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Abstract The distribution of fitness values (landscapes) of programs tends to a limit

as the programs get bigger. We use Markov chain convergence theorems to give general

upper bounds on the length of programs needed for convergence. How big programs

need to be to approach the limit depends on the type of the computer they run on. We

give bounds (exponential in N , N log N and smaller) for five computer models: any,

average or amorphous or random, cyclic, bit flip and 4 functions (AND, NAND, OR

and NOR).

Programs can be treated as lookup tables which map between their inputs and their

outputs. Using this we prove similar convergence results for the distribution of functions

implemented by linear computer programs. We show most functions are constants and

the remainder are mostly parsimonious.

The effect of ad-hoc rules on genetic programming (GP) are described and new

heuristics are proposed.

We give bounds on how long programs need to be before the distribution of their

functionality is close to its limiting distribution, both in general and for average com-

puters. The computational importance of destroying information is discussed with re-

spect to reversible and quantum computers.

Mutation randomizes a genetic algorithm population in 1
4 (l + 1)(log(l) + 4) gener-

ations.

Results for average computers and a model like genetic programming are confirmed

experimentally.
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Fig. 1 A linear program. Each instruction reads from memory, operates on the data and then
writes the result back to memory. The initial contents of memory and after each instruction are
shown above the program. In this example, the top two bits are used both for initial input (1,1)
and output (0,1).

AND 2 0 1

in1 in2 outinstruction

Fig. 2 An example instruction. The instruction read two bits from memory (from addresses 2
and 1), ANDs them, and writes the result back to memory (address 1).

1 Introduction

Figures 1 and 2 shows the operation of a program and the layout of its instructions.

Each instruction in the program can be seen principally by its use of and effect on the

contents of the computer’s memory. As we shall see, by treating finite computer pro-

grams simply as the sequence of computer instructions they execute and the resulting

changes to the computer’s memory, powerful convergence results can be obtained.

Our approach can be criticised for its very generality. We prove results about pro-

grams in general. This can be likened to the oft quoted “No free lunch” theorem

(Wolpert and Macready 1997), which tells us about average performance but does not

tell us anything about search performance on specific instances. Similarly results prov-

ing problems are in NP apply to the problem in general. Specific instances of such

problems can be easy to solve. Nevertheless both NFL and NP have been very useful

results.

Given the reader has constructed or evolved a program our approach has only

a little to say about that specific program. Instead we aim to tackle programming in

general. That is, what are the characteristics of the space of all possible programs? How

difficult is it to search this space? How do the characteristics change with different types

of computer architecture? Such analysis can cast light on the role of ad hoc rules buried

in current commercial GP (Foster 2001) and how they improve the search space. Are

there special features of some spaces which help one type of search more than another?

Fitness landscapes are an appealing metaphor for evolutionary and local search

(Reidys and Stadler 2002). Attempts to characterise the fitness landscape of genetic

programming tend to contain unquantified statements that the genetic programming

(GP) search space is big or that it is “rugged”. Occasionally some effort has been

spent to define and measure ruggedness but these are specific to a tiny fraction of



3

small benchmark problem spaces. Our approach is to provide quantified metrics for the

general case and then refine these towards specifics. Experiments are used to confirm

theoretical models, rather than provide yet more indigestible data.

In (Langdon and Poli 2002) we proved for a number of systems close to practical

tree and linear GP systems that eventually, for sufficiently large programs, their fitness

distribution will converge. We shall answer the question: how long do programs have to

be in practice to get reasonably close to this limit. In (Langdon 2002a) we concentrated

on the distribution of answers produced by all linear programs of a given size. For

a number of systems, we were able to quantify the minimum size needed for this

distribution to be close to the limit. I.e. overall making programs longer than this has

little effect on the distribution of their outputs. While in (Langdon 2002b) we provided

similar results on the distribution of functions.

Although our initial motivation has been the need to put GP on firmer theoretical

foundations, these results apply to the space that GP searches. They are not specific

to how it searches or its fitness landscape. Since they apply to the space, rather than

the search, they are applicable to other automatic programming techniques. Indeed

our results are general and apply to specific classes of functions and may be of use to

anyone interested in those functions.

The next section summarises the Markov model of linear programs, while Section 3

describes total variation distance as a convergence metric. Minorization is summarised

in Section 4 and used to provide an upper bound for any computer (Section 5). Sec-

tion 6 gives an example of exponentially slow convergence. However Section 7 gives an

example where convergence is much faster than the general upper bound. Section 8

proposes an average or random computer which could serve as a model for amorphous

computing. Minorization is applied to it, yielding upper bounds indicating on most

computers fitness distributions converge rapidly. Those interested in results for genetic

programming, rather than the analysis technique, may jump directly to Section 9.

Section 9 describes detailed models for the distribution of outputs and functions

implemented by a computer similar to that used in linear genetic programming. These

results compare well with measurements. To highlight the computational importance

of destroying information, Section 10 briefly considers reversible computers as a special

case of quantum computing.

Section 11 is a slight digression. In it we give explicit convergence results for linear

bit string genetic algorithms. This is followed by a discussion, which includes sugges-

tions for improving GP (Section 12), and our conclusions (Section 13). A complete list

of results is given in Appendix A.

2 Markov Models of Program Search Spaces

This section explains how we can use standard Markov modelling techniques to prove

facts about the distribution of programs in terms both of their outputs and their

functionality. In particular how both distributions change with changes in program

length.

In (Langdon and Poli 2002) we deal with both tree based and linear genetic pro-

gramming (GP). For simplicity we will consider only large linear programs, however

we anticipate similar bounds can be found for large trees too.
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2.1 Markov Models of Program Outputs

We want to know about every possible program. That is, we wish to know about the

whole search space. Our approach is to sample it randomly (both theoretically and in

real experiments) a large number of times. As the sample becomes bigger, its properties

will approach that of the distribution from which it is drawn. I.e. the sample tells us

how the whole search space behaves. Mainly we are interested in seeing how the search

space scales with program length. So we generate a random sample of programs all

of the same size and measure their properties. Then we do the same again for a new

program size, and so on, until we have a picture of the whole search space.

We use the following model of computer programs. Initially the computer’s data

memory is zeroed. (The program itself is not stored in the computer’s data memory.)

The program’s inputs are loaded into the input register (one or more memory cells).

