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Abstract. Conventional genetic programming research excludes mem-
ory and iteration. We have begun an extensive analysis of the space
through which GP or other unconventional AI approaches search and
extend it to consider explicit program stop instructions (T8) and any
time models (T7). We report halting probability, run time and function-
ality (including entropy of binary functions) of both halting and anytime
programs. Turing complete program fitness landscapes, even with halt,
scale poorly.

1 Introduction

Recent work on strengthening the theoretical underpinnings of genetic program-
ming (GP) has considered how GP searches its fitness landscape [1]. Results
gained on the space of all possible programs are applicable to both GP and
other search based automatic programming techniques. We have proved conver-
gence results for the two most important forms of GP, i.e. trees (without side
effects) and linear GP. Few researchers allow their GP’s to include iteration or
recursion. Indeed there are only about 60 papers (out of 4000) where loops or
recursion have been included in GP [2, Appendix B]. Without some form of
looping and memory there are algorithms which cannot be represented and so
GP stands no chance of evolving them.

We have recently shown [3] in the limit of large T7 programs (cf. Figure 1)
that:

– The T7 halting probability falls sub-linearly with program length. Our mod-
els suggest the chance of not looping falls as O(length−1/2). Whilst including
both non-looping and programs which escape loops we observe O(length−1/4).

Memory (12 bytes=96bits)

CPU

I/O Registers

Overflow flag

Fig. 1. T7 and T8 have the same bit addressable memory and input–output

1

http://www.cs.essex.ac.uk/staff/W.Langdon/


– Run time of terminating programs grows sub-linearly with program length.
Again both mathematical and Markov models are confirmed by experiments
and show run time of non-looping programs grows as O(length1/2). Similarly,
including both non-looping and programs which exit loops, for the T7, we
observe run time ≤ O(length3/4).

– Despite the fraction of programs falling to zero, the shear number of pro-
grams, means the number of halting T7 programs grows exponentially with
their size.

– Experimentally the types of loop and their length varies with the size of
T7 program. Long programs are dominated by programs which fall into,
and cannot escape from, one of two types of loop. In both cases the loops
are very tight. So (in our experiments) even for the longest programs (we
considered programs of up to 16 million instruction) on average no more
than a few hundred different instructions are executed.

It is important to stress that these, and our previous results, apply not only to
genetic programming, but to any other unconventional computation embedded
in the same representation.

While the T7 computer is Turing complete, [2, Appendix A], these results are
not universal. The T7 was chosen since it is a minimal Turing complete von Neu-
mann architecture computer with strong similarities with both real computers
and linear genetic programming [4]. At the 2006 Dagstuhl “Theory of Evolution-
ary Algorithms” [Seminar 06061] the question of the generality of the T7 was
raised. In Section 4 we shall show that the impact of the addition of an explicit
halt instruction is, as predicted, to dramatically change the scaling laws. With
the T8 computer (T7+halt) almost all programs stop before executing more
than a few instructions.

Sections 5 and 6 consider a third alterative halting technique: the any time
algorithms [5]. In this regime, each program is given a fixed quantum of time and
then aborted. The program’s answer is read from the output register regardless of
where its execution had reached. These last two experimental sections (5 and 6)
consider program functionality, rather than just if they stop or not.

2 T7 and T8 – Example Turing Complete Computers

To test our theoretical results we need a simple Turing complete system. In [3]
we introduced the T7 seven instruction CPU, itself based on the Kowalczy F-4
minimal instruction set computer http://www.dakeng.com/misc.html, cf. ap-
pendix of [2]. The T8 adds a single halt instruction to the T7 instruction set.

