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Abstract

A framework for declarative bias, based on the genetic programming paradigm(GP), is pre-

sented. The system, CFG-GP, encapsulates background knowledge, inductive bias and program

structure. A context-free grammar is used to create a population of programs, represented by

their corresponding derivation trees. These computer programs evolve using the principle of

Darwinian selection. The grammar biases the form of language that is expressible and the

inductive hypotheses that are generated. Using a formal grammar to de�ne the space of legal

statements allows a declarative language bias to be stated. The de�ned language may express

knowledge in the form of program structure and incorporate explicit beliefs about the struc-

ture of possible solutions. Additionally, the form of the initial population of programs may

be explicitly biased using a merit selection operation. This probabilistically biases particular

statements generated from the grammar.

The program induction system, CFG-GP, represents search bias with three operators, namely

selective crossover, selective mutation and directed mutation. Each of these operators allows a

bias to be explicitly de�ned in terms of how programs are modi�ed and how the search for a

solution proceeds. Hence, both a search and language bias are declaratively represented in an

evolutionary framework.

The use of a grammar to de�ne language bias explicitly separates this bias from the learn-

ing system. Hence, the opportunity exists for the learning system to modify this bias as an

additional strategy for learning. A general technique is described to modify the initial gram-

mar while the evolution for a solution proceeds. Feedback between the evolving grammar and

the population of programs is shown to improve the convergence of the learning system. The

generalising properties of the learnt grammar are demonstrated by incrementally adapting a

grammar for a class of problems.

A theoretical framework, based on the schema theorem for Genetic Algorithms(GA), is

presented for CFG-GP. The formal structure of a grammar allows a clear and concise de�nition

of a building block for a general program. The result is shown to be a generalisation of both

�xed-length(GA) and variable-length(GP) representations within the one framework.
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Chapter 1

Introduction

Where is the life we have lost in living ?

Where is the wisdom we have lost in knowledge ?

Where is the knowledge we have lost in information ?

T.S. Eliot, from 'The Rock'

That smooth-fac'd gentleman, tickling Commodity,

Commodity, the bias of the world.

Shakespeare, from 'King John'

1.1 Motivation

The recent growth of computer-based technologies has focussed the need to represent, store,

analyse, display and manipulate information

1

. This is demonstrated by �elds such as Geo-

graphic Information Systems, Database Systems, Expert Systems and Decision Support Sys-

tems. To comprehend the increasing volume and complexity of this information computer-based

tools for analysis are required. The �eld of machine learning has developed as one approach to

exploiting these information-rich domains.

There is something quite persuasive about a machine which learns from its environment.

Rather than having to be explicitly programmed, it would be desirable for a machine to learn

how to construct relationships(objects) based on a representation of the problem. These objects

can be quite complex. For example, they may represent a programming language, or the

structure of a network or a set of heuristic rules. Machine learning is fundamentally about

structure - the structure of these objects and their transformations.

Some learning strategies maintain only one object at any time. Transforming one object

into another is based on the representation of the problem. Because the number of possible

1

There is a great deal of evidence that the generation and collection of such information will continue to

increase. Technologies such as remote sensing and the so called information superhighway are evidence of this

trend.

1
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transformations from one object to another is usually too large to enumerate, forms of bias are

introduced to make the transformation possible. These forms of bias are often called heuristics.

A second method for learning uses many objects at the one time. A population of objects

are maintained, each with a certain �tness based on examples of the problem. Transformations

between members of a population are often described in a genetic framework, since objects

exchange and randomly modify components of their representation.

Formal grammars may be used to represent many di�erent languages. Hence, objects that

are based on a grammar should be able to express many di�erent languages. Transforming the

objects represented by a grammar is di�cult. Each new learning task may require a new gram-

mar and, therefore, a new language to be searched. For each new grammar there is the di�culty

of not knowing how to manipulate the objects representing this language. Unfortunately, there

is no general bias that will be satisfactory for all grammars.

Learning may be considered as a search for one particular object from a large set of possi-

ble objects. A learning system may be biased by representing knowledge about the problem,

explicitly given by the user of the system. The representation of knowledge, separate from

the learning system, is referred to as a declarative form of bias. This type of representation is

useful since it gives a framework for unambiguously stating the beliefs of the user in a transpar-

ent manner. Such beliefs or partial knowledge, supplied to assist learning, are often available

for problems involving natural resource domains, geological processes, biological, chemical and

physical descriptions.

This dissertation describes a learning system that allows functional descriptions to be de-

veloped with declarative and learnt bias. A formal grammar is used to de�ne the language of

possible hypotheses and both the declarative and learnt bias for the system. Using the frame-

work of evolutionary algorithms to perform the search creates a population-based system with

formal characteristics and explicit biasing. This may be applied to a diverse range of problems

and has formal properties that may be studied independently of any particular problem.

1.2 Formal Languages

A language is speci�ed by an alphabet, a structure or syntax and a meaning or semantics. The

alphabet is a �nite set of symbols that compose the elements of the language. The syntax

de�nes how these symbols may be structured to give sentences in the language. The semantics

de�ne the meaning of these sentences.

The possible sentences of a language may be �nite or in�nite. When the number of sentences

is in�nite a method is required to de�ne how legal sentences are create with a given syntax and

alphabet. The set of rules that are used to de�ne this structure is called a grammar.

A grammar may be used in two ways; as a generator and as a recogniser of sentences. This

dissertation will develop a system that employs a grammar to generate a population of programs

de�ned by some language and to maintain the structure of the language during the search for
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new sentences.

The class of context-free grammars[8] has been selected to de�ne the possible sentences

which are generated during the search for a functional program with certain properties. The

expressive power and simplicity of context-free grammars make them suitable to represent many

diverse structures in a clear and understandable manner.

1.3 Evolutionary Computation

The �eld of evolutionary computation techniques has been widely studied since the 1960's. This

form of search technique is characterised by the use of a population of objects that compete to

perform some speci�ed task. Using biological analogies, the population of possible solutions are

modi�ed in two main ways.

� Mutation of an individual, normally causing a small change in the individual's represen-

tation.

� Mating between two or more individuals, thereby mixing the genetic material composing

elements of the population.

The �eld of Genetic Algorithms [28], Genetic Programming [44], Simulated Annealing[38], and

Evolutionary Strategies[67] have all developed with this basic concept - a population may be

used to search a space of possible representations. The basic framework for evolutionary learning

may be expressed as follows.

1. Generate an initial random population P (0). Set the generation count t = 0.

2. Evaluate P (t) creating a �tness or ranking for each population member.

3. Repeat

(a) Select individuals from P (t) based on their relative �tness or ranking.

(b) Apply Genetic Operators to these individuals creating P (t+ 1).

(c) t = t+ 1.

(d) Evaluate P (t) creating a �tness or ranking for each population member.

Until Termination Criterion satis�ed.

4. Select one or more members from P (t) to represent the solution.

The representation of the population P (t), the evaluation of these individuals and the genetic

operators that modify these individuals determine the domain of applicability. For example,

Holland's genetic algorithm[28] uses a �xed-length (typically binary) representation whereas

genetic programming[44] allows functional descriptions to be represented in a tree-structured

manner. The form of representation determines the type of genetic operators that may be

applied.
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1.4 Bias and Learning

Bias may be de�ned as the factors that in
uence a learning system to favour certain hypotheses

or strategies. The application of a learning technique always involves some form of bias. Bias

may be introduced in any of the following areas.

1. The problem representation.

2. The operators used to search the representation space.

3. The structural constraints of the representation.

4. The search constraints when manipulating the representation.

5. The criterion used to evaluate proposed solutions.

Although the value of declarative bias has been recognised for many years, there has been

little work on applying explicit biasing techniques to evolutionary algorithms. Bias generally

narrows the possible representations that a learning system may consider and therefore is an

essential component for complex problems.

1.5 Statement of Thesis

This thesis describes a uni�ed framework for learning computer programs with an

explicit language bias and search bias. A population of random computer programs

evolve using the principle of Darwinian selection. These programs are biased in the

form of language and possible hypotheses they represent by a context-free gram-

mar. Using a formal grammar allows declarative search operators to be de�ned that

control how new hypotheses are created.

The use of a grammar to de�ne language bias explicitly separates this bias from

the learning system. Hence, the opportunity exists for the learning system to mod-

ify this bias as an additional strategy for learning. A general technique is described

to modify the initial grammar while the evolution for a solution proceeds. Feed-

back between the evolving grammar and the population of programs is shown to

improve the convergence of the learning system. The generalising properties of the

learnt grammar are demonstrated by incrementally adapting a grammar to unseen

members from a class of problems.

A theoretical framework, based on the schema theorem for Genetic Algorithms,

is presented. The formal structure of a grammar allows a clear and concise de�nition

of a building block for a general program. The result is shown to be a generalisation

of both �xed-length(GA) and variable-length(GP) representations within the one

framework.
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1.6 Outline of Dissertation

Chapter 2 is a survey of related work with bias, evolutionary algorithms and formal analysis

methods. This chapter serves as the basis for arguing the need for bias in learning and the

current use of bias in evolutionary algorithms.

An approach to declarative bias with genetic programming, in a uni�ed framework, is de-

scribed in Chapter 3. The learning system, CFG-GP, uses a context-free grammar to de�ne

the language bias and structure for the problem. The use of a grammar also allows typing and

closure information to be automatically maintained. Based on the derivation trees represent-

ing each program, the genetic operators of selective crossover, selective mutation and directed

mutation are described. These operators allow an explicit search bias to be declaratively de�ned.

Chapter 4 demonstrates the basic properties of the learning system on three examples. The

�rst example is the simple boolean problem of the 6-multiplexer. This is used to demonstrate

the basic concepts of the system. The second example demonstrates the use of directed mu-

tation as a search bias. A recursive solution to the function, member(x; y), is evolved using a

restricted LISP-like language. The mutation is used to identify tautologies and repeated pat-

terns. The �nal example involves predicting the locational density of an Australian marsupial.

This problem requires spatial and attribute descriptions in the language. Knowledge about

the likely forms of a useful theory are used to direct the resulting hypotheses generated by the

learning system.

The use of a grammar to de�ne explicit bias for the learning system is further explored in

Chapter 5. A framework is described to allow the learning system to modify the language bias

(i.e. the grammar) during the evolution of a solution. This results in new productions of the

grammar being created, which modify the search space de�ned by the initial language. This

chapter concludes with an example of incremental learning, where the learnt bias of a particular

grammar is used to improve the learning performance on a similar, but di�erent, problem.

The formal properties of context-free grammars are used to de�ne a schema theorem for

CFG-GP in Chapter 6. This de�nition is shown to be a generalisation of genetic algorithms for

single-point crossover and single-point mutation for a particular �xed-length binary grammar.

A di�erent mapping, via a grammar, demonstrates that the de�nition is also a generalisation

of the genetic programming paradigm.

Finally, Chapter 7 summarises the research, reviews the contributions and comments on

future directions. A bibliography and index is given at the end of this dissertation.



Chapter 2

Related Work

This chapter describes previous work involving learning bias, evolutionary approaches to learn-

ing and formal methods for analysing the properties of learning systems. The Genetic Pro-

gramming paradigm is discussed in detail because it forms the basis of the learning system

described in Chapter 3. The issues of typing, program structure and inductive bias in Ge-

netic Programming are highlighted to show the need for declarative biasing with evolutionary

learning techniques.

2.1 Introduction

This thesis brings together concepts from several �elds of machine learning. The following

topics will form the focus of this chapter.

� Bias, heuristics and learning.

� Grammatical bias and learning.

� Learning inductive bias.

� Evolutionary computation techniques.

� Genetic Programming.

� Formal theories of learning using evolution.

The concept of machine-based learning has been studied with great interest for many years

(see [41, 91] for introductory concepts). The �eld of machine learning may be broadly classi�ed

according to the types of representation used for a problem, the type of operators that modify

this representation and the type of information presented to the system to achieve the learning

task. This thesis will describe a system that attempts to learn a simple computer program

which performs some speci�ed task. The problem is presented as a series of speci�c examples

from which the system must attempt to construct a general theory, represented as a computer

6
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program. This approach is a classic example of inductive reasoning[50] and has been further

categorised, in the �eld of machine learning, as learning from example. The use of a program-

ming language to represent the solution to a problem should not be construed as suggesting

that all programming tasks (or even a small subset) may be automated. Rather, the domain of

computer-based languages has been selected due to their 
exibility and formal characteristics.

2.2 Learning and Bias

All our experiences in AI research have led us to believe that for automatic

programming, the answer lies in knowledge, in adding a collection of expert rules

which will guide code synthesis and transformation [48].

Douglas Lenat, 1983

The prospect of building inductive systems which could create any reasonable generalisation,

with limited knowledge, was set back in 1984 by the theoretical results of Valiant[74]. He

discussed two areas of complexity involved with learning. Firstly, computational complexity,

which described the amount of computation required to �nd a hypothesis that is consistent

with a given set of observations. Secondly, example complexity, which de�ned the number

of observations required to reach a speci�ed level of certainty (con�dence) that the induced

hypothesis is likely to be correct. This work implied that the example complexity, based on the

probability of inducing an approximately correct hypothesis, was proportional to the logarithm

of the size of the hypothesis space. The implication of this work was that, to ensure a problem

remained tractable, the hypothesis space should be restricted.

The restriction can occur in several ways. The language that is used to represent the

hypothesis may be limited in its possible expressions, for example by allowing only conjunctive

normal forms or by imposing a maximum length to any inductive statement. Additionally, if

an ordering of the hypothesis space is possible then it may be appropriate to limit the next

generalisation step that is formed from the current hypothesis. The use of heuristics, to guide

the choice of inductive statement, can also be used to remove, or enforce, possible options and

thus make the search for a good generalisation less di�cult. These forms of restriction are

intended to allow the learning system to construct a solution to the induction problem, within

certain time and space restrictions. We refer to these restrictions as forms of bias.

Theoretical work on discovering extrema of cost functions, by Wolpert and Macready[92],

has demonstrated that all learning systems will perform poorly over some problems. This result,

termed the No Free Lunch Theorem, implies that to solve a particular function optimisation

problem a search algorithm should be tailored to the salient features of the problem. This

theorem can be viewed as another argument for the use of bias with a general learning system.

For a generic learning system to perform well over a broad range of problems it must be able

to incorporate knowledge about the problem domain.
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2.2.1 The Concept of Bias

Bias is the set of all factors that in
uence the selection of a particular hypothesis (generalisa-

tion). There are three major kinds of bias, based on the description language and the learning

algorithm.

1. Selection Bias: The learning system may be biased due to a partial ordering over the

hypothesis space. This enables two or more equivalent hypothesis (in terms of their

performance on the available examples) to be distinguished. An example would be to

select the shorter of two descriptions, when both descriptions are consistent. This type of

selection has been described as bias by Scha�er[66] in relation to decision tree induction

and avoiding the over�tting of training data.

2. Language Bias: The learning system may be restricted in the possible hypotheses that

can be constructed. Using a space that has been restricted in this way implies that not all

meaningful hypotheses can be constructed. This is usually achieved by using a description

language in which some concepts are not describable.

3. Search Bias: The method by which a learning system transforms one hypothesis into

another may be viewed as a search for a suitable hypothesis. Search bias refers to the

factors that control this transformation. For example, a genetic algorithm has a search

bias based on the genetic operators, such as crossover and mutation, and their relationship

to the encoding of the problem.

2.2.2 Early Learning Systems and Bias

One of the earliest learning systems to provide explicit bias was described by Michalski[50]. He

developed the STAR methodology for inductive learning. The method used explicitly stated

information to constrain the possible inductive hypothesis that could be created and to locate

those hypothesis that were likely to be close to the generalised solution. Michalski stressed

that a machine generated hypothesis should be comprehensible to human experts. To ensure

this occurred he gave heuristic rules that limited the complexity of any statement that was

inductively asserted.

The learning formalism, de�ned by Michalski, used an extension of predicate calculus, named

annotated predicate calculus, to represent the language bias. The explicit knowledge, used to

constrain the possible assertions as a language bias, was expressed in several forms.

� An annotation of the predicates, variables and functions which constrained the possible

range and domains where each of these constructs could be applied.

� Constraints on the description space, based on the properties and relationships amongst

descriptors. These included the interdependence among values, properties such as transi-

tivity over relations and conditions that were known to be true between di�erent relations.
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Although these forms of knowledge constrained the possible assertions it was generally possible

to construct many statements that were still equivalent in their performance over a set of

examples. Selection bias was introduced by using a list of preference criteria. This selected

an assertion based on factors such as length of description and relative importance of correctly

satisfying each observation. Michalski stated that this selection bias gave control over the

generalising/specialising properties of the inductive assertions.

The search for an inductive hypothesis was viewed as a state-based search. Initially, the

possible states were the set of observations. Operators transformed these states by generalising

and specialising the descriptors, guided by the user-supplied knowledge. The �nal hypothesis

was based on satisfying the observations, explicit knowledge and maximising the performance

criteria.

Michalski's work emphasised the importance of knowledge in guiding inductive assertions

and demonstrated that, for complex problems, structure about the solution could often be

stated without knowing the �nal solution.

More recently, Pazzani et al.[58] also argued for the utility of explicit knowledge with in-

ductive learning. The system, named FOCL(First Order Combined Learner), de�ned several

techniques for incorporating knowledge with a system that generated function-free Horn clause

rules. FOCL was based on the concept formation system FOIL[59] which learns a set of Horn

clauses from positive and negative examples. The language constructions for FOIL were ini-

tially given as a set of background predicates. However, there is no way to represent knowledge

to constrain the search space of the learning system.

FOCL used several methods to guide how a particular literal was selected when attempting

to extend the current body of a function-free clause. Single argument constraints for a predi-

cate, representing typing information, allowed FOCL to restrict the possible literals that could

be selected for an argument with a predicate. Inter-argument constraints were represented by

allowing conditions to be expressed about the relationship between arguments of a predicate.

This allowed conditions such as variable uniqueness and the commutability of arguments to be

expressed. Initial rules, representing a partial theory, could be expressed as a starting point for

the de�nition of the predicate being learnt. Additionally, predicates with user-supplied de�ni-

tions could be incorporated into the language. Each of these techniques was demonstrated to

reduce the search space for a particular problem and therefore increase the possible applications

of the learning system[58].

2.2.3 Using a Formal Grammar as Bias

The concept learning system LEX[52], �rst described by T. Mitchell et al., used a grammar to

represent a generalised description of possible forms of a solution. This system was designed

to use heuristic knowledge to aid learning about the domain of symbolic integration. The

grammar described the form of legal problem states (i.e. legal hypotheses) that could occur

during learning.
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LEX operated in the domain of symbolic integration, using a grammar to represent the

applicable conditions that may cause one integral representation to be transformed into another.

The grammar was used both as a set of mappings between states and to represent generalisations

of a state that may be applied to new conditions. This representation combined heuristics (i.e.

guiding principles that could be applied) with a declarative representation of the search space,

de�ned by a grammar which represented legal transformations. The grammar, for symbolic

integration, represented the legal forms of integral expressions. The sentential forms of the

grammar represented legal generalisations of an expression within the language of mathematical

expressions. The grammar was context-free, where the nonterminals represented classes of

concepts (such as the trigonometric functions, or a mathematical expression) and the terminals

of the language represented the functions and operators of the language (e.g. the integral sign,

the trigonometric functions, unbound variables).

Additionally, heuristics could be expressed in a declarative format. These heuristics repre-

sented a bias towards trying certain types of transformations between the current mathematical

expression and its next transformed state as a search bias.

The concepts used in LEX were extended by Utgo� [73], where the concept description lan-

guage of LEX was modi�ed during the learning phase. This program, STABB (shift to a better

bias), had the ability to modify its language bias. Utgo� began with a language bias that re-

stricted the hypothesis space, de�ned by an incomplete concept description language. This bias

was described as a strong bias, since it overly constrained the possible representation language

(i.e. it was likely that the initial language bias could not express the desired generalisation that

was being sought). Thus, the problem of modifying this bias was simpli�ed to allow only a

shift of bias within a formalism, not the more di�cult problem of shifting between formalisms.

Further, the method considered only weakening this bias by extending the concept description

language. This was achieved by associating a combination of terms from the description lan-

guage so that the terms could be selected together, thereby extending the language bias. This

method was named the RTA Method for shifting bias and consisted of three steps.

1. Recommend, using heuristics to guide selection, that a new concept description should be

added to the language.

2. Translate the recommendations into a form that is represented by the formalism of the

learning system.

3. Assimilate the newly formed components into the concept description language in such a

way as to maintain the structure of the hypothesis space.

This shift in bias occurred automatically, thereby allowing the program to change its repre-

sentation when a solution was not forthcoming. The change represented a modi�cation of the

grammar that was used to de�ne legal sentences in the language. As shown in Figure 2.1,
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trig

sin cos tan csc sec cot tancossin csc sec cot

N16S

trig

Figure 2.1: Bias before and after shift (taken from Utgo� [73] pg. 49).

STABB augments the initial grammar by creating new productions which represents a disjunc-

tion of concepts. This least disjunctive construction is used to indicate that one description is

a subset of another.

The inductive system GRENDEL[10] has been developed within the domain of Inductive

Logic Programming. GRENDEL used an antecedent description language (ADG) to generate

a set of literals as a bias when learning �rst-order descriptions. GRENDEL used an extension

of FOIL[59], a �rst order inductive learning system that used horn clauses as the description

language. The types of knowledge, represented with FOCL[58], were extended within a single

framework by using a formal representation language.

GRENDEL used an extended context-free grammar to represent the possible literals that

could be expressed. This grammar di�ered from a CFG by the use of logical literals to represent

strings in the generated language. This approach removed the constraint of a �xed alphabet from

the grammar. Further, the ADG allowed conditions to be expressed for generated predicates.

These conditions were used to generate many clauses from a single grammatical production.

The semantics of Prolog were used to generate the possible predicate forms. The ADG was

an overly-general theory, generating many possible statements including the statement that

represented the target hypothesis. A sentence, derived from the ADG, became an operational

theory that could be evaluated against the problem domain.

Cohen[10] demonstrated that antecedent grammars could be used to express many forms of

background knowledge, including:

� Constraints over the use of predicates, such as argument typing and limitations on the

use of certain literals.

� Knowledge of programming cliches which allowed constructs, known to be useful, to be

included explicitly in the hypothesis.

� Theories of related concepts, which allowed concepts to be de�ned which could be used

and expanded by the learning system. Hence, if a concept was known to be useful in

explaining the type of problem that was being explored it could be explicitly included as

part of the language that could be generated from the ADG.
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� Incomplete theories, where some component of a theory is known but some components

are yet to be expanded. The learning system could focus the learning towards �nding

de�nitions for these unknown predicate de�nitions.

� Theories which are syntactically close to the solution, where small changes to the structure

of the initial hypothesis are required to generate a suitable solution. This type of approach

may be viewed as searching for small perturbations in the language.

The grammatical statements generated horn clauses whose antecedents are sentences de�ned

by the grammar. Because this language had well-de�ned semantics Cohen was also able to

de�ne a partial ordering over the hypothesis space. This allowed the navigation through a

generalising/specialising hierarchy to be used when selecting an hypothesis.

This work showed that a grammar was useful in representing many forms of bias. This

thesis will argue that, for many domains, a context-free grammar is powerful enough to express

a suitable bias when applying the learning system, CFG-GP, described in Chapter 3. The

need to express context-sensitive statements as bias will be considered in Chapter 7, where it

is argued that an extension of CFG-GP to incorporate context-sensitive languages is relatively

simple.

2.3 Evolutionary Computation

Owing to this struggle for life, any variation, however slight and from whatever

cause proceeding, if it be in any degree pro�table to an individual of any species, in

its in�nitely complex relations to other organic beings and to external nature, will

tend to the preservation of that individual, and will generally be inherited by its

o�spring [12].

Charles Darwin, 1859

2.3.1 The Beginnings of Program Induction

The �rst computational attempts to use evolutionary techniques for learning appeared with

the work of Friedberg[16]. The work is fascinating, not for the results that were achieved, but

because of the insights that Friedberg presented, about both the concepts of machine learning

and the idea of using evolution to drive a mechanical learning process. Friedberg believed that

the language for expressing learning must be complex enough to allow representations that

could not have been envisaged by the original designer of the system. He suggested that "..the

universe of methods consist of all programs that can possibly be written for a given computer".
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2.3.2 The Beginnings of Induction and Simulated Evolution

The work of Fogel et al.[15], published in 1966, considered the possibility of simulating evolution

as a general technique for building robust learning systems. The structures that underwent

evolution were represented as �nite-state machines(FSM). The basic method for modifying any

FSM was to allow random mutations to occur, which would alter both the connections between

represented states and the states that could be reached. The FSM's were evaluated, based on

their performance for the particular problem being solved. The FSM that achieved the highest

�tness (i.e. demonstrates the best performance on the given task) was selected as the parent

to create the next generation. This represented a selection bias. This work captured the basic

concept of using an evolutionary technique to modify an initially random structure towards

one which performed a speci�c task. The conclusions of this work were that the evolutionary

approach to learning o�ered a systematic and mechanical procedure which could be applied to

many induction problems that were originally thought to be the domain of only human experts.

2.3.3 The Genetic Algorithm

The concept of a genetic algorithm(GA) was �rst introduced by Holland[28] in 1975. This

model of computation di�ered from Fogel et al. in the form of representation and the search

operators that manipulated this representation. The GA used a chromosome-like encoding for

the problem and introduced recombination operators that allowed new areas of the search space,

represented by the chromosome encoding, to be explored. A balance between the exploration

of a search space and the exploitation of �t partial solutions allowed the GA to be a robust

method for many forms of optimisation and discovery. Holland called this method an adaptive

plan, since the structures representing the population were gradually modi�ed according to their

previous performance.

The basic algorithm proposed by Holland, used a �tness proportional selection mechanism

and "genetic" operators to create new individuals, which were represented as �xed-length binary

strings. The genetic operators of crossover, mutation and inversion are shown in Figure 2.2.

Single-point crossover creates new individuals by mixing the representations of two parent

strings. The original Holland algorithm selected one parent, based on �tness, and the other

parent at random. A random site was selected to cut each parent string and the tails of each

parent were swapped, thereby creating two new strings. Mutation takes an individual string

and probabilistically modi�es any bit of the string. This represents a random mutation of the

string and is generally considered as occurring with equal (usually very low) probability for

each bit independently. Inversion is a mixing operator that occurs with one parent. Two sites

are selected at random within the individual, and the bits between these sites are swapped, by

replacing the last bit with the �rst, and so on. Each of these operators represent a search bias

in terms of how the bit-strings are mixed and the relationship to the encoding represented in

the strings.
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Crossover Point Crossover PointParent 1 Parent 2

L = 10 Single-Point Crossover

Mutation Inversion

Figure 2.2: GA Operators Crossover, Mutation and Inversion.

The basic adaptive algorithm was de�ned as follows.

1. t = 0.

2. Initialise the population at random. Represent this as P (t).

3. Evaluate the "�tness" of each member of P (t).

4. t = t+ 1.

5. Select a member, A

i

(t) from the population, P (t), based on proportional �tness.

6. Apply crossover to A

i

(t) and A

j

(t) with probability p

c

, where A

j

(t) is selected at random

from P (t). Select one of the resultants at random and designate it as A

1

(t).

7. Apply inversion to A

1

(t), with probability p

i

, yielding A

2

(t).

8. Apply mutation to A

2

(t), with probability p

m

, yielding A

3

(t).

9. Update P (t) with A

3

(t), replacing a randomly selected member from P (t).

10. Goto Step 3.

This basic plan demonstrates the concept of creating a new population from the previous

population, using a �tness measure to determine selection of individuals and probabilistic ge-

netic operators to create new individuals. The presented algorithm processes an initially random
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population. Although there is no completion to this algorithm, some criterion for halting, such

as a maximum number of generations or a certain space/time resource limit, is always de�ned.

The �tness selection mechanism embodies the concept of "survival of the �ttest" and represents

a selection bias with the learning algorithm. The population members that are performing

better at the given task are more likely to be selected as parents for the next generation. The

individuals (i.e. binary strings) are generally decoded to some representation that allows an

evaluation function to be applied to the representation. This evaluation function represents

the �tness of the individual, which is then used as the selection mechanism for each generation

(iteration).

Holland emphasised that this technique was a general search method, in that the genotypes

(represented by the �xed-length encoding) are modi�ed under the guidance of an evaluation

function that probabilistically determines the state of the next generation of individuals in

the population. The genetic algorithm has been applied successfully to many di�erent prob-

lems, including optimisation[20, 69, 6, 5, 30], classi�cation[37, 33], scheduling[9, 72, 40], control

strategies[22, 25, 7], and neural networks[51, 90, 81]. The continued interest and success of

this technique highlights the bene�ts of using a general, population-based method for searching

complex representations in an e�cient manner.

The concept of using an evolutionary search method for learning may be generalised to

structures other than �xed-length binary strings. For example, messy genetic algorithms[19],

rule-based (classi�er) systems[28], Lisp S-expressions[42] and cellular encoding[24] represent

alternative structures that have been used with evolutionary approaches.

The �rst comprehensive consideration of introducing problem speci�c knowledge into a GA

framework appears to have been by Grefenstette[21], where several heuristic methods for biasing

the initial population and the genetic operators of crossover and mutation are discussed. The

domain of application explored was that of the Travelling Salesman Problem. Experiments were

performed to show that seeding the initial population with structures that were known to be

useful improved the performance of the GA. This type of bias was determined by creating the

initial population with a heuristic algorithm which generated tours that used a greedy selection

algorithm for determining the next city to visit from the current one. By selecting, at random,

the start city the algorithm could create a large variety of possible tours.

Explicit search bias was introduced heuristically by modifying the crossover operator to

avoid disrupting short tour lengths that were locally near-optimal. Although this approach

was shown to promote the inheritance of short subtours and useful edges, the results did not

demonstrate a statistically signi�cant improvement in solving the travelling salesman problem.

The mutation operator was used to perform a local search by reversing a randomly chosen

subtour within the representation. The notion of a hillclimbing operation to supplement the

search was also described. This was demonstrated to have a bene�cial e�ect in re�ning solutions

that were near-optimal.

The conclusions of this work were that bias must be carefully handled with GA's to avoid
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premature convergence with the population. However, the positive results achieved with the

travelling salesman problem demonstrated that forms of bias could be incorporated into an

evolutionary search method with some success.

De Jong et al.[34] described a system, GABIL, that learnt and re�ned classi�cation rules

by interacting with an environment. This work was motivated by the fact that concept learn-

ing systems, with explicit bias, performed inconsistently. The genetic algorithm was used to

adaptively change the bias for the system as the learning proceeded. The system represented

knowledge as a set of disjunctive rules, where each rule condition could be a conjunction of

variable conditions.