The program runs and in the process reads and writes to memory. When it stops,

its answer is read from the output register (again one or more memory cells). We

limit ourselves to fixed programs that run through a given number of instructions and

stop. They do not loop or modify themselves and they always terminate (Langdon

2006). While this excludes iteration and recursion, many non-trivial programs can be

written in this way, indeed practical GP systems are often of this type (Banzhaf et al.

1998). Section 12 briefly discusses possible extensions to loops, programming without

a program counter (Banzhaf 2005) and any time algorithms.

A Markov process is a stochastic process in which the probability of making a

transition from one state to another depends only on the current state, (Feller 1957,

1966; Haggstrom 2002). In particular the chances involved do not change with time

or depend on any previous history (earlier than the current time). In our model the

relevant state is simply the computer’s memory. The outcome of any computer program

instruction only depends on the current contents of memory. For example if we add

two numbers (held in memory) we expect the answer to depend only on those two

numbers. We should always get the same answer, no matter when we add them, no

matter what the computer has done before. I.e. a given instruction and a given contents

of memory (i.e. state) will always have the same effect. Since in our model the output

of an instruction is written to memory, each instruction can be viewed as a transition

from the current contents of memory to the contents of memory at the next time step.

A given instruction always produces the same transitions. See Table 1.

When we consider random programs, we mean every possible instruction within

the program is equally likely. (Thus if there are I instructions, the chance of choosing

any one of them is 1/I. See Table 2 for a list of frequently used symbols.) Note this

means the probability of each instruction is fixed. Therefore we can view running a

random program as a Markov process in which the computer’s state (i.e. the contents

of its memory, N bits) undergoes a sequence of random changes.

Let us assume, (1) the designer of our computer has ensured that it is possible

to set the memory to any value (i.e. every state of the Markov process is accessible

from every other). (2) that there is at least one state and corresponding instruction

which leaves the memory unchanged. (E.g. clearing a register which already contains

zero or perhaps the design includes a NOP.) Given (1) and (2) the Markov process is

ergodic and irreducible. This means that after a large number of random updates the

probability of the computer’s memory holding a particular pattern of bits will settle

into a limiting distribution. Once the limit is reached, additional random updates,

continue to change bits but on average the distribution of bit patterns in memory does
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Table 1 Schematic of simple Markov matrix. For illustrative purposes, the computer has four
memory bits and two instructions: OR (◦) and AND (×). Both read from bits 0 and 1 and
write to bit 3. The 16 possible memory states are represented in hexadecimal. For example,
see the second row, OR(0,1) sets bit 3 (next state 1001). That is, OR takes the computer from
state 1 to state 9. In contrast AND (×) leaves the computer in state 1. (Instructions which
don’t change the state effect the matrix’s diagonal.) If we chose between our two instructions at
random the matrix elements (◦) and (×) are 0.5 (⊗ = 1.0) and the matrix becomes a Markov
matrix representing the probabilities of moving from one state to another. Of course in a real
example, the matrix will be far far bigger and there will be many many instructions.

0 1 2 3 4 5 6 7 8 9 A B C D E F
0 ⊗
1 × ◦
2 × ◦
3 ⊗
4 ⊗
5 × ◦
6 × ◦
7 ⊗
8 ⊗
9 × ◦
A × ◦
B ⊗
C ⊗
D × ◦
E × ◦
F ⊗

Table 2 Common Symbols

β is the sum of the minimum values of the entries in each column of a matrix. I.e.
β =

∑
j
mini Mij . β is used in minorization conditions.

I number of different computer instructions (from which programs can be constructed).
For simplicity, we usually assume, in random programs, each instruction is equally likely,
although some results, e.g. Markov limiting behaviour, do not require the probability to
be 1/I, only that it be fixed.

l length of a program, i.e. number of instructions in it, or the lth instruction from the start
of a program. In GAs (Section 11 only) the number of bits in the chromosome.

N size of computer’s memory in bits.
n size of computer’s input register in bits.
m size of computer’s output register in bits.

not change any more. Also, while the distribution may depend upon the bit pattern,

it does not depend upon the program’s inputs.

2.2 Markov Models of Program Functionality

We can go further and consider not just the answer produced by a program when given

an input but also the complete mapping it provides from inputs (i.e. initial memory

contents) to final memory contents (which includes the output register and so includes

the program’s outputs). That is, treat a program as a function from input to output.

Table 3 contains a very simple example of a six bit computer. It has a three bit input

register, allowing each program to process values 0 to 7. The computer’s output register

occupies two bits. Thus a program can output 0, 1, 2 or 3. Thus it can implement

48 = 65 536 functions. Since the number of programs rises exponentially with their
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Table 3 Memory contents after running a single instruction, r4=AND(r0,r2), on each of
8 inputs. The 3 bit input register, r0–r2, overlaps the two bit output register, r0–r1. Note
r4=AND(r0,r2) only over writes r4 and so does not change either output bit.

Before After r4=AND(r0,r2)
Memory

Input
r5 r4 r3 r2 r1 r0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 0 1 1
0 0 0 1 0 0
0 0 0 1 0 1
0 0 0 1 1 0
0 0 0 1 1 1

Memory
Out

r5 r4 r3 r2 r1 r0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 0 1 1
0 0 0 1 0 0
0 1 0 1 0 1
0 0 0 1 1 0
0 1 0 1 1 1

length, the number of possible programs considerably exceeds the number of functions.

Table 3 shows the action of a program containing a single instruction. It implements

the identity function (i.e. the output equals the lower two bits of the input). Obviously

on this computer there are many different programs which implement the identity

function.

A program’s external functionality is defined by its actions on the I/O registers.

However to prove convergence results across all programs we must consider the whole

of the computer’s memory. In general we must also consider other elements of its state,

such as internal CPU registers and flags (such as the carry flag). For simplicity, we shall

treat CPU state as though registers, flags etc. are simply special parts of memory. (Cf.

the memory mapped registers of the PDP-11).

Since we treat all state as part of memory, the truth table of inputs v. memory

completely defines a program. (The right hand side of Table 3 is an example of such a

truth table.) In other words, it is only necessary to consider the state of the computer

after it has run a program on each input. So if another program produces the same

truth table it will be totally equivalent. (In our example, the truth table occupies

6× 8 = 48 bits, so there are 248 = 2.8 1014 possible tables.)

