, which involved the simultaneous evolu-

tion of a set of equations represented as parse tree, and applied it to system identification

of nonlinear system [176].

All these researches based on one key point, that is TSEA can offer an ideal candidate

for system identification and controller design, by the direct matching of individual struc-

tures and control rules. However, there are some remained problems to be solved, e.g.,

how to design a TSEA identifier/controller, the stability, robustness and generalization

ability of TSEA controller, and so on.

In this Section, based on the Probabilistic Incremental Program Evolution algorithm,
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new methods for identification and control of nonlinear discrete-time system are proposed.

Firstly, the PIPE Emulator is generated using PIPE algorithm, and secondly PIPE Em-

ulator based inverse controller is designed.

4.2.2 PIPE Identifier

We discuss the possibility and effectiveness of identification of nonlinear system by using

PIPE algorithm. Every individual of the PIPE population represents a candidate model

of nonlinear system to be identified. The best individual will be found in which the sum

of the error between plant and model outputs is minimum according to the probabilistic

incremental learning algorithm. The advantage of this method is that the solution of

PIPE Identifier is of symbolic expression and easily applied to the controller design of

nonlinear system.

Consider a nonlinear SISO plant described by equation of the form:

x (k + 1) = F [x (k) , u (k)]

y (k) = O [x (k)]
(4.46)

where u (·), x (·) and y (·) are discrete time sequence, and satisfy the stringent observability
condition, i.e., the state of the system can be reconstructed from the I/O data. The plant

can also be represented as:

y (k + 1) = f [y (k) , · · · , y (k − n+ 1) ; u (k) , · · · , u (k −m+ 1)] (4.47)

where [u (k) , y (k)] represents the I/O pair of plant at time k and m ≤ n.

The architecture of PIPE-based identification system is shown in Fig. 4.2. The inputs

of PIPE model are present input and output signals, previous input and output signals.

The output of the induced plant model is compared with the actual output of the plant

to determine the error for the model. The error is used to update the plant model’s

performance by PIPE algorithm.

Numerical Experiment

For the identification and control of nonlinear system, a benchmark problem is here

considered which was also discussed in [177] [178]. In [177], a neural network based

scheme is proposed for the identification and control of the plant. In [178], a recurrent

fuzzy neural network is employed for same purpose. The plant is given by the following
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Figure 4.2: PIPE Emulator/Identifier

equation:

y (k + 1) = f [y (k) , y (k − 1)] + u (k) (4.48)

f [y (k) , y (k − 1)] = y (k) y (k − 1) [y (k) + 2.5]
1 + y2 (k) + y2 (k − 1) (4.49)

The evolved plant is evaluated using the following signal function u(k) for 200 units

of time starting at k = 0, with y (−1) = 0, y (0) = 0.

u(k) = sin (2kπ/25) (4.50)

The task specific language used for this experiment includes the function set ( +, −,
∗, %, sin, cos ), and the terminal set (x0, x1, x2, R), where R denotes the generic random

constant. The other control parameters of PIPE for this experiment are same as those in

table 2.1.

For function approximation and/or nonlinear system identification, the usually used

objective/fitness functions in neural network and evolutionary computation community

can be summarized as follows:
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(1) The mean square error (MSE)

Fitness =
1

N

N∑
i=1

(yi − yip)
2 (4.51)

(2) The root mean square error (RMSE)

Fitness =

√√√√ 1

N

N∑
i=1

(yi − yip)
2 (4.52)

(3) The sum of absolute error (SAE)

Fitness =
N∑
i=1

|yi − yip| (4.53)

(4) The mean absolute error (MAE)

Fitness =
1

N

N∑
i=1

|yi − yip| (4.54)

(5) The sum of relative error (SRE)

Fitness =
N∑
i=1

|yi − yip|
yi

(4.55)

(6) The mean relative error (MRE)

Fitness =
1

N

N∑
i=1

|yi − yip|
yi

(4.56)

where yi is the i-th model output and yip is the i-th plant output. N is the number of

data in the training data set. Up to date, there is no general solution in selecting of

the fitness function for an identification problem. A number of experiments have been

shown that the smaller error for training data set may have not good generalization for

validation data set. Therefore, additional terms are usually added to above fitness function

in order to cope with the generalization problem, i.e., plus a term named the norm of

the weight vector in the neural network training can results in a good generalization of

the neural network. In our current experiments, due to the ability of PIPE itself that

among programs with equal fitness values, smaller ones are always selected, the additional

term for generalization purpose is not used here. The used fitness function is the sum

of absolute error which is selected according to our experiments in the use of PIPE for
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function approximation.

The following symbolic expression was returned as the best individual found in the

run after the 14166 generation with fitness 8.651981:

g(x0, x1, x2) = (−(+(+(∗(cos(−(sin0.377678)0.083342))x1)(−(−

x2x2)x0))x1)(%(sin(∗(∗(∗(−(−x1x2)(+(−x10.583063)x1))(sin

(∗(%(sin(∗x2(%(sinx0)(−x2(∗(∗(cos0.114430)x0)(∗(∗(+x0(cos

0.275634))(∗(+(cos(+0.445955(−0.340801(cos0.005139))))x0)

0.817219))x1))))))(+x0x0))x2)))(cos(sin(%x2(+x2(cos(+(cos

x0)(%x0(cos(−(∗x2x2)x0))))))))))(cos(∗(+(%(+(sinx0)x2)x1)

(%(∗x0(−(∗(∗(sin0.911381)(+(∗(cosx1)(+(cos(%x1x1))(∗(−x1

x1)x0)))(∗(+0.723960(sinx2))(∗(∗(cosx0)0.344123)x2))))(∗(

∗(∗(%(cos(cosx0))0.230661)x1)x1)0.963181))(−x1x2)))(cosx2

)))(−x1(+x1x0))))))(cos0.573655))) (4.57)

where x0, x1, x2 and g(x0,x1,x2) represents y (k − 1), y (k), u (k), and y (k + 1), re-

spectively. In order to test the generalization ability of PIPE Emulator/Identifier, the

following equation is used to create the un-trained sample set:

u (k) = sin (kπ/25) + 0.1sin (kπ/32) + 0.1sin (kπ/10) (4.58)

The responses of the evolved plant and real plant for same input signal and same time

duration is showed in Fig. 4.3 where the dotted and solid line denote the evolved and

desired outputs of the plant. Fig. 4.4 shows the desired output (solid line) and evolved

output (dotted line) of the plant for the un-trained sample set. From the simulation results

we can see that the PIPE Identifier has better ability to approximate the nonlinear plant.

4.2.3 PIPE based controller design

The most common scheme used in GP-based control is that of inverse controller. In

this case, GP was used to evolving a directly control law of nonlinear systems. But

it is difficult to design a better fitness function that should reflect the characteristics of

nonlinear system, and the general method to do this has not been found yet. In this paper,
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Figure 4.3: The desired plant output and the evolved plant output for training data set
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we will propose a new inverse dynamic controller based on PIPE algorithm. The general

architecture of the proposed PIPE-based control system is shown in Fig. 4.5. First, the

approximation model of nonlinear system is constructed by using PIPE algorithm and is

called a PIPE Emulator. PIPE Emulator is offline trained by the forward plant model.