The T8 (see Figure 1 and Table 1) consists of: directly accessed bit address-
able memory (there are no special registers), a single arithmetic operator (ADD),
an unconditional JUMP, a conditional Branch if oVerflow flag is Set (BVS) jump,
four copy instructions and the program halt. COPY PC allows a programmer
to save the current program address for use as the return address in subroutine
calls, whilst the direct and indirect addressing modes allow access to stacks and
arrays.
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Table 1. T8 Turing Complete Instruction Set

Every ADD either sets or clears the overflow bit v.
COPY PC and JUMP use just enough bits to ad-
dress each program instruction. LDi and STi, treat
one of their arguments as the address of the data.
(LDi and STi data addresses are 4 or 8 bits.)
JUMP addresses are moded with program length.
Programs terminate either by executing their last
instruction (which must not be a jump) or by exe-
cuting a HALT.

Instruction args operation
ADD 3 A + B→C v set
BVS 1 #addr→pc if v=1
COPY 2 A→B
LDi 2 @A→B
STi 2 A→@B
COPY PC 1 pc→A
JUMP 1 addr→pc
HALT 0 pc→end

In Section 4 eight bit byte data words are used, whilst Sections 5 and 6 both
use four bit nibbles. The number of bits in address words is just big enough to
be able to address every instruction in the program. E.g., if the program is 300
instructions, then BVS, JUMP and COPY PC instructions use 9 bits. These
experiments use 12 bytes (96 bits) of memory (plus the overflow flag).

3 Experimental Method

There are too many programs to test all of them, instead we gather representative
statistics about those of a particular length by randomly sampling. By sampling
a range of lengths we create a picture of the whole search space. Note we do not
bias the sampling in favour of short programs.

One hundred thousand programs of each of various lengths (1. . . 16 777 215
instructions) are each run from a random starting point (NB not necessarily from
the start) with random inputs, until either they execute a HALT, reach their last
instruction and stop, an infinite loop is detected or an individual instruction has
been executed more than 100 times. (In practise we can detect almost all infinite
loops by keeping track of the machine’s contents, i.e. memory and overflow bit.
We can be sure the loop is infinite, if the contents is identical to what it was
when the instruction was last executed.) The program’s execution paths are then
analysed. Statistics are gathered on the number of instructions executed, normal
program terminations, type of loops, length of loops, start of first loop, etc.

4 Terminating T8 Programs

Figure 2 shows, as expected, inclusion of the HALT instruction dramatically
changes the nature of the search space. Almost all T8 programs stop, with only
a small fraction looping. This is the opposite of the T7 (most programs loop).

Figures 3 and 4 show the run time of terminating T8 programs. In both
programs stopped by reaching their end (Figure 3) and by a HALT instruction
(Figure 4), the fraction of programs falls exponentially fast with run time. In
both cases, it falls most rapidly with short programs and appears to reach a limit
of (7/8)−length for longer programs. A decay rate of 7/8 would be expected if
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Fig. 2. Almost all short T8 programs are stopped by reaching their end (*).
This proportion falls rapidly (about ∝ 1/length) towards zero. Longer programs
are mostly stopped by a halt instruction 2. The fraction of programs trapped
in loops (+ and ×) appears to settle near a limit of 1 in 150.

programs ran until they reach a HALT instruction. I.e. to a first approximation,
run time of long terminating T8 programs can be estimated by ignoring the
possibility of loops. This gives a geometric distribution and so an expected run
time of 8 instructions regardless of program size. For all but very short programs,
Figure 5 confirms the mean is indeed about 8. For a geometric distribution the
standard deviation is 7.48 (also consistent with measurements) so almost all T8
programs terminate after executing no more than 31 instructions (mean+3σ).
Again this is in sharp contrast with the T7, where long terminating T7 programs
run many instruction, and so perhaps may do something more useful.