Suppose we test a program by running it on each possible input in a predefined

sequence and each time it stops we record the computer’s state before reinitialising

the computer and running the program on the next input. This gives us a complete

inputs v. memory truth table for that program. If another program produces the same

truth table, the two programs are exactly equivalent, even if they contain different

instructions or caused the computer to pass through different states whilst they were

running. Since the states are always the same at the end: 1) the output register will

be the same, 2) they will implement the same function and 3) if they are extended

by appending the same code fragment, so that they run both run the same additional

instructions, then the extended programs will remain locked in step and produce the

same answer and implement identical functions.

Previously, when we considered running a program just once, it was only necessary

to consider the row of the input v. memory truth table for the program’s input. In

general, the rows of the table are not independent. Therefore, if we run the program

multiple times (to find the function it implements) we must consider the whole truth

table. The whole table contains all the relevant state information, so execution of
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any of the computer’s instructions moves the computer to a new state which is fully

determined by the current state (truth table). I.e. each instruction deterministically

moves from one state of the (2N )2
n

possible states to another. So we can again do our

trick of considering a random program to be made of a randomly chosen sequence of

instructions, each performing a state transition and treat these as a Markov process.

Again we need to impose weak constraints on the computer to ensure the new

Markov process is both ergodic and irreducible. One way of doing this is to make sure

that our computer can implement any Boolean function of the inputs and write this to

any part of memory. Given enough instructions, the truth table can eventually be set

to any value. (A minor complication is to ensure the inputs are over written last and in

such away that their part of the table can be reset arbitrarily.) Secondly we also need

a program instruction which does not change the table. A trivial way of achieving this

is to clear the input register, so the whole table is empty. Then any operation which

writes zero to memory will have the desired effect of not changing the table. Having

made sure the Markov process on the inputs v. memory truth table is ergodic and

irreducible, we know that, given enough random instructions, the probability of each

possible inputs×memory table will settle into a limiting distribution π.

The truth table of the function that a program implements, is a subset of the whole

table. It is just the m columns corresponding to the output register of the whole table.

3 Convergence Metric

In some of the following sections we shall use the total variation distance || · || be-

tween two probability distributions to indicate how close they are. The total variation

distance between probability distributions a and b is the largest value (supremum,

sup) of the absolute difference in the probabilities. Note the difference is taken over

all subsets. i.e. every possible grouping of states x, not just single points. In maths:

||a− b|| = supx⊆χ |a(x)− b(x)| (see Figure 3). (Rosenthal 1995; Diaconis 1988). (If || · ||
were just the largest difference, it would be small as long as a and b were both small,

even if the distributions a and b were not similar.)

For two examples, Sections 6 and 7, we will show that the distribution of functions

converges at the same rate as the distribution of outputs. However in neither case is

the computer able to do general computation. In Section 9 we consider more useful

models.

4 Markov Minorization

When considering finite Markov processes it is common to use a square matrix whose

i,jth element Pij holds the probability of the process moving from state i to state j.

Naturally each probability and hence each element is fixed. So for a given process

the whole matrix is constant. In our model the matrix is 2N× 2N (when considering

outputs) or 2N2n

× 2N2n

(when considering functions).

The transition matrix P can be thought of as telling us how a randomly chosen

operation mixes things up. As described at the end of Section 2, the computer’s memory,

after a program has reached instruction l, with each legal input, specifies the function

the program implements at this point in its execution. Executing one randomly chosen

instruction will update the pattern and so potentially also update the function. In
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a

0
a{1,3,4} = 5/16 b{1,3,4} = 4/16

0
sum | a − b | = 14/16

| a − b |

| a−b |{1,3,4} = 1/16

|| a − b || = 1/2 sum | a−b | = 7/16

Fig. 3 Total variation distance between probability distributions a and b. Top panel shows a
(solid line) and b (shaded). Middle compares the probability of being in subset x = {1, 3, 4}
with a and with b and calculates their difference, x|a(x)− b(x)| = 1/16. ||a− b|| is the largest
difference across all 256 possible subsets. In the discrete case ||a−b|| = 1/2

∑
|a−b| (Diaconis

1988).

practical computers the number of possible instructions is large but much less than

the number of possible bit patterns in memory. Thus after one instruction only a small

fraction of memory states can be reached. That is, in one step the Markov matrix

can only mix things up a little. However if we consider executing two instructions

in sequence the number will increase. After many steps even more can be reached.

Minorization (Rosenthal 1995) is a way of quantifying this mixing (or at least providing

a lower bound on it). Specifically the difference between the actual distribution after

l = ka instructions µka and limiting π distribution obeys:

||µka − π|| ≤ (1− β)k

where

β =
∑

j

min
i

Pa
ij

and k is the number of groups of a instructions. β is the sum of the minimum values of

the entries in each column of the matrix Pa (Pa = P ×P ×· · ·×P ). To find β, we start

by finding the chance of changing the contents of the inputs×memory table, using a

instructions, from each initial value (i) to the least likely (mini) other possibility j (for

that value i). Then β is given by adding together all these probabilities.

If we can find a value for β that is greater than zero, not only does a limiting

distribution exist but also we can place an upper limit on the deviation between the

actual distribution after l steps and the limit. Further the difference between the actual

and limiting distributions falls exponentially or faster with l.
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5 Any Computer

The first subsection (5.1) gives a quantitative upper bound on the convergence of the

distribution of outputs produced by any computer which fits the general framework

given in Section 2. Subsection 5.2 provides the corresponding bounds for functions.

5.1 Convergence Bound on Outputs of Any Computer

Again let Pij be the probability that starting in state i the next operation will take

us to state j. (If j cannot be reached from i in one move, then Pij = 0.) In order to

get a minorization condition we consider Pa (rather than P ). This means, instead of

looking at the available state transitions if each of the I instructions is used once, we

consider the transitions possible when they are used a times. For any given state there

are up to Ia states the computer’s memory could be in after a instructions. (Ignoring

overlaps, each is equally likely.) So if Ia ≥ 2N it is now possible that in at least one

column of P there will be no zero entries.

From the way that we constructed our computer, it is possible, eventually, to move

from the starting state s0 to any state y. Let adata be the number of steps required.