GABIL incorporated two forms of bias, based on the work of Michalski[50], which allowed

generalisations of the current hypothesis to be performed. These operators were applied prob-

abilistically in the same manner as other genetic search operators. GABIL was extended to

allow these biasing operators to be adaptively selected. This was implemented by explicitly

representing whether each bias would be applied to the particular population member. This

representation was adapted along with the population member each generation. The conclu-

sions of this work indicated that task-speci�c biasing improved the performance of a general

learning system. Similar work which supports the use of genetic algorithms to process high-level

concepts and incorporate task-speci�c knowledge has been presented by Janikow[29].

A population-based method for learning heuristics has been described by Wah et al.[78, 79].

The goal of this work was to create a general learning system, named TEACHER, that could

automatically learn heuristics in knowledge-lean applications. There were two steps involved

in this learning method. Firstly, the use of a genetics-based approach to generate and select

heuristic methods that perform well over a set of training cases. Secondly, a technique for

generalising selected heuristics to unseen test cases which were likely to give a similar level

of performance to the training cases. The heurisitics were represented in a form that could

be modi�ed syntactically, such as a bit-string or as a set of symbols and numbers. Genetic

operators were de�ned to modify these representations in a probabilistic manner. These heuris-

tics represented a search bias for the learning system. The heuristics were separated from the

learning method that was being applied to the particular problem. Hence, the emphasis was

on coupling a method for searching for good heuristics to a general problem-solving technique.

This approach di�ered from Grefenstette[21] by having an explicit separation between the

learning system and the heuristics used to drive the learning. Additionally, the work of Grefen-

stette used a static bias which could not evolve during the search for a solution. Similarly,

GABIL[34] could not modify the forms of bias that were used during the search for a solution.

Although the biasing techniques could be adaptively selected the methods used for each bias

could not be modi�ed during learning. The approach of Wah et al.[79] demonstrated that

heuristics could be evolved to assist a general learning system and emphasised the importance

of knowledge to aid learning.

Cramer[11] presented a representation for the generation of simple sequential computer
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programs using GA's as the search mechanism. The approach speci�ed two characteristics that

were desirable for the induction of programs. Firstly, the encoding should allow standard genetic

operators to be applied. Secondly, the representation should only be capable of producing well-

formed programs during the evolution of a solution. These goals were achieved by using a list

of integers to represent each program, where the list could be mapped unambiguously to a valid

program for evaluation. This work was only partially successful due to the restriction of the

integer representation and subsequent di�culty in de�ning a mapping to legal programs.

De Jong[32] discussed the possibility of using genetic algorithms to search program spaces.

He believed that traditional genetic operators were inappropriate when applied to general pro-

grams for a number of reasons. Firstly, the complexity of the syntax and semantics of program-

ming languages makes it di�cult to de�ne genetic operators that maintain these constraints.

Secondly, the order dependencies, typical of procedural languages, imply that genetic operators

that swap lines in a program will often render the program ine�ective. The proposed solution

to this dilemma was to use a program representation that did not emphasis order and complex

syntax, such as a rule-based or production system.

Kitano[39] has presented a method for designing neural networks using a genetic algorithm

with a graph grammatical encoding. The graph generation grammar is an extension of Lin-

denmayer's L-system[49] which was developed as a model and mathematical theory of plant

development. The main contribution of this work was to demonstrate that evolutionary learn-

ing could be applied to a system which had a clear separation between the genotype (i.e. the

production system) and the phenotype (i.e. the neural network). The work developed a family

of matrices which represented the connectivity of a neural network. The main results of this

work were that using a grammar generated more regular patterns in the networks and that the

system converged more rapidly than a direct encoding system.

2.3.4 Genetic Programming

The �eld of program induction, using a tree-structured approach, was �rst clearly de�ned by

Koza[44]. This �eld, named Genetic Programming(GP), evolved a solution in the form of a

Lisp program using an evolutionary, population-based, search algorithm which extended the

concepts of the �xed-length representations used with genetic algorithms. The structures were

speci�ed as a combination of functions (arity > 0) and terminals (0-arity functions) which

combined to form Lisp programs. To apply GP to a speci�c problem, the following setup was

required.

1. De�ne the function set, F = ff

1

; f

2

; ::; f

n

g, of functions, with arity > 0. Each function

from F takes a speci�ed number of arguments, de�ned as b

1

; b

2

; ::; b

n

.

2. De�ne the terminal set T = ft

1

; t

2

; ::; t

m

g of 0-arity functions or constants.

3. De�ne the population size.
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4. De�ne the maximum initial program size (depth of program tree) that may be created.

5. De�ne the maximum program depth which may be created in future generations.

6. De�ne the �tness measure used to evaluate each program.

7. De�ne the genetic operators that are used to modify programs each generation.

8. De�ne the termination criterion.

The Basic Flowchart for GP

The GP system uses an overall approach to creating and modifying structures similar to GA's

and other evolutionary approaches. The following steps summarise the search procedure used

with GP.

1. Create an initial population of programs, randomly generated as compositions of the

function and terminal sets.

2. WHILE termination criterion not reached DO

(a) Execute each program to obtain a performance (�tness) measure representing how

well each program performs the designated task.

(b) Use a �tness proportionate selection method to select programs for reproduction to

the next generation.

(c) Use probabilistic operators to combine and modify components of the selected pro-

grams.

3. The �ttest program represents a (partial) solution to the problem.

Creating the Initial GP Population

Each initial program created with GP is based on the functions and terminals from fF [Tg that

have been de�ned. This process commences by selecting a function, f

i

, randomly from the set

F . For each of the b

i

arguments, this process is repeated where a random function or terminal

may be selected to �ll each argument position. If a terminal is selected the generation process

is complete for this branch of the function. If a function is selected the generation process is

recursively applied to each argument of this function. This process results in a random program,

composed of functions and terminals from fF [ Tg

+

. Some maximum depth of parse tree is

speci�ed to this procedure to limit the size of the initial programs. For example, using the

function set F = fAND;OR;NOTg and terminal set T = fa; b; c; dg, several programs that

could be created for the initial population are shown in Figure 2.3. It is worth noting that this

form of initialisation does not allow any explicit biasing over the structure (composition) of the

generated programs and can be viewed as a weak language bias.
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OR

b

OR

AND NOT

c OR

a

NOT
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NOT AND

c OR

b a

AND

d c

Figure 2.3: Initial GP programs, where F = fAND;OR;NOTg and T = fa; b; c; dg.

Evaluating the �tness of each program

Each program is assigned a numerical �tness by evaluating the program against a set of test

problems. These problems represent the environment that the program is attempting to learn.

The �tness, for each program, is normalised so that a proportional measure may be used for

selecting programs when forming the next generation. This method is described formally in

Section 3.6 and is a selection bias with the learning system.

Genetic Operators de�ned for Lisp S-Expressions

There are two main genetic operators used with GP, namely reproduction and crossover. Re-

production selects a program, based on �tness, and copies this program identically to the next

generation. Crossover selects two parent programs, based on �tness, and creates two children

by swapping sub-trees between the parent programs. The crossover site within each parent is

randomly selected, using a normal distribution, from any of the terminal or function sites. An

example of crossover is shown in Figure 2.4. The possibility arises with crossover that a program

is created which violates the maximum depth of program that has been speci�ed by the user.

If this occurs, the crossover is aborted and one of the parent programs (selected at random) is

copied to the next generation. The rate of crossover is de�ned by specifying a percentage of

the population that is to be created using this operator for each generation. This method is a

search bias.

Koza de�nes two other, secondary, genetic operators that may be used with tree-structures.

Mutation[44] operates on a single tree. A node within the tree is randomly selected and the

subtree below this node is deleted. A new subtree is randomly generated from fF [ Tg

+

to
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Figure 2.4: GP Crossover: Subtrees between two parents are swapped.

replace the deleted subtree. Permutation[44], based on GA inversion, permutes the order of the

arguments to a randomly selected function within a program.

Termination Criterion for GP

The evolution of a program is halted when perfect �tness is achieved (i.e. the program satis�es

all conditions represented by the evaluation environment) or some speci�ed maximum number

of generations have passed. The program that has the best �tness, after termination, is deemed

to be the discovered solution.

Su�ciency and Closure

Koza[44] stated that two conditions must be satis�ed to ensure GP could be applied to a speci�c

problem. The concept of su�ciency stated that the functions and terminals (in combination)

must be capable of representing a solution to the problem. The condition of closure stated that

each "..function in the function set should be well de�ned for any combination of arguments that

may be encountered"[43]. Thus, closure states the weakest of possible constraints on program

form by forcing all functions and terminals to have essentially the same type. Although this

condition is easily satis�ed when boolean or mathematical functions are used, problems that

involve data structures or have mixed types are di�cult to express with this constraint.
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Editing S-Expressions

Koza[44] suggested that editing the evolved LISP programs, to remove redundant statements,

could assist the discovery of a solution. For example, a boolean expression could be simpli�ed

using DeMorgans Laws, or a mathematical expression could be reduced where multiplication

by zero had occurred. These editing tasks were problem speci�c and could not be de�ned in

a declarative manner. An alternative method which subsumes these concepts is described in

Section 3.9.

Constrained Syntactic Structures

Many problems require some form of constrained structure in terms of the form of the resulting

programs. This was noted by Koza[44], where an informal de�nition of syntactic constraint was

given. He gave several examples where the program structure had to be constrained to produce

valid programs.

The simplest example arose with special functions which could only occur as the root in a

program tree. These functions essentially divided the program into a number of subprograms

which were formed and modi�ed in the original manner.

A more complex example was described involving the solution to a fourier series. Three

syntactic constraints were speci�ed, as follows.

1. The root of the tree must be the special function, &.

2. The only functions allowed immediately below an & are the trigonometric functions xsin,

xcos and the special function, &.

3. The only functions allowed below the trigonometric functions are the mathematical func-

tions (+,-,*,%) or a random, real-valued, constant.

These constraints were maintained by labelling each program tree node by a symbol number

that de�ned the level in the program where the node may exist. These special symbols were

used to ensure that crossover did not violate the stated syntactic constraints. Although this

method worked adequately for the fourier series problem it appeared as an adhoc approach

that would need to be customised for each new problem. Also, the method required an English

explanation to de�ne the structural constraints and could not be easily stated in a declarative

manner explicitly included as part of the initial problem description.

To illustrate the declarative nature of a grammar, the previous syntactic constraints could

be represented by the grammar, G

syn�con

. This unambiguously describes, in a transparent

manner, how the program is to be constructed and the arity of each function.

G

syn�con

=

fS;

N = fA; Tg;
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P

= f&; xsin; xcos;+;�; �;%;IRg;

P =

fS ! & A A

A! & A A j xsin T T j xcos T T

T ! + T T j � T T j � T T j % T T j IR

g

g

Strongly Typed Genetic Programming (STGP)

The issue of syntactic constraints has been further investigated by Montana[54], who relaxed

the closure requirement by specifying the required argument types for each function and the

type of each function result and terminal. The initial, random programs were constructed so

that the typing constraints were satis�ed. This tended to limit the number of possible functions

and terminals that could be placed in any particular argument position. The crossover operator

was rede�ned so that the selected crossover sites between two parents had matching syntactic

types. This ensured that swapping two subtrees could not produce a program that violated the

syntactic constraints de�ned by the typing.

One important aspect of constraining the possible form of programs with typing is that the

search space (representing the number of di�erent programs that may be formed with some

maximum depth of tree) is reduced. This increases the likelihood of discovering a program

solution within some time and space constraint. For example, Haynes et al.[26] demonstrated

that STGP outperformed standard GP for the problem of evolving cooperation strategies in a

predator-prey environment. The conclusion of this work was that the improved performance of

STGP was related to the reduced search space which occurred with the typed system. Addi-

tionally, the resulting programs created with STGP tended to be easier to understand.

The use of a typed language for constraining program forms with GP has been demonstrated

to improve the performance of program induction. However typing alone cannot represent

structural constraints beyond the simple level where one function or argument is constrained

in its relationship to another function or argument.

Other Approaches to Constraining GP

Stefanski[70] proposed that GP should be extended to include declarative biasing techniques via

the use of abstract syntax trees[68]. These trees could be used to constrain the possible forms

of generated programs and to control the nature of crossover and mutation. Unfortunately, the

implications of this approach do not appear to have been explored in any detail.

The author �rst presented work which used a context-free grammar to represent the language

bias for genetic programming in November, 1994[82]. This work was inspired by the inherent

di�culties associated with applying GP to a complex, spatial problem[83, 84]. The spatial
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problem required a language that had several types of information, including the attribute

values of locations and the spatial relationships between elements of the represented space.

To overcome the closure requirements of GP, the spatial relationships were combined with the

attribute and relational values, resulting in 189 terminals. This large number of terminals made

it di�cult for GP to perform acceptably without a large population. This result made it clear

that some form of typing was required to allow GP to e�ciently represent and search a language

which involved some structure.

The work attempted to recreate a set of expert system rules that had generated the initial

test data. Unfortunately, there was no clear way to enforce the structure of these rules in a

declarative manner. Personal communications with William Cohen during September of 1994

directed the work towards maintaining the derivation trees associated with a grammar as a

representation of the search space for GP. This lead to the technical report[82] which formed

the starting point for the work described in this thesis. Extensions to this work implied that

language bias[87] and the de�nition of structure[86] were important issues to be considered

when applying GP to problems involving structured programs.

The work of Roston et al.[63, 64] demonstrated that a formal grammar may be used to

specify constraints with GP. The authors explored the possibility of using a genetic search

technique to create engineering designs. This methodology, entitled Genetic Design, was used

to generate viable design alternatives using a formal grammar to specify artifact descriptions

and representations. A context-free grammar was used to de�ne the structure of the language.

The grammar was used to generate the initial population of programs, however the grammar

was discarded after this operation. The structure, represented explicitly by the grammar, was

maintained by coupling the programs to an STGP system. Although this su�ered from the same

drawbacks as STGP, the use of a grammar to specify the initial system allowed the language

bias to be introduced in a transparent manner. Additional bias was introduced by having

constraints explicitly stated which represented the feasible design alternatives. For example,

the design for a bridge must be capable of spanning the distance which the bridge is to traverse.

Potential designs that failed this type of speci�cation were never allowed to be generated in

the population. This represented a search bias in the formulation of designs. However, this

enforcement of feasibility was speci�c to each problem and was not represented in a declarative

manner.

Recently there has been further interest in applying a formal grammar to control the lan-

guage bias of programs generated within a GP framework. Wong et al.[93, 94] in his LOGEN-

PRO system demonstrated that a logic grammar could be used to combine GP and ILP. Logic

grammars are context sensitive and can therefore describe programming languages such as 'C',

LISP and Prolog. The logic grammar provided a declarative description of valid program forms

that could appear in the initial population. The genetic operators of crossover and mutation

were applied to the derivation trees representing the parent programs. Using a grammar, the
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language forms for ILP and GP could be represented and were shown to be a 
exible represen-

tation of these learning systems. The emphasis of this work was to demonstrate that a single

learning system could be de�ned that could be used to represent many di�erent language forms.

There was little mention of the importance of bias with this work. Additionally, the issue of

ambiguity in language was presented as a problem for LOGENPRO. This occurred because the

derivation trees, representing each program generated from the grammar, were discarded after

the programs were created. When genetic operators were applied to programs they were parsed

to recreate the derivation trees representing their formation. Additionally, LOGENPRO could

not represent an explicit search bias with the genetic operators de�ned over the derivation trees.

A site for crossover or mutation was selected at random which meant no method was available

to specify where most of the search e�ort should be directed. The learning system, presented

in Chapter 3, maintains the derivation trees which represent the population of programs. This

removes the problem of dealing with ambiguous grammars, due to reparsing, and frees the user

from the di�culty of determining whether a de�ned grammar is ambiguous.

Gruau and Whitley[24] have used a grammar tree to encode a cellular developmental process

which generate a family of boolean neural networks for computing parity and symmetry. The

grammar trees were modi�ed using genetic operators that were based on the Genetic Program-

ming paradigm[44], where the search space became the hyperspace of all possible labelled trees

generated from the grammar.

Further support for using explicit bias with GP has been presented by Gruau[23], where

a context-free grammar is used to shape the language bias of allowable programs. He argues

strongly that bias should be viewed as a powerful tool for allowing GP to be applied more

successfully. However, Gruau also removes the derivation trees for the population and must

reconstruct them when the genetic operators are applied.

A method for evolving a hardware design for a particular problem has been described by

Mizoguchi et al.[53]. This approach used a hardware description language, SFL(Structured

Function description Language), which was de�ned as a set of production rules, each labelled

with a unique category number. The genetic operator of crossover always swapped program

components at the same category number. This ensured that the language, de�ned by the pro-

duction rules, was not violated. This work also preserved the derivation trees that represented

the population of programs and therefore closely parallels the work of this thesis. Several other

genetic operators were de�ned to allow the representation to evolve from a simple structure

to a more complex structure. Duplication operated by inserting a copy of a function block

within a program, thereby introducing some redundancy to the program. Insertion was similar

to duplication, however the function block was taken from a di�erent program. Deletion was

used to remove a function block from a program to allow a more compact representation to be

created.

Extensions to this work[27] have described a technique for changing the rewriting system

so that the hardware description language evolves. This was achieved by restricting some
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production rules which removed possible derivations of the language. The intention of this

process was to place more emphasis on particular program forms being generated from the

grammar by changing the search bias. Few details were given for this work[27], suggesting that

it was work in progress. The described approach seems overly restrictive in that some possible

derivations from the language are removed. For example, the proposed transformation of an

initial grammar was presented as follows[27].

A! D A! D

1

B ! D G B ! D

2

G

D! h i =) D

1

! h i

D! C F D

1

! C F

D

2

! h i

The derivations that are possible from the nonterminal, B, have been restricted. A method

that placed a probabilistic weighting to the possible derivations would seem more appropriate,

since at the time of transforming the productions the best solution has not yet been discovered.

Removing possible expressions may result in a language that is overly specialised to a particular

suboptimal solution. The conclusion of Mizoguchi's work was that using a grammar allowed a

structured development for a program to be achieved. The suggested grammar transforming

operation was intended to allow a programming style to be adaptively created, however no work

using this operation has been published to date.

Adapting GP Representations

Complex problems often become di�cult to express using GP. Because there is no way to

encapsulate useful components of a partial solution, it is di�cult for the learning system to

hierarchically compose a solution. Several approaches to this problem have previously been

proposed.

The automatic de�nition of functions (ADF), �rst described by Koza[44], extends GP by al-

lowing a solution to use subroutines that have been evolved along with the GP programs. In this

approach, each individual in the population is de�ned by a �xed number of components. These

represent the automatically de�ned functions, each with a prede�ned number of arguments,

and the result returning branch of the program (typically the main body of the program). Each

ADF is a complete subroutine, requiring a de�nition of the arguments, functions and terminals

from which it is composed. A calling structure is imposed on multiple ADFs by not allowing

a lower ADF to call a higher ADF. The program body is normally allowed to call any ADF

with arguments de�ned from the terminal or function set. An example of the calling structure

using ADFs is shown in Figure 2.5. Here, the program body has the function set, F , extended

to include the two de�ned functions, ADF0 and ADF1. These functions are de�ned with one

and three arguments, respectively. Note that ADF1 may call ADF0 and that each function

has an internally de�ned set of functions, terminals and arguments. The functions are not

shared between various population individuals (i.e. they are essentially internal to each de�ned
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ADF1

Program Body (Result)ADF1

ADF0

ADF0

F = {AND, OR, NOT, ADF0, ADF1}

T = {a0, a1, d0, d1, d2, d3}

A = {arg0, arg1, arg2}

F = {AND, OR, NOT, ADF0}

T = {arg0}

F = {AND, OR, NOT}

ADF0
ADF1

A = {arg0}

T = {arg0,arg1,arg2}

Figure 2.5: GP extended with Automatically De�ned Functions.

program). The use of ADFs has been empirically shown to improve the performance of GP,

however they rely on the user stating the form and structure of the functions before applying

the system. One way to view this structure is that it is an extension of the constrained syntactic

concepts introduced in Section 2.3.4. The success of ADFs imply that imposing structure on a

program may improve the performance of the evolving solutions. This supports the notion that

explicit language and search bias should be incorporated in the GP framework.

These concepts have been extended by Koza[45], where the restriction on having to initially

de�ne the structure of each ADF is relaxed. Six architecture-altering operations have been

de�ned which allow a program to modify the form and makeup of the automatically de�ned

functions that are used. Initial results have demonstrated that the approach is viable[46],

however signi�cant results using this approach have not yet been presented.

An alternative approach, named module acquisition, has been proposed by Angeline et

al.[2]. This approach builds a library of modules which are functions created by selecting a

subtree from the population and removing selected branches of the program. This creates a

new function, with an argument list based on the branches that have been removed. The

operation of compression is used to freeze genetic material as a module. A second operation,

expand, takes a module and substitutes it back into a program which is using the module. This

approach has the desirable feature of allowing useful components of a program to be held and

used by many di�erent programs at the one time.

The goal of discovering useful building blocks with GP has been studied successfully by Rosca

et al.[61, 62]. Their approach, named adaptive representations(AR), uses a bottom-up method

for discovering new subroutines that have been found to be useful. Candidate building blocks

are discovered by considering the �tness of partial programs. The discovered building blocks
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are de�ned as functions which are incorporated into the initial language. This is performed in

a similar manner to descriptive generalisation[50], where a terminal is replaced by a variable

which is used as an argument to the function. The evolutionary process is split into epochs,

where an epoch is a sequence of generations where no attempt is made to discover new building

blocks. An analysis of the population is made after a number of generations (i.e. after an epoch)

and useful building blocks are de�ned as new functions. The population is then modi�ed by

retaining the �ttest individuals and regenerating new individuals using the extended function

set. This represents the beginning of a new epoch. The AR algorithm may be summarised as

follows.

1. Discover useful building blocks by evaluating each blocks merit. Let the selected building

blocks be represented by the set, B.

2. For each building block, b 2 B:

(a) Determine the terminal subset T

b

used in b.

(b) Create a new function f

b

with arguments determined from T

b

and body the block b.

(c) Extend the GP function set with the new function f

b

.

Rosca et al.[61] showed that AR could discover hierarchical representations while learning to

solve a problem. In particular, problems where the solution contained symmetry or had repeated

patterns were solved more quickly than standard GP approaches. The main explanation for

this success was that the reusable nature of the discovered functions changed the search space

of the problem, resulting in a modi�ed language and search bias. The approach demonstrated

that a shift in the representation language could transform a di�cult problem into an easier

one.

Zannoni et al.[95] has used a cultural algorithm to extract knowledge about the structure

of individual programs generated within the GP framework. A cultural algorithm provides

two distinct levels of evolution, where global information about the evolving population is

represented as a set of beliefs which may in
uence the development of individuals. The system,

named CAGP(Cultural Algorithm with Genetic Programming), used a GP system to represent

the population with a set of beliefs represented as program segments. The beliefs were used to

constrain the way programs were modi�ed by the genetic search operators. Program segments

that were found to be useful were protected from disruption when crossover or mutation was

applied. This allowed the development of modules that could be considered as building blocks

for a solution. The system was demonstrated to improve the rate and quality of the evolved

solution, compared with a standard GP approach, for the domain of quartic polynomial symbolic

regression. The conclusions of this work were that it is possible to extract information from

individuals of a population that may allow the population, as a whole, to be usefully directed

to a solution.
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The use of adaptive techniques for determining crossover positions with GP has been demon-

strated by Angeline[1]. The operator adapts values that alter the probability of crossover being

performed at some particular site within a program tree. This is achieved by maintaining a

parameter tree, for each program tree, which has the same structure as the program. How-

ever, at each node in the parameter tree a value is associated that represents the probability

of crossover being performed at that node. These values are adaptively modi�ed using a gaus-

sian random noise after each crossover operation. This work demonstrates that an adaptive

approach to crossover location performs at least as well as standard crossover and represents an

adaptive approach to modifying the search bias for GP. The importance of this work is that it

demonstrates that changing the search bias may in
uence the e�ectiveness of an evolutionary

computation. In particular, if the search bias may be adaptively changed by the learning system

then it is more likely to be a robust approach to learning for many di�erent domains.

2.3.5 Formal Theories of Evolutionary Computation

John Holland �rst proposed the schema theorem for genetic algorithms[28], which described

the e�ect of reproduction, single-point crossover and mutation on a population of �xed-length

strings from one generation to the next. A detailed description of the schema theorem is given

in Appendix C, which includes the terminology required for Chapter 6. The importance of the

schema theorem lies in its description of how a GA performs the role of search and discovery.

The theorem shows that schemata (building blocks) which are contained in individuals with

above-average �tness will propagate exponentially in successive generations. This demonstrates

the role of building blocks with evolutionary search.

A second value of the schema theorem is that it explains how implicit parallelism occurs

within the population-based search of a GA. This is easily understood in terms of the number

of schemata (see Appendix C for a de�nition) that are processed each generation within the

population. For a population of size L, the number of schemata represented implicitly is O(L

3

).

Although the evaluation of each schema is noisy, the overall statistical in
uence of each popula-

tion member allows highly �t schemata to propagate. The implication of this theorem is that a

suitable encoding scheme will improve the performance of the GA. The notion of epistasis

1

im-

plies that a good representation will allow the search operators to explore many combinations,

whilst maintaining the structure of useful components of �t individuals. This encoding problem

is further emphasised with GP, since it is di�cult to de�ne subtree structures that should be

closely associated to avoid disruption due to crossover. The use of ADFs and modules have

been one approach to try and enforce this encoding. This further supports the concept of using

explicit bias with GP and to allow structure to be de�ned in a transparent manner that may

be modi�ed for each new problem.

1

Epistasis is most easily understood in terms of a programming language. For a language such as Pascal, For-

tran or 'C', changing one line in a program may entirely alter the behaviour of the program. Thus, these languages

have high epistasis. In the �eld of population genetics[14] this concept is described as linkage disequilibrium.
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Other approaches to describing the behaviour of genetic algorithms have been proposed. For

example, Rudolph[65] analysed the convergence properties of the GA applied to static optimi-

sation problems. The conclusion of this study was that, for a GA to guarantee convergence to a

global optimum, the best solution that has currently been discovered must be maintained in the

population. Vose has demonstrated that the schema theorem may be presented in several di�er-

ent frameworks. One approach de�nes a schema as a predicate[75], which allows the functioning

of a GA to be described as a constrained random walk. In an alternative approach, Vose[76]

models GAs as a dynamic system in a high dimensional Euclidean space. The population of

�xed-length strings is then modeled by a vector which may be expressed as a matrix. This work

was extended by Battle et al.[4] which generalised the notion of schemata to cosets of subspaces

generated by the columns of an invertible matrix. Each of these works o�er further support for

the processing of schemata as de�ned originally by Holland[28] and extend the understanding

of schema processing for �xed-length strings.

A schema theorem for Genetic Programming has been developed by O'Reilly et al.[57]. This

carefully followed the original schema theorem of Holland for GA's by developing the concept

of schemata, de�ning length and schema order for tree-structured LISP programs. The lack

of a formal structure with GP meant that it was di�cult to de�ne the concept of a schema,

based on the notion of similarity between subtrees. The formal de�nition of schemata given by

O'Reilly is stated in Section 6.8. This de�nition extends the �xed-length description of binary

strings to tree-structured LISP S-expressions. This was achieved by de�ning the concept of a

tree fragment, using a wildcard that matched any subtree (i.e. lisp expression). The fragment

was de�ned as a tree that has at least one leaf that is a wildcard. The wildcard corresponded

to an incomplete S-expression. The entire fragment also had a wildcard at its root position to

represent the fact that the fragment could be fully embedded in a tree. This led to a de�nition

for tree-structured schema which describes an unordered collection of both completely de�ned

S-expressions and incompletely de�ned S-expressions. These incomplete S-expressions were

represented as fragments.

The di�culty in de�ning a schema for arbitrary S-expressions was further complicated when

attempting to de�ne a schema theorem for GP. O'Reilly had to introduce several functions

that de�ned how a schema was instantiated in terms of both the �xed- and variable-length

components of a subtree.

Although the work successfully de�ned a schema theorem, equivalent in form to that pro-

posed for a GA, the de�nition was complicated and di�cult to follow. The goal of this work was

to theoretically analyse whether a hierarchical process was evident in the way GP developed a

solution. The results indicated that no building block hypothesis could be supported without

untenable assumptions. Given that it has been empirically demonstrated that the use of ADF's

improve convergence to a solution and that AR techniques allow the automatic discovery of

useful building blocks the main conclusion that should be drawn is that the GP search method

will exploit building blocks when the problem is naturally decomposable. However, for many
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problems involving program induction, this cannot be assumed. This implies that language

and search bias, as a general declarative tool, should be used to simplify the search space and

complexity of the problem.

Recent work by the author[85, 88] has demonstrated that a formal grammar may be used

to de�ne a schema theorem. The concept of a schema is shown to be naturally represented

as a partial derivation tree. This work, explored in Chapter 6, shows that using a formal

structure for representing programs allows a clear theoretical statement to be made about

evolutionary techniques for program induction. The work also shows that a single schema

theorem may be written that de�nes how structures are propagated for both �xed- and variable-

length representations. This is possible by demonstrating that a grammar may be written for a

�xed-length binary string which has the same schema properties as a standard genetic algorithm.

The 
exible nature of a grammar, in that all current GP applications may be expressed by a

CFG, allows variable-length structures to be represented and therefore a schema theorem, using

this grammar, to capture the basic properties of the GP search method.

2.4 Conclusion

This chapter has presented the �eld of machine learning in terms of representation, operators

and bias. The theoretical results of Valiant[74] and Wolpert et al.[92] have been used to argue

that no general learning system is capable of performing well over many problem domains. The

solution to this dilemma is that learning systems must have formal mechanisms to represent a

bias so that any information known about the problem domain may be used to assist the search

for a suitable inductive hypothesis. Three types of bias have been introduced to represent

the methods available to in
uence a learning system. These forms of bias are selection bias,

language bias and search bias.

The �eld of evolutionary computation, and in particular Genetic Programming, have not

emphasised the use of bias. Although the concept of learning a computer program from example

is a general and powerful approach, many di�culties have been found with this technique

because of a lack of imposed structure. The advent of strongly-typed genetic programming and

the recent use of formal grammars has arisen because of the need to represent structure and

typing information within this framework. The conclusions of this development are that, for

GP to be truly applicable over a wide variety of problems, explicit language and search bias is

necessary to restrict the search space and make the discovery of a suitable computer program

tractable.