5 T8 Functions and Any Time Programs

The introduction of Turing completeness into genetic programming raises the
halting problem, in particular how to assign fitness to a program which may
loop indefinitely [6]. Here we look at any time algorithms [5] implemented by T8
computers. I.e. we insist all program halt after a certain number of instructions.
Then we extract an answer from the output register regardless of whether it
terminated or was aborted. (The input and output registers are mapped to
overlapping memory locations, which the CPU treats identically to the rest of
the memory, cf. Figure 1.) We allow the T8 53 instructions. (53 was chosen since
by then we expect all but 0.1% of non-looping T8 programs to have stopped, cf.
Figure 4.)
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Fig. 3. Distribution of frequency of normally stopping T8 programs by their
run time. Noisy data suppressed. To ease comparison, all data has been verti-
cally rescaled so that data at the left lie on top of each other. Distributions fit
geometric decay. As program gets longer the decay constant tends to 7/8.
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Fig. 4. Distribution of frequency of HALTed T8 programs by their run time.
There is an geometric fall in frequency at all lengths, however for lengths < 127
the decay is faster than (1-1/8). For longer random T8 programs, the decay
constant tends to 7/8.

5



0

2

4

6

8

10

12

1 10 100 1000 10000 100000 1e+06 1e+07

P
ro

gr
am

 in
st

ru
ct

io
ns

 e
xe

cu
te

d

T8 Program length

Stopped by end of program
HALTed

Instructions in possibly infinite loop
Instructions in infinite loop

Fig. 5. Mean number of T8 instructions obeyed by terminating programs (∗ and
2) and length of loops (× and +) v. program size. Noisy data suppressed. Data
are consistent with long random T8 programs having a geometric distribution,
with mean of 8 and thus standard deviation is

√
827/8 = 7.48. Final loops in

non-terminating programs are even tighter than in T7 [3, Fig. 9].

In this section and Section 6 we look at functions of two inputs, by defining
two input registers (occupying adjacent 4 bit nibbles) and looking at the data
left in memory after the program stops (or is stopped). In these sections, the
data word size is 4 bits. Each random program is started from a chosen random
starting point 256 times just as before, except the two input registers are given
in turn each of their possible values. To avoid excessive run time and since we are
now running each program 256 times (rather than once) the number of programs
tested per length is reduced from 100 000 to 1000.

In addition to studying the random functions generated by the T8 we also
study the variation between individual programs runs with each of the 256 dif-
ferent inputs and how this varies as the program runs. We use Shannon’s [7]
information theoretic entropy measure S = −

∑
k pklog2(pk), to quantify the

difference between the state of the T8 (programme counter, overflow bit and
memory) on different runs, with different inputs, at the same time.

5.1 Any Time T8 Entropy

We have two confounding effects. We measure the change in the variation be-
tween T8 processors as they run the same program (from different inputs), so a
major influence is whether a particular processor is still running or has obeyed
a HALT instruction or reached the end of its program. For simplicity when cal-
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Fig. 6. Entropy of T8 programs of 7 instructions still running at least one test
case after 53 time steps. Noise is added to + data to spread them.

culating the entropy of a mixture of stopped and still executing programs, the
stopped programs are treated as if they were all in the same stopped state. This
means in the graphs that follow, the number of runs of a program that reach
the tth instruction has an impact of the entropy as well as (for example) the
difference between the contents of memory. (Remember apart from the input
register, each of the 256 runs, start in the same, random, state.) To illustrate
this, Figure 6 shows the 229 (+) of 1000 T8 programs of 7 instructions which
always get stuck in a loop tend to have a high entropy. In contrast the entropy
of the remaining 42 programs circ strongly depends upon how many runs (test
cases) are still executing. (Figure 6 takes a snap shot after 53 instructions have
been obeyed). It is clear the number of active test cases has a strong influence on
the variation in memory contents etc. between test cases. I.e. entropy, in most
short T8 programs, is as large as possible, given the number of test cases still
running. This is consistent with the fact that most short programs implement
the identity function, see Figure 9, which has maximum entropy.