This meets the minorization condition for Padata . In fact Padata(s0, y) ≥ I−adata > 0

∀y. Therefore β ≥ I−adata and so for any computer:

||µl − π|| ≤ (1− I−adata)bl/adatac (1)

Let us say when the actual distribution is within 10% of the limit, i.e. || · || = 10%,

we are close enough. Rearranging gives, for any computer with I instructions, an upper

limit on the convergence length l of 2.30adataIadata Where adata is the number of

instructions to reach any state. Note this is an upper bound on l, the distribution µl

may approach its limit π for much shorter programs.

Note, given a set of minimal programs which together can set the computer’s mem-

ory to anything, we know: 1) the distribution of the computer’s outputs after running

a randomly selected program has a limit, and 2) the length of the longest program

in the set adata gives an upper limit on the length of programs needed to guarantee

the output of random programs approaches this limit. And that both are true for any

computer.

5.2 Convergence Bound on Functions Implemented on Any Computer

To establish a minorization bound on the distribution of functions implemented by any

computer, let afunctions be the minimum number of program instructions required to

set the inputs×memory table to an arbitrary value. That is, from the initial starting

condition, s0, ensure that there is at least one program of afunctions instructions which

sets the table to any of its 2N2n

values. If there are I instructions, the number of

programs of length afunctions is Iafunctions . So Pafunctions(s0, j) ≥ I−afunctions . Therefore

β is at least I−afunctions and so for any computer:

||µl − π|| ≤ (1− I−afunctions)bl/afunctionsc (2)
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I.e. we are guaranteed that the difference between the probability distribution of func-

tions implemented by programs of length l and its limiting distribution (i.e. as l →∞)

falls geometrically as the length increases.

Setting || · || to 10% yields a convergence length l for any computer with I in-

structions l ≤ 2.30afunctionsI
afunctions . Where here afunctions is the minimum number

of instructions needed to set the inputs×memory table to any value.

As in Section 5.1, the length of the longest program afunctions in the set of minimal

programs (which together can set the computer’s inputs v. memory to anything) tells

us how the computer will converge. Firstly we are sure that the distribution of the

functions implemented by randomly selected programs has a limit. Secondly afunctions

gives an upper limit on the length of programs needed to guarantee the functionality

of random programs approach this limit. Again both are true for any computer.

5.3 Weakness of Minorization Bound

Note both (1) and (2) lead to an exponential bound. Section 6 shows we can devise

examples where convergence in terms of both outputs and implemented functions does

require exponentially long random programs. However a major difficulty is that in other

cases Inequalities (1) and (2) provide very weak upper bounds.

Consider a very small example computer (of the type to be described in Section 9).

Assume it has two input bits (n = 2), one output bit m = 1 and N memory bits. There

are four operation codes (AND NAND OR NOR). Each has three address fields: two

memory addresses for inputs and one for output. Each field can independently address

every bit of memory. I.e. they can each take N values. Thus the number of instructions

I is 4×N ×N ×N .

A program of length ≤ N instructions can be written to set the memory to any

desired pattern. I.e. adata = N . From (1) convergence length ≤ 2.30N4NN3N . We can

also consider convergence of functions, of which there are 2m×2n

= 16. The most diffi-

cult of these is parity, which needs three instructions. Thus, in terms of convergence of

functions, afunctions = 3N instructions should be sufficient. Therefore, using (2), pro-

gram length ≤ 2.30 3N 43NN3×3N . If N = 8, adata = 8, afunctions = 24 and I = 2048

and so programs need not exceed 1.9 106785 (7.2 107399 for functions) for the distribu-

tion to be near the limit.

We can get more realistic estimates by considering the computer in more detail.

Even so, in this example, the minorization bound is many times the actual convergence

length. (Near convergence is seen by programs of about 13 instructions (25 instructions

for functions) cf. Figure 8.)

6 Slowly Converging Example (Cyclic Computer)

In Section 5 we proved exponentially large convergence bounds for any computer. To

counter the argument that these upper bounds are too weak we construct an example

computer which does indeed require programs to be exponentially long before con-

vergence is seen. (Section 7 to 9 give examples where convergence occurs very much

faster.)

The cyclic computer has N bits of memory arranged as a single register. It has

three instructions: do nothing, increment memory and decrement memory. Increment
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and decrement act upon the whole of memory. E.g. if the memory holds the value

15 (0011112), then after increment the value will be 16 (0100002). Note the memory

register wraps around. E.g. on an 8 bit computer, incrementing 255 produces 0. So a

program of 2N increments (or 2N decrements) leaves the computer in the same state

it started in. (The computer takes its name from this cyclic behaviour.)

If we subtract the number of decrement instructions from the number of increments

(to give p) the output of a program is (x+p) mod 2N , where x is the input. Therefore,

given a program’s output on one input, we can say directly what its output will be on

any other input. Note, there are only 2N functionally distinct values for p and so the

cyclic computer can only implement 2N functions.

The probability distribution of functions clearly follows the distribution of outputs.

So when l is long enough to ensure each output is equally likely, then so too is each

function.

By using Rosenthal’s Markov analysis (Rosenthal 1995, circles of lily pads) we can

show that after sufficiently many random instructions every memory pattern is equally

likely. Secondly that O((2N )2) instructions are needed before the chances become ap-

proximately the same. Rosenthal’s approach is based upon an eigen analysis of random

walks on finite Abelian groups.

Rosenthal (1995) shows that the actual probability distribution µl after l random

instructions is exponentially close for large l to the limiting distribution π (in which

each of the 2N states is equally likely). Actually (if there more than two bits of memory,

i.e. N > 2) we have both lower and upper bounds on the maximum difference between

the actual distribution of outputs of length l random programs and the uniform 2−N

distribution:

1

2

(
1− 4π2

3 22N
l

)
≤ ||µl − π|| ≤

√√√√ e
− 4π2

3 22N l

1− e
− 4π2

3 22N l

That is the programs have to be longer than O(22N ) for the distribution of memory

states to be very close to the limiting distribution. E.g. to make ||µl − π|| < 0.1, the

lower bound says l must exceed 0.8 3
4π2 22N, while the upper bound says it need not

exceed log(101) 3
4π2 22N .

For a computer with 1 byte of memory (N = 8 bits), programs with between 4,000

and 23,000 random instructions need to be considered before each state is equally likely.