The work of Utgo�[73], Rosca et al.[61, 62] and Angeline et al.[2, 1] have demonstrated

that it is possible to adapt a language or search bias to improve the performance of a general

learning system. The use of a formal system, such as a grammar, for representing bias gives

the opportunity to automatically adapt this representation during the course of evolving a

solution. A learning system that adapts its language and/or search bias may have an improved
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performance over a system that uses a static bias.

A formal representation for a learning system allows a theoretical framework to be developed.

The Schema Theorem for Genetic Algorithms has been a useful tool for understanding the

mechanisms that contribute towards understanding its success and applicability. It is desirable

for a learning system to have properties that can be studied, independent of any particular

problem, so that a deeper understanding of the learning process may be developed.

In summary, a general learning system should allow a declarative de�nition of language and

search bias, have the ability to adapt this bias during the search for a solution and have a

theoretical representation that allows properties of the system to be studied independently of

any particular problem. The following chapters described such a system.



Chapter 3

Genetic Program Induction

This chapter de�nes a program induction system, CFG-GP, that allows explicit bias to be de-

scribed using a context-free grammar. The derivation trees associated with generated programs

are maintained and used to control the subsequent structure of programs when they are trans-

formed by genetic operators. This structure is shown in Figure 3.1. A context-free grammar

is used to generate an initial population. Genetic operators are applied to the derivation trees

which represent the programs. Thus, the structure de�ned by the grammar is maintained.

These programs are evaluated against a speci�c problem by creating the program terminals (for

evaluation) represented by the derivations trees of the grammar. This explicit separation of the

genotype (derivation tree) and phenotype (program) allows the biased structural information to

be maintained automatically. The declarative structure o�ered by a grammar allows a clear and

easily modi�able de�nition of bias when searching for program solutions. The formal structure

of a grammar allows genetic operators to be de�ned that give a variety of search strategies when

evolving programs.

Context-Free
Grammar

Programs

Fitness Evaluation

Derivation Trees

Bias and Structure Genetic Operators
Declarative

Figure 3.1: Basic Structure of the Program Induction Genetic System.
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3.1 Introduction

The previous chapter has argued that bias is desirable when learning complex descriptions such

as those involved in computer programs. This is particularly evident when the semantics are

not explicitly de�ned in the structure of the language de�ning the programs. The ability to

explicitly state a language bias and search bias allows the user of the learning system to more

clearly de�ne the form of solution being explored and to direct the search for this solution.

An explicit language bias has several advantages over the original genetic programming

framework. A declarative de�nition of the language can provide an unambiguous statement

of the arity, typing constraints and overall structure of the components that will describe the

solution. The form of the initial population of programs may be explicitly biased, representing

the belief of the user that certain components of the language are more likely to be important.

Additionally, a separation between the language de�nition and the implemented functions,

composing the language, allows a user to change the bias towards certain constructions without

having to modify the underlying implementation of the language.

An explicit search bias allows the user to state the areas of the language where most search

e�ort should be performed when evolving a solution. The previous chapter has emphasised the

growing interest in creating mechanisms that protect certain building blocks from the disruptive

e�ects of crossover. This type of structured protection may be expressed explicitly in our

formalism by not allowing certain strings in the language to be disrupted. The ability to

represent patterns in the evolving solutions and change these strings explicitly also allows the

user to force the search for a solution towards areas that are believed to be bene�cial.

Furthermore, using an explicit, formal system for representing the language and search bias

provides an opportunity for the system to learn how to modify this bias during the search for

a solution (see Chapter 5). It also permits a simpler formal analysis of the system performance

than is possible for GP (see Chapter 6). This chapter describes a system with these properties.

3.2 Context-Free Grammars

A context-free grammar has been chosen to represent declarative bias and program structure.

The reasons for this are as follows.

1. Context-free grammars are simple and easily understood.

2. A context-free grammar may be used to represent incomplete knowledge and general

structure that is known in advance.

3. A grammar may be easily written to represent the current, most general description of a

language that encapsulates a problem. Once this general description has been de�ned, it

is easily modi�ed to represent a preferred bias.
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4. Genetic operations, such as crossover and mutation, are easily de�ned within the frame-

work of programs represented by their associated derivation trees.

5. All previous applications of GP are expressible in a context-free language.

Chomsky[8] distinguished four general classes of grammars. Of these, the three phrase-

structured grammars have been the most studied. These generative grammars are described

as context-sensitive, context-free and right-linear. Of these grammars, the class of context-free

grammars are the most popular, as they are simple and yet widely applicable to many problems.

For example, most modern programming languages may be de�ned using this class of grammar.

To �x our terminology a formal de�nition follows.

A context free grammar can be represented by a four-tuple (N;

P

; P; S), where N is the

alphabet of nonterminal symbols

1

,

P

is the alphabet of terminal symbols

2

, P is the set of

productions and S is the designated start symbol. The productions are of the form x ! y,

where x is a member of N and y is any composition of symbols from f

P

[Ng. Productions of

the form

x! y

x! z

may be expressed using the disjunctive symbol j, as

x! y j z.

When describing a grammar, the nonterminal symbols will be distinguished by starting with

a capital letter. Terminal symbols will be de�ned by lower-case letters only. A string that

is composed of (potentially) both terminal and nonterminal symbols will be represented by

lower-case greek letters.

3.2.1 Derivation Steps and Derivation Trees

A derivation step represents the application of a production to some string which contains a

nonterminal. For example, the string xAy may be transformed by the production A ! � to

x�y in one step. This is represented by the symbol ), as follows.

xAy

A!�

) x�y

A string that is transformed by zero or more derivation steps is represented as follows

3

.

xAy

?

) x�y

A string that is transformed by one or more derivation steps is represented as follows.

xAy

+

) x�y

In general, a series of derivation steps may be represented by a syntax tree or parse tree. As

shown in Figure 3.2 the derivation steps

1

Nonterminal symbols are replaced by other symbols when generating a sentence in the language.

2

The terminal symbols compose the generated sentences of the language.

3

The ? operator is known as the Kleene star.
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A

S

x y

z B

A x

Bz

S -> x A y

A -> z B

B -> Ax | f

Derivation TreeDerivation Steps

Productions

fS => xAy => xzBy => xzAxy => xzzBxy => xzzfxy

|..

|..

Figure 3.2: The Application of Grammar Productions represented as a Tree.

S

+

) xzzfxy

may be represented as a derivation tree. This representation is important because the genetic

operations that modify program structures are most easily viewed as operations on these trees.

3.2.2 What a Grammar Represents

A grammar is a scheme for generating a potentially in�nite number of strings (sentences) in

a language. Hence, a grammar that de�nes a programming language may be considered as

the most general description of any program de�ned by that language. All symbolic learning

systems learn within a de�ned language. This represents the language bias for the learning

system. The approach described in this thesis allows the language bias to be explicitly de�ned

by tying it to a context-free grammar. The task for the learning system is to search the space of

possible programs de�ned by this grammar and to discover appropriate programs that perform

some speci�able task. The semantics of the programs, generated from a grammar, are described

in Section 3.5.

3.3 The Structure of the Program Induction System

The structure of the program induction system, CFG-GP, is shown in Figure 3.3. Program

derivation trees are selected based on their �tness. These trees are probabilistically modi�ed

by the speci�ed genetic operators, thereby creating the next generation of programs. The

remainder of this chapter will describe each of these components in the following order.

1. Generation of the initial population using a context-free grammar.

2. Fitness evaluation of the programs representing the population.

3. The proportional �tness selection scheme.
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Grammar
Current 

Derivation Trees
Context-Free

S => 

Selective 
Crossover

Selective
Mutation

Directed
Mutation

Program

Fitness
Evaluation

Proportional  Fitness
Selection

Derivation Trees
Next Generation

. .

Program Creation

+S => y1..ymx1..xn+

α β α βA=> A=>

Figure 3.3: Creating the Next Generation of Programs.

4. Selective crossover.

5. Selective mutation.

6. Directed mutation.

3.4 The Initial Population

A grammar may be used as a generator of derivation trees to represent the initial population

of programs. The goal of this process is to create a mixture of di�erent programs in terms

of overall size, shape

4

and functionality. The notion is to cover a large area of the possible

program search space and to allow building blocks

5

to be discovered and combined to create

the �nal solution. Each member of the initial population is forced to be structurally unique.

This ensures that a measure of syntactic diversity

6

is initially de�ned.

Generating a population of programs, using a context-free grammar, proceeds as follows.

1. Label each production to indicate the minimum depth of derivation tree to create a string

composed only of terminals using this production as the �rst derivation. This concept

will be referred to as min-depth-tree.

4

This refers to the program structure viewed as a derivation (parse) tree.

5

Building blocks are parts of programs.

6

Note that a semantic diversity is not guaranteed.
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Initial Population Creation

Parameters Speci�cations

POPULATION SIZE 500

CREATE MAXIMUM DEPTH 4 50

CREATE MAXIMUM DEPTH 5 150

CREATE MAXIMUM DEPTH 6 150

CREATE MAXIMUM DEPTH 7 150

MAXIMUM FAILURES 100

Table 3.1: An Example of De�ning the Initial Population.

2. Specify the number of programs to be created. Associated with this statement is a max-

imum depth of derivation tree allowed during the creation of the programs. Normally,

there will be a range of these statements to allow a variety of di�erently shaped programs

to be created.

3. Generate the programs by randomly selecting productions, commencing with the start

symbol S and guided by min-depth-tree.

4. Enforce uniqueness for each program that is randomly generated. As many programs will

be created that already exist some upper bound on the number of failures

7

must be given.

If this limit is exceeded, the generation procedure is aborted. This criterion is de�ned so

that the initial population has no repeated programs and is therefore structurally diverse.

3.4.1 Labelling the Productions

The following bottom-up algorithm is used to label min-depth-tree for each production from the

grammar.

1. For each production of the form A! x

1

x

2

: : : x

n

where x

1

x

2

: : :x

n

2

P

?

,

min-depth-tree = 1.

2. WHILE all productions from P have not been labelled DO

(a) For each unlabelled production A! �, where � 2 fN [

P

g

?

For each nonterminal B 2 �, if a production B ! � has min-depth-tree set, assign

the depth for A! � as the maximum of min-depth-treefBg + 1.

3.4.2 Creating the Initial Population of Programs

The initial program population is de�ned by a set of parameters which specify the number of

programs to be created with some upper bound on the depth of the generated derivation trees.

7

By failure we mean that the generated program already exists in the population.
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Table 3.1 shows an example of specifying an initial population. The CREATE MAXI-

MUMDEPTH parameter is used to specify the number of programs to be created with various

maximum depths of derivation tree. The MAXIMUM FAILURES parameter de�nes the

number of times a non-unique program may be created in succession during the initialisation

of the population. If this limit is passed, the learning system halts. The following algorithm

is used to create the population, based on the parameter CREATE MAXIMUM DEPTH

depth.

1. Select the start symbol S. Label this as the current nonterminal A.

2. Select, at random, a production P

1

2 P of the form A! � with min-depth-tree� depth.

3. Select each nonterminal B 2 � and label B as the current nonterminal.

depth = depth� 1. Repeat steps 2 and 3.

3.4.3 Selecting Productions with Further Bias

Use of the previous algorithm assumes that there is equal probability of selecting any valid

production from a particular nonterminal. The domain expert may wish to express a bias

towards the generation of certain program strings in the initial population. This bias is explicitly

represented in CFG-GP by associating a merit weighting with each production. The probability

of a production being selected during the creation of the initial population is now directly

proportional to the merit weighting of each production. If we represent the merit weighting for

a production from some nonterminal A as w

A

, then the probability of selecting this production

can be de�ned as

w

A

X

A

w

A

where

X

A

w

A

represents the sum of the probabilities of all productions from A which satisfy the

minimum depth requirements. This proportionate selection of productions allows a preference

to be given in terms of the composition of strings in the initial population.

3.5 Evaluating Generated Programs

The strings represented by a context-free grammar may de�ne many di�erent types of languages

that require di�erent interpretations. There are two main techniques for evaluating strings

generated from a grammar.

1. Interpret the derivation trees by a preorder traversal, thereby giving a functional repre-

sentation to the structure of the language.
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2. Allow the generated strings to be passed to another system for interpretation. Such a

system could include a compiler, assembler or interpreter.

3.5.1 Evaluating Programs as Functions in Preorder

Given a derivation tree such that S

+

) x

1

: : :x

n

, the tree is traversed in preorder fashion to

the �rst terminal x

1

. This function is evaluated. Arguments that are evaluated from x

1

are

traversed in preorder until a terminal symbol is found. The arguments accessible to any function

are limited by the production which generated this string. For example, the productions

A! f x

1

x

2

j g B

B ! h x

3

represent the functions, f(x

1

; x

2

) and g(h(x

3

)). The evaluation of the function, g, causes the

derivation tree rooted in B to be traversed in preorder. This results in the function h(x

3

) being

evaluated. The result of this function is passed by value to g. Note that g does not have direct

access to h or x

3

.

3.5.2 Passing Evaluation to an External System

Investigation of this approach is beyond the scope of this document. It is simply implemented

by passing the terminal string of each derivation, via a pipe

8

or �le, to the system that is used

for evaluation. The evaluated �tness may be passed back to the learning system using the same

mechanism.

3.6 Proportional Fitness Selection

This section describes the method by which programs are selected from the population for

crossover and mutation. The selection is based on the �tness of each program in relation to the

entire population. The following scheme represents a roulette wheel selection strategy which is

a proportional �tness measure.

Following Koza's de�nition of �tness[44], the raw �tness r(i,t) is de�ned as the performance

measure given to program i in generation t. This �tness measure is mapped to a standardised

�tness s(i,t) which ranges from 0 to some number > 0. The �ttest programs have the lowest

value of standardised �tness. A perfectly �t program will have a �tness of 0. This is the measure

of �tness that must be supplied to the learning system by the user.

This standardised �tness is scaled to a range between 0 and 1 and is referred to as adjusted

�tness a(i,t). The adjusted �tness is de�ned as:

a(i; t) =

1

1 + s(i; t)

8

A pipe may be thought of as a communication channel.
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Finally, this adjusted �tness is normalised in terms of the proportion of the population with

certain �tness values. This gives a normalised �tness, n(i,t), calculated as:

n(i; t) =

a(i; t)

population

X

i=1

a(i; t)

.

The normalised �tness has the following properties.

� n(i,t) ranges between 0 and 1.

� n(i,t) is larger for �tter individuals.

�

population

X

i=1

n(i; t) = 1.

This normalised �tness is used as the basis for the selection of programs in a proportional

manner. This is done as a roulette wheel selection in which the probability of a program

being selected is proportional to its normalised �tness. There are other methods (such as rank

based selection[3] and tournament selection[19]) that could be used to select programs

9

. This

thesis will not consider the various merits of these techniques as the focus of this work is the

representation of explicit bias. The use of proportional selection has been demonstrated to

be adequate with previous GP systems[44] and will be assumed to be suitable for this current

work.

3.7 Selective Crossover 


The crossover search operator creates new programs by mixing the contents of two parent

programs. In the context of a population, represented by derivation trees, crossover operates by

swapping the derivations associated with two occurrences of the same nonterminal. By requiring

that the rooted derivation trees that are swapped have matching nonterminals, we ensure that

the new programs must also be members of the language de�ned the grammar. The crossover

is described as selective because the operation may be speci�ed to have legal crossover sites

from a subset of the total nonterminals. The crossover operator may change the depth of the

derivation trees associated with a program. To ensure that the created programs do not grow

in an unbounded fashion, a limit is placed on the maximum depth of any program created by

crossover. This parameter is referred to as MAX-DEPTH-PROGRAMS and re
ects the

maximum depth of any program that is expected to be required to produce a solution. Given

two derivation trees, �

1

and �

2

, selective crossover is de�ned as follows:

1. Randomly select a nonterminal A 2 
 from �

1

. If no nonterminal from the set 
 exists

in �

1

, crossover is complete.

9

Work which compares various selection mechanisms may be found in Goldberg et al.[18].
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Figure 3.4: Crossover Based on Derivation Trees.

2. Randomly select a nonterminal A 2 
 from �

2

. If no nonterminal from the set 
 exists

in �

2

, crossover is complete.

3. Swap the derivation trees below these matching nonterminals, thereby creating 2 new

programs.

4. If either new derivation tree exceeds MAX-DEPTH-PROGRAMS the crossover is

ignored. The parent derivation trees �

1

and �

2

then remain unchanged.

Figure 3.4 shows crossover viewed as an operation on derivation trees. Crossover may also

be described in terms of how the �nal strings of a program are mixed. If we have two programs,

with derivations

S

+

) x

1

: : : x

n

A z

1

: : : z

i

+

) x

1

: : : x

n

y

1

: : :y

m

z

1

: : : z

i

S

+

) a

1

: : : a

j

A c

1

: : : c

k

+

) a

1

: : : a

j

b

1

: : : b

r

c

1

: : : c

k

crossover on the nonterminal A will produce two new strings of the form

S

+

) x

1

: : : x

n

A z

1

: : : z

i

+

) x

1

: : : x

n

b

1

: : : b

r

z

1

: : : z

i

S

+

) a

1

: : : a

j

A c

1

: : : c

k

+

) a

1

: : : a

j

y

1

: : :y

m

c

1

: : : c

k

3.7.1 Parameter Speci�cation for Selective Crossover

Table 3.2 shows an example of the speci�cation of selective crossover. The maximum allowable

depth of a derivation tree that can be created has been set to 15. There are two types of
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Selective Crossover

Parameters Speci�cations

MAX-DEPTH-PROGRAMS 15


 = fA;B;Cg 40%


 = fE; Fg 50%

Table 3.2: Speci�cation of Selective Crossover.

crossover operations; one using the nonterminals fA;B;Cg, occuring with a probability of 40%,

and one using the nonterminals fE; Fg, occuring with a probability of 50%.

3.8 Selective Mutation �

Mutation has traditionally been associated with a small change in the structure of the rep-

resentation to which it applies. The mutation operator introduced here follows Koza's GP

mutation[44]. However, as a selective operator it allows the user to be more discriminating

about how a program is modi�ed.

Mutation applies to a single derivation tree (and the program that it represents). The

mutation is referred to as selective because the operation may be speci�ed to have legal mutation

sites from a subset of the total nonterminals. This set of legal mutation sites is represented by

the symbol, �. Mutation is portrayed in Figure 3.5 as an operation on a derivation tree using

the language de�ned by the grammar, G. Given a derivation tree �

1

the selective mutation

algorithm is de�ned as follows.

1. Randomly select some nonterminal A 2 � for mutation. If no nonterminal A exists in �

1

,

then mutation is complete.

2. Delete the derivation tree rooted in the nonterminal A.

3. Create a new derivation tree associated with A using the grammarG that has been de�ned.

The depth of tree created is limited by the parameter MAX-DEPTH-PROGRAMS.

This operation applies the same technique as that of generating the initial population.

However, the generation commences with the nonterminal A rather than the start symbol

S.

3.8.1 Parameter Speci�cation for Selective Mutation

Specifying selective mutation is similar to that of selective crossover. The nonterminals indicat-

ing the selective sites for mutation are speci�ed along with the probability of mutation occuring.

These parameters are shown in Table 3.3, where two mutation operations are de�ned. One is
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Figure 3.5: Mutation Based on Derivation Trees.

Selective Mutation

Parameters Speci�cations

MAX-DEPTH-PROGRAMS 15

� = fA;Bg 10%

� = fCg 5%

Table 3.3: Speci�cation of Selective Mutation.
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de�ned over the nonterminals A and B with a probability of 10%, the other over the nonterminal

C with a probability of 5%.

3.9 Directed Mutation A! �

The crossover and mutation operators perform the role of searching for a good inductive hy-

pothesis by probabilistically modifying the current population of derivation trees. Although

their selective de�nition allows some control over the search for new structures there are often

situations where explicit control over this search is desirable. For example, if a repeated pattern

is discovered in a �t derivation tree it may imply that a recursive structure could be exploited

with this de�nition. The ability to express conditions that may suggest iteration or recursion

can be used to direct a change in the derivation tree structure that re
ects this condition. An

example of this type of structure is shown in Section 4.2, where the recursive structure of a

membership program is discovered using a directed mutation operator. The ability to express

this type of search bias is only possible because of the population-based approach to learning. A

probabilistic search that radically alters the structure of one population member will not a�ect

the overall performance of the system if it is not found to be useful. If the learning system used

a single program (derivation tree) to to represent the current hypothesis a change in structure

of this order may cause the system to fail unless the suggested alteration was correct.

The selective mutation operator is potentially very destructive, in contrast with the normal

view of mutation which implies a small change in structure. This is obvious by considering a

selective mutation that selects the start symbol, S, as the site for mutation. If this occurs then

the entire derivation tree is deleted and a new, random derivation tree is created. Thus all

information which had contributed to the �tness of the derivation tree is lost. This destructive

nature of selective mutation is also demonstrated theoretically in Section 6.6. Hence, a second

mutation operation is de�ned that allows small changes to be controlled in the structure of a

program. We call this operation directed mutation.

A directed mutation speci�es that one particular production used in a program derivation

should be replaced by a second production. The productions may contain both terminal and

nonterminal symbols. If the replaced production contains nonterminal symbols they are ran-

domly generated, using the grammar G, in the same manner as selective mutation. The general

form of a directed mutation is

A! � � �

where A 2 N and �; � 2 fN [

P

g

?

.

Note that A ! � and A ! � are legal productions de�ned in the grammar. Directed

mutation may be considered as a specialisation of selective mutation where the selection site

for mutation is speci�ed and the form of mutation is de�ned explicitly. An example of directed

mutation is shown in Figure 3.6.
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Figure 3.6: Directed Mutation A! x B � y B C.

Given a derivation tree �

1

, the directed mutation algorithm is de�ned as follows:

1. Randomly select some derivation representing the production A ! � from �

1

. If no

derivation of this form exists in �

1

, then directed mutation is complete.

2. Delete the derivation tree associated with this production.

3. Create a new derivation tree associated with A using the production A! �.

4. For each nonterminal in �, create a new derivation tree using the grammar G. The

depth of each generated derivation tree is limited by the parameter MAX-DEPTH-

PROGRAMS.

3.9.1 Parameter Speci�cation for Directed Mutation

As shown in Table 3.4, the speci�cation for directed mutation is similar to previous genetic

operators. The parameterMAX-DEPTH-PROGRAMS is required as new derivations may

have to be randomly generated when the substitution of one production for another is performed.

The most important role of directed mutation is to permit the user to de�ne what a small change

should be considered to be in terms of modifying a program.

For example, the directed mutation B ! x

1

� y

1

allows a program to mutate the string x

1

to the string y

1

. This is reminiscent of a standard genetic algorithm, single-bit mutation where

one bit in a string is 
ipped, based on some probability.
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Directed Mutation

Parameters Speci�cation

MAX-DEPTH-PROGRAMS 15

A! B x � y C 10%

B ! x

1

� y

1

5%

Table 3.4: Speci�cation of Directed Mutation.

3.9.2 A Generalisation of Directed Mutation

The directed mutation operator selects one derivation and replaces it with a second derivation.

This concept can be extended to allow larger derivation tree structures to be speci�ed, thereby

allowing complex patterns in a derivation tree to be recognised. For example, a derivation from

A such as

A

A!xyC

) x y C

C!bD

) x y b D

may be replaced (mutated) by the derivation steps

A

A!Ec

) E c

E!xF

) x F c

F!Ga

) x G a c

This generalisation allows derivation trees of an arbitrary complexity to be selected for

mutation. The derivation tree that replaces the speci�ed mutation site may also be speci�ed

by any number of derivation steps

10

. This allows general structures to be distinguished in the

population. An application of this extended mutation operator is shown in Section 4.2.

3.10 Implementation Issues

The user of the program induction system must supply the following components before the

system is used.

1. A context-free grammar representing the language bias and therefore the legal derivation

trees that may be created.

2. The population dynamics including population size, genetic operators, maximum depth

of programs and maximum number of generations before halting.

3. A function that represents the semantics of each terminal de�ned in the grammar.

4. A function that determines the standardised �tness for each derivation tree, represented

by a real number � 0.

Our program induction system, CFG-GP, has been written in the 'C' programming language.

The main loop that controls this system is as follows

11

. Note that for each generation the

population size remains constant.

10

Once a string in the language is composed of terminals only the derivation is complete.

11

The psuedo code presented here re
ects a 'C' style of coding.
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cfg_initialise_user_system(); /* USER CALL */

cfg_link_user_functions(); /* USER CALL */

create_initial_pop_storage(NUM_POPULATION);

generate_initial_pop();

cfg_adjust_user_test_functions(0,MAX_GENERATIONS); /* USER CALL */

evaluate_population(NUM_POPULATION,0);

for(gen=1;gen<=MAX_GENERATIONS;++gen)

{

modify_population(NUM_POPULATION);

cfg_adjust_user_test_functions(gen,MAX_GENERATIONS); /* USER CALL */

evaluate_population(NUM_POPULATION,gen);

}

if (cfg_adjust_user_test_functions(gen,MAX_GENERATIONS)) /* USER CALL */

evaluate_population(NUM_POPULATION,gen);

To setup these components, the following functions must be completed

12

.

1. cfg initialise user system(): This function is called when CFG-GP commences. The

user must supply the code to initialise the structures used to evaluate the problem.

2. cfg link user functions(): This function is called to link each of the terminal symbols

representing a function call to the address of a 'C' function. To link a symbol and its

function the 'C' function link function to symbol(string,function): is supplied. This

function must be called with the string of each terminal symbol in the grammar. The

function �eld represents the address of the function that will be associated with the string

for evaluation.

3. cfg adjust user test functions(current gen,max gen): This function is called to al-

low the user to adjust the user environment (i.e. training data) during evolution. This

12

The functions represented here are the 'C' interface functions. The argument types have been left unspeci�ed.
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may be required when the information used to train the learning system is modi�ed dur-

ing the evolution. A common example occurs when both training and test data is run

for the same population. The �nal call to this function allows this situation to occur.

The function must return a non-zero value to perform the last evaluate population(..).

Other evaluations of this function are ignored.

4. evaluate program tree(program,generation): This function is called for each pro-

gram in the population for each generation. The �tness value for the evaluated program

must be set in the program structure. This function uses eval tree(dtree) to evaluate

the program on the de�ned task.

The CFG-GP system de�nes the following functions, which are available to the user to

determine the �tness for each derivation tree.

1. eval tree(dtree): This function evaluates the derivation tree dtree and returns a struc-

ture representing the result. The contents of the structure are de�ned by the user, such

that there is no limitation imposed on the type of a result or the information passed

between functions.

2. get argument(dtree,argnum): This function returns a derivation tree associated with

the argument position accessible from the particular derivation dtree. This is determined

by the production used to create the derivation. For example, to evaluate the arguments

associated with the function, f , created from the production

A! f B x

2

the following procedure may be followed. The derivation tree associated with B is obtained

by using get argument(dtree,1) and then evaluating this tree using eval tree(..). Sim-

ilarly, the value of x

2

is obtained by calling eval tree(get argument(dtree,2)).

3.11 Conclusion

This chapter has described a program induction system, CFG-GP, which learns computer

programs de�ned by a context-free grammar. The use of a context-free grammar to rep-

resent declarative bias and structure allows a domain expert to narrow the possible search

space and, therefore, have a greater possibility of discovering solutions. The grammar

allows both the typing to be automatically maintained with program constructs and also

the structure (i.e. how functions are combined) to be explicitly stated and controlled.

The programs are selected based on a roulette wheel selection scheme which gives propor-

tional representation to programs based on their �tness. The derivation trees representing

the programs are evaluated in preorder. This represents a functional interpretation of the

language de�ned by the grammar.
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The genetic operators of selective crossover, selective mutation and directed mutation are

used to transform the population of derivation trees from one generation to the next.

These operators allow a declarative search bias and may be used to control where in the

search space most e�ort is concentrated when evolving a solution.



Chapter 4

Some Examples

This chapter describes two applications of the program induction system, CFG-GP. The

�rst problem is the boolean one known as the 6-Multiplexer. It has been selected for its

simplicity. The concepts of changing the language and search bias are demonstrated.

The second problem involves determining a predictor for the density of an Australian

marsupial over a geographic region. This region is divided into four hundred areas. Within

each of these areas, six independent variables represent conditions of the forest at that

location. The "known" values of marsupial density were determined by a survey. This

problem is interesting as it represents a complex spatial problem which contains noise and

is unlikely to have an exact solution. The language which describes how these marsupials

interact with the environment requires typed functions and allows the user to express

some knowledge about expected properties of the animals, in terms of a home range and

preferred habitat conditions.

Together, these problems show that the CFG-GP system is capable of a wide range of

descriptions and strategies as follows.

� The initial population may be explicitly biased based on knowledge of the likely

importance of certain structures in the language.

� The language bias is de�ned in a declarative manner.

� The search operators (crossover and mutation) may be biased to place emphasis on

certain parts of the language to be explored.

� The de�nition of the language and search bias are de�ned transparently.

� The language and search operators may be easily modi�ed. Hence, information about

the problem (and its solution) may be incorporated into the declarative framework,

as it is discovered.

50
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6-Multiplexer
a0

a1

d0 d3d1 d2

Address Lines
     IF  a1  THEN  d3
IF  a0  THEN

ELSE

     ELSE  d0
     IF  a1  THEN  d2

     ELSE  d1     

Data Lines

Figure 4.1: Basic Structure of the 6-Multiplexer

4.1 The 6-Multiplexer

The 6-multiplexer is a simple boolean problem where two address lines are used to select

between four possible data lines. This structure is shown in Figure 4.1, along with one

possible solution expressed as a series of if-then-else statements. The small search space

and known structure for this problem make it suitable to explore how the modi�cation of

both the search bias and the language bias may improve the performance of learning.

4.1.1 The Grammar G

6m

for the 6-Multiplexer

The language de�ned for this problem will include the basic boolean operators and x

y, or x y and not x. In addition, the 3-argument function, if x y z is used to select

between various conditions. This function evaluates the �rst argument, returning the

second if this is true, otherwise the value of the third argument is returned. These four

boolean functions will allow the biasing of particular components of the de�ned language

to be demonstrated. The grammar G

6m

1

is de�ned as follows.

G

6m

=

fS;

N = fB; Tg;

P

= fand; or; not; if; a0; a1; d0; d1; d2; d3g;

P =

fS ! B

B ! and B B j or B B j not B j if B B B j T

1

The merit value for each production is set to one and is therefore not shown in this de�nition.
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T ! a0 j a1 j d0 j d1 j d2 j d3

g

g

Although G

6m

could be simpli�ed to eliminate the nonterminal T , this additional structure

will be used to demonstrate the use of search bias.