Secondly, PIPE controller is designed by two ways

• by the mathematical inverse of the plant equation.

• by designing the inverse plant model using PIPE algorithm. Through as the exam-
ple, we illustrate the first case in the following.

Example: The plant to be controlled is given by the Eq.(4.48) and Eq.(4.49), where

the function f [·] is assumed to be unknown, and u (k) is additive. A PIPE model of this

plant has been established as Eq.(4.57). The aim of control is to determine a controller

u (k), based on the PIPE Emulator, such that the output of the closed-loop system may

follow the one of the reference model:

ym (k + 1) = 0.6ym (k) + 0.2ym (k − 1) + r (k) (4.59)

where r (k) = sin (2kπ/25). That is, the error e (k) = y (k)−ym (k) must converge to zero

as k goes to infinity. If the function f [·] is exactly known, we can construct a controller
based on the principle of inverse control as

u (k) = −f [y (k) , y (k − 1)] + 0.6y (k) + 0.2y (k − 1) + r (k) (4.60)
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which, when applied to (4.48), results in

y (k + 1) = 0.6y (k) + 0.2y (k − 1) + r (k) (4.61)

Combining (4.59) with (4.61), we have

e (k + 1) = 0.6e (k) + 0.2e (k − 1) (4.62)

thus, we have limk→∞e (k) = 0. However, since f [·] is unknown, the controller (4.60)
cannot be implemented. To cope with this, we replace the f [·] in (4.48) by a PIPE
emulator: we use the following controller

u (k) = −g [y (k) , y (k − 1)] + 0.6y (k) + 0.2y (k − 1) + r (k) (4.63)

where g [·] is of the form of (4.57). Then we can get the equation of closed-loop system as

y (k + 1) = f [y (k) , y (k − 1)]− g [y (k) , y (k − 1)]

+0.6y (k) + 0.2y (k − 1) + r (k) (4.64)

The overall structure of PIPE Emulator-based control system is shown in Fig. 4.6.

In the figure, r, u, f , g, Am, y, ym, ei and ec denote the reference input, control input,

nonlinear part of plant, an estimation of f , coefficients of reference model, plant output,

output of reference model, identification error and control error, respectively. Fig. 4.7

shows a comparison of the output of y (k + 1) of the closed-loop system with the reference

model output ym (k + 1). From the simulation result, it can be seen that the proposed

method works very well in producing accurate tracking control using the above scheme.

4.2.4 Section summary

This Section discussed the applicability of PIPE algorithm to the identification and control

of nonlinear system. The evolved symbolic expression is competitive with those obtained

using neural network and/or multiple interacting program algorithm, and the symbolic

expression model of nonlinear system may be amenable to analysis than neural network

model. But same as GP, the symbolic expression obtained by PIPE is usually redun-

dant and very long in length. This problem can be addressed by selecting the proper

architecture of sparse tree and instruction set in the further research.



CHAPTER 4. HYBRID SOFT COMPUTING FOR CONTROL 110

ec

y

Reference model

Z-1

g

Z-1
Z-1

Z-1

f

Z-1

g

Am

u

ym

r

+

+

+

+

+

- +

-

+
-

+

+

controller

plant

identifier

ei

Figure 4.6: PIPE Emulator-based control system

0 20 40 60 80 100 120 140 160 180 200

-3

-2

1

0

1

2

3

4

Time [sec]

O
ut

pu
t a

nd
 e

rr
or

Reference model output
Control system output
Tracking error

Figure 4.7: The Desired Plant Output and the Evolved Plant Output



CHAPTER 4. HYBRID SOFT COMPUTING FOR CONTROL 111

In addition, it is easy to insert the traditional control methods into the PIPE Emula-

tor/Identifier based control system. Our future work will concentrate on improving the

performance of PIPE controller by embedding PID technique in order to apply easily the

proposed method to the practical control problems.

4.3 Approximation Based Direct Control

4.3.1 Adaptive Soft Computing Model Based Inverse Control

Design Principle

Basically, the adaptive soft computing based inverse controllers can be categorized into

two main schemes, i.e., direct approach and indirect approach. In direct soft computing

based inverse control scheme, there are two kinds of learning schemes known as general

learning depicted in Fig. 4.8 and specialized learning depicted in Fig. 4.9. The soft com-

puting based controllers produce the control inputs through learning the inverse mapping

relationship of the nonlinear plant or minimum some cost function. Explained in brief,

the basic principle is as follows.

Assuming that the system to be controlled can be described by

y(t+ 1) = g[y(t), . . . , y(t− n+ 1), u(t), . . . , u(t−m)] (4.65)

The desired soft computing model is then the one that isolates the most recent control

input, u(t),

û(t) = ĝ−1[y(t+ 1), . . . , y(t+ n − 1), u(t), . . . , u(t−m)] (4.66)

Assuming such a soft computing model has been somehow obtained, it can be used for

controlling the system by substituting the output at time t+1 by the desired output, the

reference, r(t + 1). If the soft computing model represents the exact inverse, the control

input produced by it will thus drive the system output at time t+ 1 to r(t+ 1).

Generalized Training

The most straightforward way of training a soft computing model as the inverse of a

system is to approach the problem as a system identification problem. In doing so,

the soft computing model can be trained off-line by using any of the training methods

presented in the previous chapters of the thesis. Note that soft computing model based
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direct inverse control with generalized training is not a model-based design method due

to the controller is inferred directly from a set of data without requiring an actual model

of the system.

Example: Neural Net Based Direct Inverse Control with Generalized Learning

Assume that the plant to be controlled given by

y(k + 1) = 0.9y(k)− 0.001y2(k − 1) + u(k) + sin(u(k − 1)) (4.67)

Firstly, the neural network direct inverse controller needs to be trained off-line by

randomly selecting the input signal u(k) at interval [−2, 2], and measuring the output
of the system y(k + 1). The input and output for training the direct neural network
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inverse controller are [y(k + 1), y(k), y(k − 1), u(k − 1)] and u(k). Secondly in the open-

loop control stage, The input and output of the direct neural network inverse controller

are [r(k + 1), y(k), y(k − 1), u(k − 1)] and u(k). Where r(k + 1) is reference signal. A

simulation result is shown in Fig. 4.10, which presented the tracking performance of the

neural network direct inverse controller.
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Figure 4.10: Tracking performance of the NN direct inverse controller with generalized
learning

Note that in this control scheme the cost function for training the inverse dynamic

neuro-controller is not directly based on the plant output error. So control performance

cannot be improved directly by training unless learning has been carried out in such a

way that good generalization through the control space can be expected.

Specialized Training

From the viewpoint of real-time applications, the specialized training method depicted

in Fig.4.9, is relatively more practical than the generalized training method mentioned

above. However, because the uncertain or unknown nonlinear plant lies between the

controller and the output error, the standard gradient method for tuning the controller

parameters are not available. This is the main obstacle of the specialized learning method

for training the direct soft computing model based inverse controller.