In general, the distribution of program fitnesses will also take between 0.06 22N and

0.35 22N to converge. Of course specific fitness functions may converge more rapidly.

7 Fast Convergence Example (Bit Flip Computer)

This second example shows a different architecture where not only does the computer

still converge, but it converges very much faster than the upper bound proved for every

computer in Section 5. Section 7.1 described the bit-flip computer and the convergence

of random programs’ outputs on it. Section 7.2 proves results for the convergence of

their functionality.
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7.1 Convergence of Bit Flip Outputs

This example uses Rosenthal’s results on random bit flipping (Rosenthal 1995). See also

(Diaconis 1988, pages 28–30). Assume a computer with N bits of memory and N + 1

instructions. The zeroth instruction does nothing (no-op) while each of the others flips

a bit. I.e. executing instruction i, reads bit i, inverts it and then writes the new value

back to bit i. There is an input register of n bits and an output register of m bits. (The

instruction set treats every bit of memory uniformly, so the input register is read-write

rather than read only.)

Once again the limiting distribution is that each of the states of the computer

is equally likely. However the size of programs needed to get reasonably close to the

limit is radically different. Only 1
4 (N + 1)(log(N) + c1) program instructions are re-

quired to get close to uniform (Diaconis 1988, page 28) (Rosenthal 1995). In fact,

for large N , it can also be shown that, in general, convergence will take more than
1
4 (N + 1)(log(N)− c2) instructions.

Using the upper bound and setting c1 ≥ 4 will ensure we get sufficiently close to con-

vergence. Since then ||µl−π|| ≤ 10%. I.e. random programs of length 1
4 (N + 1)(log(N) + 4)

will be long enough to ensure each bit of the computer is equally likely to be set as to be

clear, regardless of the programs’ inputs. (Section 9 explains why c1 = 4 is sufficient.)

Again in the limiting distribution each state is equally likely.

Only m/(N+1) bit flips actually effect the output, so 1
4 (N + 1)(log(m) + 4) random

instructions will suffice for the each of the 2m outputs to be equally likely (cf. Section 9).

Returning to our computer with 1 byte of memory (N = 8), programs with no

more than 14 random instructions are needed to ensure each state is equally likely.

While if we run programs with a Boolean output (where the output register occupies a

single bit m = 1) random programs need only contain nine instruction to make either

output equally likely.

7.2 Convergence of Bit Flip Functions

Since, in this bit flip computer, those parts of the input register which are not also

part of the output register have no impact on it, we can ignore them. Assume s bits

are shared by the input and output registers. We can construct a truth table for each

program. It will have 2s rows. The zeroth row gives the output of the program (in the

range 0 . . . 2m − 1) when all s bits of the input register are zero. Each bit of the row

is equal to the number of times the corresponding memory bit has been swapped by

the program, modulo two. Each of 2s − 1 other rows is determined by the zeroth row.

I.e. the complete table and hence the complete function implemented by a program,

is determined by its output with input zero. Section 7.1 considered the convergence of

program outputs, so we know that: 1) for large programs, each of the 2m functions is

equally likely and 2) the distribution of functions converges with the distribution of

outputs. I.e. by 1
4 (N + 1)(log(s) + 4) random instructions.

Frequently the value or fitness of a program is determined by its functionality.

Therefore the distribution of fitness values will also converge to a limit. Also it will

converge to its limit at least as fast as the distribution of functionality converges. Many

fitness functions are based on the errors programs make. Usually they do not care on

which input errors occurred. Instead, they often either count the number of errors or

sum the sizes of the errors. In such cases, many different functions have identical fitness.
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Therefore the distribution of fitness values typically may converge faster (i.e. require

shorter programs) than the distribution of program functionality.

Returning to our 1 byte (N = 8, s = 1) example. Nine random instructions are

enough to ensure all of the possible Boolean functions are equally likely. Furthermore

every Boolean fitness function will also be close to its limiting distribution.

8 The Average/Random/Amorphous Computer

In Computer Science we are used to the notion that computers are highly designed,

precision engineered artifacts. For example, instruction sets are deliberately chosen

to have highly ordered effects on the state of the machine, particularly the contents

of its memory. Nevertheless we can theoretically analyse more amorphous computing

devices. Indeed nanotechnology may be a route to their practical construction and use.

Here we consider an abstract machine which can be considered as an average or typical

machine, since its instruction set, rather than being designed, is chosen at random.

We have been considering computer instructions as moving the computer from one

state to another. We can define an average computer with I independent instructions, to

be representative of the whole class of such computers if they are average instructions.

An instruction chosen at random from the set of all possible instructions will be similar

to the average over all possible instructions. So we suggest that a randomly connected

computer is an average computer, and vice-versa.

While such a random connection machine might seem perverse, and we would

expect it to be hard for a human to program, on the face of it, it could well be Turing

complete (taking into account its finite memory).

The next subsection considers the convergence of the outputs of an average com-

puter, while subsection 8.2 considers convergence of the functions it implements.

8.1 Convergence of Outputs of Amorphous Programs

The following paragraphs construct the state transition matrix P (x, y) for our ran-

dom computer. From P (x, y) we show the distribution of outputs of all programs also

converges as programs get longer. Then we calculate the rate at which it converges.

We show, depending upon details, programs as short as five instructions may ensure

convergence.

Suppose given any possible data in memory each of the I instructions independently

randomises it. Since the number of states 2N is much bigger than the number of

instructions, from any given current state of the machine, in one instruction, it is

impossible to reach most others. I.e. most elements of the transition matrix P (x, y)

will be zero. However each instruction must put the machine into a new state (which,

of course, could be the same as the current state). So at least one element in each

column of P (x, y) will be bigger than zero. With I instructions, the new state could

be upto I different states. That is upto I elements in each column of P (x, y) can be

non zero. If two instructions change the current state to the same next state, then,

assuming each instruction is used with equal probability, this state is twice as likely

as those which can arise by only one instruction. However only I − 1 states would

be accessible. If three instructions produce the same outcome, then the corresponding

element of P (x, y) will be three times as big, and so on. If each of the I instructions is
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equally likely to be used P (x, y) must be an integer multiple of 1/I. I.e. for any state

x, P (x, y) = 0 or 1/I or 2/I or . . . or I/I.