4.1.2 The Measure of Success

A basic statistic that may be associated with a stochastic event for a learning system

is the probability of success, p

s

. This represents the probability that a given run of the

system will succeed before the set maximum number of generations is complete. This

measure will be used to compare various language and search biases and is determined

by running CFG-GP many times for a particular con�guration of population and set of

operators. To determine p

s

for the 6-multiplexer, one hundred runs were performed for

each con�guration. The value of p

s

is in
uenced by the following conditions.

� The initial population structure.

� The maximum depth of a program derivation tree after crossover and mutation.

� The number of generations before completion.

� The search operators (e.g. selective crossover sites).

� The language bias de�ned by the grammar.

This thesis will use the probability of success to indicate how changing search operators

and grammatical structure can in
uence the discovery of a solution. This will be done

by maintaining a constant set of population parameters and adjusting one factor at a

time. A measure of signi�cance is computed on the basis that the distribution of runs

is approximately normal. This assumption is shown to be valid in Appendix A. The

calculation of signi�cance for each multiplexer example is shown in Appendix B.

4.1.3 Initial System Speci�cation

The initial setup used for the 6-multiplexer is shown in Table 4.1. A population of 500

programs is used to search for a boolean expression that matches all 64 test cases. The

initial population is created with four di�erent maximum depth speci�cations, the lowest

being �ve and the greatest eight. Although the grammar has a smallest derivation tree

of depth three (see Figure 4.2), the minimum depth of 5 was selected to accommodate

changes in the grammar when later language bias is demonstrated. This was necessary as
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The 6-Multiplexer

Parameters Speci�cations

POPULATION SIZE 500

CREATE MAXIMUM DEPTH 5 200

CREATE MAXIMUM DEPTH 6 100

CREATE MAXIMUM DEPTH 7 100

CREATE MAXIMUM DEPTH 8 100

MAXIMUM FAILURES 100

MAX DEPTH PROGRAMS 8


 = fBg 90%

GENERATIONS 50

FITNESS MEASURE 64 boolean cases

GRAMMAR G

6m

Table 4.1: The Initial 6-Multiplexer System.

T

S

a0

Minimum Derivation Tree representing

S

B

if     B       B       B

T and    B      B

d2 a1

T

d1 T Ta0

Derivation Tree representing the

B

the program  "a0" program  " if (a0, d1, and(d2,a1))"

Max. Depth 5

Max. Depth 3

Figure 4.2: Two Example programs generated using the grammar G

6m

.
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the same population con�gurations must be used for each di�erent run. In this way, the

obtained probabilities of success can be meaningfully compared.

The search operator used is selective crossover over the nonterminal, B, with a probability

of 90%. The nonterminal, T , has not been selected as a crossover site. Later experiments

will use T to demonstrate change in the search bias. Based on the 90% probability of

crossover occurring, 50 programs could be expected to be copied into the next generation.

The selective crossover using B allows all possible combinations of program components

to be mixed. This, however, gives a bias towards swapping internal structures, rather

than the tips of derivation trees. As shown in Figure 4.2, the address and data values are

derived from the nonterminal, T . Since T is always derived from B, crossover using B

may swap individual terminals.

4.1.4 Results

Using the settings from Table 4.1, the initial probability of success of 34% was determined.

Figure 4.3 shows the changing population structure for a typical run which succeeded after

thirty generations. The boxes represent the initial (generation zero) structure of each

program in the population de�ned by the number of terminal and nonterminal symbols

in each derivation tree. The single lines represent the structure of the population after

thirty generations. It is clear that the structure of the population as a whole alters

signi�cantly during evolution. This phenomenon has been recognised previously in genetic

programming literature and is referred to as bloating or the emergence of introns[55]. The

graph of the maximum depth of derivation tree for the population shows that the initial

structure of the population, as de�ned by Table 4.1, is faithfully recreated. A small

number of programs have been created with a maximum derivation tree depth of three

or four. This occurs, since there is some probability that productions will be randomly

selected which create small derivation trees (i.e. select the production B ! T early in the

derivation of the program). This is desirable because the initial population should be a

mixture of program sizes.

Figure 4.4 shows how the standardised �tness changes during the evolution of a solution.

This �gure shows the best, average and worst standardised �tness for each generation

throughout the evolution until a solution is discovered after thirty generations. Notably,

the average �tness of the population steadily decreases and, therefore, the evolution is

gradually converging to a �t solution.

4.1.5 Modifying the Initial Population Bias

The initial population structure may be changed by biasing particular productions to

occur with di�erent probabilities. This is achieved by changing the merit selection values
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Figure 4.3: Population Statistics - At Generation 0 and after 30 Generations.
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for particular productions. To demonstrate this concept, p

s

was determined for a modi�ed

G

6m

(referred to as G

6m�popbias

) that increased the probability of the if function occuring

in the initial population. This grammar is de�ned as follows.

2

G

6m�popbias

=

fS;

N = fB; Tg;

P

= fand; or; not; if; a0; a1; d0; d1; d2; d3g;

P =

fS !

1

B

B !

1

and B B j

1

or B B j

1

not B j

4

if B B B j

1

T

T !

1

a0j

1

a1j

1

d0j

1

d1j

1

d2j

1

d3

g

g

The value of the merit selection for the if production for grammarG

6m�popbias

was selected

so that there was approximately a 50% probability of selecting this production from the

nonterminal, B, when creating the initial population.

The probability of success using G

6m�popbias

was found to be 60%

3

. Figure 4.5 shows that

the average number of if functions for each initial program (with a particular maximum

depth of parse tree) re
ects the increase in function distribution de�ned by the modi�ed

merit values.

4.1.6 Discussion of Initial Population Bias

The increase from G

6m

is a direct result of the signi�cance of if as a function for rep-

resenting the solution to the 6-multiplexer. The important issue that is demonstrated

here is that modi�cation of the function distribution in the initial population may result

in improving the performance of the learning system. The merit selection values are a

declarative method for representing these biases and are a shorthand technique for repre-

senting multiple, identical productions. The ability to change this bias in a simple and

declarative manner, without altering any other components of the CFG-GP system, is

one advantage that merit selection and a formal grammar has in relation to the standard

GP system.

2

The merit selection probabilities are shown above the �rst symbol in each production. e.g. To represent a

merit selection of 4 for the function fn, the production is written as

4

fn.

3

This is a statistically signi�cant improvement based on a 95% one-sided con�dence interval (see Appendix

B).
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Figure 4.5: Distribution of if functions in the initial population.

4.1.7 Modifying the Search Bias

Search bias relates to how a program is modi�ed to create a new hypothesis (program)

for each generation. The selection of any program is based on its �tness in relation to the

entire population. Once the program is selected, its o�spring are in
uenced by the type of

crossover and mutation operators applied. The search bias may be modi�ed by changing

these operators. Selective crossover may in
uence the search bias in a number of ways.

� Change of the probability of a particular selective crossover operation occuring.

� Change of the nonterminal sites where a particular selective crossover occurs.

� The addition or removal of further selective crossover operations, so that other parts

of a program are swapped during evolution.

To illustrate these concepts, the previous setup de�ned in Table 4.1 is extended to allow an

additional selective crossover operation over the nonterminal, T . This is shown in Table

4.2. This represents an increased emphasis of the search in terms of swapping single

terminals between programs. For example, the program if(a0; d1; and(d2; a1)), shown

in Figure 4.2, has a probability of 66% of selecting a single terminal for crossover using


 = fBg and a probability of 80% using 
 = fB; Tg.

Using the settings of Table 4.2 the probability of success was found to be 41%. This is

not statistically signi�cant (in terms of an improvement from the base level of 34%) for a
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Search Bias

Parameters Speci�cations

POPULATION SIZE 500

CREATE MAXIMUM DEPTH 5 200

CREATE MAXIMUM DEPTH 6 100

CREATE MAXIMUM DEPTH 7 100

CREATE MAXIMUM DEPTH 8 100

MAXIMUM FAILURES 100

MAX DEPTH PROGRAMS 8


 = fB; Tg 90%

GENERATIONS 50

FITNESS MEASURE 64 boolean cases

GRAMMAR G

6m

Table 4.2: Search Bias with the 6-Multiplexer.

one-sided 95% con�dence interval (see Appendix B).

4.1.8 Discussion of Search Bias

The 6-multiplexer is a trivial problem. The simplicity of the search space is illustrated by

the (slight) improvement in success when crossover with the nonterminal, T , is introduced.

This crossover is essentially a single point mutation since it can swap terminal symbols

only. The importance of selective crossover is the ability to declaratively state which parts

of the language are to be most extensively modi�ed. This will be further demonstrated

with the Glider Density example described in Section 4.3.

4.1.9 Modifying the Language Bias

The grammarG

6m

does not have a bias towards any particular form of boolean expression.

If, in advance, something is known about the structure of the possible solution a grammar

may be de�ned to incorporate this knowledge in the form of an explicit bias (the merit

selection weights were one other form of bias, however they did not in
uence the form of

solutions). Note, that in the case of the 6-multiplexer we know the exact solution. The

following experiments demonstrate this concept by changing the underlying grammatical

de�nition, without changing other parameters of the learning system. As knowledge about

the solution structure is introduced, the probability of success signi�cantly increases. This

is important, as it allows the user to explore changes to the representation language

without additional functions being introduced to the language. Changing the underlying

grammar allows a biasing mechanism for exploring the structure of potential solutions to
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be developed. The following examples all use the settings of Table 4.1 to de�ne CFG-

GP, modifying only the grammar in each case. Since 
 = fBg, additional nonterminals

introduced to the grammar are not used as legal crossover sites.

The Grammar G

6m�if

The �rst bias in the language forces all programs to begin with an if function. The

grammar is de�ned as follows:

G

6m�if

=

fS;

N = fB; Tg;

P

= fand; or; not; if; a0; a1; d0; d1; d2; d3g;

P =

fS ! if B B B

B ! and B B j or B B j not B j if B B B j T

T ! a0 j a1 j d0 j d1 j d2 j d3

g

g

The probability of success for G

6m�if

was found to be 37%

4

.

The Grammar G

6m�if�address

This grammar forces all programs to begin with the if function using a �rst argument of

either address line a0 or a1.

G

6m�if�address

=

fS;

N = fB; T; ADDRESSg;

P

= fand; or; not; if; a0; a1; d0; d1; d2; d3g;

P =

fS ! if ADDRESS B B

ADDRESS ! a0 j a1

B ! and B B j or B B j not B j if B B B j T

T ! a0 j a1 j d0 j d1 j d2 j d3

4

This is not statistically signi�cant at a 95% con�dence interval based on the initial grammar G

6m

(see

Appendix B).
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g

g

The probability of success for G

6m�if�address

was found to be 62%, which is a signi�cant

improvement from G

6m

(see Appendix B).

The Grammar G

6m�if�then

This grammar forces all programs to have a top structure of two if functions. The second

if function is placed in the then position of the �rst if function.

G

6m�if�then

=

fS;

N = fB; T; IFTHENg;

P

= fand; or; not; if; a0; a1; d0; d1; d2; d3g;

P =

fS ! if B IFTHEN B

IFTHEN ! if B B B

B ! and B B j or B B j not B j if B B B j T

T ! a0 j a1 j d0 j d1 j d2 j d3

g

g

The probability of success for G

6m�if�then

was found to be 63%.

The Grammar G

6m�if�address�then

This grammar extends G

6m�if�then

by forcing the �rst if function to have an address

value in its �rst position.

G

6m�if�address�then

=

fS;

N = fB; T; ADDRESS; IFTHENg;

P

= fand; or; not; if; a0; a1; d0; d1; d2; d3g;

P =

fS ! if ADDRESS IFTHEN B

ADDRESS ! a0 j a1

IFTHEN ! if B B B
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B ! and B B j or B B j not B j if B B B j T

T ! a0 j a1 j d0 j d1 j d2 j d3

g

g

The probability of success for G

6m�if�address�then

was found to be 80%.

The Grammar G

6m�if�a0�if�a1

This grammar extends G

6m�if�address�then

by forcing all programs to have a 2 level

if structure where both a0 and a1 are tested to determine which of the remaining if

branches are selected. Hence, the grammar has captured the main concept of the problem

- a process that selects some action based on the values of a0 and a1.

G

6m�if�a0�if�a1

=

fS;

N = fB; T; IFA1g;

P

= fand; or; not; if; a0; a1; d0; d1; d2; d3g;

P =

fS ! if a0 IFA1 B

IFA1! if a1 B B

B ! and B B j or B B j not B j if B B B j T

T ! a0 j a1 j d0 j d1 j d2 j d3

g

g

The probability of success for G

6m�if�address�then

was found to be 88%.

4.1.10 Discussion of Language Bias

Adjusting the grammar so that it more closely represents the believed solution demon-

strates the use of declarative bias to modify the search space. This is important, as it

gives a clear statement of bias which is external to the learning system. Explicitly stating

a grammar gives an easily understood representation of the possible language constructs

that are being explored. Additionally, the language bias is easily changed without altering

other components of CFG-GP and so promotes the exploration of various structures by

the user when a solution is not forthcoming.
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Language Bias

Grammar Probability of Success p

s

G

6m

34%

G

6m�popbias

60%

G

6m�if

37%

G

6m�if�address

62%

G

6m�if�then

63%

G

6m�if�address�then

80%

G

6m�if�a0�if�a1

88%

Table 4.3: Summary of Language Bias.

4.1.11 Conclusion

The results obtained by modifying the grammar G

6m

are shown in Table 4.3.

The previous sections have demonstrated the use of declarative bias in the framework of

the program induction system, CFG-GP, de�ned in Chapter 3. The ability to express

a search and language bias within a declarative framework is an addition to current

evolutionary program induction techniques.
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4.2 Search Bias and Recursion

4.2.1 Introduction

This section will describe an example of biasing the search space using directed mutation.

Using a simpli�ed version of LISP as the language bias, CFG-GP is required to evolve a

solution to the member function. The examples use a grammar, G

lisp�member

, to describe

the language under consideration. The directed mutation will be used in two ways; to

repair statements that are tautologies, and to detect a pattern used to indicate that a

recursive call to member should be attempted.

4.2.2 The Grammar G

lisp�member

The grammar expresses a language which de�nes a single function. This function is

de�ned as member(x; y), where x is an integer and y is a list of integers. The function

returns true if x 2 y and false otherwise. The grammar creates functions which are a list

of conditional statements. The member function in the grammar represents a recursive

call to the function as a whole, evaluated intensionally (i.e. by execution) rather than

extensionally (i.e. from the data).

G

lisp�member

=

fS;

N = fM;EXPN;ALg;

P

= fcond; atom; eq;member; x; y; true; nil; car; cdrg;

P =

fS !M

M ! cond EXPN EXPN M j �

EXPN ! atom AL j eq AL AL jmember x AL j true j nil

AL! car AL j cdr AL j x j y

g

g

4.2.3 Initial System Speci�cation

The initial setup used for the membership function is shown in Table 4.4. A population

size of 1000 is used. Two selective crossover operations are de�ned and represent large

scale crossover (
 = fM;EXPNg) and crossover near the tips of the derivation tree(
 =
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The Membership Function

Parameters Speci�cations

POPULATION SIZE 1000

CREATE MAXIMUM DEPTH 5 300

CREATE MAXIMUM DEPTH 6 300

CREATE MAXIMUM DEPTH 7 300

CREATE MAXIMUM DEPTH 8 100

MAXIMUM FAILURES 1000

MAX DEPTH PROGRAMS 10


 = fM;EXPNg 90%


 = fALg 90%

GENERATIONS 50

FITNESS MEASURE Square of the error over 20 test functions (0� 400)

GRAMMAR G

lisp�member

Table 4.4: The Initial Membership System.

fALg). The training set consisted of ten true and ten false membership examples, as

follows.

member( 1, [ 1 nil ] ) :- true

member( 1, [ 2 [ 1 nil ]] ) :- true

member( 1, [ 2 [ 3 [ 1 nil ]]] ) :- true

member( 1, [ 2 [ 3 [ 4 [ 1 nil ]]]] ) :- true

member( 1, [ 2 [ 3 [ 4 [ 5 [ 1 nil ]]]]] ) :- true

member( 1, [ 2 [ 3 [ 4 [ 5 [ 6 [ 1 nil ]]]]]] ) :- true

member( 1, [ 2 [ 3 [ 4 [ 5 [ 6 [ 7 [ 1 nil ]]]]]]] ) :- true

member( 1, [ 2 [ 3 [ 4 [ 5 [ 6 [ 7 [ 8 [ 1 nil ]]]]]]]] ) :- true

member( 1, [ 2 [ 3 [ 4 [ 5 [ 6 [ 7 [ 8 [ 9 [ 1 nil ]]]]]]]]] ) :- true

member( 1, [ 2 [ 3 [ 4 [ 5 [ 6 [ 7 [ 8 [ 9 [ 2 [ 1 nil ]]]]]]]]]] ) :- true

member( 1, [ 6 nil ] ) :- nil

member( 1, [ 3 [ 6 nil ]] ) :- nil

member( 1, [ 2 [ 3 [ 6 nil ]]] ) :- nil

member( 1, [ 2 [ 3 [ 4 [ 6 nil ]]]] ) :- nil

member( 1, [ 2 [ 3 [ 4 [ 5 [ 6 nil ]]]]] ) :- nil

member( 1, [ 2 [ 3 [ 4 [ 5 [ 6 [ 7 nil ]]]]]]] ) :- nil

member( 1, [ 2 [ 3 [ 4 [ 5 [ 6 [ 7 [ 8 nil ]]]]]]]] ) :- nil

member( 1, [ 2 [ 3 [ 4 [ 5 [ 6 [ 7 [ 8 [ 9 nil ]]]]]]]] ) :- nil

member( 1, [ 2 [ 3 [ 4 [ 5 [ 6 [ 7 [ 8 [ 9 [ 2 nil ]]]]]]]]] ) :- nil

member( 1, [ 2 [ 3 [ 4 [ 5 [ 6 [ 7 [ 8 [ 9 [ 2 [ 3 nil ]]]]]]]]]] ) :- nil
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The Membership Function with Mutation

Parameters Speci�cations

POPULATION SIZE 1000

CREATE MAXIMUM DEPTH 5 300

CREATE MAXIMUM DEPTH 6 300

CREATE MAXIMUM DEPTH 7 300

CREATE MAXIMUM DEPTH 8 100

MAXIMUM FAILURES 1000

MAX DEPTH PROGRAMS 10


 = fM;TEST;RESULTg 90%


 = fALg 90%

eq(x; x) � eq(x; car(y)) 100%

eq(y; y) � eq(x; car(y)) 100%

eq(x; car(cdr(cdr(y))))� member(x; cdr(y)) 50%

eq(car(cdr(cdr(y))); x)� member(x; cdr(y)) 50%

GENERATIONS 50

FITNESS MEASURE Square of the error over 20 test functions (0� 400)

GRAMMAR G

lisp�member

Table 4.5: The Membership System with Directed Mutation.

The standardised �tness was based on the number of errors that occurred with the training

set. The maximum error is twenty (where a stack over
ow has occurred for each example)

and minimum zero. This error was squared to give a selection bias towards programs that

could correctly identify membership in position 1 and position 2 and etc. The resulting

probability of success, based on 100 runs, was 7%.

4.2.4 Using Directed Mutation

The low probability of success for member(x; y) may be due to several reasons. One

reason relates to the complexity of the programs that are generated. Typically, many

programs will incorporate tautologies, such as eq(x; x); these clutter up the search space

and limit the e�ectiveness of the crossover operators. Directed mutation may be used to

mutate these less useful expressions into potentially useful ones, as follows.

EXPN ) eq AL AL) eq x AL) eq x x

�

EXPN ) eq AL AL) eq x AL) eq x car AL) eq x car y

This was applied with a probability of 100%. The equivalent pattern for eq(y; y) was also
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Figure 4.6: Average Number of Recursive Patterns.

de�ned, as follows.

EXPN ) eq AL AL) eq y AL) eq y y

�

EXPN ) eq AL AL) eq x AL) eq x car AL) eq x car y

A second cause of the low probability of success has to do with the discovery of a

recursive pattern. The population gradually discovers long chains of functions (e.g.

car(cdr(cdr(cdr:::)) that attempt to step along the list to test for membership. However,

the discovery of the corresponding recursive call does not occur because it is syntactically

distant from the chain of functions. Directed mutation is used to alter the distance metric

of the search space so that recursion is now close to these chains, as follows.

EXPN ) eq AL AL) eq x AL) eq x car AL) eq x car cdr AL

) eq x car cdr cdr AL) eq x car cdr cdr y

�

EXPN ) member x AL) member x cdr AL) member x cdr y

The equivalent pattern was also de�ned for the reverse ordering of the arguments to eq.

These mutations were each applied with a probability of 50%. Such a high mutation

rate was needed because the patterns do not appear very often in the population. Figure

4.6 shows the average and standard deviation of the number of recursive patterns in a
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The member(x; y) Function

Mutation Operators Probability of Success p

s

No Directed Mutation 7%

eq(x; x) � eq(x; car(y)) 34%

eq(x; car(cdr(cdr(y))))� member(x; cdr(y)) 23%

Both Mutations 48%

Table 4.6: Results of Combining Directed Mutations for member(x; y).

population of 1000, based on 100 runs. The lower line shows the number of patterns when

no directed mutation operator is applied. The upper line shows the number of patterns

when the directed mutations, eq(x; x) � eq(x; car(y)) and eq(y; y) � eq(x; car(y)), are

applied. These mutations increase the likelihood of recursive patterns occuring in the

population before generation 30.

The setup is shown in Table 4.5. The directed mutations were treated in two groups;

the tautologies (labelled as eq(x; x)) and the recognition of function chains (labelled as

eq(x; car(cdr(cdr(y))))). The results for the various combinations of directed mutation

are shown in Table 4.6. The improvement from the base case of no mutation to each

combination of directed mutations is signi�cant at the 95% one-sided con�dence level (see

Appendix B). The improvement from either of the single mutations to the combined

mutation is also signi�cant.

4.2.5 Discussion

The use of two directed mutations has improved the likelihood of CFG-GP discovering

a de�nition for the member(x; y) function. One possible explanation for this behaviour

is that the �rst directed mutation seeds the population with building blocks that will

create the intermediate step towards a recursive de�nition. The second directed mutation

can exploit the increased bias towards the pattern used for recursion. The importance

of the presented mutations is that they transparently express transformations which may

improve the ability of CFG-GP to discover a solution. The directed mutations may also

be viewed as a generalisation of the editing operator (see Section 2.3.4), �rst described by

Koza[44].

4.2.6 Conclusion

This section has demonstrated the use of directed mutation to change the search bias.

The mutations were shown to be able to recognise complex patterns in the population

and to vary these explicitly. The mutations demonstrated two types of patterns that may

be useful to identify and manipulate. The �rst mutation performed an editing task to
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remove program components that are trivially true. The second mutation recognised a

repeated pattern that was used to indicate that a recursive call should be attempted.

Directed mutation is a powerful and general operator which should be applicable in many

problem domains. For example, in a spatial application the detection of repeated chains

of adjacency operations may imply that a distance operator should replace these repeated

functions. A second situation could occur with river modelling, where a chain of adja-

cencies may be mutated to an upstream or downstream function. The power of directed

mutation comes from its declarative speci�cation, probabilistic application and ability to

represent and modify complex patterns based on the user-de�ned grammar.
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4.3 The Prediction of Greater Glider Density

Each like a dormouse sleeps

In the spout of a gumtree old,

A ball of fur with a sliver coat;

Each with his tail around his throat

For fear of his catching cold.

A.B.Paterson ("Banjo")

5

4.3.1 Introduction

Spatial information, in the form of map data from remote sensing and survey work, has

increased dramatically over the last decade. The advent of geographic information systems

(GIS) as a valuable tool for modelling and representing this data has further promoted

the collection and use of spatial information. Machine-based learning systems o�er the

possibility to generalise the patterns and processes represented by this information.

Most learning systems assume that a propositional description of the problem is adequate

for representation. However, the inherent spatial relations that exist within GIS data

make it attractive to use a functional or relational description with learning.

This section describes the application of CFG-GP to predict the density of an Australian

marsupial

6

. This data has been studied previously [71] using various propositional learning

and regression techniques. These Australian marsupials, technically named Petauroides

volans, provide an appropriate area of study as their abundance is a good measure of the

health of mature forests in South Eastern Australia [71]. The inherent di�culty in creating

good survey information about tree-dwelling marsupials means that information from one

study area must be used to learn predictions for other, similar, locations.

7

The potential

exists for learning systems to identify underlying patterns representing properties of the

environment. The construction of classi�cation and explanatory models is a valuable tool

for the natural resource scientist.

4.3.2 The Greater Glider Study Area

As described by Stockwell et al.[71]:

5

From the book "The Animals Noah Forgot".

6

A brief description of the Greater Glider is given in Appendix D.

7

This assumption implies that the cost of collecting the independent data is less than the work involved in

collecting the relevant dependent variable. This is often true with prediction of animal habitats, as the animals

involved may be di�cult to locate accurately, are often nocturnal and live underground or in dense vegetation.
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This study was based in Coolangubra State Forest, located in south-eastern

New South Wales of Australia. The 22,000-ha forest contains both tableland

and foothill eucalypt forest and is important to wildlife, especially arboreal

marsupials [36]. The study area, 1600 ha in extent, was located at Waratah

Creek in tableland forest.

Figure 4.7 shows the predictor variables that were used to determine the glider density

pattern. The forest inventory described the data in grid form with each designated area

having dimensions of 200� 200 mtr. The data of Figure 4.7 represents a 20� 20 map of

areas for each of the independent and dependent variables. Each variable was stored as a

categorical value whose meaning is shown in the keys displayed in Figure 4.7.

Stockwell applied a number of di�erent methods to analyse this data, including the fol-

lowing.

� Multiple regression to produce a linear model (MR).

� Principal component analysis leading to a decision table (PCA).

� Knowledge acquisition leading to a rule based expert system (KA).

� Machine induction of decision trees by the algorithms ID3, CN2 and CART.

All of these models may be thought of as dividing the data into separate classes. These

systems represent learning by dividing the possible decisions based on variable values and

logical combinations of these variables. The language is propositional.

ID3 attempts to �nd the variable that best divides the set of values into homogeneous

classes. This is applied repeatedly until the goal class (i.e. glider density) is completely

described. The result of applying ID3 may be viewed as a decision tree, as shown in

Figure 4.8. The CN2 system uses a conjunction of values to discriminate each glider class,

whereas CART uses bifurcations of a decision tree, where a number of values of a single

variable may be used to divide the set of objects. This tree is then pruned to create a

general description of the goal.

One observation about the glider density data is that there are limitations to the actual

predictivity based upon the simple local descriptions of space that are used. To illustrate

this point, Stockwell developed two additional models as a guide to validating the decision

tree models. These represented the most speci�c (MSC) and most general (MGC) models

that could be created using the language forms available to the induction techniques.

These measures give an upper and lower bound to the inductive predictivity based on the

available local information.

The models were trained by dividing the 400 locations into two groups. The �rst group

of 200 locations was used to train the models. The second group of 200 was used to test
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Figure 4.7: The Glider Density Independent and Dependent Data.
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Figure 4.8: A Decision Tree created by ID3 to predict Glider Density.

how well the models applied to unseen data. This is generally accepted as a measure of

how well the models have learnt a concept. The locations were divided into six random

collections of 200 learning and 200 test sites. This was used to compare the predictive

accuracy of each inductive technique. The measures of accuracy could then be averaged

over the six random splits. Estimates of the standard deviation for each model could be

obtained from the results of the six replicated random samples.

A subtle issue arises when using a single map (as described above) to create the training

and test data. Normally it is desirable to use independent data for the training and

test sets. This ensures that an overly-speci�c theory (based on the training data) will

not achieve good results with the test data. The method that Stockwell has used (and

that is used in this thesis) does not account for the fact that locations in space are

not independent. This is easily understood by the fact that nearby locations in space

will be related to each other due to the continuous nature of space and that geographic

space tends to vary slowly. The main a�ect of this lack of independence will be that

the error in the learnt theories, either those quoted by Stockwell or using CFG-GP, will

be underestimated. Although this will mean the absolute values for the test results will

be greater than would occur for truly independent training and test data, the order of

signi�cance between each learning method should remain the same. This may be justi�ed

by noting that each learning method attempts to maximise their performance based on

the training data. Hence, although each method may be di�erent in its approach to

developing a theory, it is likely that each method would exploit the lack of independence

with the test data in a similar manner. Since the goal of this section is to demonstrate

the use of bias and functional learning, this issue is not overly signi�cant. It should be

noted, however, that the issue of independent training and test data, when using spatial

information, is worthy of further research.
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Model Accuracy

Method Training Test

MR - 45%

PCA - 41%

KA - 48%

MGC 36:7� 0:8% 33:2� 1:6%

ID3 60:7� 1:3% 57:3� 2:2%

CN2 50:8� 2:6% 45:2� 2:2%

CART 61:2� 3:5% 54:8� 3:9%

MSC 75:8� 1:2% 48:3� 1:6%

Table 4.7: Comparison of Model Accuracy for Greater Glider Density [71].

The results are shown in Table 4.7, where the training and test results indicate the per-

centage of correct glider density predictions for the 200 locations. The MSC classi�cation

represents the most speci�c description based on the training data. This will achieve

the maximum possible predictive capability (on the training data) because it is the most

speci�c description of the data classes. The result using the training data shows that

approximately 25% of the glider predictions cannot be uniquely distinguished. This is

due to di�erent density classes having the same set of local independent attributes

8

. The

drop in predictability of MSC to 48% for the test data shows that over-specialisation

does not produce useful models with unseen data. The ID3 and CART learning methods

out-perform this specialisation on the test data by �nding general statements about the

glider density.

4.3.3 The Grammar G

ggd

for the Greater Glider

The previous methods have used a propositional description for classi�cation. To com-

mence this study, a language that approximates the decision tree format will be described.

This initial language will attempt to recreate the results using similar expressions to pre-

vious work. This enables the comparison between the previous work and the learning

system de�ned in Chapter 3.

The following grammar was used to describe the initial language, which attempted to

mimic the propositional components of the previous decision tree systems.

G

ggd

=

fS;

N = fGDRES;GDVALUE;B;EXPN;DEV;STREAM;

STAND;QUALITY; FLORISTIC;SLOPE;REL;DEVVAL;

8

Using all 400 surveyed areas it is only possible to uniquely distinguish 282 (70:5%) of the glider density sites.