In what follows, a neural network based direct inverse control algorithm with the

specialized training scheme are given.
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Consider the discrete-time SISO unknown nonlinear systems described by

yp(k + 1) = g(yp(k), . . . , yp(k − n+ 1), u(k), . . . , u(k −m+ 1)) + e(k) (4.68)

where u, yp and e are control input, plant output and the process noise, respectively. g is

a continuous nonlinear function, n and m are the known system orders. The plant input

is limited in amplitude for considering the real applications, i.e., there are um and uM

such that um ≤ u(k) ≤ uM for any k.

The goal of control task is to learn inverse dynamics of the plant in order to follow a

specific a specified reference yd(k) as close as possible.

Estimation of the Plant Jacoban. In order to implement the direct neural inverse

controller, the plant Jacoban should be estimated firstly. Some methods for approximating

the plant Jacoban are listed as follows:

• Estimate the plant Jacoban by comparing the changes from the previous iteration,

i.e.,

J(k + 1) ≈ yp(k + 1)− yp(k)

u(k)− u(k − 1) (4.69)

Such an approach can sometimes result in undesirable tracking. This undesirable

effect is due to fast variation of J when the plant output and control input change

suddenly, particularly at the zero-cross point. Moreover for tracking a constant

reference signal, Eq.(4.69) may have the problem of division by zero.

• Change Eq.(4.69) into following form

J(k + 1) ≈ sign(yp(k + 1)− yp(k)) · sign(u(k)− u(k − 1)) (4.70)

The problem of division by zero is avoided, but it cannot be used in real applications

because it is sensitive to noise.

• Calculate the plant Jacobian through a model on-line.
Let xm(k) = [xm,1(k), . . . , xm,n+m(k)] = [yp(k), . . . , yp(k − n+ 1)]. Then the output

of single hidden layer neuro-emluator for plant (4.68) can be expressed by

ym(k + 1) = fmo


Nm∑
j=1

ωoj (k)

[
fhmj

(
m+n∑
i=1

ωhmij(k)xm,i(k) + bhmj(k)

)]
+ bmo(k)


(4.71)

where ωomj and ωhmij are the weights for the output and hidden layers respectively,
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bm is the bias, xm is the input, Nm is the number of hidden units, f
h
mj and fmo are

the activation functions for the hidden and output layer respectively. Assume that

the activation function

f(x) =
1− exp(−x)

1 + exp(−x)
(4.72)

is used in hidden layer and a linear function fmo(x) is used in output layer. Then

we have f
′
mo ≡ 1 and

f
′
=
1

2
(1− f 2(x), f

′′
(x) = −1

2
f(x)(1− f 2(x)) (4.73)

Thus, an estimated plant Jacobian can be calculated directly through the neural

network emulator at each time step, that is

ˆJ(k) =
∂ym(k + 1)

∂u(k)
=

Nm∑
j=1

ωom,j(k)ω
h
m,n+1,j(k)f

′
(k) (4.74)

where

f
′
(k) =

1

2
(1− f 2(k)) =

1

2

(
1− f 2

(
m+n∑
i=1

ωhmij(k)xmi(k) + bhmj(k)

))
(4.75)

• Enhancing estimation of the plant Jacobian [267]
So far, as the estimated plant Jacobian is provided by using the neuro-emulator

model, almost of all results are based on the following objective function to on-line

train the plant neuro-estimator, that is

E(k) =
1

2
(ym(k)− yp(k))

2 (4.76)

Although the neuro-emulator trained by Eq.(4.74) did provide an on-line estimation

of plants Jacobian, it cannot be expected to conduct a satisfied solution due to the

lack of richness of teaching signals. A direct reason is no information on the plant

Jacobian involved in neuro-emulator training. Therefore, an enhanced version for

estimating plant Jacobian using the following new objective function is proposed.

Eλ(k) =
1

2


(ym(k)− yp(k))

2 + λ

(
∂ym(k)

∂u(k − 1) − Jp(k)

)2

 (4.77)

where λ is a weighted coefficient, Jp(k) is an estimated plant Jacobian with process
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noise which is given by

Jp(k) =




JB, ifJ
o
p (k) > JB

−JB, ifJ
o
p (k) < −JB

Jop (k), otherwise

(4.78)

where JB > 0 is a certain threshold given by designers and

Jop (k) =
yp(k)− yp(k − 1)

ε(k) + u(k − 1)− u(k − 2) (4.79)

where ε(k) = ε0sign(u(k − 1) − u(k − 2)), ε0 is a sufficient enough small positive

number for avoiding the problem of division by zero. The on-line updating rule for

training the neuro-emulator then becomes

�ωm(k + 1) = em(k + 1)
∂ym(k + 1)

∂ωm(k)
+

λ∂2ym(k + 1)

∂u(k)∂ωm(k)

×
(
∂ym(k + 1)

∂u(k)
− Jp(k + 1)

)
(4.80)

where ωm(k) denots the generic weights in the neuro-emulator model at time step

k, �ωm(k) = ωm(k)− ωm(k − 1), em(k) = ym(k)− yp(k) and

∂ym(k + 1)

∂ωoj (k)
= f(k) (4.81)

∂ym(k + 1)

ωhij(k)
= ωoj (k)xm,i(k)f

′
(k) (4.82)

∂2ym(k + 1)

∂u(k)∂ωjo(k)
= ωhn+1,j(k)f

′
(k) (4.83)

∂2ym(k + 1)

∂u(k)∂ωhij(k)
= δi,n+1ω

o
j (k)f

′
(k) + ωoj (k)ω

h
n+1,j(k)xm,i(k)f

′′
(k) (4.84)

　where δi,n+1 = 1 for i = n+ 1 and 0 for otherwise.

Finally if the plant Jacobian is successfully estimated, a on-line direct inverse controller
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Figure 4.11: Tracking performance of the NN direct inverse controller with specialized
learning

can be implemented with the following weight update rule.

�ωc(k) ∝ (yp(k)− yd(k))Ĵ(k)
∂u(k)

∂ωc(k − 1) (4.85)

where ωc(k) denotes the generic weight in the neuro-controller at time step k, �ωc(k) =

ωc(k)− ωc(k − 1), Ĵ(k) is estimated plant Jacobian. The term ∂u(k)/∂ωc(k − 1) can be
calculated by BP algorithm.

Simulation Studies

The plant to be controled is given by

y(k + 1) = 0.2y2(k) + 0.2y(k − 1) + 0.4sin(0.5 ∗ (y(k) + y(k − 1)))
cos(0.5 ∗ (y(k) + y(k − 1))) + 1.2u(k) (4.86)
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The reference signal is given by

r(k) = sin(πk/50) + 0.5sin(πk/25) (4.87)

The simulation result is shown in Fig.4.11.

4.3.2 Soft Computing Model Assistant Self-Tuning PID Control

The architecture of self-tuning soft computing model assistant PID controller is shown in

Fig.4.9, in which the soft computing model can be any one of the neural network, fuzzy

system or hybrid soft computing model discussed in Chapter 3.