Since every column of P has 2N elements, for a single instruction, the chance of any

given P (x, y) being zero is (1− 2−N ). Considering all I independent instructions gives

the chance of any given P (x, y) being zero is (1 − 2−N )I . Consider two instructions

chosen at random. P 2(x, y) = 0, or 1/I2 or . . . or 2I/I2. The chance of any given

element of P 2(x, y) being zero is (1− 2−N )2I .

For a instructions, each element of Pa(x, y) will be a multiple i (possibly zero) of

I−a. The values of i will be randomly distributed and follow a binomial distribution

with p = 1/2N , q = 1 − p and number of trials = Ia. So the mean of the distribution

of i is Ia/2N and its standard deviation is
√

Ia × 1/2N × (1− 1/2N ). For large Ia

the distribution will approximate a Normal distribution. If Ia � 2N , even for large

2N , practically all i will lie within a few (say 5) standard deviations of the mean.

I.e. the smallest value of i in any column will be more than Ia/2N − 5
√

Ia × 1/2N .

So β will be at least 2N I−a(Ia/2N − 5
√

Ia × 1/2N ) (cf. Table 2 and Section 4).

I.e. β ≥ (1− 5
√

I−a × 2N ).

Let α = 5
√

I−a × 2N . So β ≥ (1− α). Next chose a particular number of instruc-

tions a so that α is not too small. E.g. set α = 0.5 so β ≥ 0.5.

α = 5
√

I−a × 2N√
I−a × 2N = α/5

0.5(−a log I + N log 2) = log(α/5)

a =
−2 log(α/5) + N log 2

log I

Now that we have a practical value of β, we can use the minorization condition on

Pa to give a bound on the difference between the actual probability distribution of

memory states after running a randomly chosen program of l instructions on a randomly

constructed computer and its limiting distribution:

||µl − π|| ≤
(
1− (1− 5

√
I−a × 2N )

)bl/ac

=
(
5
√

I−a × 2N
)bl/ac

= αbl/ac

Choosing a target value of ||µl − π|| of 10% gives:

αbl/ac ≥ ||µl − π|| = 0.1

bl/ac log α ≥ −2.30

l ≤ −2.30 a

log α

=
−2.30 (−2 log(α/5) + N log 2)

log α log I

=
−2.30 (2 log 10 + N log 2)

− log 2 log I

l ≤ 15.3 + 2.30 N

log I
(3)
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Fig. 4 Convergence of three random machines, measured with a million random functions
at each length. Note allowing for noise, measurements are within theoretical upper bound,
Inequality (3) (straight lines). Also note large instruction sets are needed to ensure randomly
connected computers can access all their memory states.

Note this predicts quite rapid convergence for our randomly wired computer. E.g. if it

has 8 instructions l ≈ 7+N . For a one byte (N = 8) computer with 8 random instruc-

tions (I = 8), programs longer than 16 instructions will be close to the computer’s

(approximately uniform) limiting distribution.

Inequality (3) bounds the length of random programs need to be to ensure, starting

from any state, the whole computer gets close to its limiting distribution. Again we

define parts of the memory as input and output registers. Each program’s output is

given by m output bits. Due to the random interconnection of states, on average we can

treat each of the 2m states associated with the output register as projection of 2N−m

states in the whole computer, so Inequality (3) becomes l ≤ (15.3 + 2.30 m)/log I.

E.g. for Boolean problems (m = 1). Only about 9 random instructions are needed

for an 8 random instruction computer to have effectively reached the programs’ outputs

limiting distribution.

Figure 4 confirms our analysis experimentally. The length of programs run on

amorphous computers in Figure 4 are actually even shorter than our calculated bound.

Doubtless this is in part due to our choice of five standard deviations. If need be,

somewhat tighter bounds could be established by more detailed consideration of β.
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8.2 Convergence of Functions on Amorphous Computers

Let us consider the truth table of the function that each program implements (cf. Sec-

tions 2.2 and 7.2). If two rows of the inputs × memory table are different, executing

any of the instructions will change them both to (probably different) random contents.

However if the two rows have the same contents, after any instruction they will both

still have the same contents (albeit probably different from their previous one). I.e. if

two rows become synchronised at identical points in the program, they will remain

synchronised no matter how many more instructions are executed. We shall assume

there are a large number of independent random instructions. This ensures the tran-

sition matrix is almost certain to be connected, i.e. the computer can implement all

functions. Given a long enough program, chosen at random, all the rows in the table

will be synchronised. This means in the limit of very long programs, the contents of

memory will be the same no matter what the program’s inputs were. I.e. almost all

long programs implement one of the 2m constants. Further each constant is equally

likely.

The chance of two rows, which had different contents, becoming synchronised by the

next random instruction is 2−N . Therefore the number of random instructions before

two rows become synchronised is exponentially distributed, with mean and standard

deviation 2N .

By totally synchronised, we mean by the end of the program, the computer’s mem-

ory content is the same for all 2n possible inputs. Therefore the program will always

output the same value. Next we use the “coupon collector” argument (Stirzaker 1999,

pages 274–275) to calculate how long this will take.

For total synchronisation, 2n−1 rows must be synchronised with the first. The ex-

pected number of instructions for any row to synchronise with the first is 2N/(2n− 1).

The expected number for the second is 2N/(2n−2), and so on. Until rows synchronise,

they are independent of each other. So the mean for all rows to synchronise is the sum

of 2n− 1 individual means. I.e. the total for all rows is 2N ∑2n−1
i=1 1/i. For large h, the

harmonic number,
∑h

i=1 1/i, can be approximated by log h + γ, where γ ≈ 0.5772 is

Euler’s constant. So, for large n, the expected program length for complete synchroni-

sation is (log(2n − 1) + γ)2N = (.58 + .69n)2N . Similarly the variance is also given by

summing the variance for each row. I.e. the variance is 22N ∑2n−1
i=1 1/i2. As the upper

limit increases, this sum converges rapidly to 22N π2

6 . So, for large n, the standard

deviation tends to π√
6
2N = 1.29 2N

The “coupon collector” distribution has an approximately exponential tail. There-

fore amorphous programs longer than (6.5 + 0.69n)2N are almost certain to return a

constant value regardless of their inputs.

9 Linear GP: AND NAND OR NOR Computer

Since this model is close to actual (linear) GPs (Nordin 1997) (see Figure 5) we shall

examine it in more detail than the other computers.