The value of 75:8% given for the MSC method is due to the separation of data into random groups of 200.
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STVAL; STANDVAL;QUALITY VAL; FLORISTICVAL; SLOPEVALg;

P

= fno gliders; : : : ; rock; : : : ; steep; ifelse; and; or; not; <;>;<=; >=;=g

P =

fS ! GDRES

GDRES ! ifelse B GDVALUE GDRES j GDVALUE

GDV ALUE ! no gliders j low gliders jmed gliders j high gliders

B ! and B B j or B B j not B j EXPN

EXPN ! DEV j STREAM j STAND

EXPN ! QUALITY j FLORISTIC j SLOPE

DEV ! dev REL DEV V AL

STREAM ! st REL STVAL

STAND! sc REL STANDVAL

QUALITY ! sq REL QUALITY V AL

FLORISTIC ! fn REL FLORISTICVAL

SLOPE ! sl REL SLOPEVAL

REL!<j>j<=j>=j=

DEV V AL! no road j road corridor j pine plantation

STVAL! no stream corridor j stream corridor

STANDVAL! outside study j rock j regeneration j low jmed j high

QUALITY V AL! outside study j low jmed j high

FLORISTICVAL! outside study j low jmed j high

SLOPEVAL! flat j moderate j steep

g

g

The grammar G

ggd

will create a decision tree represented as a series of if � then � else

statements.

4.3.4 Initial System Speci�cation

Table 4.8 shows the setup for determining the glider density predictions using the propo-

sitional grammar G

ggd

. The MAX DEPTH PROGRAMS parameter was set so that

at least four levels of if-then-else were able to be created. This ensured that a program

could be formed that described each of the four glider density classes.
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The Propositional Glider Density System

Parameters Speci�cations

POPULATION SIZE 500

CREATE MAXIMUM DEPTH 6 200

CREATE MAXIMUM DEPTH 7 200

CREATE MAXIMUM DEPTH 8 100

MAXIMUM FAILURES 1000

MAX DEPTH PROGRAMS 10


 = fGDVALUE;GDRES;EXPNg 90%

GENERATIONS 50

FITNESS MEASURE 200 Training Sites

GRAMMAR G

ggd

Table 4.8: The Initial Glider Density System

Model Accuracy over 6 Random Training and Test Sites

Training Test

58.5% 53.5%

58.0% 53.0%

58.5% 57.0%

57.5% 53.5%

55.5% 51.5%

59.5% 46.5%

57.9�1.4% 52.5�3.4%

Table 4.9: Results using L(G

ggd

) for Glider Prediction.

4.3.5 Results

The system was run 100 times for each of the six random collections of 200 training

locations. These random collections of locations are shown in Figure 4.9. From the 100

runs the program that performed best over the training examples was selected as the

predictor of glider density. This program was then tested on the remaining 200 test

locations to give a measure of performance on unseen data. The results for each of these

six (best) runs is shown in Table 4.9. The �nal entry shown in this table gives the average

and standard deviation for the six runs. Referring back to Table 4.7, it can be seen that

the results are comparable in accuracy to the previous decision tree methods.

The glider density map produced by the best test program is shown in Figure 4.10.

The percentage of correctly predicted glider values over the 400 locations is 57:7%. The

associated program is shown below.
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Locations 4 Locations 5 Locations 6

Locations 1 Locations 2 Locations 3

Figure 4.9: The Six Random Collections of 200 Training and Test Locations.

Medium
Low

No Gliders

High

Surveyed Glider Density Predicted Glider Density 
(231/400 Locations Correct) 

Figure 4.10: The Best Prediction of Glider Density using G

ggd

.
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ifelse(and(dev(=,pine_plantation),

or(sq(<,high),dev(=,pine_plantation))),no_gliders,

ifelse(not(sl(=,flat)),low_gliders,

ifelse(sc(=,outside_study),no_gliders,

ifelse(and(fn(=,medium),sq(<,high)),low_gliders,

/* otherwise */

high_gliders))))

Training: 58.5%

Test : 57.0%

where sc: stand condition

sl: slope

st: stream corridor

dev: development

fn: floristic nutrients

The main criticism of this solution is that it does not cover all glider density classes. For

example, there is no prediction for medium glider density. A number of restrictions to

the structure of the language may be made by observing the following.

� All glider density values are represented in the survey.

� The survey sites outside the study area for stand condition have been set to

a glider density of no gliders. This value is not a true re
ection of the glider

density and, therefore, introduces some noise into the prediction. The original work

of Stockwell used the stand condition value of outside study as a legitimate attribute

for prediction. Since this occurs for all sites where no gliders occur the previous

learning systems have used this attribute as the predictor for the no glider density

class. This is a false prediction in that there is no meaning associated with the

outside study attribute and the actual preferred habitats of the greater glider. This

has the secondary e�ect of creating a predictive accuracy that is greater than that

actually represented by the developed theories, since no meaningful statements are

made about conditions where no gliders are likely to be found. The advantage of
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a declarative bias is that this noise may be explicitly stated, thus making it clear

that the developed predictor of glider density does not make any statement about

locations where gliders will not be found.

� The glider density is low when the stand condition is rock.

� A greater glider has certain preferred habitat sites based on non-local spatial condi-

tions. For example, the availability of preferred food sources a short distance from

suitable nesting sites.

The following section explores changes to the basic propositional language that attempt

to incorporate these concepts in a declarative manner.

4.3.6 Modifying the Language Bias

The Grammar G

ggd�cover

A covering grammar G

ggd�cover

is de�ned which ensures that each glider class is repre-

sented.

G

ggd�cover

=

fS;

N = fIFELSE1; IFELSE2; B; EXPN;DEV;STREAM;

STAND;QUALITY; FLORISTIC;SLOPE;REL;DEVVAL;

STVAL; STANDVAL;QUALITY VAL; FLORISTICVAL; SLOPEVALg;

P

= fno gliders; : : : ; rock; : : : ; steep; ifelse; and; or; not; <;>;<=; >=;=g

P =

fS ! ifelse B no gliders IFELSE1

IFELSE1! ifelse B low gliders IFELSE2

IFELSE2! ifelse B med gliders high gliders

B ! and B B j or B B j not B j EXPN

EXPN ! DEV j STREAM j STAND

: : :

SLOPEVAL! flat j moderate j steep

g

g

The language L(G

ggd�cover

) gives a bias requiring functions to be created that cover some

part of each glider density class. The system setup is shown in Table 4.10. This setup
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The Propositional Glider Density System

Parameters Speci�cations

POPULATION SIZE 500

CREATE MAXIMUM DEPTH 7 200

CREATE MAXIMUM DEPTH 8 300

MAXIMUM FAILURES 1000

MAX DEPTH PROGRAMS 12


 = fEXPNg 90%

GENERATIONS 50

FITNESS MEASURE 200 Test, 200 Training Sites

GRAMMAR G

ggd�cover

Table 4.10: The Covering Glider Density System.

Model Accuracy over 6 Random Training and Test Sites

Training Test

62.0% 51.0%

60.0% 58.5%

59.5% 58.5%

59.5% 58.5%

61.0% 57.0%

61.5% 52.0%

60.6�1.1% 55.9�3.5%

Table 4.11: Results using L(G

ggd�cover

) for Glider Prediction.

di�ers from the initial setup of Table 4.8 in that the creation parameters have an increased

maximum depth. This is due to the change in grammatical structure. The results using

L(G

ggd�cover

) are shown in Table 4.11 for each of the six random test and training runs.

The best program over the six random collections of 200 test sites

9

is shown below. The

predicted glider values for this program are shown in Figure 4.11. This program correctly

predicts 59:25% of the 400 locations from the surveyed area.

ifelse(sc(<=,outside_study),no_gliders,

ifelse(or(and(or(dev(<=,road_corridor),sc(<,regeneration)),

or(sl(>=,moderate),and(sq(=,medium),fn(<=,medium)))),

9

The best program was de�ned as the one with the highest test and training score.
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Medium
Low

No Gliders

High

Surveyed Glider Density Predicted Glider Density
(237/400  Locations Correct)

Figure 4.11: The Best Prediction of Glider Density using G

ggd�cover

.

sc(<,1)),low_gliders,

ifelse(and(and(or(and(fn(<=,low),sc(<,regeneration)),sl(>=,flat),

sc(<,rock)),sc(>=,regeneration)),med_glider,

/* otherwise */

high_gliders)))

Training: 60.0%

Test : 58.5%

where sc: stand condition

sl: slope

sq: site quality

st: stream corridor

dev: development

fn: floristic nutrients

There has been an overall (test) improvement from 52:5 � 3:4% (G

ggd

) to 55:9 � 3:5%

(G

ggd�cover

). This result is due to the language having a bias that forms a covering

expression over each glider density class.
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The Grammar G

ggd�cover+no gliders

The grammar G

ggd�cover

does not explicitly state that the stand condition may be used

to determine all locations which have no gliders as a value. To demonstrate this bias the

grammar G

ggd�cover+no gliders

is de�ned which explicitly forces the stand condition to be

used as the only determining factor with no gliders. This narrows the possible expressions

for the language and forces the search to proceed over other glider density classes.

G

ggd�cover+no gliders

=

fS;

N = fBSC0; IFELSE1; IFELSE2; B; EXPN;DEV;STREAM;

STAND;QUALITY; FLORISTIC;SLOPE;REL;DEVVAL;

STVAL; STANDVAL;QUALITY VAL; FLORISTICVAL; SLOPEVALg;

P

= fno gliders; : : : ; rock; : : : ; steep; ifelse; and; or; not; <;>;<=; >=;=g

P =

fS ! ifelse BSC0 no gliders IFELSE1

BSC0! sc = outside study

IFELSE1! ifelse B low gliders IFELSE2

IFELSE2! ifelse B med gliders high gliders

B ! and B B j or B B j not B j EXPN

EXPN ! DEV j STREAM j STAND

: : :

SLOPEVAL! flat j moderate j steep

g

g

The results using this grammar are shown in Table 4.12.

The best program over the six random collections of 200 test sites is shown below. The

predicted glider values for this program are shown in Figure 4.12. The program correctly

classi�es 61:8% of the 400 surveyed locations.

ifelse(sc(=,outside_study),no_gliders,

ifelse(or(and(sl(>=,moderate),or(sl(>=,moderate),sq(=,med))),

and(and(sq(=,med),sc(<,med)),
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Model Accuracy over 6 Random Training and Test Sites

Training Test

60.5% 53.0%

59.5% 58.5%

61.5% 62.0%

61.0% 57.5%

61.0% 57.5%

64.0% 54.0%

61.3�1.5% 57.1�3.2%

Table 4.12: Results using L(G

ggd�cover+no gliders

) for Glider Prediction.

Medium
Low

No Gliders

High

Surveyed Glider Density Predicted Glider Density 
(247/400 Locations Correct)

Figure 4.12: The Best Prediction of Glider Density using G

ggd�cover+no gliders

.
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or(sl(>,flat),fn(<,high)))),low_gliders,

ifelse(or(sl(>=,moderate),or(sl(>=,moderate),and(fn(<,high),

and(or(sl(>=,moderate),st(<=,no_stream_corridor)),

or(sl(>,flat),sq(=,med)))))),med_gliders,

/* otherwise */

high_gliders)))

Training: 61.5%

Test : 62.0%

where sc: stand condition

sl: slope

sq: site quality

st: stream corridor

fn: floristic nutrients

The Grammar G

ggd�spatial

, Spatial Expressions, Typing and Bias

The previous examples have used a non-spatial description of the data. This assumes that

the greater glider does not consider surrounding locations when selecting preferred habitat

sites. This is obviously false with a mobile tree-dwelling marsupial that has requirements

of food, water and shelter.

There are other reasons for considering spatial aspects with the glider data. An area

that has highly desirable local attributes for glider habitation will possibly become over-

crowded. This would force some greater gliders to move to nearby areas that do not have

equally desirable local attributes, thus raising the population at these locations. This

increased glider density is not due to the local attributes, but to the highly desirable

attributes that are nearby. A second general e�ect that can be exploited, by allowing

spatial aspects to be represented, is that of surrogation between attributes. Some attributes

may be used as surrogates for attributes that have not been explicitly represented in the

independent data. For example, the spatial distribution of slope gives an indication of

general landscape features such as valley 
oors and hilltops. These landscape features

have not been directed represented but are likely to be relevant attributes when predicting

glider density. The ability to combine descriptions of attributes with some spatial extent

is likely to allow these conditions to be (indirectly) considered.

The grammar G

ggd�spatial

is de�ned so that statements about the condition of locations
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within some distance from some current location may be speci�ed. The language de�ned

by this grammar may express boolean combinations of spatial conditions. Additionally,

the spatial conditions are based upon boolean combinations of the independent attributes.

G

ggd�spatial

=

fS;

N = fBSC0; SPAB; SPAEXMP; IFELSE1; IFELSE2;B; EXPN;DEV;

STREAM;STAND;QUALITY; FLORISTIC;SLOPE;REL;DEVV AL;

STVAL; STANDVAL;QUALITY VAL; FLORISTICVAL; SLOPEVALg;

P

= fno gliders; : : : ; rock; : : : ; steep; ifelse; and; or; not; <;>;<=; >=;=g

P =

fS ! ifelse BSC0 no gliders IFELSE1

BSC0! sc = outside study

IFELSE1! ifelse SPAB low gliders IFELSE2

IFELSE2! ifelse SPAB med gliders high gliders

SPAB ! and SPAB SPAB j or SPAB SPAB j not SPAB

SPAB ! spaeval B SPAEXP

B ! and B B j or B B j not B j EXPN

SPAEXP ! current j within DISTANCE

DISTANCE! 1 j 2

EXPN ! DEV j STREAM j STAND

: : :

SLOPEVAL! flat j moderate j steep

g

g

The grammar G

ggd�spatial

de�nes a language that allows all possible boolean combina-

tions of locations based on local and spatial conditions. It is worth noting that the

spatial expressions introduce a typing constraint with the language. This language con-

straint is automatically handled by forcing the sites for selective crossover to be matching

nonterminals. As an example, the following program is contained within the language

L(G

ggd�spatial

).

ifelse(sc(=,outside_study),no_gliders)
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ifelse(or(spaeval(and(sc(=,regeneration),dev(>,1)),within(2)),

sl(>,1)), 1,

...

high_gliders)))

This program uses boolean functions to group attributes spatially and as collections of

spatial functions. The ability of L(G

ggd�spatial

) to express arbitrary boolean functions as

part of a spatial condition make it impractical to create attributes representing each of

these possible combinations.

The function spaeval B SPAEXP evaluates the boolean expression B based on the

locations represented by SPAEXP . If the boolean expression is true for any location

selected by SPAEXP , spaeval is true. In the case of current the location where glider

density is currently being determined is assumed. This allows the previous non-spatial

conditionals to be expressed. The within DISTANCE function approximates a circular

spatial operation centred on the current location, as shown in Figure 4.13. For example,

within 1 gives all adjacent locations. Further, the language is designed so that created

programs have a structure that is easily read and understood. Initially, the DISTANCE

value has been limited to 1 or 2 for several reasons.

� The cost of evaluation dramatically increases as distance increases.

� The resolution of the glider data means that within 2 gives approximately a 1km

2

area. Although gliders may travel greater distances this description should be ade-

quate for a good theory.

� The glider density data is inherently noisy. This noise has been introduced by the

sampling methods used to collect the data and the broad classi�cations that are

used for each attribute. As the distance function increases the number of locations

selected by the spaeval function increases as O(DISTANCE)

2

. The existence of

some particular combination of attributes is likely to increase as DISTANCE in-

creases from the current location. These conditions, although true for the data, may

be spurious as the uncertainty of each location is compounded by combining them

to represent a condition for a single location. Hence, although a better predictor

of glider density may be created by using larger DISTANCE values, the described

theory may not have a meaningful interpretation.

The setup for G

ggd�spatial

is shown in Table 4.13. There is a 90% probability of crossover

occuring over a spatial boolean expression or a boolean condition. Additionally, there is
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This represents the current location

within 1

within 2

Figure 4.13: G

ggd�spatial

and the within DISTANCE function.

The Spatial Glider Density System

Parameters Speci�cations

POPULATION SIZE 500

CREATE MAXIMUM DEPTH 8 300

CREATE MAXIMUM DEPTH 9 200

MAXIMUM FAILURES 1000

MAX DEPTH PROGRAMS 14


 = fB; SPABg 90%


 = fSPAEXPg 5%

GENERATIONS 50

FITNESS MEASURE 200 Test, 200 Training Sites

GRAMMAR G

ggd�spatial

Table 4.13: The Spatial (covering) Glider Density System.
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Model Accuracy over 6 Random Training and Test Sites

Training Test

67.5% 62.0%

67.5% 63.0%

64.0% 64.5%

70.0% 65.0%

68.5% 67.5%

66.5% 62.5%

67.3�2.0% 64:1�2.0%

Table 4.14: Results using L(G

ggd�spatial

) for Glider Prediction.

a 5% probability of crossover occuring at the SPAEXP site. This crossover acts like a

mutation, causing statements to change from a local to spatial expression (and vice versa).

4.3.7 Results

The best program over the 6 random collections of 200 training sites is shown below. The

predicted glider values for this program are shown in Figure 4.14. The program correctly

predicts 67:5% of the 400 surveyed glider density locations.

ifelse(sc(=,outside_study),no_gliders,

ifelse(spaeval(and(sc(=,regeneration),dev(>,no_road)),sqr2),low_gliders,

ifelse(and(or(spaeval(st(<,stream_corridor),current),

and(spaeval(and(and(sc(=,regeneration),st(=,no_stream_corridor)),

sc(=,regeneration),sqr2),spaeval(sc(=,regeneration),sqr2))),

spaeval(and(sl(>=,moderate),st(<,no_stream_corridor)),sqr2)),med_gliders,

/* otherwise */

high_gliders)))

Training: 70.0%

Test : 65.0%

where sc: stand condition

sl: slope
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Medium
Low

No Gliders

High

Surveyed Glider Density Predicted Glider Density 
(270/400 Locations Correct)

Figure 4.14: The Best Prediction of Glider Density using G

ggd�spatial

.

dev: development

st: stream condition

A number of points may be made about this result, due to the introduction of spatial

functions as part of the description language.

� The prediction of glider density improves over the propositional language.

� The distance function is easily incorporated into the original G

ggd

grammar.

� The typing constraints introduced by the spatial functions are automatically handled

by the grammar and selective crossover operators.

� The resulting programs are often simpler, yet more powerful, because the included

functions are more expressive.

� The resulting maps of prediction, such as �gure 4.14, have a generalised form that

implies the programs are representing a more fundamental theory about preferred

glider habitats. For example, the previous solution implies that greater gliders are

most likely to be found away from a road corridor and where the slope of the land

is not too extreme. Additionally, these sites must occur within a short distance of

preferred food sources.

4.3.8 Discovering a Good Solution

The previous examples have demonstrated improvements as the expressiveness of the

language is extended. However, the population has been limited to 500 and the goal
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The Spatial Glider Density System

Parameters Speci�cations

POPULATION SIZE 2000

CREATE MAXIMUM DEPTH 8 1000

CREATE MAXIMUM DEPTH 9 1000

MAXIMUM FAILURES 1000

MAX DEPTH PROGRAMS 15


 = fB; SPABg 90%


 = fSPAEXPg 5%

GENERATIONS 100

FITNESS MEASURE 200 Test, 200 Training Sites

GRAMMAR G

ggd�spatial�biased

Table 4.15: Extending the Population - Searching for a Good Solution.

has not been to achieve the best possible solution, but the best solution given certain

computational constraints. The size of the search space represented by L(G

ggd�spatial

)

warrants a larger population and additional generations to improve the predictability of

discovered programs. Table 4.15 shows the setup �le for this experiment. The population

has been increased to 2000 and the number of generations increased to 100. In addition,

the WITHIN function has been extended to allow distances up to 5 squares from the

current location.

The grammar G

ggd�spatial�biased

has been biased to include two facts about the glider

density survey.

(a) A stand condition of outside study at the current location implies that glider den-

sity is none for this location.

(b) A stand condition of rock at the current location implies that the glider density

is low for this location. There are other areas where glider density is low so this

condition is represented as a disjunction.

The grammar G

ggd�spatial�biased

is de�ned as follows.

G

ggd�spatial�biased

=

fS;

N = fBSC0; ORSPAB; SPAB; SPAEXMP; IFELSE1; IFELSE2; B; EXPN;DEV;

STREAM;STAND;QUALITY; FLORISTIC;SLOPE;REL;DEVV AL;

STVAL; STANDVAL;QUALITY VAL; FLORISTICVAL; SLOPEVALg;

P

= fno gliders; : : : ; rock; : : : ; steep; ifelse; and; or; not; <;>;<=; >=;=g
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P =

fS ! ifelse BSC0 no gliders IFELSE1

BSC0! sc = outside study

IFELSE1! ifelse ORSPAB low gliders IFELSE2

ORSPAB ! or ROCK SPAB

ROCK ! sc = 1

IFELSE2! ifelse SPAB med gliders high gliders

SPAB ! and SPAB SPAB j or SPAB SPAB j not SPAB

SPAB ! spaeval B SPAEXP

B ! and B B j or B B j not B j EXPN

SPAEXP ! current j within DISTANCE

DISTANCE! 1 j 2 j 3 j 4 j 5

EXPN ! DEV j STREAM j STAND

: : :

SLOPEVAL! flat j moderate j steep

g

g

The increased evaluation time for the setup of Table 4.15 meant that only one run of the

system was performed for each of the six random collections of locations. Even though

the discovered programs are unlikely to be the best possible solutions for this language

the results, shown in Table 4.16, are an improvement over the grammar G

ggd�spatial

. The

program with the best training result is shown below. Note that the spatial distance

functions of within(4) and within(5) are both used.

ifelse(sc(=,outside_study),no_gliders,

ifelse(or(sc(=,rock),

and(spaeval(sl(>,flat),within(2)),

and(spaeval(sc(=,regeneration),within(4)),

spaeval(fn(>,medium),within(5))))),low_gliders,

ifelse(or(spaeval(sl(>,flat),within(2)),

spaeval(sc(=,regeneration),within(4))),med_gliders,

/* otherwise */
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Medium
Low

No Gliders

High

Surveyed Glider Density Predicted Glider Density 
(280/400 Correct Locations)

Figure 4.15: The Best Prediction of Glider Density using G

ggd�spatial�biased

.

Model Accuracy over 6 Random Training and Test Sites

Training Test

70.0% 69.5%

72.5% 65.5%

73.0% 67.0%

71.0% 68.5%

71.0% 67.5%

73.0% 65.0%

71.8�1.3% 67:2�1.7%

Table 4.16: Results using L(G

ggd�spatial�biased

) for Glider Prediction.

high_gliders)))

Training: 73.0%

Test : 67.0%

where sc: stand condition

sl: slope

fn: floristic nutrients

The predictions for this program over the study area is shown in Figure 4.15. The program

correctly classi�es 70% of the 400 surveyed locations.
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Model Accuracy

Method Training Test

MR - 45%

PCA - 41%

KA - 48%

MGC 36:7� 0:8% 33:2� 1:6%

ID3 60:7� 1:3% 57:3� 2:2%

CN2 50:8� 2:6% 45:2� 2:2%

CART 61:2� 3:5% 54:8� 3:9%

MSC 75:8� 1:2% 48:3� 1:6%

L(G

ggd

) 57:9� 1:4% 52:5� 3:4%

L(G

ggd�cover

) 60:6� 1:1% 55:9� 3:5%

L(G

ggd�cover+no gliders

) 61:3� 1:5% 57:1� 3:2%

L(G

ggd�spatial

) 67:3� 2:0% 64:1� 2:0%

L(G

ggd�spatial�biased

) 71:8� 1:3% 67:2� 1:7%

Table 4.17: Model Accuracy for Greater Glider Density [71].

Model Signi�cance using Student's t-test

Method MGC ID3 CN2 CART MSC L(G

ggd

) L(G

ggd�cover

)

MGC - - - - - - -

ID3 99% - 99% - 99% 95% -

CN2 99% - - - - - -

CART 99% - 99% - 99% - -

MSC 99% - 95% - - - -

L(G

ggd

) 99% - 99% - 99% - -

L(G

ggd�cover

) 99% - 99% - 95% - -

L(G

ggd�cover+no gliders

) 99% - 99% - 99% 90% -

L(G

ggd�spatial

) 99% 99% 99% 99% 99% 99% 99%

L(G

ggd�spatial�biased

) 99% 99% 99% 99% 99% 99% 99%

Table 4.18: Model Signi�cance for Greater Glider Density - Part 1.

4.3.9 Summary and Discussion

A summary of the previous languages used to explore solutions of glider prediction are

shown in Table 4.17. A Student's t test [47], for signi�cance of the di�erence between

means with known variance, has been applied to these results, as shown in Table 4.18 and

4.19. These tables should be read from left to right. For example, from Table 4.18, the

language de�ned by L(G

ggd�cover

) is a signi�cant improvement from MGC and CN2, with

99% con�dence. Additionally, the result for L(G

ggd�cover

) is a signi�cant improvement

from MSC with 95% con�dence. Entries in the table where a "-" occur indicate one of two

conditions - either there is less than 90% con�dence for a di�erence between the compared
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Model Signi�cance using Student's t-test

Method L(G

ggd�cover+no gliders

) L(G

ggd�spatial

) L(G

ggd�spatial�biased

)

MGC - - -

ID3 - - -

CN2 - - -

CART - - -

MSC - - -

L(G

ggd

) - - -

L(G

ggd�cover

) - - -

L(G

ggd�cover+no gliders

) - - -

L(G

ggd�spatial

) 99% - -

L(G

ggd�spatial�biased

) 99% 95% -

Table 4.19: Model Signi�cance for Greater Glider Density - Part 2.

means or the mean for the left-hand column method is less than the cross-column method

being compared.

The accuracy of the learnt programs improve as more complex spatial relations are intro-

duced into the language. Additionally, the explicit statement of some parts of the search

space (for example, stating that glider density is zero for locations outside the study area)

allows the search e�ort to be concentrated where it is most desirable. The result for

the method using L(G

ggd�spatial�biased

) is a signi�cant improvement, with a con�dence

of 99%, against all other methods except L(G

ggd�spatial

), where the con�dence interval

is signi�cant at the 95% level. Both languages that have introduced spatial relationship

are signi�cant improvements over all other learning methods with a con�dence of 99%.

The introduction of spatial relationships can clearly be seen to signi�cantly improve the

quality of the theory created using CFG-GP. This example has demonstrated that typing,

language bias and search bias may be usefully de�ned with CFG-GP for a complex spatial

problem.

4.4 Conclusion

This chapter has demonstrated that declarative bias may be expressed for several problems

with the learning system, CFG-GP. The ability to obtain good results using this system is

dependent upon the ability to write a grammar that captures the underlying belief of the

user about the structure of a solution. Although it may not always be possible to write a

grammar that has an appropriate bias it is always possible to begin with a grammar that

has no explicit bias towards any particular program form. This grammar merely states

the typing constraints for each function and argument without expressing any further

bias. If the system cannot discover a solution with this grammar an analysis of the partial

solutions may suggest certain structures that are likely to be useful in creating a better
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solution. These structures may then by introduced explicitly into the grammar and the

system rerun. This iterative process may be continued to gradually increase the bias for

the system and therefore improve the performance for a particular problem.



Chapter 5

Learning Inductive Bias

This chapter describes a method for automatically learning how to modify the bias rep-

resented explicitly in the initial grammar, G. New productions are discovered from an

analysis of the �ttest program during the evolution of a (partial) solution. A selected

derivation from this program is used to modify the current grammar each generation.

The grammar is modi�ed in two ways, namely, replacing nonterminals with terminals, in

existing productions, and creating new productions that represent underlying structure.

New programs are introduced each generation into the population using this modi�ed

grammar, using an operation referred to as REPLACEMENT . The feedback between

the evolving solutions and the grammar is demonstrated to improve the performance of

CFG-GP.

The chapter concludes by presenting a form of incremental learning. A grammar that

has been learnt for the 6-multiplexer is shown to improve the performance of the learning

system applied to the 11-multiplexer. This demonstrates that the learnt grammar is

capable of being biased towards a class of problems.

5.1 Introduction

The selection of an appropriate bias, represented by G, is a fundamental task when ap-

plying CFG-GP. The bias in
uences both the form and success of the created programs.

Specifying an appropriate language bias is certainly one of the most important consid-

eration when trying to solve a problem for which no solution is known. The declarative

modi�cation of bias has been demonstrated in Chapter 4, where knowledge of the struc-

ture of a solution guided changes to the initial grammar, G. This manual biasing could

occur, even when the solution was not known, by manually examining �t programs and

incorporating useful components of previously discovered partial solutions explicitly into

the initial grammar.

95
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A system that learns how to modify its own inductive bias (i.e. learns how to modify

G) gives an additional approach to discovering useful components of a language and to

improve the performance of CFG-GP. The ability to change the language bias may also

simplify the learning task and allow a grammar, learned from a simple problem, to be

applied to a similar, yet more complex, problem. In this manner, a di�cult problem may

be approached by using graded examples that allow the grammar to be biased towards the

general patterns that occur for a class of problems. Further, the automatic discovery of a

useful language bias alleviates the requirement of knowing this bias in advance. Thus, a

weak bias, represented by G, may be modi�ed by the learning system, to allow a problem

(and potentially a class of problems) to be encapsulated by the modi�ed grammar and

thus learnt more easily.

Modifying the bias, represented by G, will be demonstrated in two ways. Viz.,by replac-

ing nonterminals with other nonterminals and terminals in existing productions, and by

including additional productions that re
ect the underlying structure of the solution.

5.2 The Grammar, G, Viewed as a Bias

The language represented by a grammarmay be considered as the most general description

of a solution. This is clear by considering the de�nition of L(G), as follows.

L(G) = fx j x 2

P

?

; and S

+

) xg

The sentences represented by L(G) contain all derivable strings from the grammar, G.

Hence, if the grammar G allows the construction of a program that would represent the

solution, L(G) contains the solution

1

.

There are an in�nite number of grammars that represent the same language. However,

for the purpose of using a grammar as the language bias for CFG-GP, some of these

grammars will be more likely to generate a solution than others. This arises from the

mechanisms CFG-GP uses to create the population from the initial grammar (see Section

3.4). The in
uence on the performance of CFG-GP, using an appropriate grammar, has

been demonstrated in Section 4.1. The goal of automatically modifying G is to �nd an

appropriate emphasis, for particular strings in L(G), which allow the learning system to

more easily solve a particular problem.

5.3 Learning to Modify a Context-Free Grammar

Each generation, the current grammar will be modi�ed to create a new grammar. De�ning

the grammar, at generation t, as G

t

, there will be a progression of grammars that are

1

In Genetic Programming, this condition is termed su�ciency[44]: that the set of functions and terminals

used to evolve a solution must be capable of solving the problem.
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created. If the initial grammar (i.e. the initial language bias) is represented as G

0

, then

we wish to construct a series of grammars over t generations, as follows.