Assume that the used soft computing model is a neural network, then a self-tuning

neuro-PID controller can be derived as follows. The discrete-time PID controller can be

described by

u (k) = u (k − 1) +Kp{e (k)− e (k − 1)}

+Kie (k) +Kd{e (k)− 2e (k − 1) + e (k − 2)} (4.88)

e (t) = ym (t)− y (t) (4.89)

where, u(k), y(k) and ym(k) are the output of PID controller, output of the plant and the

reference model output respectively, and Kp, Ki, and Kd are the PID gains. In order to

derive the self-tuning algorithm of the Neuro-PID controller, we define the error function

E which should be minimized as

E =
1

2
e2 (t + 1) (4.90)

Using a three-layered neural network, we can realize the learning rule to find the suitable

PID gains. The inputs of neural network are the reference signal, the input of the plant,

the present and previous output of the plant. The outputs of neural network are Kp, Ki

and Kd which are represented by O(1), O(2) and O(3), respectively. According to the

gradient method, the following learning algorithm of the self-tuning Neuro-PID controller

can be easily given.

1) Set the initial values of Wkj,Wji, θk, θj , η and α, where Wkj,Wji, θk, θj , η and α

denote the connection weights of input layer and hidden layer, connection weights

of hidden layer and output layer, the bias of hidden layer, the bias of output layer,

the learning rate and momentum term, respectively.
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Figure 4.12: The architecture of self-tuning soft computing asistant PID controller

2) Calculate e (t + 1) and δk by

e (t+ 1) = ym (t+ 1)− y (t + 1) (4.91)

δk = e (t+ 1) ∗ ∂y (t+ 1)

∂u (t)
∗O (k) ∗ (1−O (k))

∂u (t)

∂O (k)
(k = 1, 2, 3) (4.92)

where

∂u (t)

∂O (k)
=




e (t)− e (t − 1) (k = 1)

e (t) (k = 2)

e (t)− 2e (t− 1) + e (t− 2) (k = 3)

(4.93)

3) Calculate

�Wkj (t+ 1) = ηδkOj + α�Wkj (t) (4.94)

4) Calculate δj by

δj =
∑

δkWkjOj(1−Oj) (4.95)

5) Calculate

�Wji (t+ 1) = ηδjOi + α�Wji (t) (4.96)

6) t=t+1 and go to step 2.
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Figure 4.13: Tracking performance of the NN direct inverse controller with specialized
learning

Simulation Studies

The plant to be controled is given by

y(k + 1) = 0.9y(k)− 0.001y(k − 1) + u(k) + sin(u(k − 1)) (4.97)

The simulation result is shown in Fig. 4.13.

4.3.3 Adaptive Soft Computing Control by State Feedback

Introduction

The main problems in designing of soft computing feedback controller are that the proofs

of stability and convergence of the algorithms, the robustness of the controller, and the

ability of the controller for dealing with the uncertainties and disturbances. So far with

the use of Lyapounov synthesis method, a number of results have been obtained in the

literature [147]-[170] for solving these problems, but they only can be applied to a classical
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of affine nonlinear systems.




ẋi = xi+1, i = 1, 2, . . . , n− 1
ẋn = a(x) + b(x)u

y = x1

(4.98)

where x = [x1, x2, . . . , xn]
T ∈ Rn, u ∈ R, y ∈ R are the state variables, system input

and output, respectively. In addition, the uniformly systemic method for the designing of

neural/fuzzy feedback controller has not been recognized commonly.

Most recently, S. S. Ge, C. C. Hang and T. Zhang proposed a directly adaptive feedback

control method by using RBF neural networks [170]. It is valuable to mention that the

approaches can be applied to the control of non-affine nonlinear systems. This section is

the further research about the feedback control of nonlinear affine/non-affine systems by

using the basis function networks.

The basis function networks have been successfully applied to identification of nonlin-

ear systems discussed in Chapter 3. In this Section, we focus on the purpose of control

by using the basis function networks.

Problem Statement

Given a typical nonlinear system




ẋ1 = x2

ẋ2 = x3

...

ẋn = f(x, u)

y = x1

(4.99)

where x = [x1, x2, . . . , xn]
T ∈ Rn is state vector and u ∈ R, y ∈ R are input and ouput of

the system. If f(x, u) can be described by f(x, u) = a(x) + b(x)u, then the system (4.99)

is called an affine nonlinear system; otherwise, it is called a non-affine nonlinear system.

The control objective is that given a desired output, yd(t), find a control u, such that

the output of the system tracks the desired trajectory with an acceptable accuracy, while

all the states and the control remain bounded.

In order to control the system (x), the following assumptions are needed.

Assumption 1: f(x, u) is C1 for (x, u) ∈ Rn+1 and f(x, u) is a smooth function with

respect to input u.

Assumption 2: ∂f(x, u)/∂u �= 0 for all (x, u) ∈ Rn+1, and the sign of ∂f(x, u)/∂u is
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known.

Assumption 3: The reference signal yd(t), y
(1)
d (t), y

(2)
d (t), . . . , y

(n)
d (t) are smooth and

bounded.

Assumption 4: On a compact set ωz ∈ Rn+1, the ideal basis function network weights

W ∗ satisfies

‖ W ∗ ‖≤ wm (4.100)

where wm is a positive constant.

Define vector xd and ζ as

xd = [yd(t), ẏd(t), . . . , y
(n−1)
d (t)]

T
(4.101)

ζ = x− xd (4.102)

and a filtered tracking error as

e = [Λ 1]T ζ (4.103)

where Λ = [λ1, λ2, . . . , λn−1]
T is an appropriately chosen coefficient vector so that ζ(t)→ 0

as e(t)→ 0, (i.e. sn−1+ λn−1s
n−2+ . . .+ λ1 is Hurwitz). Then, the time derivative of the

filtered tracking error can be written as

ė = f(x, u)− y
(n)
d (t) + [0 ΛT ]ζ (4.104)

Direct Adaptive Control of Nonlinear System by State Feedback

A directly adaptive state feedback control algorithm is given for the affine and/or non-

affine nonlinear systems, in which each of the different basis function networks is used as

a direct controller and the stability of the closed control system are guaranteed according

to the following two theorems.

Theorem 1: Suppose system (3) satisfying Assumptions 1-3, then, there exist an

ideal control input, u∗, such that

ė = −kve − kvsat(e) (4.105)
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where sat(e) is a continuous function defined as

sat(e) =


 1− exp(−e/γ), e > 0

−1 + exp(e/γ), e ≤ 0
(4.106)

and kv is a positive constant. Subsequently, Eq.(4.105) leads to

limt→∞ | y(t)− yd(t) |= 0 (4.107)

Proof: See Ref.[170].

Remark 4.12: Theorem 1 guarantee the existence of an ideal control input for the

system (3), but it is unknown that how to construct this ideal control input. In the

following, it is supposed that the ideal control input is approximated using the different

basis function networks and the weights update law of the basis function networks is

given.