The computer comprises N bits of memory and the CPU. The memory contains

the input register (n bits) and the output register (m bits). The input and output

registers overlap. The CPU has 4 Boolean instructions: AND, NAND, OR and NOR.

Before executing any of these, two bits of data are read from the memory. Any bit can
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Fig. 5 The four function computer. On the left the CPU is executing an AND instruction.
On the right we see an example program.

be read. The Boolean operation is performed on the two bits and a one bit answer is

created. The CPU then writes this anywhere in memory, over writing what ever was

stored in that location before.

Note the instruction set is complete in the sense that, given enough memory, the

computer can implement any Boolean function.

As with the initial random population of a linear GP system, each of the available

instructions can occur at any point in the program and which memory locations it reads

from and which it writes to are chosen randomly. Of course, as evolution proceeds, a GP

system will rapidly home in on particularly high scoring combinations of instructions.

Nevertheless Monte Carlo sampling tells us about the underlying space which GP (or

other methods) is searching. Such information might be used to improve GP, e.g. with

better fitness functions (see Section 12) or explain a GP’s operation. As we shall see,

this architecture has several features which eases the analysis of random streams of

instructions.

Each time a random instruction is executed, two memory locations are (indepen-

dently) randomly chosen. Their data values are read into the CPU. The CPU performs

one of the four instructions at random. Finally the new bit is written to a randomly

chosen memory location.

9.1 Convergence of 4 Instruction Program Outputs

Now it considerably simplifies the argument, to note, that the four instructions are

symmetric. In the sense that no matter what the values of the two bits read, the

CPU is as likely to generate a 0 as a 1. That is each instruction has a 50% chance of

inverting exactly one bit (chosen uniformly) from the memory and a 50% chance of

doing nothing. Thus we can update the analysis in Section 7 based on (Diaconis 1988,

pages 28–30) and (Rosenthal 1995). The difference between the actual distribution µl
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of outputs for programs of length l and the long program limit π is bounded by

||µl − π||2 ≤ 1

4

N∑
j=1

N !

j!(N − j)!

∣∣∣1− j

N

∣∣∣2l

(4)

=
2

4

dN+1
2 e∑

j=1

N !

j!(N − j)!

(
1− j

N

)2l

<
1

2

∞∑
j=1

Nj

j!
e−

2j
N l

||µl − π||2 ≤ 1

2

(
eNe

− 2l
N − 1

)
Suppose that we want to find the shortest length for which programs have a distri-

bution µl which is within 10% of the limiting distribution π for infinitely big pro-

grams. (I.e. ||µl − π|| < 0.1.) Rearranging the above formula gives the upper bound

l ≤ 1
2N(log(N) + 4).

Note, programs need only be twice as long on this computer (which is capable of

real computation) as the simple bit flipping programs of Section 7. This result is for

convergence of the whole computer. Next we show that programs can be shorter, if we

consider only convergence of programs’ outputs (i.e. of the output register).

In this computer the chance of updating the output register is directly proportional

to its size. So the number of instructions needed to randomised the output register is

given by its size (m bits). But we need to take note that most of the activity goes on

the other N −m bits of the memory. Therefore Inequality (4) becomes

1

4

m∑
j=1

m!

j!(m− j)!

∣∣∣1− j

N

∣∣∣2l

which leads to l ≤ 1
2N(log(m)+4). Figure 6 shows we have excellent agreement between

theory and experiment and that the theoretical upper bound is only slightly larger than

the observed convergence rate.

For example, on a four function computer with an eight bit memory, we observe

convergence to within 10% for programs longer than 12 instructions. Whilst the theo-

retical bound is 16 instructions.

9.2 Convergence of 4 Instruction Program Functions

Having correctly predicted convergence of program outputs, we next show that the

distribution of programs’ functionality also converges. Almost all large programs im-

plement one of the constant functions and each constant is equally likely. We next

consider more useful programs. In Sections 9.3 and 9.4, we model the behaviour of

shorter programs. Section 9.5 shows how they tend to the large program limit.

As discussed in Section 2, a given program can be thought of as a transformation

from the initial memory pattern to the memory pattern when the program terminates.

Now when the program starts, most of the memory is zero. Only the input register

can be non-zero. So again we can consider every program as a transformation from
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Fig. 6 Convergence of outputs of 4 input bit Boolean (AND, NAND, OR, NOR)
linear programs with different memory sizes. Note the agreement with upper bound√

1/2(exp(me−2l/N )− 1) (dotted lines).

Table 4 Example of memory contents after running a programs. Each row gives contents
(8 bits) after starting with corresponding input (2 bits, 2 left hand columns). Note correlation
between rows.

Input Memory
I/O

0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 1
1 1 1 1 0 0 0 0 1 1

the inputs (0..2n − 1) to the complete memory (0..2N − 1). In this section all 2n

possible input values are tested. We will be primarily interested in just the output

register but for the time being let us consider the whole memory. Again we can build

an inputs × memory table N bits wide with 2n rows, one for each input. Each row

contains the memory pattern after the program halts after having started with the

corresponding input, cf. Tables 3 and 4.

We know (cf. Section 9.1) in the limit of long programs, that for any given input

pattern each bit is as likely to be set as clear. I.e. after a long ( 1
2N(log(N) + 4) )

random sequence of instructions, any row of the table will hold a uniform random

pattern of 0 and 1s. However the rows of the table are not independent. We would like

to use a “coupling” argument, such as given by (Propp and Wilson 1996) but since

our random program is fixed we cannot assume the state transitions are independent.

Instead we note that the Markov process for updating the memory may or may not have
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a synchroniser. (A synchroniser is a sequence of instructions which takes the machine

from every possible state to one state.) If there is a synchroniser, a long enough random

program is bound to contain that sequence. It does not matter where the synchroniser

is. Once synchronised the machine will remain synchronised, and so its output will be

the same no matter how it started. I.e. each of the rows in the inputs×memory table

will be identical. This means long random programs will be irreversible. Conversely if

there is no synchroniser, programs will map each starting state to a different final state,

and the program is reversible. Section 10 briefly considers reversible computation. In

particular, Section 10 shows that if two identical reversible computers running the same

program are started with different inputs at the same time, they do not synchronise.