G

0

; G

1

; G

2

; ::; G

t

There are two conditions that are imposed on the series of grammars.

(a) G

0

� G

1

� G

2

; ::;� G

t

.

This condition states that the grammar created at generation t includes the grammar

that existed at generation t� 1. Further, the extension to the grammar G

t

must not

remove components that existed in G

t�1

.

(b) L(G

0

) = L(G

1

) = L(G

2

); ::;= L(G

t

).

This condition states that the learned grammars must represent the same language

that is expressible from the initial grammar, G

0

. This follows directly from the

de�nition ofG as a generalised description of the solution space. Although a grammar

may be extended to represent a certain language bias, all initially derivable strings

from L(G

0

) must still exist, to avoid removing the solution from the language

2

.

These conditions do not change the language represented by L(G), however the sentences

most likely to be generated from CFG-GP, using the grammar, are changed. The goals of

this learning process are as follows.

(a) Condense derivation steps into grammar productions:Learn to create new

productions that are essentially previous productions where a nonterminal has been

replaced by other nonterminals or terminal symbols. For example, given the deriva-

tion step, if B B B

B!a0

) if a0 B B, a new production could be created, B ! if

a0 B B. This represents the discovery that a0 is a useful terminal to be placed in

the �rst argument position for if .

(b) Change the emphasis of particular productions:Learn to bias the grammar by

modifying the merit selection values for particular productions. For example, if the

production, B

1

! if a0 B B, exists and the same production is discovered as useful,

then the merit selection for this production should increase to re
ect its relative

importance when selecting productions from the nonterminal, B. Thus, the merit

selection value is incremented to create the production B

2

! if a0 B B.

(c) Generate new levels in the grammar: Learn to create new productions of

the form X ! �, where the nonterminal, X , has not previously existed. This

2

This approach is essentially opposite to Utgo�[73], where the goal was to weaken a strong bias. In the

description here a weak bias (represented by the initial grammar G) is gradually strengthened by introducing

new productions and modifying the merit selection values. Although no potential sentence from L(G) is removed,

the technique used to create the initial population (see Section 3.4) can exploit the changed grammar so that

generated programs are biased towards the structure of a solution. This di�ers from Utgo� in that he modi�ed

the language bias, whereas this approach, by maintaining L(G), changes only the search bias. However, the

relationship between Utgo�'s work and our own closely parallels the di�erence in approach between an overly

specialised language representation and an overly general representation.
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type of production is intended to capture structural generalisations that have been

discovered. For example, the 6-multiplexer has one form of solution where two levels

of the if function must be combined to distinguish the four data lines. Two new

productions could be created to represent this statement, as follows.

B

1

! if B N

1

B

N

1

1

! if B B B

The nonterminal N

1

has been created and included as part of the de�nition ofG. This

new production from N

1

can now be involved in later changes to the grammar. The

combination of these two productions represents a bias towards creating programs

that have a two-tiered if structure and, therefore, represents the structure for one

form of solution for the 6-multiplexer.

The following steps are involved when attempting to create the grammar G

t+1

, from the

grammar G

t

, after evaluating the population of derivation trees at generation t.

(a) Identify the program derivation tree that will contribute to changes in the grammar.

(b) Identify the program derivations that are to be re�ned as part of the next-generation

grammar, G

t+1

.

(c) Incorporate the proposed changes into G

t

, thereby creating G

t+1

.

(d) Incorporate the grammar, G

t+1

, into the population of programs that represent the

population in generation t+ 1

3

.

Each of these points will now be discussed in further detail.

5.3.1 Identifying Program Individuals

Rosca and Ballard[60] have studied identifying which parts of a program contribute to-

wards a solution. They concentrated on two criteria, namely �t blocks and frequent blocks.

Their goal was to determine building blocks that could be used to extend the function set

within the framework of Genetic Programming. This extended function set was then used

to create new members of the population that could exploit these discovered functions.

They concluded that �t blocks were the most useful measure to determine a building block.

The work of Rosca and Ballard discovered useful building blocks by analysing how parts

of programs contributed to the �tness of an entire program, using an information measure.

We take a contrary approach which has more of an evolutionary 
avour. The main

assumption is that a �t program will contain (some) relatively �t components. In terms

of G, this implies that a �t program will contain (some) relatively �t derivations which

can be exploited in changes to the underlying grammar. Given this assumption, it is

3

Note that any production (and therefore any derivation) in G

t

remains valid in the grammar G

t+1

.



5.3. LEARNING TO MODIFY A CONTEXT-FREE GRAMMAR 99

reasonable to conclude that selecting the �ttest program from each generation will be a

useful guide to select productions from G that can be used to change the underlying bias.

When more than one program is equally �t, the program which has the least depth of

parse tree will be selected. This is based on the argument that the smaller of two equally

�t programs will be a more concise de�nition of the (partial) solution and, therefore,

the possibility of selecting a useful production will be increased. When both �tness and

size cannot distinguish one program, from the population, an arbitrary choice from these

candidate programs will be made.

5.3.2 Identifying Program Productions

Once a program has been selected the problem remains of determining which derivation

from this program should be selected to direct the modi�cation of G

t

. This problem is

made particularly di�cult due to the epistatic nature of programs. It is impossible to con-

clude, with certainty, that particular parts of a program are the main contributors to the

�tness of the entire program. In fact, it is often a meaningless statement to consider which

individual statements of a program contribute to the overall �tness. This di�culty has

been highlighted by the theoretical work of O'Reilly[56]. The linkage between statements

and structure of a program generally create the overall properties of the program.

Previous work[73] that has incorporated a learnt bias have used a language where a partial

ordering could be de�ned. This partial ordering, over the hypothesis space, enabled the

language to be changed in a directed manner. However, in general, the language de�ned by

a context-free grammar does not represent a partial ordering over the hypothesis space

4

.

The approach described here assumes that any terminal, from the selected program deriva-

tion tree, may contribute to developing a useful bias with the grammar G

t+1

. Therefore,

a terminal from this program will be selected at random. Although a random selection of

terminal may create a production which does not contribute towards a solution, the pro-

portional �tness selection pressure will not propagate these changes and so their in
uence

will not be emphasised.

Let the randomly selected terminal, from the �ttest derivation tree �, be x. There are

two possible forms of derivation that created x 2 �.

(a) � A �

A!x

) � x �

Here, the terminal, x, is created from a production which contains only this teminal.

Figure 5.1 shows two examples where the selected terminal, x, satis�es this condition.

4

An ordering is only possible where the semantics of the language are known (for example, with a CNF or

DNF language). The CFG-GP system does not assume any explicit meaning to the terminal strings de�ned

by the user-de�ned language, since the grammar only de�nes the syntax of the language. The semantics of the

language are discovered by executing the generated programs, thereby giving a �tness measure to each program.
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B

p y

A

x

B

A yp

x

Figure 5.1: Terminal Sites derived from the production A! x.

A

x C y

z

x

y

E

z

D

A

Figure 5.2: Terminal Sites derived from the production A! � x �.

(b) � A �

A!�x�

) � � x � �

Here, the terminal, x, is created from a production that contains some other terminals

and/or nonterminals. Formally, this implies that at least one of � or � 2 fN [

P

g

+

.

Figure 5.2 shows two examples where the selected terminal, x, satis�es this condition.

5.3.3 Incorporating New Productions into the Grammar

Once a terminal from a derivation tree has been selected, the production associated with

this terminal can be used to direct a change to G

t

. The two forms of derivation that

created x are handled in di�erent ways. Each of these methods will now be described.

Creating Productions from A! x

A new production is determined by propagating x up the derivation tree until a level

is reached where other nonterminal and/or terminal nodes exist. Two examples of this

propagation are shown in Figure 5.3. In both cases, the terminal, x, has been selected as

the site to create a new production for G

t+1

. The �rst example propagates x up one level
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A yp
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Figure 5.3: Propagating the terminal, x, up a derivation tree.

in the tree, whereas in the second example x must be propagated up the derivation tree

two levels. This demonstrates the requirement of moving up the derivation tree until a

level is reached where other terminals or nonterminals exist. Once this level is reached a

new production may be inferred by reading across the tree, substituting the next level of

terminal or nonterminal for the current nonterminal in this position. For example, based

on Figure 5.3, the left example derivation tree was created by applying the following

derivations.

� B �

B!pAy

) � p A y �

A!x

) � p x y �

Propagating x up the derivation tree creates the production B

1

! p x y, which is inserted

into G

t+1

. The new production is given a merit selection value of 1 and the productions

from B extended by this production.

The second example from Figure 5.3 shows the case where two levels of derivation must

be climbed to arrive at a production where other nonterminals and/or terminals exist.

The following derivation steps have created the terminal x, based on this example.

� B �

B!pCy

) � p C y �

C!A

) � p A y �

A!x

) � p x y �

A new production is created that substitutes A for the nonterminal C. The production

B

1

! p A y is inserted into G

t+1

. The new production is given a merit selection value of

1 and the productions from B extended by this new production.

For each of the previous examples, if the new production already exists in G

t

, then the

merit selection value of the matching production is incremented. In this case no new

production is created.

Creating Productions from A! � x �

The derivation step,

A!�x�

) , is used to form a new production. This is achieved by creating

a new nonterminal, say N

i

, and creating the following production.
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Figure 5.4: Creating a New Production from A! � x �.

N

i

1

! � x �

The nonterminal, N

i

, is then linked to the previous level of derivation by creating a new

production, substituting N

i

for the previous nonterminal, A. For example, the derivations,

shown in Figure 5.4, demonstrate two cases where a terminal has been selected where other

terminals and/or nonterminals exist as part of the same derivation. For the left-most

example, the derivation steps that created x are shown below.

B!�A�

) � A �

A!xCy

) � x C y )

Two new productions are created as a result of this situation. A new nonterminal, say

N

i

, is created. The following two productions are then inserted into G

t

, to create G

t+1

.

B

1

! � N

i

�

N

i

1

! x C y

In a similar manner, using the right-most example from Figure 5.4, the following produc-

tions would be created.

B

1

! � N

i

�

N

i

1

! D x E

The purpose of these new productions is to allow structure to be explicitly expressed.

Although the new production from N

i

is a copy of a previous production from G

t

, the

new production represents a bias towards creating programs where x is combined with

the production from which it was created. In this manner, the composition of functions

and arguments may be explicitly expressed in the grammar and the new grammar re
ects

underlying patterns of structure that are discovered during the search for a program

solution.

Let the set of created nonterminals be fN

1

; N

2

; ::N

j

g. If the production that is proposed

from the new nonterminal, N

i

, already exists from one of the created nonterminals, say

N

f

, then the merit selection for the production, from N

f

, is incremented and no new



5.4. EXPERIMENTS 103

Context-Free
Grammar

Programs

Fitness Evaluation

Derivation Trees

Genetic Operators

Fit Program
Create New 

Production

Figure 5.5: Creating New Programs using a modi�ed Grammar.

production from N

i

is created. Similarly, if the production, which includes N

i

, already

exists, then the merit selection for this production is incremented and no new production

is created. Note that the new production from N

i

now becomes part of the grammar and

is available for further modi�cation in later generations.

5.3.4 Incorporating the Modi�ed Grammar back into the Population

As shown in Figure 5.5, the modi�ed production is inserted into G

t

and new programs are

generated from this modi�ed grammar, in generation t+1. The new programs are created

in the same manner as the initial population, however there is no check for uniqueness

between the inserted programs and the current population. This is not required (or de-

sirable) as the bias introduced by the modi�ed grammar should be encouraged within the

population. If changes to the grammar create �t programs these are propagated through-

out the population due to the �tness selection pressure. This reintroduction of programs

into the population will be referred to as a REPLACEMENT operation and speci�ed by

a percentage probability of occurrence, in the same manner as selective crossover and se-

lective/directed mutation. Note that the generated programs, using REPLACEMENT ,

are limited in depth by the MAX DEPTH PROGRAMS parameter.

5.4 Experiments

There are two main purposes of learning to modify the initial grammar, G

0

. Firstly, to

improve the performance of the learning system for a particular problem and, secondly,

to allow a grammar to be learnt that generalises from one class of problems to another.
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The following experiments (Section 5.4.1) show that the learnt changes toG

0

are bene�cial

and that the evolved grammar has been biased to represent components of the solution.

This shows that a form of specialisation has occurred with the grammar, allowing partial

components of the solution to be expressed in the grammar explicitly.

5.4.1 The 6-Multiplexer with REPLACEMENT

The multiplexer problem will be used to demonstrate how learning to modify G

0

can

improve the probability of success. The grammar, G

6m�address

, will be used as the initial

language bias. This grammar is de�ned as follows.

G

6m�address

=

fS;

N = fB;DATA;ADDRESSg;

P

= fand; or; not; if; a0; a1; d0; d1; d2; d3g;

P =

fS ! B

B ! and B B j or B B j not B j if B B B j DATA j ADDRESS

DATA! d0 j d1 j d2 j d3

ADDRESS ! a0 j a1

g

g

This grammar is essentially the same as G

6m

(see Section 4.1), however G

6m�address

the

data and address values are distinguished by the nonterminals DATA and ADDRESS.

This will allow the learnt grammar to treat the group of address and data values inde-

pendently. Note, however, that there is no initial bias for treating the ADDRESS and

DATA productions di�erently.

The setup using G

6m�address

is shown in Table 5.1. The REPLACEMENT operator

occurs with a probability of 10%. Hence, given a population size of 500, there will typically

be about 50 programs created from G

t

6m�address

, each generation. This implies that the

number of programs created from crossover will decrease from approximately 450 (Section

4.1.1) to approximately 405, based on a 90% probability of crossover. These changes in the

population dynamics will a�ect the probability of success. Since this measure will be used

to determine whether there is a signi�cant improvement when using REPLACEMENT ,

a base-line value for p

s

must be determined. This is found by running the system 100

times, using the setup of Table 5.1, where G

0

6m�address

is not modi�ed during the evolution.
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The 6-Multiplexer

Parameters Speci�cations

POPULATION SIZE 500

CREATE MAXIMUM DEPTH 5 200

CREATE MAXIMUM DEPTH 6 100

CREATE MAXIMUM DEPTH 7 100

CREATE MAXIMUM DEPTH 8 100

MAXIMUM FAILURES 100

MAX DEPTH PROGRAMS 8


 = fBg 90%

REPLACEMENT 10%

GENERATIONS 50

FITNESS MEASURE 64 boolean cases

GRAMMAR G

6m�address

Table 5.1: The 6-Multiplexer System using REPLACEMENT.

The REPLACEMENT Operator

Method (10% REPLACEMENT ) Probability of Success p

s

Grammar Not Modi�ed 31%

Grammar Modi�ed 50%

Table 5.2: REPLACEMENT and the 6-Multiplexer, using G

6m�address

.

Hence, the REPLACEMENT operator merely creates new programs, using the initial

grammar, each generation. Another way to view REPLACEMENT , when the grammar

is not modi�ed, is that it is a selective mutation, where � = fSg.

The resulting probabilites of success are shown in Table 5.2. The original setup, which

does not modify G

6m�address

, has a probability of success of 31%. When the two previous

grammar modifying operations are applied to G

t

6m�address

, throughout the evolution of a

solution, the probability of success improves to 50%. This signi�cant increase in p

s

(see

Appendix B), when the grammar is modi�ed, implies that the feedback occuring with the

learnt grammar is bene�cial for this problem.

Four learnt grammars will now be shown, to give some idea of the types of constructions

that have been discovered. The �rst grammar, G

12

6m�address

, was created from the shortest

successful run of CFG-GP, which succeeded after 12 generations

5

.

G

12

6m�address

=

5

If no merit selection value is shown for a production it has the value one.



5.4. EXPERIMENTS 106

fS;

N = fB;DATA;ADDRESS;N

1

; N

2

g;

P

= fand; or; not; if; a0; a1; d0; d1; d2; d3g;

P =

fS ! B

B ! and B B j or B B j not B j if B B B j DATA j ADDRESS

B !

3

if ADDRESS B B j

2

and DATA B j if ADDRESS B DATA

B ! not DATA j if B DATA N

2

j if B B DATA

B ! if ADDRESS N

1

B j if B DATA B

DATA! d0 j d1 j d2 j d3

ADDRESS ! a0 j a1

N

1

! and DATA B

N

2

! if ADDRESS B B

g

g

The grammar, G

12

6m�address

, has discovered some relevant new productions that have a

sensible bias for the 6-mulitplexer. For example, the most likely production to be selected

from the nonterminal, B, is as follows.

B

3

! if ADDRESS B B

This embodies the concept that an address value should be in the �rst argument position

for the if function. This concept has also been represented by the production created from

the new nonterminal, N

2

. In general, the grammar does appear to have some constructions

that would be a useful bias when learning the 6-multiplexer.

The grammar G

31

6m�address

was created from a successful run of CFG-GP, after 31 gener-

ations, and shows what happens when the grammar has been allowed to evolve further.

G

31

6m�address

=

fS;

N = fB;DATA;ADDRESS;N

1

; N

2

; N

3

; N

4

; N

5

g;

P

= fand; or; not; if; a0; a1; d0; d1; d2; d3g;

P =

fS ! B j

2

N

4

j N

2
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B ! and B B j or B B j not B j if B B B j DATA j ADDRESS

B !

5

or DATA B j

2

if B B DATA j

2

if ADDRESS B DATA

B !

2

and ADDRESS B j if B DATA DATA j and B N

4

j not N

4

B ! if ADDRESS DATA B j if B DATA B j if N

3

B B j or B N

2

B ! if N

4

B B j if B d0 B j if B N

4

B j if B N

1

B

DATA! d0 j d1 j d2 j d3

ADDRESS ! a0 j a1

N

1

! or ADDRESS B j or N

2

B j or B N

2

j or B B

N

2

! if B B N

5

j if B B B

N

3

! not ADDRESS j not B

N

4

! and B B

N

5

! if B DATA B

g

g

The grammar, G

31

6m�address

, has increased in size from G

12

6m�address

. This is not surprising

as there were another 19 grammar modi�cations applied before the run halted. The

grammar has created 5 new nonterminals, which predominantly bias towards using the

if function. In fact, from the start symbol, S, there is now a 37% probability of selecting

the if function as the top-level function for a randomly created program

6

. Additionally,

the use of ADDRESS as the �rst argument with if has been discovered.

The grammar G

49

6m�address

was created from a successful run of CFG-GP, after 49 gener-

ations. This grammar was selected from the latest �nishing successful run, from the 100

runs that were performed.

G

49

6m�address

=

fS;

N = fB;DATA;ADDRESS;N

1

; N

2

; N

3

; N

4

; N

5

g;

P

= fand; or; not; if; a0; a1; d0; d1; d2; d3g;

P =

fS ! B j N

2

B ! and B B j or B B j not B j if B B B j DATA j ADDRESS

B !

5

if N

1

B B j

4

or DATA B j

3

if B B DATA j

3

if B B N

2

j

2

if N

3

B B

6

The original grammar had a probability of 17% for selecting the if function initially.
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B !

2

if B ADDRESS B j

2

if B B N

4

j

2

or ADDRESS ADDRESS j not N

5

B !

2

if B B ADDRESS j or ADDRESS B j or B N

1

j if ADDRESS B B

B ! or N

1

B j or B N

3

j if B N

4

B j if B B N

1

j and DATA B

B ! if B N

3

B j or a1 B j or B N

2

j if B DATA B j and N

1

B

B ! and N

1

B j if B N

2

B j or ADDRESS a1 j and B N

4

j if N

1

N

1

B

B ! if B B d0 j if B ADDRESS DATA j if N

1

ADDRESS B

DATA! d0 j d1 j d2 j d3

ADDRESS ! a0 j a1

N

1

! and ADDRESS B j and B B

N

2

! if B B B

N

3

! or ADDRESS B

N

4

! if N

1

B B

N

5

! if B ADDRESS B

g

g

The grammar, G

49

6m�address

, has evolved to a considerable extent. Certainly, some of the

new productions are not useful, however it has learnt that the two-tiered if structure is

important. This is shown with the following two productions.

B ! if B N

4

B

N

4

! if N

1

B B

The �nal grammar, G

50

6m�address

, was created by a run that did not succeed. This grammar

was selected from the failed group of runs that had the worst �tness (a raw �tness of 16)

after 50 generations.

G

50

6m�address

=

fS;

N = fB;DATA;ADDRESS;N

1

; N

2

; N

3

; N

4

; N

5

g;

P

= fand; or; not; if; a0; a1; d0; d1; d2; d3g;

P =

fS ! B j

20

N

1

j N

5

B ! and B B j or B B j not B j if B B B j DATA j ADDRESS

B !

4

if B DATA B j

3

or a0 DATA j

2

and B N

2

j

2

or ADDRESS d0 j or B DATA

B ! if B DATA DATA j or B d0 j or ADDRESS DATA j if B B DATA
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Language Bias Comparisons

Grammar Probability of Success p

s

G

6m

34%

G

6m�if

37%

G

6m�if�address

62%

G

6m�if�then

63%

G

6m�if�address�then

80%

G

6m�if�a0�if�a1

88%

G

12

6m�address

69%

G

31

6m�address

82%

G

49

6m�address

71%

G

50

6m�address

1%

Table 5.3: Results of Learnt Language Bias applied to the 6-multiplexer.

B ! or B N

4

j and ADDRESS B j if B N

3

N

4

j if B N

3

B

B ! if N

5

N

3

B j and B ADDRESS j if ADDRESS DATA B

DATA! d0 j d1 j d2 j d3

ADDRESS ! a0 j a1

N

1

! if a0 d3 d2 j if a0 DATA d2 j if ADDRESS DATA d2

N

1

! if ADDRESS DATA DATA j if B DATA DATA

N

2

! or B DATA

N

3

! or DATA B j or ADDRESS B j or B B

N

4

! and B B

N

5

! if B DATA B

g

g

This grammar has converged to a partial solution based on the address line, a0. The most

obvious indication of this convergence is the production, S

20

!N

1

, which gives a probability

of 20=22 that the productions from N

1

will be selected to begin the program de�nition.

Although the productions from N

1

all use the if function, 2 of the 5 productions have a0

explicitly stated in the �rst argument position, and have the data values already assigned.

This means that programs, created from the modi�ed grammar, will tend to converge to

the partial solution, if(a0; d3; d2). Hence, this grammar is not a good representation of

the underlying structure for the 6-multiplexer since it has converged to a partial solution.

To demonstrate that the learnt grammars have embodied useful components of the mul-

tiplexer solution, each grammar was used as the language bias for the original setup for
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the 6-multiplexer (Section 4.1). The results are shown in Table 5.3, along with the origi-

nal results using various human-biased grammars. The results show that the grammars,

created from successful runs, have been biased towards a solution for the 6-multiplexer.

The extremely poor performance of G

50

6m�address

shows what happens if the grammar and

population converge to a partial solution. This implies that an evolved grammar will be

most useful if it is created when the hypothesis space is being searched in a broad fashion

and has not converged. The grammar, G

50

6m�address

, has also performed poorly due to the

crossover operator, 
 = fBg. The initial population that is created with this grammar

has few legal sites for crossover (i.e. few B nonterminals). Hence, there is little search-

ing performed by the population since crossover often fails to �nd legal sites within the

selected derivation trees of the population.

The previous results have shown that it is possible to learn modi�cations to a context-free

grammar that represent components of a problem that are useful. This form of specialising

the search bias, as the evolution proceeds, also improves the performance of the learning

system. Although these results are quite positive, a more important issue exists with the

concept of modifying the initial grammar, G

0

. Namely, whether is it possible to evolve a

grammar that can generalise from one problem to another, similar, problem. This is the

question that is now investigated.

5.5 Incremental Learning

The goal of incremental learning is to build a system which gradually adapts to a particular

class of problems. This means structures that are learnt from a simple problem may be

applied to progressively more complex problems from the same class. This section will

demonstrate that a learnt grammar not only focusses towards a particular problem, but

may be used as a good bias for a more di�cult problem which has similar structure. The

following steps will be followed to illustrate this process.

(a) Learn a series of grammars for the 6-multiplexer.

(b) Select one grammar from this series to be applied to the 11-multiplexer. This selec-

tion will be performed by using a small random training set from the 11-multiplexer.

The results of applying this training set will give an indication of the performance of

each grammar. The best performing grammar, from this series, will be used as the

biased grammar for the 11-multiplexer.

(c) Test the 11-multiplexer using the selected learnt grammar and an unbiased grammar.

The resulting best, average and worst �tness over 100 runs will be used to indicate

the improved performance of the learnt grammatical bias.
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Figure 5.6: The Generation Distribution of Successful runs using G

6m�ifonly

.

5.5.1 Learning the Initial (Generalised) 6-multiplexer Grammar

The selected grammar to be used with the 6-multiplexer was extremely simple. This meant

that there was a possibility of this unbiased grammar being applied to the 11-multiplexer

with some success, given a limitation on population size and generations. The grammar

will be referred to as G

6m�ifonly

, and is de�ned below.

G

6m�ifonly

=

fS;

N = fB;DATA;ADDRESSg;

P

= fif; a0; a1; d0; d1; d2; d3g;

P =

fS ! B

B ! if B B B j DATA j ADDRESS

ADDRESS ! a0 j a1

DATA!j d0 j d1 j d2 j d3

g

g

The grammar was applied with the CFG-GP setup shown in Table 5.1. The small search

space, as de�ned by G

6m�ifonly

, meant that the probability of success was very high.

Over the 100 runs, p

s

was determined as 83%. The frequency distribution, based on the

number of generations to discover a solution, is shown in Figure 5.6.
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The goal of applying this process is to create a suitable grammar to be applied to the 11-

multiplexer. The extension to the 11-multiplexer requires the additional terminal value

for the address line, a2, and the data lines, d4, d5, d6 and d7, to be introduced into

the learnt grammar. The nonterminals DATA and ADDRESS were used so that the

grammar that was learnt could distinguish between these concepts.

5.5.2 Selecting the Biased Grammar from the 6-multiplexer

Based on the results of Section 5.4.1, learnt grammars gradually become more focussed

towards the solution as the number of grammar modifying operations (i.e. the number

of generations) increases. This is a direct consequence of the grammar modifying oper-

ations trying to strengthen the initially weak bias. When applying a learnt grammar to

a new, more di�cult, problem the grammar must not be overly focussed. A grammar

that generates solutions speci�cally for the 6-multiplexer will tend to converged to this

partial solution when applied to the 11-multiplexer. The solution to the 6-multiplexer

will incorrectly classify 512 examples when the 11-multiplexer is tested. This �gure of 512

gives a base-line measure of the minimum expected result that should be achieved by the

biased grammar.

The grammars that were created by successful runs, discovering a complete solution be-

tween 25 and 35 generations inclusive, were selected as the initial set of grammars. This

range was chosen since the evolved grammars had been changed (i.e. each grammar had

between 25 and 35 modi�cations) but had not become overly focussed to the 6-multiplexer.

This selection gave 21 candidate grammars. Each selected grammar was applied to a

randomly selected subset of 30 training examples from the 11-multiplexer, using the pop-

ulation setup from Table 5.1. Once the training set had been solved or 50 generations

had passed, the best program that had been discovered was applied to the remaining 2018

cases of the 11-multiplexer problem. The resulting �tness, applied to this test set, was

assumed to represent a measure of how well the grammar was performing at generating

solutions to the 11-multiplexer problem. This process was repeated 100 times to give an

average performance measure for each grammar. The training example scatter is shown

in Figure 5.7, where 30 values for the 11-multiplexer have been selected at random. The

selected values are shown by an unbroken line, where the spread of values represent the

data space for the 11-multiplexer. The scatter of the 64, 6-multiplexer values, for this

data space are shown by broken lines.

The best performing grammar, from the 21 selected grammars, had an average �tness

(i.e. average misclassi�cation error over 2018 test cases) of 611�128, a best solution with

error 382 and a worst error of 974. This selected grammar, referred to as G

27

6m�biased

, was
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Figure 5.7: The Distribution of Training Cases Used to Select the Biased Grammar.

created after 27 generations and is shown below.

G

27

6m�biased

=

fS;

N = fB;DATA;ADDRESS;N

1

; N

2

; N

3

; N

4

; N

5

; N

6

g;

P

= fif; a0; a1; d0; d1; d2; d3g;

P =

fS ! B j N

1

B !

2

if a1 DATA B j if B B d0 j if a0 d0 B j if a1 B N

1

B ! if ADDRESS DATA DATA j if ADDRESS d3 B j if a0 B B

B ! if ADDRESS B DATA j if a0 DATA N

1

j if a0 DATA B

B ! if N

3

B DATA j if a1 B B j if B N

2

B j if ADDRESS B B

B ! if ADDRESS DATA B j if B ADDRESS B j if B B DATA

B ! if B B B j DATA j ADDRESS

N

1

!

2

if a0 B B j

2

if ADDRESS B DATA j if ADDRESS B B

N

1

! if ADDRESS B N

6

j if ADDRESS N

5

B

N

2

! if B N

4

B j if B B B

N

3

! if B B DATA

N

4

! if a0 B B
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The 11-Multiplexer

Parameters Speci�cations

POPULATION SIZE 500

CREATE MAXIMUM DEPTH 5 200

CREATE MAXIMUM DEPTH 6 100

CREATE MAXIMUM DEPTH 7 100

CREATE MAXIMUM DEPTH 8 100

MAXIMUM FAILURES 100

MAX DEPTH PROGRAMS 10


 = fBg 90%

REPLACEMENT 10%

GENERATIONS 50

FITNESS MEASURE 2048 boolean cases

GRAMMAR G

27

6m�biased�11m

Table 5.4: The 11-Multiplexer System.

N

5

! if B ADDRESS B

N

6

! if a0 DATA N

1

ADDRESS ! a0 j a1

DATA!j d0 j d1 j d2 j d3

g

g

The previous method for selecting the grammar was undertaken to avoid introducing any

human bias into the selection procedure. Apart from the use of a generation window

to select a subset of the 6-multiplexer grammars, the selection of the �nal grammar was

automatic.

5.5.3 Applying the Grammar, G

27

6m�biased�11m

, to the 11-Multiplexer

The grammar,G

27

6m�biased

, was applied to the 11-multiplexer, by extending theADDRESS

and DATA productions to include the additional terms introduced by the 11-multiplexer.