Theorem 2: For system (3), if the controller is given by each of the following equation

(a) u = UGBRF (the output of the GBRF network)

(b) u = UV PBF (the output of the VPBF network)

(c) u = UB−Spline (the output of the B-spline basis function network)

d) u = UFuzzy (the output of the fuzzy basis function network)

(e) u = UWavelet (the output of the wavelet basis function network)

and the corresponding weights of the basis function networks are updated by

Ẇ = −(k0‖W‖+ k1|e|+ k2)S(z)e− δ(‖W‖+ |e|+ 1)‖S(z)‖|e|W (4.108)

and with

(1) Assumptions 1-4 being satisfied, and

(2) the existence of two compact sets Dw and De such that W (0) ∈ Dw and e(0) ∈ De,

then, for a suitably chosen design parameter Kv, the filtered tracking error e, the

weights of the basis function networks and all system states are semi-globally uniformly

ultimately bounded. In addition, the tracking error can be made arbitrarily small by

increasing the controller gains and the nodes number of the basis function networks.

Proof: Similar to Ref.[170].

Remark 4.13: It is valuable to mention that only the weights of the basis function

networks are adjusted (the other parameters used in the basis function networks are fixed

in the adaptive tuning of the controller). In addition, z = [xT , ν]
T ∈ Rn+1 is the input
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vector of the basis function networks and ν is calculated as

ν = kve+ kvsat(e)− y
(n)
d (t) + [0 ΛT ]ζ. (4.109)

Simulation Studies

Two examples are presented to verify the effectiveness of the proposed methods for the

adaptive control of nonlinear affine and non-affine systems. Fourth order Runge-Kutta

algorithm is used in the simulation for solving the nonlinear differential equation.

Example 1

The first plant to be controlled is an affine nonlinear system (Inverted Pendulum

Problem) given by the following equation.




ẋ1 = x2

ẋ2 =
gsin(x1)−mlx2

2cos(x1)sin(x1)

M+m

l( 4
3
−mcos2x1

M+m
)

+
cos(x1)

M+m

l( 4
3
−mcos2x1

M+m
)
u

y = x1

(4.110)

where M is the mass of the cart, m is the mass of the rod, g = 9.8 m
sec2

is the acceleration

due to gravity, l is the half length of the rod, and u is the control input. In this example,

it is assumed that M = 1kg, m = 0.1kg, and l = 0.5m. Our control objective is to

control the state x1 of the system to track the reference trajectory yd =
π

40.0
sin(t). The

initial state of the system is x1(0) = − π
50.0

, x2(0) = 0.0. The sampling time is 0.005s, the

maximum simulation time is 20s.

The fixed parameters are k0 = k1 = k2 = 10.0, Λ = 10.0 and γ = 0.03 for each basis

function network controller. The other parameters used in the basis function network

controller are shown in Table 4.1.

The control performances of different basis function networks are shown in Fig. 4.14-

Fig.4.18, respectively.

Example 2

The second plant to be controlled is a non-affine nonlinear system given by the fol-

lowing equation.




ẋ1 = x2

ẋ2 =
x1

1+x2
2
+ u5 + u3 + ueu

2

y = x1

(4.111)

The control objective is to control the state x1 of the system to track the reference

trajectory yd = 0.2 ∗ sin(0.5 ∗ t) + 0.1 ∗ cos(t). The initial state of the system is x1(0) =
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Figure 4.14: Tracking performance of state feedback control (by RBF neural networks)
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Figure 4.15: Tracking performance of state feedback control (by B-spline basis function
networks)
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Figure 4.16: Tracking performance of state feedback control (by fuzzy basis function
networks)
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Figure 4.17: Tracking performance of state feedback control (by VPBF networks)
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Figure 4.18: Tracking performance of state feedback control(by wavelet basis function
networks)
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Figure 4.19: Tracking performance of state feedback control (by RBF neural networks)



CHAPTER 4. HYBRID SOFT COMPUTING FOR CONTROL 128

0 2 4 6 8 10 12 14 16 18 20
0.5

0.4

0.3

0.2

0.1

0

0.1

0.2

0.3

0.4

Time (sec)

C
on

tr
ol

 s
ys

te
m

 o
ut

pu
t a

nd
 r

ef
er

en
ce

 s
ig

na
l

Control system output
Reference signal

Figure 4.20: Tracking performance of state feedback control (by B-spline basis networks)
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Figure 4.21: Tracking performance of state feedback control (by fuzzy basis networks)
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Figure 4.22: Tracking performance of state feedback control (by VPBF networks)
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Figure 4.23: Tracking performance of state feedback control(by wavelet basis networks)



CHAPTER 4. HYBRID SOFT COMPUTING FOR CONTROL 130

Table 4.1: Parameters used in Example 1

BFN No. of hidden kv δ initial a initial b initial weight w

GRBF-NN 12 5 10 0.01 0.0 rand(0,1)
VPBF-NN 10 2 5 No No 0.1
B-spline-NN 8 2 4 80.0 0.0 rand(0,1)
Fuzzy-NN 10 2 4 10.0 0.0 rand(0,1)
Wavelet-NN 12 2 4 60.0 0.1 0.0

Table 4.2: Parameters used in Example 2

BFN No. of hidden kv δ initial a initial b initial weight w

GRBF-NN 8 4 20 0.01 0.0 0.0
VPBF-NN 10 1.5 13.5 No No rand(0,1)
B-spline-NN 10 4 10 80.0 0.0 rand(0,1)
Fuzzy-NN 20 4 15 10.0 0.0 0.0
Wavelet-NN 20 5 25 60.0 0.01 0.0

0.1, x2(0) = 0.2. The sampling time is 0.005s, the maximum simulation time is 20s.

The fixed parameters are k0 = k1 = k2 = 10.0, Λ = 10.0 and γ = 0.03 for each basis

function network controller. The other parameters used in the basis function network

controller are shown in Table 4.2.

The control performances of different basis function networks are shown in Fig. 4.19-

Fig. 4.23, respectively.

From above simulation results it can be seen that each of the basis function net-

works can be effectively used as a directly adaptive controller for the control of nonlinear

affine/non-affine systems.

Section Summary

The proposed control algorithms can be implemented online and there is no requirement

for persistent excitation condition for tracking convergence.

It is also valuable to mention that only the weights of each basis function networks are

update to force the systems to follow the desired trajectory. The parameters within the

each basis function networks are fixed in the closed loop control process. Therefore there

is no need to pre-determine the shape and parameters of the basis function networks and

to pre-partition the input space. But the initial values of the parameters used in the basis

function networks must be suitable chosen. One possible principle for selecting proper

initial values of the parameters within the each of basis function networks is that the
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initial values can be selected such that there is no overflow in the processing of weights

update.

In addition, it is unknown that if it is benefit to allow the parameters used in the basis

function networks (a and b) adjustable for the complex dynamic nonlinear systems. This

is an interesting problem needed for further research.

5 basis function networks and its calculation architectures are given, and a directly

adaptive state feedback control approach based on above basis function networks is pro-

posed in this Section.

Simulation study and experimental comparison show that the proposed method is

efficient for the control of nonlinear affine/non-affine systems. In addition, the current

research show that it is possible to construct a uniformly framework (theory) for control

nonlinear affine/non-affine systems by directly adaptive state feedback control approaches.

4.4 Conclusion in this Chapter

Some of hybrid soft computing model based or assistant adaptive control schemes, i.e.,

PIPE based evolutionary control and a unified framework of the basis function network

based adaptive state feedback control scheme are developed in this research. The effec-

tiveness of the proposed control algorithms is confirmed by simulation studies.