Figure 7 shows the average number of test cases still running up to instruction
53. The shortest programs tend to stop or loop immediately. Only those still
looping show on Figure 7. Short programs which loop on one test case tend to
loop on all of them, giving the almost constant plots for short programs seen
in Figure 7. Longer random programs, tend to run for longer and have more
variation between the number of instructions they execute on the different test
cases. Figure 8 shows there is a corresponding behaviour in terms of variation
between the same program given different inputs. I.e., loops are needed to keep
small programs running and compact loops mean small programs tend to keep
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Fig. 7. Mean number of test cases where T8 program has not HALTed or
stopped. 1000 random T8 programs of different lengths.

their variability. This gives the almost constant high entropy plots for short
programs seen in Figure 8. However longer random programs tend to run for
longer and use more instructions. More random instructions actually means that
the memory etc. tends to behave the same on every input and this convergence
increases as the programs run for more time. Indeed there is also less variation
in average behaviour with longer random T8 programs. Leading to the general
decrease in entropy with run time seen in Figure 8. In the next section we will
restrict ourselves to just looking at the I/O registers rather than the whole
of memory, that is the notion of programs as implementing functions which
map from inputs to output. However we shall see the two views: entropy and
functionality, are consistent.

5.2 Any Time T8 Convergence of Functions

There are 25624×24
= 3.23 10616 possible functions of two 4 bit inputs and an 8 bit

output. However, as shown by Figure 9, uniformly chosen random programs of a
given length sample these functions very unequally. (This is also true of the T7,
cf. Figures 12 and 13). In particular the identity function and the 256 functions
which return constants are much more likely than others. Figure 9 also plots two
variations on the identity (where the least significant or most significant nibble
implement a 4 bit identity function) and two cases of 4 bit constants. In these
four cases the other 4 bits are free to vary. Note that while they represent a huge
number of functions they are less frequent than either of their 8 bit namesakes.
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Fig. 8. Evolution of variation between test cases in 1000 random T8 programs
of different lengths. Same programs as in Figure 7.
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Fig. 9. Frequency of common functions implemented by random T8 programs of
different lengths by 53 instruction cycles. Data are noisy due to sample size, but
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The rise in the frequency of the constant functions and fall in the identity
function with increasing program size (Figure 9) are consistent with the corre-
sponding fall in entropy seen in Figure 8. (The same will be seen in the next
section for the T7, cf. Figures 12 and 14.)

6 T7 Functions and Any Time Programs

Having shown the success of the any time approach, we return to the T7. The
measurements in this section are based on running the T7 on 256 test cases as in
Section 5. However since without a HALT instruction, the T7 programs tend to
run for much longer, we increase the any time limit from 53 to 1000 instructions.

Figure 10 confirms removing HALT does indeed mean most programs run
up to the any time limit. Figure 10 relates to all 256 runs of each random
program. Whilst the error bars (top solid line) show on average there is some
variation between identical programs starting with different inputs for middle
sized programs both very large and very small programs have the same (any
time) run time. This suggests most big T7 programs loop regardless of their
input. Whilst short programs halt whatever their input. Only at intermediate
lengths can the input switch random programs looping/halting behaviour.

The diagonal line shows that, for program shorter than 4 000 000, the frac-
tion of runs which stop falls approximately as 1/

√
length, as expected. (For

even longer T7 programs, the 1000 instruction limit aborts a few programs even
though they are not stuck in loops.)

Figure 11 shows that the fraction of programs which never loop, falls as
O(1/

√
length), as we found previously [3]. Figure 11 plots combined behaviour

over 256 test cases rather than a single run and the data word size is half that
reported in [3]. However, initially we have similar results: the fraction of T7
programs which do not loop falls with program length. Notice that for longer
programs the fraction does not continue towards zero. This is because we now use
the any time approach to abort non-terminated programs and so a few programs
(19–47 out of 1000) are stopped early, when they might have continued to find
themselves in loops.

As expected, when we allow the T7 to run for longer the variation between
test cases reduces and there is an increased tendency for programs to become
independent of their inputs. If a program’s output does not depend on its input,
i.e. all 256 test cases yield the same answer, then it effectively returns a constant.
In Figure 12 the constant functions (×) are those where the program’s output
(after up to 1000 instructions) does not depend upon its inputs. Notice the rise
in the proportion of constants with program length, even though, in most cases,
each program runs exactly 256× 1000 instructions.