This, extended grammar, is referred to as G

27

6m�biased�11m

. The setup, using this gram-

mar, is shown in Table 5.4. The only change for this setup, from the initial 6-multiplexer

example, is that the MAX DEPTH PROGRAMS parameter has been increased to 10,

to account for the additional complexity of the 11-multiplexer.
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The 11-Multiplexer Results

Grammar Best Average Worst

G

11m�ifonly

448 668� 72 768

G

27

6m�biased�11m

128 333� 94 512

Table 5.5: Incremental Learning: Results for the 11-Multiplexer.

The complete 2048 test cases were used as the �tness measure and the crossover operator

was set to select nodes in the derivation tree labelled by the nonterminal, B. This is

essentially the same setup as that used to train the grammar with the 6-multiplexer. The

measure of improvement was derived from applying the unbiased grammar, G

11m�ifonly

,

using the setup of Table 5.4. This grammar is an extension of G

6m�ifonly

, where the

ADDRESS and DATA productions have been extended to handled the additional values

associated with the 11-multiplexer. The results, for each of these grammars, is shown in

Table 5.5, where the best, average (with standard deviation) and worst result over 100

runs is shown.

These results clearly show that the learnt grammar, G

27

6m�biased�11m

, outperforms the

original, unbiased grammar. This implies that the learnt grammar represents useful prop-

erties from one, simple problem, that may be extended to more complex problems from

the same class. It is worth noting that the base line performance, namely 512 incorrectly

classi�ed examples for the 6-multiplexer solution applied to the 11-multiplexer, was the

worst result with the grammar ,G

27

6m�biased�11m

. This implies that G

27

6m�biased�11m

is, at

worst, producing the partial result based on the 6-multiplexer and, at best, using this as

a stepping stone to the next level of complexity which captures more information about

the 11-multiplexer problem.

5.6 Discussion

The feedback process, introduced in Section 5.3.4, shows one method of modifying a

declarative language bias to improve the convergence of the program induction system,

CFG-GP. The REPLACEMENT operator allows CFG-GP to perform the search for

a program on a second level, by explicitly capturing useful components of �t programs.

The selection pressure, via �tness proportionate selection, will exploit these discovered

components if they give an advantage to generated programs. This process has been

shown to generally improve the performance of CFG-GP. However, this feedback may

also cause a premature convergence to a sub-optimal solution, as has been seen with the

grammar,G

50

6m�address

. This type of problem can be minimised by reducing the probability

of REPLACEMENT occurring. Premature convergence can also occur since the search
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bias is not adjusted to re
ect the new nonterminals that are introduced into the language.

Eventually, the learnt grammar may create programs where there are no legal crossover or

mutation sites. These static programs may propagate through the population and cause

the search process to slow down.

Learning to modify the search bias, with Genetic Programming, has been investigated

by Angeline[1], where each node in a program had an adaptive value for the likelihood

of crossover occurring at that site. A similar approach may be possible with CFG-GP,

where the declarative crossover sites may be adjusted as the evolution proceeds. A simple

extension would be to include any new nonterminals, N

i

, into the set representing the

legal crossover sites, 
, thus allowing the learnt building blocks to be swapped between

�t programs, whilst maintaining the structure that has been previously found to be useful.

The random selection of a terminal site may be improved by using information measures

to select an appropriate terminal to direct the modi�cation of the grammar. Techniques,

such as those demonstrated by Rosca and Ballard, may o�er some direction when trying to

create such a measure. The random selection of a terminal site was found to be appealing

as there were no assumptions made about the structure or execution style of the generated

programs. Hence, although other selection methods may have improved the performance

of the REPLACEMENT operator

7

, it was felt that the method should not rely on

heuristics that were problem or implementation speci�c.

5.7 Conclusion

This chapter has demonstrated a framework for automatically learning to modify an

initially weak language bias. The described process gradually modi�es this initial bias by

exchanging information between the evolving grammar and the �ttest program individual,

each generation. This technique has been demonstrated to improve the convergence of

CFG-GP for the 6-multiplexer. The modi�ed grammar, if used as the initial language

bias for the same problem, has been shown to improve the performance of CFG-GP.

This shows that the learnt grammar has been modi�ed to become biased towards solving

this particular problem. Additionally, the learning system has been shown to be capable

of creating a grammatical bias which may be applied between examples for a class of

problems. This has signi�cant implications when applying CFG-GP, since the importance

of creating a good language bias has been weakened. Although selecting a good initial

grammar is still of paramount importance, the learning system may assist the user to

discover useful constructs in the language. This will often allow a solution to be developed

more easily.

7

Early experiments found that selecting the deepest, left most terminal gave the best performance results with

the multiplexer. This was a result of the preorder execution of the programs and the form of the problem that

was being solved. Hence, the improvement was not felt to be a generalised characteristic and was ignored.



Chapter 6

A Schema Theorem for Program

Induction

This chapter describes a schema theorem for the program induction system, CFG-GP,

de�ned in Chapter 3. A de�nition of a schema is presented that uses the notion of a

partial derivation tree to represent components of a program. This de�nition allows a

schema theorem to be developed for the search operators of selective crossover, selective

mutation and directed mutation. The 
exible nature of a grammar allows this theorem to

describe both �xed-length and variable-length program structures. This is demonstrated

by de�ning a grammar that represents a �xed-length binary string and showing that the

disruption to schemata, for this grammar, is equivalent to both single-point crossover and

single-point mutation for a genetic algorithm. Additionally, a mapping to a grammar

is described that shows how this theorem may be used as a representation of Genetic

Programming.

6.1 Introduction

The schema theorem

1

for genetic algorithms (GA), �rst proposed by John Holland[28], at-

tempts to explain the search behaviour for this class of adaptive algorithms. This theorem

describes how similarity templates are propagated during the evolution of a population

of binary strings. These similarity templates are referred to as schemata and represent

partitions of the search space, often referred to as hyperplanes. The power of the ge-

netic algorithm is argued to have been derived from the implicit parallelism which occurs

when a population of strings is evaluated. Many di�erent hyperplanes are evaluated in

an implicit manner each time a string from the population is evaluated. The evaluation

of a population of strings gives a statistical measure of the �tness for each hyperplane.

1

The schema theorem is also known as the Fundamental Theorem of Genetic Algorithms.

117
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Although there has been some criticism of this explanation, the formulation of the schema

theorem has been useful in guiding discussion about the properties and expected perfor-

mance when applying a GA to a variety of problem domains. A brief introduction to the

concepts and terminology commonly used when describing this theorem is presented in

Appendix C.

The formulation of the schema theorem for CFG-GP will proceed as follows. The def-

inition of a similarity template, H , for a context-free grammar will be presented. The

disruption to this template, due to the genetic operators described in Chapter 3, will

than be calculated. Using these expressions, a schema theorem will be presented, based

on the dynamics of the CFG-GP system. The general nature of this de�nition will be

demonstrated by presenting a grammar that mimics the �xed-length characteristics of a

GA. Additionally, a second grammar will be de�ned that allows the system to capture

many of the properties of the Genetic Programming formalism.

6.2 The De�nition of H for a Context-Free Grammar

A similarity template for a program, de�ned by a context-free grammar, is represented

by a partial derivation tree rooted in some nonterminal. This allows any component

of a program to be considered as a template. The de�nition of H for binary strings

requires a special symbol to be introduced, representing the don't care condition. This

is not necessary for the grammatical de�nition of H , since every nonterminal in a partial

derivation implicitly represents all legal strings that are derivable from the nonterminal.

De�nition 1 A schema H for a context-free grammar is the (partial) derivation tree

A

�

) �, where A 2 N and � 2 fN [

P

g

�

.

For example, consider the following derivation steps.

S

S!andBB

) and B B

B!x

) and x B

B!y

) and x y

The following schemata are represented by the derivation tree associated with these steps.

S ), B ), S

+

) and B B, S

+

) and x B, S

+

) and B y, S

+

) and x y, B

+

) x, B

+

) y.

The next three sections describe the probability of disrupting A

�

) �, for each of the

genetic operators described in Chapter 3. For simplicity, the assumption will be made

that any particular schema exists only once for each derivation tree in the population.

(This assumption will be relaxed in Section 6.6 to give the complete schema theorem for

CFG-GP.)
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6.3 Schema Disruption due to Selective Crossover

The selective crossover operator randomly selects a nonterminal site for crossover from

the set 
. The disruption to A

�

) � occurs with a probability based on the number of

legal sites from 
 within the schema. However, the legal crossover sites on the frontier

of � must be discounted, due to the lack of disruption occuring to the schema at these

nonterminals.

Proposition 1 The probability of the schema A

�

) �, within derivation tree � 2 D

i

(G),

being disrupted during selective crossover, where 
 � N , is de�ned as follows.

�




=

8

>

>

>

<

>

>

>

:

j A

�

) � j




� j � j




�1

j � j




A 2 


j A

�

) � j




� j � j




j � j




A 62 


Here;j A

�

) � j




represents the number of nonterminals 2 
 that occur in the schema,

j � j




is the number of nonterminals 2 
 at the frontier of the schema, j � j




is the

number of nonterminals 2 
 in the total derivation tree rooted in S.

Note that if j � j




= 0, then �




= 0.

6.4 Schema Disruption due to Selective Mutation

The selective mutation operator randomly selects a nonterminal site for mutation from the

set �. The disruption to A

�

) � occurs with a probability based on the number of legal

sites from� within the schema. However, the legal crossover sites on the frontier of � must

be discounted, due to the lack of disruption occuring to the schema at these nonterminals.

An additional term for disruption occurs with selective mutation, since selecting any path

on the derivation tree that leads to the schema, will remove this schema from the derivation

tree.

Proposition 2 The probability of the schema A

�

) �, within derivation tree � 2 D

i

(G),

being disrupted during selective mutation, where � � N , is de�ned as follows.

 

�

=

8

>

>

>

<

>

>

>

:

j S; ::; A j

�

+ j A

�

) � j

�

� j � j

�

�1

j � j

�

A 2 �

j S; ::; A j

�

+ j A

�

) � j

�

� j � j

�

j � j

�

A 62 �

Here; j S; ::; A j

�

represents the number of nonterminals 2 � in the derivation tree from

the start symbol to the nonterminal A, j � j

�

is the number of nonterminals 2 � at the
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frontier of the schema and j � j

�

is the number of nonterminals 2 � in the total derivation

tree rooted in S.

Note that if j � j

�

= 0, then  

�

= 0.

6.5 Schema Disruption due to Directed Mutation

The directed mutation, B ! � � �, selects, at random, the root of a derivation step,

using production B ! � and replaces it with the derivation using production B ! �.

The disruption to a schema occurs when the schema is contained within the derivation

B ! � which is selected for directed mutation. Additionally, a schema will be disrupted if

the derivation selected for directed mutation appears on the path from the start symbol S

to the head of the schema, A. This may be viewed as a special case of selective mutation.

Proposition 3 The probability of the schema A

�

) �, within derivation tree � 2 D

i

(G),

being disrupted during directed mutation B ! � � �, is de�ned as follows.

'

B!���

=

j S; ::; A j

B!�

+ j A

�

) � j

B!�

j � j

B!�

Here, j S; ::; A j

B!�

represents the number of derivations B ! � that appear on the path

from S to the head of the schema, A, j A

�

) � j

B!�

represents the number of derivations,

in the schema, which have used the production B ! �, j � j

B!�

is the total number of

derivations B ! � that occur in the derivation tree �.

Note that if j � j

B!�

= 0, then '

B!�

= 0.

6.6 A Schema Theorem for CFG-GP

The GA schema theorem implicitly assumes that all members of a population are the

same size. This cannot be assumed when using the grammatical description of programs,

and results in two observations[57, 88].

� A schema A

�

) � may exist more than once in a population member � 2 D

i

(G).

� The probability of disrupting a schema will depend on the size of the population

member � which contains the schema. This is clear from the previous de�nitions of

disruption. As the size of the derivation tree � increases, the probability of disruption

will generally decrease.

Before presenting the schema theorem for CFG-GP, these variations must be incorporated

into the basic de�nition of �,  and '.
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The average �tness of a schema, within a population D

i

(G) of derivation trees, is calcu-

lated as follows.

^

f (A

�

) �) =

X

�2D

i

(G)

f(�): j � j

A

�

)�

X

�2D

i

(G)

j � j

A

�

)�

where

X

�2D

i

(G)

indicates a sum over the n derivation trees that exist in the population,

f(�) is the �tness of � and j � j

A

�

)�

represents the number of schema in the derivation

tree �.

The average disruption to a schema, due to selective crossover, within a population D

i

(G)

of derivation trees, is calculated by summing the number of schema in each �, multiplied

by the probability of disruption for this schema for each �. This total disruption must be

divided by the number of schema that exist in the entire population to give an average

measure of disruption. Since each instance of the schema will have the same probability

of disruption, within a derivation tree �, the average disruption due to selective crossover

is de�ned as follows.

�

�

=

X

�2D

i

(G)

�: j � j

A

�

)�

X

�2D

i

(G)

j � j

A

�

)�

The average disruption to a schema, due to selective mutation, is more complex then the

previous average disruption for selective crossover. Why? The disruption to a schema for

selective mutation must account for the path, j S; ::; A j

�

, from the root of the derivation

tree to the head of the schema, A. Two identical schema in the same derivation tree, �,

will have di�erent paths to their commencing nonterminal, A, and therefore may have

di�erent probabilities of disruption. The average disruption due to selective mutation is

de�ned as follows.

�

 =

X

�2D

i

(G)

X

A

�

)�2�

 

X

�2D

i

(G)

j � j

A

�

)�

Here, the summation over  indicates that the value of  for each instance of the schema

A

�

) � which occurs in the derivation tree �must be summed to give the average disruption

for the derivation tree �.

In a similar manner, the average disruption of a schema, due to directed mutation, is

de�ned as follows.
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�

'

=

X

�2D

i

(G)

X

A

�

)�2�

'

X

�2D

i

(G)

j � j

A

�

)�

From the previous statements the variable-length nature of the programs generated from

a grammar may be incorporated into the description of schema disruption. The following

assumptions are now made, to allow the schema theorem for programs to be simpli�ed.

(a) The possibility of a schema being reintroduced during selective crossover, selective

mutation or directed mutation will be ignored. The schemata that are created when

the mutation operators generate new derivation trees based on the grammar are

similarly excluded.

(b) The schemata that are explicitly introduced by the directed mutation production

B ! � will be ignored.

(c) The program induction system has been de�ned to allow many di�erent crossover

and mutation operations. For example, there can be several di�erent 
 sets de�ned,

each with a di�erent probability of being applied. To simplify the schema theorem

only one selective crossover, selective mutation and directed mutation operator will

be allowed. The probability of each of these operations occuring will be represented

by p

c

, p

m

and p

d

, respectively.

In developing a schema theorem for CFG-GP, the expected number of instances of A

�

) �

which will be propagated to the next generation, due to proportional �tness selection,

must �rst be calculated. Let H = A

�

) � and m(H; t) represent the number of schema in

the population at generation t.

Lemma 1 m(H; t+ 1) = m(H; t)

^

f (H; t)

�

f (t)

where

^

f (H; t) is the average �tness of schema H in the population at generation t, and

�

f (t) is the average �tness of all programs in the population at generation t.

Proof: Let n be the number of programs (derivation trees) in the population. The

number of times a single derivation tree � instantiates a schema is given by j � j

A

�

)�

. The

number of instances of a schema in the total population is therefore given by

X

�2D

i

(G)

j � j

A

�

)�

A derivation tree, �, with �tness f(�) is reproduced by �tness proportionate selection

with probability:
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n:f(�)

X

q2D

i

(G)

f(q)

Therefore, the number of instantiations of a schema in the next generation, due to �, will

be:

n:f(�)

X

q2D

i

(G)

f(q)

: j � j

A

�

)�

Hence, the total number of instantiations of A

�

) �, due to the total population in

generation t + 1, will be:

X

�2D

i

(G)

n:f(�)

X

q2D

i

(G)

f(q)

: j � j

A

�

)�

Now, the average �tness of the population in generation t is given by:

�

f (t) =

1

n

X

q2D

i

(G)

f(q)

Thus,

m(H; t+ 1) =

1

�

f (t)

:

X

�2D

i

(G)

f(�): j � j

A

�

)�

= m(H; t)

1

�

f (t)

:

X

�2D

i

(G)

f(�): j � j

A

�

)�

X

�2D

i

(G)

j � j

A

�

)�

Since

^

f (A

�

) �) =

X

�2D

i

(G)

f(�): j � j

A

�

)�

X

�2D

i

(G)

j � j

A

�

)�

the previous statement may be rewritten as

m(H; t+ 1) = m(H; t)

^

f (H; t)

�

f (t)

2
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Theorem 1 The schema theorem for program induction, with a population size of n,

using selective crossover, selective mutation, directed mutation and �tness proportionate

selection, where H = A

�

) �, may be stated as follows.

m(H,t+1) � m(H; t)

^

f(H;t)

�

f (t)

�

(

(1 - p

c

�

�




(t))(1�

1

n

m(H; t)

^

f(H;t)

�

f (t)

)(1� p

m

�

 

�

(t))(1� p

d

�

'

B!���

(t))

)

Proof:

From Lemma 1, the expected number of schema reproduced to the next generation is

m(H; t)

^

f (H; t)

�

f (t)

Considering the disruptive impact of selective crossover, the upper bound on the probabil-

ity that a schema will be disrupted has been previously shown to be

�

�




(t) for generation

t. Therefore, the lower bound on a schema surviving due to selective crossover will be

(1� p

c

�

�




(t)). In a similar manner, the lower bound of schema survival due to selective

and directed mutation is (1�p

m

�

 

�

(t)) and (1�p

d

�

'

B!���

(t)), respectively. These dis-

ruptions may be independently treated and are therefore combined as shown in Theorem

1. The additional term,

(1�

1

n

m(H; t)

^

f (H; t)

�

f (t)

)

represents the e�ect of selecting both derivation trees (programs) for crossover using �tness

proportionate selection, in a manner similar to that shown with the GA Schema Theorem

of Appendix C.

2

6.7 A Representation of Fixed-Length Schemata

This section demonstrates the general nature of the grammatical de�nition of schemata

that has been previously presented. This will be achieved by de�ning a grammar for

�xed-length binary strings and showing that the disruption to the schema, A

�

) �, is

equivalent to the disruption of the GA schema, H . The concepts of de�ning length, �(H),

and schema order, o(H), for a GA are introduced in Appendix C. These GA concepts will
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V

S

S 1

S2

V
S3

V
S4

V

V

S 5

V S 6

V

1

1

0

1

0

0

1

Figure 6.1: An Example Derivation Tree for 7-bit String using GA

7

.

S2

V
S3

V
S4

V S 5

V1

0

0

0 1 0

GA Schema 0*10

the "don’t care" condition

S6

Derivation Rooted in S2

* ** *

Note, V is  necessary to represent

Figure 6.2: Equivalent Schema Representations between GA

l

and a Binary String.

be matched to components of the grammar, so that expressions about disruption between

the grammar and a �xed-length binary string may be made.

A grammar GA

l

, which represents the language of �xed-length binary strings of length

l � 2, may be de�ned as follows.

GA

l

= fS;N = fV; S

1

; : : : ; S

l�1

g;

P

= f0; 1g;

P = f S ! V S

1

S

1

! V S

2

S

2

! V S

3

: : :

S

l�1

! V

V ! 0 j 1 g

g
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S k

S k+1

S
V

V

V
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S
S 1

V
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V

S k

V

V
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V

0/1

End of String Schema

Schema from S General Schema

V

..

k + 
S

k + 

k + δ(Η)+1

δ(Η) −1

δ(Η)k + 
S

V

S

k+1
S

S k + δ(Η)−1
S

k + δ(Η)

δ(Η)

Single-valued Schema

Figure 6.3: The Four Classes of Grammatical Schemata for GA

l

.

Figure 6.1 shows an example of a derivation tree for a 7-bit string using GA

7

. The

grammar uses the nonterminal, V , so that schemata may be represented which do not have

all 0 and 1 values explicitly de�ned. This is shown in Figure 6.2, where the represented

schema may be written as follows.

S

2

+

) 0 V 1 0 S

6

The nonterminal, S

6

, is used to represent the rest of the string. The nonterminals V and

S

6

are at the frontier of the derivation.

6.7.1 Schemata Disruption for GA

l

The schemata represented within the grammar, GA

l

, may be generalised to four classes,

as shown in Figure 6.3. By calculating the disruption to schemata, for each of these

classes, all possible schema disruptions may be established for the genetic operators of

selective crossover and selective mutation. The sets, 
 and �, will be selected so that

equivalent genetic operators to those of a GA, for crossover and mutation, may be formed.

The disruption to the schemata of GA

l

and an equivalent �xed-length binary string will

then be shown to be identical. To commence this analysis, the GA schema properties for

de�ning length and schema order are matched to the grammar, GA

l

. This will allow the

expressions, �




and  

�

, to be directly compared with the genetic algorithm disruption.

The GA de�ning length, �(H), represents the length of the schema in terms of the number

of nonterminals S

k

. The GA schema order, o(H), represents the number of derivation steps

which have applied the productions V ! 0 or V ! 1. Using the grammar GA

7

as an

example language, these types of schemata have the following interpretation.
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� The General Schema from S

k

represents any schema that does not commence with

the start string, S and does not include the �nal nonterminal S

6

. For example,

the schema represented by the derivation tree S

2

+

)0V1S

5

is one form of General

Schema.

� The Schema from S represents any schema that commences with the start symbol.

For example, the schema represented by the derivation tree S

+

)0V1S

3

is one form

of Schema from S.

� The End of String Schema represents any schema that includes the �nal nonterminal

S

6

, in the string de�nition. For example, the derivation tree S

4

+

) 1 V 1 is one form

of End of String Schema.

� The Single-valued Schema represents the simplest form of schema, namely a single

bit from the binary string. For example, the derivation tree V

V!0

) 0 is one form of

Single-valued Schema.

The selective crossover operator, using GA

l

, may be restricted to a GA single-point

crossover by restricting 
, as follows.


 = fS

1

; : : : ; S

l�1

g.

The selective mutation operator, using GA

l

, may be restricted to a GA single-point, bit-


ipping, mutation by restricting �, as follows

2

.

� = fV g.

For the grammar GA

l

, the following values are de�ned for the number of legal crossover

and mutation sites involved in a complete derivation tree, �.

j � j




= l� 1

j � j

�

= l

Based on Figure 6.3, the following statements may be made about the schemata compo-

nents. Substituting these values into Proposition 1 or Proposition 2, as appropriate,

results in the original GA values for disruption of H , due to single-point crossover and

bit-
ipping mutation. Each of these substitutions will now be shown, where the goal is to

show that the disruption, due to crossover, is

�(H)

l�1

, and that of mutation is

o(H)

l

.

General Schema from S

k

For the selective crossover operator, applied to the General Schema from S

k

, the head of

the schema A 2 
. The number of crossover sites j A

�

) � j




= �(H) + 2 and the number

of crossover sites at the frontier of the schema, j � j




= 1, giving �




=

�(H)

l�1

.

2

The assumption is made here that selective mutation will not reintroduce the string that has been removed

due to mutation. This assumption could be explicitly stated by using directed mutation for the two cases,

V ! 0 � 1 and V ! 1 � 0. For the purpose of demonstrating that the schema disruptions are equivalent, this

was not deemed necessary.
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For the selective mutation operator, applied to the General Schema from S

k

, the head of

the schema A 62 �. The number of mutation sites j S; : : : ; A j

�

= 0, j A

�

) � j

�

= �(H)+ 1

and j � j

�

= �(H) + 1� o(H), giving  

�

=

o(H)

l

.

Schema from S

For the selective crossover operator, applied to the Schema from S, the head of the schema

A 62 
. The number of crossover sites j A

�

) � j




= �(H)+1, and the number of crossover

sites at the frontier of the schema, j � j




= 1, giving �




=

�(H)

l�1

.

For the selective mutation operator, applied to the Schema from S, the head of the schema

A 62 �. The number of mutation sites j S; : : : ; A j

�

= 0, j A

�

) � j

�

= �(H) + 1 and

j � j

�

= �(H) + 1� o(H), giving  

�

=

o(H)

l

.

End of String Schema from S

k

For the selective crossover operator, applied to the End of String Schema from S

k

, the

head of the schema A 2 
. The number of crossover sites j A

�

) � j




= �(H) + 1, and the

number of crossover sites at the frontier of the schema, j � j




= 0, giving �




=

�(H)

l�1

.

For the selective mutation operator, applied to the End of String Schema from S

k

, the head

of the schemaA 62 �. The number of mutation sites j S; : : : ; A j

�

= 0, j A

�

) � j

�

= �(H)+1

and j � j

�

= �(H) + 1� o(H), giving  

�

=

o(H)

l

.

Single-Valued Schema from V

For the selective crossover operator, applied to the Single-Valued Schema from V , the

head of the schema A 62 
. The number of crossover sites j A

�

) � j




= 0, and the number

of crossover sites at the frontier of the schema, j � j




= 0, giving �




= 0.

For the selective mutation operator, applied to the Single-Valued Schema from V , the

head of the schema A 2 �. The number of mutation sites j S; : : : ; A j

�

= 1, j A

�

) � j

�

= 1

and j � j

�

= 0, giving  

�

=

1

n

�

o(H)

l

.

6.7.2 Discussion of Fixed-Length Grammars

The previous section demonstrates that the disruption to schemata, given by �




and

 

�

, may be specialised to the genetic algorithm schema for H . This occurs for the

grammar GA

l

with 
 = fS

1

; : : : ; S

l�1

g and � = fV g. The disruption due to selective

mutation is determined as

o(H)

l

, whereas the genetic algorithm disruption to mutation is

independent of the length of the string. This occurs because the GA mutation operator

is applied with a probability based on any individual bit from a string being 
ipped. This
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independent mutation is not de�ned for selective mutation. The di�erence between these

two mechanisms accounts for the di�ering measures of disruption. If selective mutation is

de�ned such that the probability of mutation occurring, at any nonterminal 2 �, is equal

and independent, then the disruption to the GA schemata and the context-free grammar,

GA

l

, is identical.

6.8 CFG-GP as a Generalisation Of Genetic Programming

A schema theorem for genetic programming(GP) has been described by O'Reilly[57].

This extends the �xed-length description of binary strings to tree-structured LISP S-

expressions. This was achieved by de�ning the concept of a tree fragment, using a

wildcard that matched any subtree

3

. The fragment was de�ned as a tree that has at least

one leaf that is a wildcard. The wildcard corresponded to an incomplete S-expression.

The entire fragment also had a wildcard at its root position to represent the fact that the

fragment could be fully embedded in a tree. This led to a de�nition for tree-structured

schema which describes an unordered collection of both completely de�ned S-expressions

and incompletely de�ned S-expressions. These incomplete S-expressions were represented

as fragments. The formal de�nition for a GP-schema was stated by O'Reilly, as follows[56].

De�nition 2 A GP-schema H is a set of pairs. Each pair is a unique S-expression tree

or fragment (i.e. incomplete S-expression tree with some leaves as wildcards) and a cor-

responding integer that speci�es how many instances of the S-expression tree or fragment

comprise H.

Given this de�nition of GP-schema, a corresponding analogy to de�ning length and

schema order for arbitary tree structures was than developed. The lack of a formal

structure with GP programs made the schema theorem di�cult to express. For example,

several functions had to be introduced to describe how these schemata were represented

in the population of programs. It is worth noting the di�erence in complexity between

the GP-schema de�nition and the grammatical schema, A

�

) �. The formal structure of

a grammar has allowed the structure of components of a program to be easily and clearly

stated.

The generalisation of CFG-GP to genetic programming will be shown by de�ning a map-

ping between GP constructs and a grammar. The equivalent program forms and number of

sites where disruption to schemata occur will be used to argue that the created structures

are identical. If the program structures and the operators that change these structures,

each generation, are identical then the space of programs, and their transformations, are

3

The wildcard performed the same role as ? for the schema description with genetic algorithms.
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Crossover and Mutation
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Figure 6.4: Equivalent Structures between Genetic Programming and the language L(GP

t;f

).

the same. Hence, the disruption to schemata for CFG-GP and GP, under these circum-

stances, will be equivalent.

Given the set of GP terminals GP

t

= ft1; t2; : : : ; tig and GP functions GP

f

= ff1; f2; : : : ; fjg

(with number of arguments a

1

; a

2

; : : : ; a

j

) we de�ne the grammar GP

t;f

as follows.

GP

t;f

= fS;N=f g;

P

= ft1; t2; : : : ; ti; f1; f2; : : : ; fjg,

P = f

S ! f1 S : : : S j : : : j fj S : : : S

S ! t1 j t2 j : : : j ti

g

g

Each GP function fj has a

j

number of S's in the production de�ned for fj. The language,

L(GP

t;f

), represents any function that may be represented using the Koza-style GP de�nition

4

.

As shown in Figure 6.4, there is an equal number of sites for crossover or mutation using the GP

de�nition and the grammatical de�nition with the grammarGP

t;f

. In fact, the crossover de�ned

by GP and selective crossover, using 
 = fSg, create the same new programs when applied.

This implies that the schemata represented by these two descriptions will be disrupted to the

same extent

5

. Additionally, mutation may be described by setting � = fSg. This gives the

GP mutation operator described by Koza[44], which was not considered in the original schema

de�nition for GP presented by O'Reilly[57]. A schema theorem, for genetic programming, may

now be stated as a restricted version of the previous grammatical schema theorem, as follows.

4

This assumes that no automatically de�ned functions or other imposed structures are allowed.

5

This ignores the GP bias that gives 90% crossover to internal nodes. This form of search bias is assumed to

be constant over any function or terminal site.
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Theorem 2 The GP schema theorem, using mutation and crossover, is de�ned when the fol-

lowing conditions are true.

(a) �




is as in Proposition 1.

(b)  

�

is as in Proposition 2.

(c) H = A

�

) �.

(d) G = GP

t;f

.

(e) 
 = fSg.

(f) � = fSg.

6.9 Discussion

The genetic technique of mutation is normally viewed as a local syntactic search. Crossover is

normally viewed as a global search. However, with the grammatical genetic de�nition, selective

mutation is more disruptive than selective crossover. This is a result of the additional term used

with disruption, due to mutation, which includes the path from the start symbol to the head of

the schema. Since this term, j S; : : : ; A j

�

, will always be greater or equal to zero, the disruption

will always be equal or greater. However, as j A

�

) � j

�

becomes large j A

�

) � j

�

�j S; : : : ; A j

�

.

Hence, when the schemata become large, the disruptions, due to crossover and mutation, are

equal to a �rst approximation. Extending this further, if 
 = � then, for large schemata,

�




=  

�

. This result partially accounts for the general tendency to omit mutation when

applying genetic programming techniques. If the function and terminal sets for GP are not

large (which is often the case), then the initial population will contain enough building blocks

to support the evolution of a solution. The disruptive nature of mutation will not be a bene�cial

contributor to the search. The introduction of selective mutation and directed mutation with

CFG-GP avoids this problem, allowing a grammar to be de�ned where mutation performs the

role of a local search operator, with minimal disruption.