Some soft computing model based or assistant controller design principles are also

discussed, i.e., sliding mode control based design and backstepping design. Currently, in

these design methods the used soft computing models are neural networks and/or fuzzy

systems. Other soft computing models can also be used for designing of these controllers

in principle. It is valuable to implement and compare the performances of various soft

computing models based control schemes in order to construct a unified framework of

hybrid soft computing based or assistant control scheme finally.



Chapter 5

Application to the Drilling System

5.1 Identification of the Thrust Force in the Drilling

Process

5.1.1 Introduction

The drilling process has a great importance for the production technology due to its

widespread use in the manufacturing industry. In the drilling process, the spindle speed

and feed rate are usually pre-determined according to the type and the variety of the

workpiece materials. In order to prevent the drill from the damage and enhance a max-

imum production rate of the drilling system, it is important to monitor and control the

drilling system.

Artificial neural networks have been successfully applied to a number of scientific

and engineering fields recently, especially for the identification and control of nonlinear

systems. A number of researches also shown that complex mechanical systems can be

identified and controlled by various on- or off-line trained neural networks, e.g., Neural

networks based DC motor control, induction motor control and robot manipulator control.

In the researches of neural network based system identification and control, there have

been two key directions. The one is that try to improve or create new algorithm for

training the neural network in order to satisfy the need of engineering practice, i.e., the

convergence speed of learning algorithm and the approximation accuracy of the neural

model. The other direction is that trying to improve or find advanced neural identification

and control technique, and apply it to the complex industrial plant.

There have been a number of researches in the optimization, estimation and control

of drilling process recently [179]-[186]. Soft computing approach has been a popular

research fields in the tool condition monitoring and control. Cutting parameter selection

132
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Figure 5.1: The drilling system

or regulation based on neural network and genetic algorithm has been presented [179][180].

The tool ware estimation by using neural or neuro-fuzzy techniques can be found in

[186],[187]-[189]. A number of machining force control schemes have also been discussed

in the previous works, e.g., traditional adaptive control schemes [189][190], linearisation

control [191], robust control [192], sliding mode control [193], neural network control [194],

and fuzzy control [195].

The thrust force and cutting torque in the drilling process are usually measured by

sensor. But as it is pointed that the problems i.e., vibration, will occur when the sensor

is attached to the drilling machine.

In this research, an estimation and control method of the thrust force is proposed

by using neural network technique. In order to obtain a good neural model of thrust

force in the drilling process under a variety of conditions, the data set for training neural

network is selected by randomly setting the values of spindle speed and feed rate at the

pre-defined ranges. Based on the neural model of the thrust force, a neural controller can

be trained to control the thrust force off-line, and then, this controller can be applied

to the drilling machine to on-line control the thrust force with the recursive least square

learning algorithm.

5.1.2 The Drilling Machine

The used drilling machine is shown in Fig. 5.1, which contains the following components:

an induction motor, a AC motor, 4 encoders, a dynamometer, a current sensor, a PWM

inverter, a servo driver, 3 strain amplifier, a counter board, a AD/DA converter and a
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personal computer (PC-9821).

The signals of encode number, the current of spindle system, vibration, thrust force

and cutting torque are sent to the personal computer at every sampling time (i.e., 6

[msec]) in order to monitor and analyze the dynamics of the drilling process. Meanwhile,

the computer provides the control action to manipulate drilling system by spindle speed

and feed rate.

The objective of this research is modeling and control the thrust force by using the

neural networks. A number of factors, i.e., feed rate, cutting torque, spindle speed, hole

depth and the current and voltage values of spindle system, may affect the thrust force in

the drilling process. In this research, two thrust force prediction models are constructed

in order to find a effective thrust force model. The one is based on the feed rate, the

previous feed rate and thrust force. The other is based on the feed rate, the current and

voltage of the spindle system and the previous thrust force.

5.1.3 Neural Network Model of the Thrust Force

Sampling Data

In order to obtain a general thrust force model at different dynamic cutting conditions,

we set the spindle speed and feed rate as uniformly random values at pre-defined ranges.

The spindle speed varied at interval 1200-2000 [rpm], and the feed rate varied at interval

0.01-0.08 [mm/rev]. The experimental setup of cutting conditions is shown in Table.5.1.

The feed rate, the phase voltage and the current signals of spindle system and the

thrust force in the drilling process will be measured and sent to computer for the later

use for the training of neural networks.

Neural Network Training Algorithm

The used neural network training algorithm for modeling is batch version of momentum

backpropagation algorithm as discussed as in Chapter 2.

Identification Experiments

In this section, we present some simulation and real time implementation results to verify

the effectiveness of the proposed methods for the estimation of thrust force in the drilling

process.

The used parameters in the training of neural network: η1 = 0.01, α1 = 0.9, η2 = 0.005,

α2 = 0.95, η3 = 0.002, α3 = 0.8.
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Model 1

The neural network has three inputs including the feed rate, the previous feed rate and

the previous thrust force. The output is the current thrust force.

The neural network was trained off-line based on the above training algorithm. The

model thrust force and real thrust force is shown in Fig. 5.2.

For the validation of the neural model of thrust force, two tests are performed. The one

is by randomly re-setting the spindle speed and feed rate at the ranges of 1200−2000[rmp]

and 0.01−0.08[mm/rev], respectively. The other is by setting the spindle speed and feed

rate are 1800[rpm] and 0.03[mm/rev], respectively. The test results are shown in Fig. 5.3

and Fig. 5.4.

Model 2

The neural network has seven inputs including the feed rate, the previous feed rate, the

current and voltage of spindle system and their previous values, and the previous thrust

force. The output is the current thrust force.

The model thrust force and real thrust force is shown in Fig. 5.5.

Same as the method proposed in model 1, for validation the thrust force model, two

tests are performed which are shown in Fig. 5.6 and Fig. 5.7, respectively.

From above results, it can be seen that the proposed method works very well for

generating the thrust force models.

5.1.4 Neural Control of the Thrust Force

It is expected that maintaining a constant thrust force when the tip of drill is reached to

the workpiece due to it can reduce the vibration, and enhance the production rate and

quality of the hole. In this section, a neural network based constant thrust force control

method is presented.

Neural Controller and Its Training Algorithm

The used neural controller is a three layer feedforward neural network with hyperbolic

tangent activation functions in the input-to-output layer and linear activation functions

in the output layer (see, Fig. 5.8).

The neural controller has three inputs, which are the reference thrust force, the pre-

vious feed rate and thrust force. The output of neural controller is the feed rate. From
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Figure 5.2: Model and real thrust force for training data set
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Figure 5.3: Test: model and real thrust force by randomly re-setting the spindle speed
and feed rate
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Figure 5.4: Test: model and real thrust force for spindle speed 1800[rpm] and feed rate
0.03[mm/rev]
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Figure 5.5: Model and real thrust force for training data set
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Figure 5.6: Test: model and real thrust force by randomly re-setting the spindle speed
and feed rate
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Figure 5.7: Test: model and real thrust force for spindle speed 1800[rpm] and feed rate
0.03[mm/rev]
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Figure 5.8: The thrust force neural controller

Fig.8, we can get the output of neural controller as

y(t) =
nh∑
j=0

w1,jhj(t) =
nh∑
j=1

w1,jfj(
ni∑
l=0

wj,lxl(t)) + w1,0 (5.1)

where w1,j denotes the hidden-to-output layer weights, 1 denotes that there is only one

output of the neural controller. hj(t) denotes the outputs of the hidden layer.