In [3] we found that longer T7 programs tend to obey more random instruc-
tions (about

√
length) before they get stuck in tight loops. We suggest that the

rise in constants with program length in Figure 12, is due to the greater loss
of information in longer random sequence of non-looping instructions before a
tight loop is entered. Also, the loss of knowledge about the input registers in the
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final loop is usually either small or repeating the same instructions many times
does not loose any more information.

This explanation is reinforced if we look at only the programs which did not
loop. Figure 13 shows the rise in the proportion of constants with program length
is even more pronounced. Whilst Figure 15 shows, if loops are excluded, in most
cases variation between different input values falls rapidly to zero. Figures 14
and 15 also show test cases become more similar as the programs run. However
programs which become locked into loops have less of a tendency to converge
than those which are not looping. I.e. loops actually lock in variation and without
them random programs are dissipative and so implement only the 2n constant
functions.

7 Discussion

Of course the undecidability of the Halting problem has long been known,
however it appears to have become an excuse for not looking at unconven-
tional approaches to evolve more powerful than O(1) functions. More recently
work by Chaitin [8] started to consider a probabilistic information theoretic ap-
proach. However this is based on self-delimiting Turing machines (particularly
the “Chaitin machines”) and has lead to a non-zero value for Ω [9] and post-
modern metamathematics. The special self-delimiting approach means halting
programs cannot be extended and so each blocks out an exponentially large part
of the search space. This can give very different statistics for the whole space.
Our approach is firmly based on the von Neumann architecture, which for prac-
tical purposes is Turing complete. Indeed the T7 is similar to the linear genetic
programming area of existing Turing complete genetic programming research.

Real computer systems lose information. We had expected this to lead to
further convergence properties in programming languages with iteration and
memory. However these results hint at strong differences between looping and
non-looping programs. It appears that many tight loops are non-dissipative, in
the sense that they cycle the computer through the same sequence of states in-
definitely. In contrast, non-looping programs continue to explore the computer’s
state space but in doing so they become disconnected from where they started, in
that they arrive at the same state regardless of where they started. This means
they are useless, since they implement a constant.

Requiring input and output to be via fixed width registers is limiting. Variable
sized I/O (cf. Turing tapes) is needed in general. Real CPUs achieve this by
multiplexing their use of I/O registers. May be this too can be modelled.

It may be possible to obtain further results for the space of von Neumann
architecture computer programs by separating the initial execution from looping.
These initial experiments suggest the program path (i.e. conditional branches,
jumps, etc.) of the program is initially not so important and that our earlier
models on linear programs might be relevant. If, in other machines, most loops
are also drawn from only a small number of types (in the case of T7 only two) it
may be possible to build small predictive models of loop formation and execution.
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Only a tiny fraction of the whole program is used. The rest has absolutely
no effect. In future it may be possible to derive bounds on the effectiveness of
testing (w.r.t. ISO 9001 requirements) based on code coverage.

8 Conclusions

The introduction of an explicit HALT instruction leads to almost all programs
stopping. The geometric distribution gives an expected run time of the inverse
of the frequency with which the HALT is used. This gives, in these experiments,
very short run times and few interesting programs.

We also explored the any time approach, looking particularly at common
functions and information theoretic measures of running programs. Entropy
clearly illustrates a difference between non-dissipative looping programs and
dissipative non-looping programs. There is some evidence that large random
non-looping programs converge on the constant functions, however, possibly
due to the size of the available memory, this is not as clear as we expected.
This needs further investigation. We anticipate that detailed mathematical and
Markov models could be applied to both the T7 and T8 any time approaches.

While genetic programming is perhaps the most advanced automatic pro-
gramming technique, we have been analysing the fundamentals questions con-
cerning the nature of programming search spaces. Therefore these results apply
to any form of unconventional computing technique using this or similar repre-
sentations which seeks to use search to create programs.
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