The independent, bit-level, mutation of GA's may be modelled by assuming that any nontermi-

nal 2 � has equal probability of being mutated in the manner described by selective mutation.

In this case, the de�nition for  is independent of the size of the derivation tree which contains

the schema.

Proposition 4 The probability of a schema A

�

) �, within derivation tree � 2 D

i

(G), being

disrupted during selective independent mutation, where the probability of mutation is p

m

, will

be:

(1� p

m

)

 

�

where
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�

=

8

>

>

>

<

>

>

>

:

j S; ::; A j

�

+ j A

�

) � j

�

� j � j

�

�1 A 2 �

j S; ::; A j

�

+ j A

�

) � j

�

� j � j

�

A 62 �.

The subsequent de�nition for the schema theorem, using selective independent mutation, re-

quires this de�nition of  to be substituted for Proposition 2. This de�nition of  would then

give identical values for the disruption of H for a genetic algorithm, when using the grammar

GA

l

.

6.9.1 Maintaining Schema

To ensure that �t schemata are propogated to future generations, when using the genetic oper-

ators of selective crossover and selective mutation, the following expression must be minimised.

j A

�

) � j

f
[�g

� j � j

f
[�g

j � j

f
[�g

One possibility is to modify grammar productions to reduce the number of nonterminals 2

f
 [ �g in the derivation tree representing a schema. For example, given the schema A

+

) bc

with the following derivation steps

� A �

A!Bc

) �Bc�

B!b

) �bc�,

an alternative production A! bc, substituted to create the same program string, would improve

the chances of the schema surviving. The derivation steps could then be modi�ed to the

following single derivation step.

� A �

A!bc

) �bc�

The technique involved with learning grammatical bias, as described in Chapter 5, is one method

for developing a grammatical language where the building blocks are discovered and protected

by their explicit de�nition within the de�ned (and learned) grammar.

Alternatively, the value of j � j

f
[�g

must increase to protect each schema in a derivation tree.

This may account for the condition of bloating that is observed with genetic programming[55].

The growth in program depth, of the average population member, appears to go unchecked

unless an explicit bound on the maximum depth of a program is enforced. The use of explicitly

introducing introns into the population has been shown to improve the performance of GP for

some problems[55] and therefore suggests that the size of each population member has a direct

relationship to the performance and likelihood of success for the population, as a whole.

For example, the grammar GA

l

could be extended using a nonterminal C with production
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C ! �. The productions could then be modi�ed as follows.

P = fS ! CV S

1

j CV S

2

C j : : :

These changes to GA

l

do not a�ect the overall language de�ned by L(GA

l

). They do, however,

change the possible intermediate forms of schemata. Future work is required to describe how

changes to the grammar, G, and the sets 
 and �, relate to building and maintaining schemata,

and to the overall performance of CFG-GP. It may also be possible to extend this work into

the �eld of �tness landscapes, where a landscape may represent a particular grammar and the

operators that apply to this landscape, based on 
 and �. These concepts are left for future

work.

6.10 Conclusion

This chapter has shown the de�nition for a schema theorem for the program induction system,

CFG-GP. The schema theorem has been shown to subsume the GA and GP schema de�nitions

under certain conditions

6

. Thus, the schema theorem for CFG-GP allows both �xed- and

variable-length languages to be de�ned and represented under the one framework. An analysis

of the schema disruption properties have allowed some explanations to be proposed for certain

concepts that have arisen in the �eld of program induction. In particular, the concepts of

bloating, search bias (in terms of L(G) and the bias de�ned by the sets 
 and �) and learnt

bias (in terms of changing the de�nition of G to protect building blocks of L(G)) have been

clari�ed by the implications of the disruption to schemata de�ned by �,  and '.

The presentation of a system of learning that incorporates general grammatical de�nitions and

restrictions to crossover and mutation sites suggests further work in investigating forms of G,
,

� and B ! � � �, that form languages with varied properties.

6

Although the properties of these learning systems di�er from CFG-GP (Chapter 3), the basic structures that

are manipulated are shown to be equivalent.



Chapter 7

Conclusions

7.1 Introduction

This thesis has presented a uni�ed framework for representing language bias and search bias

using an evolutionary learning system. The use of a formal grammar to represent the language

bias has allowed the search space to be declaratively represented and to allow a declarative

speci�cation of several search techniques. The learning system, CFG-GP, has been applied to a

number of arti�cial problems and a natural resource problem, namely the prediction of Greater

Glider density. The results of this work show that CFG-GP may be successfully applied to a

learning problem that requires typing, functional structure and where some knowledge about

the likely structure of a good solution is known.

The motivation for this work was presented in Chapter 2, where it was argued that bias is an

important component of learning systems. Although the early work on bias focussed on systems

which are point-based, work using bias with population-based systems has shown that bias is

important irrespective of the learning method.

The theoretical results of Valiant[74] and Wolpert et al.[92] have been used to argue that bias is

necessary if a learning system is to be applied to a broad range of problem domains. Although

the No Free Lunch theorem implies that all learning systems will perform poorly over some

domains, the applicability of a system in a given domain should be improved by allowing the

language and search methods to be declaratively stated. This promotes exploration of possible

solutions without having to change the internals of the learning system and therefore allows

expert knowledge to be used to direct the search in an unambigous manner.

The ability of a learning system to shift bias during the search for a solution extends the

learning strategies available to the system. For a di�cult problem, the ability to narrow the

search space may allow the discovery of a solution that would otherwise have been overlooked.

The work presented in Chapter 5 has shown that it is possible to adapt the initial grammar

to modify the search space and represent generalised properties of the problem. Modifying the

134
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grammar explicitly changes the search bias. Additionally, a modi�ed grammar may be used

as input to a subsequent application of CFG-GP. This has been shown by the system learning

a biased grammar for the 6-multiplexer which was applied successfully to the 11-multiplexer.

This separation of the language speci�cation and the population members allows a declarative

method for representing properties that have been discovered as useful by CFG-GP during the

evolution of a solution. A further advantage is that the modi�ed grammar may be analysed by

the user to assist in creating a grammar that is biased towards promising program structures.

A theoretical analysis, following Holland's Schema Theorem for Genetic Algorithms[28], has

been presented in Chapter 6. This work is important in that it demonstrates a uni�ed descrip-

tion for both �xed-length and variable-length structures and their likely propagation during

evolution, based on the CFG-GP framework.

7.2 Contributions of this Thesis

Formal Grammars for Language Bias: The use of formal grammars to represent language

bias in a genetic programming framework came to us independently of other work. However,

we cannot claim priority for this concept as a number of other authors published similar ideas

during the same time period. Most other approaches do not maintain the derivation trees to

represent the population, preferring to parse the programs to create a derivation tree when

required. This has led to problems with ambiguity when parsing was required.

Representing Programs Explicitly by their Derivation Trees:Preserving the derivation

tree to represent each population member arose from discussions with William Cohen, but we

appear to have been anticipated in this by Mizoguchi et al.[53].

Merit Selection as Bias: The probabilistic representation of productions in the grammar

appears to be entirely original within the GP framework.

Selective Search Operators: The generality of the search operators selective crossover and

selective mutation appears to be entirely original. This generality arose from the schema theo-

rem work, where the ability to specify particular sites for mutation and crossover was required

to permit the modelling of GA operators. The ability to declaratively specify how the search

for new programs is to proceed has been empiricially demonstrated in this thesis to be a very

useful addition to the GP framework.

Directed Search Operator: The directed mutation operator appears to be entirely original.

This operator allows many di�erent partial programs to be represented and modi�ed in a declar-

ative framework. Additionally, the mutation can alter the search space so that syntactically

distant constructions may be closely associated.

Learning a Grammar as Search Bias: The method of evolving the initial grammar, de-

scribed in Chapter 5, appears to be entirely original. Hemmi et al.[27] have proposed a method
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for learning how to modify a grammar, however their details were minimal and it appears to

describe work in progress. The framework we have presented is quite general and does not re-

move the possibility of expressing any sentence that was originally derivable from the grammar.

The ability to create new nonterminals and to adjust the merit selection values for productions

also appears to be original.

Schema Theorem for Program Induction: There is some overlap between O'Reilly's

work[56] and the schema theorem described in Chapter 6. However, the grammatical description

that has been derived leads to a simpler and more usable formulation of the schema theorem

for program induction. In addition, the framework allows both �xed-length and variable-length

structures to be described in a uni�ed manner.

Framework for Bias: A framework for representing language and search bias within an

evolutionary context has not been previously presented. This framework allows users of the

GP paradigm to view their problem in a di�erent manner. For example, they should consider

the �tness measure as a selection bias, the function and terminal set as a language bias and

crossover as a search bias. This may lead to more emphasis being directed towards controlling

and representing these biases.

7.3 Future Work

This section will describe some directions that could be explored as a result of this thesis. The

short-term work includes extending the language and search bias to allow greater control over

the generated hypotheses. More speculative work includes exploring grammatical forms and

their properties in relation to the schema theorem and explicitly representing partial programs

as members of the evolving population.

7.3.1 Extending the Language and Search Bias

The work presented here has used a context-free language. Wong et al.[93, 94] have developed a

similar learning system which uses a restricted class of context-sensitive languages. A context-

sensitive language uses productions of the form �! �, where � 2 fN[

P

g

+

and � 2 fN[

P

g

�

.

Is it di�cult to extend the CFG-GP system to a CSG-GP system? The required changes to

CFG-GP would include the following.

� The generation of the initial population would have to be modi�ed so that min-

depth-tree, from �, was considered when determining min-depth-tree for the entire

production.

� The de�nition of selective crossover 
 and selective mutation � sets would be ex-

tended to allow f

P

[Ng

+

to represent crossover and mutation selection sites.
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� The de�nition of directed mutation would be extended to � ! � � 
, where

� 2f

P

[Ng

+

. This extends directed mutation merely by having a more speci�c

description of the location to commence mutation.

Each of these modi�cations is easily incorporated into the CFG-GP framework because the

derivation trees are maintained as representations of the population. The main function that

would need to be written is one that matches an arbitary combination of terminals and non-

terminals at some level of a derivation tree. There are no changes to the evaluation (�tness)

method or the overall structure of the original system.

A further issue for research involves describing the forms of bias that cannot be described using

a context-free grammar. There is an assumption that a context-sensitive grammar is necessary

for some problems. Work is required to eulicidate the forms of bias and types of problems that

require this additional expressiveness.

7.3.2 Further Knowledge Representations

The situation may arise where a program is being evolved which can be described in detail apart

from several features. These features represent the program components to be searched. The

ability to be able to express a partially written program and link a grammar to the components

that must be discovered would be a useful addition to the CFG-GP framework. This allows

the opportunity to create complex program structures with several distinct components being

evolved together. This type of framework would be useful when studying learning theories and

co-evolution.

For example, the structure of a sort program could be given, where the inner loop is to evolve

based on the grammar, G

sort

, as follows.

int *sort(list, length)

int *list, length;

{

int i, temp;

for(i=0;i<length-1;++i)

{

temp=list[i];

L(G

sort

)

}

return(list);

}
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The grammar, G

sort

, could be de�ned as follows.

G

sort

=

fS;

N = fSTATEMENTS; STAT1; STAT;VAR;RELg;

P

= ftemp; list[i]; list[i+ 1]; if; ; ;<;>;=;==g

P =

fS ! STATEMENTS

STATEMENTS! STAT1 ; STATEMENTS j STAT1

STAT1! if ( STAT ) fSTATg; j STAT ;

STAT ! VAR REL VAR j V AR = V AR

VAR! list[i] j list[i+ 1] j temp

REL!<j=j==j>

g

g

It may be desirable for some applications to explicitly express constraints in terms of a combina-

tion of some terminals in the language. For example, a function that tested two arguments for

equality is trivially true if both arguments are syntactically identical. We may wish explicitly

de�ne the patterns that cannot be initially generated. A set of explicit constraints to avoid this

situation could be de�ned in a manner similar to the work of Cohen[10], where a language was

used to represent constraints about which conditions could be meaningfully generated. The

main issues with this form of explicit bias include the selection of a language to represent these

constraints and a method to handle these constraints during crossover and mutation. It is worth

noting that a directed mutation may also be used to detect and repair program components.

It is currently not clear whether using explicit constraints would provide any advantages not

already subsumed by the directed mutation operator.

7.3.3 Grammatical Forms and Schemata

The theoretical study of grammars and schema propagation leads to several lines of new research.

For example, there are an in�nite number of grammars with di�erent schematic representations,

which de�ne the same language. This has been exempli�ed in Chapters 4 and 5, where the

grammar has been modi�ed but the underlying language has remained the same. Nevertheless,

the emphasis on particular strings generated by the language and on restrictions to the search

space de�ned by the genetic operators, in
uence the performance of CFG-GP.
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For example, the grammar GA

l

(Section 6.7) could be extended using a nonterminal C with

production C ! �. The productions could then be modi�ed as follows.

P = fS ! CV S

1

j CV S

2

C j : : :

These changes to GA

l

do not a�ect the overall language de�ned by L(GA

l

). They do, however,

change the possible intermediate forms of schemata. Future work is required to describe how

changes to the grammar, G, and the sets 
 and �, relate to building and maintaining schemata,

and to the overall performance of CFG-GP.

7.3.4 Learning Crossover and Mutation Sites

The work of Angeline[1] has shown that it is possible to adapt the probability of crossover

occuring at any particular location within a program. He maintained a tree for each program,

where the GP terminals and functions had been replaced by a probability of crossover occuring

at each location in the program. This probability was modi�ed using a gaussian noise function,

independent of the performance of the programs created by the crossover operation.

A simple extension to CFG-GP would be to allow each crossover and mutation set to adapt

the sites where these operators are most likely to apply. For example, the initial 
 and � sets

could include all of the nonterminals in the grammar. Initially there would be no preference in

selecting which nonterminals were used as the crossover or mutation sites. Subsequent selections

for 
 and � would be based on a �tness proportionate measure, much like the merit selection

for productions. The main issue that arises from this idea is how to update the probabilities

during the evolution. Angeline[1] used a gaussian noise function to modify the probabilities

of any function or terminal in a GP tree being selected for crossover. This would appear

to be one potential avenue to explore. A second approach to updating the probabilities of

particular nonterminals would be to use the subsequent �tness of individuals (created from

applying a genetic operator at some particular nonterminal) as feedback to the worth of any

selected nonterminal site. If this method was successful it may be possible to demonstrate how

a building block approach is working with CFG-GP (or if a building block approach occurs at

all). This would be achieved by plotting the relative probability of each nonterminal during

the evolution of a solution. A grammar, written so that there were several levels of di�erent

nonterminals in the �nal program derivation tree, could be used to show how a program was

constructed. A building block hypothesis would predict that the highest relative probabilities

of crossover would occur initially towards the bottom of the derivation tree, and gradually move

up towards S as a solution was discovered.
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Figure 7.1: Partial Derivation Trees generated using the grammar G

ggd

.

7.3.5 Extending Directed Mutation

The directed mutation operator could be extended to permit more general speci�cation of

contexts in which it is applied. For example, the detection of tautologies in Section 3.9 required

both eq(x; x) and eq(y; y) to be speci�ed. A framework based on regular expressions, or indeed

a more general representation, would allow the directed mutation to more clearly de�ne the

patterns that are recognised and mutated.

7.3.6 Representing Partial Programs Explicitly as A

?

) �

The schema de�nition, A

�

) �, presented in Chapter 6, represents the notion that a partial

program has been represented for each schema. An extension of this concept would be to

explicitly allow these partial programs to exist in the population and to compete as building

blocks. These partial programs would be represented as partial derivation trees. Figure 7.1

shows some partial derivation trees in a population generated using the grammar, G

ggd

.

A number of issues arise when considering the representation of partially-executable programs

(derivation trees).

� How can a �tness for a partial program be determined when it cannot be evaluated

on some members of the dataset?

� What are the problems with a potential lack of diversity due to many partial deriva-

tion trees having the same (poor) �tness?

� What are the most appropriate genetic operators to apply with these representations?

� How do we ensure that a complete program is created as the �nal result?

Evaluating a partial program may be approached in several ways. The use of a lazy evaluation

method[77] could be used to ensure that a program that could possibly terminate will do so.

A second method would be to randomly generate a derivation tree, from the grammar, below

each nonterminal which is a tip of the partial derivation tree. Although this random generation
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would create a great deal of noise it would ensure that every partial program could be evaluated

to give a �tness measure. Various methods to evaluate partial derivation trees would have to

be studied to understand the implications of this representation.

A second issue arises with partial programs, namely how to ensure that a complete program is

eventually created. A form of annealing could be used to gradually put pressure on the evolving

population to represent complete programs. This could be achieved by using a function in the

�tness measure that penalised programs that could not be evaluated. This function would

become more important as the number of generations increased, thereby directing the selection

pressure towards programs that could be evaluated for more of the training cases. The di�culties

introduced by evaluating partial programs suggest that other approaches to composing complete

programs, using partial derivation trees, may be worth considering.

One such framework would be to use a population of partial programs to construct complete

programs for evaluation. Selecting a partial derivation tree with S as the root will represent the

�rst component of the program. For each nonterminal at the tip of this tree, a partial derivation

tree which has a matching root nonterminal could be used to extend the program. This process

of adding partial trees continues until all nonterminals have been completely derived to terminal

strings. The derivation tree, rooted in S, now represents a complete program that may be

evaluated. The �tness of this resultant program is used to give credit to each of the partial

derivation trees that were used in the program. This credit could be done in a manner similar to

a bucket-brigade algorithm[17]. This would allow the selection of partial programs to be based

on a proportional �tness measure when selecting which components are used to build a program

for evaluation. The work of �tness sharing and niche formation[13] may also be applicable to

this work, since these methods consider how to manipulate and combine partial solutions.

An interesting question arises with this approach. If the diversity of the population guarantees

that a suitable program can be constructed from the partial programs, do we require any form

of crossover or mutation? The evolutionary pressure would come about from the competition

between partial programs based on their current �tness from credit assignment.

7.3.7 Languages and Fitness Landscapes

The study of �tness landscapes[31] has been useful in understanding the relationship between

a problem search space and the operators that navigate through this space. In the context of a

landscape it may be possible to relate a particular grammar (and therefore language) to a form

of �tness landscape. The genetic operators and the relationship to the sets 
 and � may lead

to a better understanding of how the construction of a grammar and the search bias is suitable

for certain problem domains. The theoretical directions of most interest with these ideas would

be to explore how a landscape changed when di�erent styles of language were introduced.
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7.3.8 Extending the Schema Theorem to Context-Sensitive Languages

The de�nition of a schema, A

?

) �, can be extended to a context-sensitive language by de�ning

a schema as �

?

) �, where � 2 f

P

[Ng

+

. A review of Chapter 6 shows that there is no explicit

assumptions about the form of the left-hand side of a schema. The schema theorem is essentially

a counting exercise. The manner in which the schema structures are created is not relevant to

the subsequent analysis. Therefore, the extension of the theorem to context-sensitive languages

is only concerned with the form of crossover and mutation sites that have been extended by

this language; this appears to be relatively straightforward.

7.3.9 Probabilistic Grammars

Merit selection (see Section 3.4.3) has been used to represent the prior probabilities of any

particular production being selected from a nonterminal. The limitation of this work is that it

assumes that the probabilities are constant, independent of the context in which the nonterminal

is rewritten. Previous work with probabilistic L-systems[35] suggest that a set of homogeneous

Markov chains (i.e. autonomous probabilistic semi-automata) may be used to represent the

changing structure of a grammar as a sentence is constructed. The advantage of this approach

is that contextual information could be embedded in the grammar and potentially learnt during

the evolution of a solution.

7.4 Conclusion

This thesis has presented research into bias and evolutionary techniques for learning. The

�eld of genetic programming has been used as the framework to develop a program induction

system, CFG-GP, which incorporates explicit language and search bias. This work demonstrated

that it is possible to learn how to modify the search bias, represented in the de�nition of the

initial grammar, during the evolution of a solution. Additionally, the de�nition of a schema

theorem, based on CFG-GP, has been shown to unite both �xed-length and variable-length

representations.



Appendix A

Testing the Assumption of

Normality

To determine whether it is valid to assume that the results of a series of 6-multiplexer runs are

normally distributed, the following experiment was performed. Here, the setup for the initial

grammar G

6m

was appied 25 times to obtain a spread of p

s

. A cumulative distribution of the

probability of success for these runs is shown in Figure A.1. The data displayed as a frequency

distribution is shown in Figure A.2.

Using a modi�ed form of the KolmogorovD

n

test, �rst developed by Lilliefors, an estimate of the

probability that p

s

is from a normal distribution was calculated as follows. The value of D

max

was obtained by computing the Standard Distribution Function,F

n

(x), for the standardised

values z

i

= (x

i

�

^

�

)=

^

�

and taking F

�

as the standard normal cumulative distribution function.

Table A.1 shows the results for the 25 independent calculations of p

s

. The average

^

�

= 34:76

and standard deviation

^

�

= 4:87.

After looking up all F

�

(z

i

) in the cumulative normal distribution table ,D

max

was found to

be 0:093. The hypothesis, H

0

, is that the distribution of p

s

is from the normal distribution.

Setting the Type I error to 5% gives, for a sample size of 25, a critical value of 0:173. Since the

observed value = 0:093 < 0:173 the hypothesis may be accepted.

Signi�cance testing based on this assumption is described in Appendix B.

Standardised Values for p

s

over 25 runs

-1.7998 -1.3889 -1.3889 -1.1834 -1.1834

-1.1834 -0.7725 -0.3616 -0.3616 -0.1561

-0.1561 0.0493 0.0493 0.2548 0.2548

0.2548 0.4602 0.4602 0.6657 0.6657

0.6657 1.0766 1.4875 1.6930 1.8984

Table A.1: The Standardised Values of z

i

using G

6m

.
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Appendix B

Signi�cance Testing

To give a measure of the signi�cance of the results performed with the various setups of the CFG-

GP we have used a con�dence interval measure. This assumes that each run is independent,

and that the overall performance may be described as a normal distribution. These assumptions

have been shown to be valid from Appendix A.

The con�dence interval for two proportions, p1 and p2, is given by [80]:

CONFIDENCE INTERVAL FOR p1 � p2 ;n1 AND n2 � 30; A(1 � �)100% con�dence

interval for the di�erence of two binomial parameters, p1 - p2 is approximately:

(

^

p1�

^

p2)� z

�=2

s

^

p1

^

q1

n1

+

^

p2

^

q2

n2

< p1� p2 < (

^

p1�

^

p2) + z

�=2

s

^

p1

^

q1

n1

+

^

p2

^

q2

n2

where

^

p1 and

^

p2 are the proportion of successes in random samples of size n1 and n2, respectively,

^

q1 = 1�

^

p1 and

^

q2 = 1�

^

p2 ,and z

�=2

is the value of the standard normal curve leaving an area

of �=2 to the right.

Let p1 and p2 be the true probabilities of success, we can �nd a 95% one-sided con�dence interval

for the true interval between any two probabilities using the above formulae, with z

0:05

= 1:645.

For each of the 6-multiplexer experiments, n1 and n2 equal to 100. The values for

^

p1 and

^

p2

represent the probabilities of success.

Figure B.1 shows three signi�cance plots using the one-sided con�dence interval. The graphs

representing the interval with p2 = 0:34 crosses the 0 � axis when the probability is approxi-

mately 0:45. Hence, values of p

s

, compared with a base probability of 34 (grammar G

6m

) must

be above this value before the results are statistically signi�cant. This implies that the grammar

G

6m�if

does not improve the performance of CFG-GP for the 6-multiplexer. However, all other

grammar extensions are signi�cant (see Table 4.3).

Modifying the search bias (Section 4.1.7) resulted in a probability of success of 41% and therefore

is not a signi�cant result.
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Figure B.1: Con�dence Intervals for the 6-Multiplexer and Directed Mutation.

The graph representing the interval p2 = 0:62 shows that values above approximately 0:74 are

signi�cant. This implies that there are signi�cant improvements from the grammarG

6m�if�address

to the grammars G

6m�if�address�then

and G

6m�if�a0�if�a1

.

The graph representing the interval p2 = 0:80 shows that values above approximately 0:88 are

signi�cant. Hence, there is some evidence that modifying the grammar

6m�if�address�then

to

G

6m�if�a0�if�a1

is signi�cant.

The graph representing the interval p2 = 0:31 shows that values above approximately 0:42 are

signi�cant. Hence, the use of REPLACEMENT with the 6-multiplexer, described in Section

5.4.1, improves the algorithm by a signi�cant degree.



Appendix C

The Schema Theorem for Genetic

Algorithms

C.1 Introduction

This appendix gives a brief introduction to the schema theorem for Genetic Algorithms, �rst

proposed by John Holland[28]. Initially, the concept of a schema will be introduced for �xed-

length binary strings. The a�ect of schemata on the genetic operators of reproduction, crossover

and mutation will then be presented. This leads to an expression, referred to as the Schema

Theorem for Genetic Algorithms, which describes how schemata are propagated from one gen-

eration to the next. There are many possible forms and complexities of this theorem. For the

purpose of this thesis a simple version is presented, which demonstrates the basic principles

behind this form of anaylsis.

C.2 The Concept of Similarity

Goldberg[17] de�nes a schema for �xed-length structures as follows.

A schema, H , is a similarity template describing a subset of strings with simi-

larities at certain string positions.

For a �xed-length binary representation the alphabet for this language is f0; 1g. This alphabet

is extended to f0; 1; ?g, where ? matches either 0 or 1. The use of ? as a don't care symbol

allows schemata to be explicitly represented and forms the basis for describing how the space,

de�ned by these templates, is searched while a solution is evolved.

There are two properties used to characterise the properties of a schema. These are de�ned as

follows.
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� The De�ning Length �(H) is the number of bits between the �rst and last bits within

H . Hence, this represents the length or extent of H .

� The Schema Order o(H) is the number of �xed positions (i.e. the number of non-?

positions) in H .

For example, the schema 0 ? 10 ? 1 has a de�ning length of 6 and a schema order of 4.

C.3 Schemata and Reproduction

The �rst step in developing the schema theorem involves the consideration of the e�ect that se-

lection has on H from one generation to the next. Assuming a roulette wheel selection strategy

1

,

the propagation of H will be proportional to the average �tness of the population samples con-

taining H , in relation to the average �tness of the entire population. If the number of samples

of schema H at generation t is given by m(H; t), then the number of schema given in the next

generation may be stated as follows.

m(H; t+ 1) = m(H; t)

f(H)

�

f

Here, f(H) represents the average �tness of the samples in the population containing schema

H ,

�

f is the average �tness of the entire population.

This equality states that schemata in the population, with above-average �tness, will receive

exponentially increasing representations from one generation to the next.

C.4 Schemata and Single-Point Crossover

The operation of single-point crossover is normally applied probabilistically to the population of

binary strings, thereby creating new population members in the next generation. The schema

theorem describes how crossover disrupts H for the next generation. Normally, there are two

assumptions that are made to simplify the de�nition of m(H; t+1) when dealing with crossover.

(a) There is some possibility that the action of crossover will create a new population

member that contains H , which did not previously exist in either of the parent

strings. This gain is ignored.

(b) The conservative estimate is made that whenever crossover cuts a schema, the schema

is disrupted. Hence, the possibility of reintroducing H , due to crossover, is ignored.

1

The roulette wheel selection strategy has been described in Section 3.6
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Given the previous assumptions, for a probability of crossover p

c

, the following inequality de-

scribes the porpagation of H to the next generation.

m(H; t+ 1) � (1� p

c

)m(H; t)

f(H)

�

f

+ p

c

m(H; t)

f(H)

�

f

(1� disruptions)

This equation may be expressed in a simplier form by rearranging terms, as follows.

m(H; t+ 1) � m(H; t)

f(H)

�

f

� (1� (p

c

� disruptions))

The disruption of H due to crossover is easily calculated by considering the de�ning length of

H in relation to the entire length of the binary string. For a binary string of length l, the

probability of H being disrupted will be

�(H)

l�1

. Let n be the number of strings in the population.

The propagation of H to the next generation, due to single-point crossover, where both parents

are selected based on their proportional �tness

2

, may be written as follows.

m(H; t+ 1) � m(H; t)

f(H)

�

f

�

�

1� p

c

�(H)

l�1

(1�

1

n

m(H; t)

f(H)

�

f

)

�

C.5 Schemata and Mutation

Mutation is normally de�ned as a low-probability operator that randomly 
ips the bit value

for any position in a population member. This bit-
ipping mutation is applied as a probability

referring to the chance that any particular bit in a string will be changed. Let p

m

be the

probability of mutation. The probability that some schema H will survive disruption due to

mutation is then given by (1� p

m

)

o(H)

.

C.6 A Statement of the Schema Theorem for Genetic Algo-

rithms

Theorem 3 The schema theorem for the genetic algorithm with single-point crossover, bit-


ipping mutation and roulette wheel selection may be stated as follows[89].

m(H,t+1) � m(H; t)

f(H)

�

f

�

�

1� p

c

�(H)

l�1

(1�

1

n

m(H; t)

f(H)

�

f

)

�

(1� p

m

)

o(H)

2

The original work of Holland[28] selected the �rst parent based on �tness and the second parent randomly.



Appendix D

What is a Greater Glider?

The Greater Glider, an Australian marsupial, is related to the possum family. The Glider family

is tree-dwelling, ranging in size from something akin to a mouse, to that of a small long-tailed

cat.

All marsupial gliders possess the ability to glide, often distances up to 50 metres, using a

volplaning membrane or skinfold which extends from the �fth "�nger" or wrist to the ankle.

This skin is continuous with the body, thereby creating two wings which enable the glider to

sail through the air in a graceful and controlled manner. The tails, often bushy, give some

directional control. They have been described as "long-handled frying pans", during 
ight,

which gives some idea of the wing extent and body shape of these animals.

The main habitat of these marsupials are the eucalyptus trees of South Eastern Australia. They

are essentially nocturnal, spending the daytime curled up in lofty hollow limbs in forested areas.

During the evening they travel, by gliding, up to several kilometers in search of food and water.

The main diet is essentially the new tips of leaves from selected eucalypt trees. Hence, although

they are easily caught, these marsupials are often di�cult to breed and maintain in captivity.

Warm blooded, pouched and furry, the Greater Glider is a shy and quiet animal. Their prefer-

ence for high quality vegetation makes them ideal surrogates for indicators of the condition of

native forests. If a Greater Glider population exists in some location, then the quality of forest

in this location is likely to be high.
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