The real output of neural controller in implementation is determined by scaling the

output of the neural controller as

u(t) = y(t)(Umax− Umin) + Umin (5.2)

where Umax and Umin are the maximum and minimum feed rate of the drilling machine.

The used training algorithm for neural controller is recursive least square. Define the

objective function as

E(t) =
1

2
e2(t) =

1

2
(Fr(t)− F (t))2 (5.3)

where F (t) and Fr(t) are the reference and measured thrust force at sampling time t.

Firstly, the regression vectors of input-to-hidden and hidden-to-output layer can be

formed as

φTh (t) = [x1(t), x2(t), . . . , xni
(t), 1] (5.4)

φTo (t) = [h1(t), h2(t), . . . , hnh
(t), 1] (5.5)
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where ni and nh are the number of neurons in the input and hidden layer, respectively.

In addition, the weights in the input-to-hidden and the hidden-to-output cab be formed

the following vector form

W T
h,l(t) = [wh1l(t), wh2l(t), . . . , whnil(t), w0,l(t)] (5.6)

W T
o,1(t) = [wo11(t), wo21(t), . . . , wonh1(t), wo,0(t)] (5.7)

where h and o denote the hidden and output layer, respectively.

Then, the sum of the l-th hidden unit and the output unit are

Shl(t) = φTh (t)Whl(t) (5.8)

So1(t) = φTo (t)Wo1(t) (5.9)

Secondly, define the errors for the l-th hidden units and the output unit as

ehl(t) = S∗
hl(t)− Shl(t) (5.10)

eo1(t) = S∗
o1(t)− So1(t) (5.11)

where S∗
hl(t) and S∗

o1(t) are the desired values and unknown. So the above errors cannot

be calculated. But based on the plant Jacobian and the objective function (19), the errors

can be approximated by

eo1(t) ∼= − ∂E(t)

∂So1(t)
∼= e(t)J(t) (5.12)

where J(t) is the plant Jacobian, it can be calculated in real implementation as

J(t) =
∂F (t)

∂u(t − 1)
∼= sign(F (t)− F (t− 1)) · sign(u(t− 1)− u(t− 2)) (5.13)

The error for the hidden layer can be obtained as

ehl(t) ∼= − ∂E(t)

∂Shl(t)
∼= eo1(t)wol1(t)f

′
hl(t) (5.14)

where f
′
hl is the derivative of the hidden layer activation functions.

Finally the weights of neural controller can be update according to

Whl(t) =Whl(t− 1) + Ph(t)φh(t)(ehl(t)) (5.15)

Wo1(t) =Wo1(t− 1) + Po(t)φo(t)(eo1(t)) (5.16)
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where Ph and Po are the P -matrices of the hidden and output layers respectively. The

P -matrix is update according to

P (t) =
1

λ
P (t− 1){Im − φ(t)φT (t)P (t− 1)

λ+ φT (t)P (t− 1)φ(t)} (5.17)

Experimental Result of Thrust Force Control

The selected neural control scheme in the experiment is the combination of off- and on-

line control. The consideration for selecting this control scheme is that a direct on-line

neural control scheme may not be appropriate due to the drilling control process is a fast

process. The off-line trained neural controller can provide a rough control action in the

starting of the drilling process, meanwhile, the on-line neural controller force the plant

output to a desired one in an adaptive way by using on-line parameter tuning algorithm.

Off-line training of neural controller

The thrust force neural model have been obtained in Section 5.1.3. In the off-line

training stage of neural controller, the plant is replaced by the neural model of the thrust

force in order to get the proper weight setting of the neural controller.

Based on above recursive least square training algorithm, the neural controller can be

trained to control the thrust force following a desired thrust force. And then the weights

of trained neural controller are saved to a file for the later use of on-line control.

On-line control of thrust force

In the on-line control stage, the trained thrust force neural controller is copied and embed

in the real drilling control system.

The used on-line neural controller has three inputs, which are the reference thrust

force, the previous feed rate and thrust force. The output of is current feed rate. The

used parameter in neural controller are: λ = 0.99, Umin = 0.01 and Umax = 0.9,

P (0) = α ∗ I, α = 100, where I is an identity matrix with a proper order.

A result of the proposed control scheme is shown in Fig. 5.9. Form the experimental

result, it can be seen that the proposed neural controller can regulate the thrust force to

desired one.

5.1.5 Section Summary

In this section, we proposed the estimation and control methods of the thrust force in

the drilling system by using neural network technique. The effectiveness of the proposed
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Figure 5.9: The proposed control system output and reference thrust force: the spindle
speed is the random value at interval [1200, 2000] [mm/rev]

estimation method of the thrust force was confirmed by comparing the estimated value

with the measured value by the thrust force sensor. Based on the neural thrust force

model, a two stages method is used to design a neural thrust force controller. The

experimental result shown that the proposed neural controller can successfully force the

plant output follow the reference signal.

5.2 Identification of Cutting Torque in the Drilling

Process

5.2.1 Introduction

Under the assumption that the rotational axis of the spindle system is rigid , the dynamics

of the spindle system during cutting can be represented as

Jθ̈s +Dθ̇s = KT iq − Tl (5.18)
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Table 5.1: Cutting conditions

Work piece S45C
Drill HSS Drill (φ2, L=56 [mm])

Sampling time 6 [msec]
Spindle speed 1200 + 800 ∗ rand()/rand max[rpm]
Feed rate 0.01 + 0.07 ∗ rand()/rand max[mm/rev]
Hole depth 6 [mm]

where iq is the active current and calculated by so called dq-transformation from a three

phase alternating current. Tl denotes the cutting torque and θ̇s the angular velocity of

the spindle motor. J and D are the inertia around and the viscous friction coefficient of

the rotational axis respectively. KT is the torque constant.

The objective of this research is modeling the cutting torque by using the PIPE and the

recurrent fuzzy neural networks. Based on above physical model of the cutting process,

the signals of the active current iq and angular velocity of the spindle motor θ̇s are used

for modeling the cutting torque by using PIPE and recurrent fuzzy neural networks.

The used PIPE and RFNN have been discussed as previous Chapter. So here we give

the simulation and experimental results only.

5.2.2 Experiments

Data Pre-processing

In order to obtain a general cutting torque model at different dynamic cutting conditions,

we set the spindle speed and feed rate as uniformly random values at pre-defined ranges.

The spindle speed varied at interval 1200-2000 [rpm], and the feed rate varied at interval

0.01-0.08 [mm/rev]. The experimental setup of cutting conditions is shown in Table 5.1.

The signals of the active current, the velocity of spindle motor and the current cutting

torque during cutting process are measured and send to the computer for the later use in

the training of the PIPE and the RFNN.

The training data are rescaled within the range 0.15 − 0.85 in order to speeding up

the convergence speed of the training:

ys = 0.7
y − ymin

ymax − ymin
+ 0.15. (5.19)
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Results of Cutting Torque Estimation by PIPE

The parameters used in PIPE run are shown in Table.2. The used instruction sets are

I = {+,-,*,%,sin,cos,exp, x1, x2, x3, x4, x5}.
The input vector is x = [x1, x2, x3, x4, x5], where x1, x2, x3, x4, x5 are the one-step-

ahead active current, the active current, the one-step-ahead velocity of the spindle motor,

the velocity of the spindle motor, and the one-step-ahead cutting torque. The out put is

the cutting torque.

The best individual is returned at generation 324500 with fitness: 4.211524. The

evolved symbolic expression is:

(% (+ 0.143182 x4)(exp (* (sin (* x1(+ (% x2(% x3(+ x4 x0)))0.002242)))(

cos (% (+ (exp (+ (sin (% 0.337986(- x1 0.290509)))(cos x0)))(cos (% x0

x3)))(- (% (% (- (+ x0 (sin x2))(- (- (sin(- x3 x3)) x0) x0))(% (- x2 x3)

x1))(+ (* 0.646081(* (sin (+ (- (* (cos (- (cos (% (+ 0.863717(cos 0.551

236))(* x1 (sin (+ 0.604877(- x3 x3))))))0.950600))(% (+ x3 (* x2 x3))(%

x1 x4)))(* (+ (sin x3)(- x1(sin (- x0 0.029851))))(cos (exp (* 0.040923(

exp (* (* (exp x0)(+ (exp (exp x3)) x4)) x1)))))))(% (* (% x3 (- x1( sin

0.041383)))x3)(cos x2))))0.569843))0.448670))x4)))))).

The outputs of real plant and the evolved model for training data set are shown in

Fig. 5.10, and the experiment test is shown in Fig. 5.11.

Results of Cutting Torque Estimation by RFNN

The parameters used in PIPE run are also shown in Table 2.1. The used instruction set

are I0 = {+10,+11, . . . ,+20}, I1 = {+5} and I2 = {x1, x2, x3, x4, x5}.
The input vector and the output are same as those described in above section.

The outputs of real plant and the evolved model for training data set are shown in

Fig. 5.12, and the experiment test is shown in Fig. 5.13.

5.2.3 Section Summary

In this research, two estimation methods of cutting torque in the drilling process using

PIPE and RFNN are proposed. The effectiveness of the proposed estimation method of

the cutting torque was confirmed by comparing the estimated value with the measured

value by the cutting torque sensor. From this research, it can be seen that the cutting

torque can be estimated by either PIPE or RFNN with the properly pre-selected input

signals.



CHAPTER 5. APPLICATION TO THE DRILLING SYSTEM 145

0 1 2 3 4 5 6
0.5

0

0.5

1

1.5

2

Time [sec]

To
rq

ue
 a

nd
 e

rr
or

Real torque
Estimated torque
Error

Figure 5.10: Cutting torque of the real plant and the PIPE model
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Figure 5.11: Test: Cutting torque of the real plant and the PIPE model by randomly
re-setting the spindle speed and feed rate
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Figure 5.12: Cutting torque of the real plant and the RFNN model
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Figure 5.13: Test: Cutting torque of the real plant and the RFNN model by randomly
re-setting the spindle speed and feed rate



Chapter 6

Conclusions

6.1 Conclusions

Soft computing approaches have been developed and applied to many scientific and en-

gineering areas in recent years. There have also many successful researches for the iden-

tification and control of nonlinear systems by using various soft computing techniques

with different computational architecture. The experiments gained over the past decade

indicate that it can be more effective to use the various soft computing models in a com-

bined manner. But there is no common recognition about how to combine them in an

effective way, and a unified framework of hybrid soft computing models in which various

soft computing models can be developed, evolved and evaluated has not been established.

In this research, a unified framework of hybrid soft computing models is proposed and

it is applied to the identification and control of nonlinear systems. Under this framework,

a number of soft computing models, i.e., the additive model, the non-regular MLP neural

networks, the basis function networks and the hierarchical T-S fuzzy models can be evolved

and optimized.

The key points of this technique are those as follows:

• Almost of all the soft computing models can be represented and calculated by the
type constrained sparse tree with pre-specified data structure which is attached to

the node of the tree.

• In this sense, the soft computing models are created automatically not pre-designed,
therefore, the difficulties in determining of the architecture of soft computing models

can be avoided to some extend.

• It is also very important to mention that based on this idea the architecture and
parameters used in the hybrid soft computing models can be evolved and optimized

147
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by using proper learning algorithm, i.e., the architecture of the hybrid soft comput-

ing models can be evolved by MPIPE or genetic programming and the parameters

can be optimized by many parameter optimization techniques.

The evolved hybrid soft computing models have some advantages, i.e., an almost true

polynomial model can be obtained by using the approach of evolutionary induction of

additive model, the evolved flexible MLP neural network has non-regular architecture

and more efficient than the usually used MLP networks, the evolved basis function net-

works have small size and the evolved hierarchical T-S fuzzy models are more flexible for

approximating nonlinear systems. The disadvantage of the method is that it need more

training time due to the search space increased in order to finding the optimal architecture

and optimal parameters of the hybrid soft computing models simultaneously. Simulation

and experimental studies have been shown that the proposed soft computing models are

effective for the identification of nonlinear systems both for simulated plants and real

plants (Drilling machine).

Some of hybrid soft computing model based or assistant adaptive control schemes,

i.e., PIPE based evolutionary control and a unified framework of the basis function net-

work based adaptive state feedback control scheme are developed in this research. The

effectiveness of the proposed control algorithms are confirmed by simulation studies.

Some soft computing model based or assistant controller design principles are also

discussed, i.e., sliding mode control based design and backstepping design. Currently, in

these design methods the used soft computing models are neural networks and/or fuzzy

systems. Other soft computing models can also be used for designing of these controllers

in principle. It is valuable to implement and compare the performances of various soft

computing models based control schemes in order to construct a unified framework of

hybrid soft computing based or assistant control scheme finally.

6.2 Recommendations and Challenges

Some recommendations for further research are in order:

• A hybrid training method for designing of hybrid soft computing models has been
proposed in Chapter 3, which is a off-line training method in general, possible

improvement and generalization of the algorithm for the use of online training are

needed.

• In any case, methods for speeding up the training speed of the hybrid soft computing
models are needed to be further studied.
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• Generalization of soft computing assistant PID controller and the soft computing

based direct inverse controller, new control schemes and training algorithms will

be developed. In this research, only a few of hybrid soft computing model based

or assistant control schemes are implemented. Based on the soft computing based

controller design principle discussed in Chapter 4, it is meaningful to evaluate and

implement other soft computing based or assistant control schemes in order to gain

some experiments for constructing a unified framework of the hybrid soft computing

control schemes.

• We have successfully applied our methods to the identification and control of non-
linear systems, e.g., simulated plants and drilling machine. A natural next step is

to evaluate the effectiveness of our methods in other industrial plants.
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