I.e. their memories will never be identical. In contrast typical computers (and also

random computers, cf. Section 8) do synchronise, they are not reversible and they

destroy information during the course of a program run.

It is possible to devise a program for our four Boolean operators computer that

behaves like the cyclic machine. However if we look at a typical long program, it does

loose information and the rows in its table are not unique. I.e. the AND NAND OR

NOR computer is not reversible.

To prove this, we construct a synchroniser. Setting r0 to the opposite of r1 fol-

lowed by AND(r0,r1) will always generate a zero (regardless of their initial values).

So r0 =NAND(r1,r1) followed by N − 2 AND(r0,r1) instructions can be used to clear

memory cells r2 . . . r(N−1). We then use r0 =AND(r2,r2) r1 =AND(r2,r2) to clear r0
and r1: ensuring the whole of memory is clear regardless of its initial state. I.e. we have

a synchroniser of N + 1 instructions.

A very long sequence of random instructions is bound to contain our synchroniser,

so at some point it will clear the entire machine’s memory. From this point on the initial

input makes no difference and whatever the program does to the memory will be the

same no matter which input value is considered. (I.e. the rows of inputs×memory table

are all the same.) So we need only consider one case. However Section 9.1 has already

covered this and we know that in the limit of large random programs each memory

pattern is equally likely. I.e. each of the 2m possible constants are equally likely. Also

(after synchronisation) only a further 1
2N(log(N)+4) random sequence of instructions

are needed to approach the limit. (We could use the length of our synchroniser to give

an upper bound on the length of random programs needed to be reasonably sure that

they contain it (≈ 2.3(N + 1)IN+1 = 2.3(N + 1)4N+1N3(N+1)). However this turns

out to be a very weak bound on convergence of the distribution of functions.) Figure 7

plots the convergence of the fitness distribution for a parity problem, in which the

input registers is not write protected. Note the fraction of all high fitness programs

falls rapidly towards zero. We consider how long it will take to get close to the limiting

distribution by constructing a model of the convergence process.

9.3 Model of Convergence of 4 Instruction Program Functions

By considering the 4 instruction computer is more detail, Sections 9.4 and 9.5 are able

to model the number and functionality of interesting shorter programs.

Instead of total variation distance we take into account that we know the limiting

distribution for the programs’ functionality is that they are overwhelmingly likely to

return the same value for each input. In the long program limit, since the contents of the

memory is the same no matter what the input is; the inputs×memory table is a uniform
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Fig. 7 Convergence of Even-3 parity fitness. (AND, NAND, OR, NOR, I/O register may be
overwritten.) Partial success (5 hits) is much more frequent than higher fitness (6 and 7 hits).
No parity (8 hits) solutions were found. Even near the limit some functions are more common
than others. Longer programs are needed to achieve convergence of functions than of outputs
(cf. Figure 6, 8 bits).

random combination of columns of all zeros or all ones. We consider the fraction of

programs that implement a function which is not in the limiting distribution. I.e. those

which do not yield a constant. (The distribution of constants converges rapidly to each

being equally likely, and we do not consider this further.)

Initially, where the input and output registers overlap, the outputs are equal to

the inputs. I.e. the output register part of the inputs × memory table contains the

Identity function. As random operations are performed, the proportion of non-constant

functions falls (see Figure 8).

Initially convergence is rapid and dominated by the removal of the Identity func-

tion. As programs get longer convergence continues but at slower exponential rate. We

construct two models to explain this.

9.4 Short 4 Instruction Program Functions

Initially the output register columns of the inputs ×memory table contains the Iden-

tity function and the other columns are all zeros (cf. Table 3, page 6). Only m/N

instructions write their output to the output register. If this proportion were fixed the

proportion of Identity functions would fall as (1−m/N)l. Rearranging, and assuming

N � m (so log(1−m/N) ≈ −m/N) we can get a lower bound on program length for

convergence of the distribution of functions of 2.30N/m.
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Fig. 8 Convergence of binary Boolean random linear functions (AND, NAND, OR, NOR,
8 bits). Almost half long programs implement Always-on and nearly half implement Always-
off. Short programs are more varied and many implement the Identity function “D0”.

In Figure 9 we have further refined this model by taking advantage of the fact

that we know which of the operations overwrite the output register with the Identity

function given they are reading either from memory which still contains zero or from the

output register itself. For our four function instruction set and m = 1, this introduces

a ≈ n/(2N) correction.

As other parts of the memory are over written, the initial rapid convergence, due

to loss of the identify function (cf. D0 in Figure 8), slows. Cf. “knee” in observations

as program length passes N . Nevertheless, Figures 9 and 11 show (1 − m/N)l is a

very good model for the whole search space. It is only when we want to consider the

distribution of very rare non-trivial functions, that a more detailed model is needed.

9.5 Longer 4 Instruction Program Functions

After O(N) instructions the majority of the memory is likely to have been overwritten

and to be weakly correlated with the input data. In this section we provide a crude

model of the distribution of functions in long linear programs. The first thing to stress

is that we do see convergence towards the limiting distribution (equal numbers of

each of the 2m constants). Figures 8, 9 and 11 show the proportion of non-constant

functions falls exponentially, albeit with a smaller exponent than predicted in the

previous section. It is also worth pointing out that since the exponent is much smaller

than that associated with the increase in numbers of programs with increase in their

length, that the total number of interesting functions continues to increase dramatically,

cf. Figure 10.
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Fig. 9 Convergence of binary Boolean random linear functions (AND, NAND, OR, NOR,
8 bits). The steep straight line is the predicted effect of exponential loss of the Identity func-
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convergence (Section 9.4). While the dotted line is experimental fit (Section 9.5).

To model the small fraction of interesting functions we note they can only arise in

programs that have either avoided over writing the whole of the input register with

a constant or have saved (one or more) copies of it elsewhere in memory. Computer

instructions reading (parts of) these copies of the input register may lead to interesting

(i.e. non-constant) functions. The proportion of each such functions, appears to, fall

dramatically with the number of operations needed to create them from the input data.

However the ratio of frequencies of these functions appears to stabilise when programs

are long, cf. Figure 8. This could allow us to estimate the proportion of functions which

are too low to measure, either from measurement or models of more frequent functions.

In (Langdon 2002b, pages 194–197) we presented an informal model which suggests

the proportion of interesting functions implemented on our four Boolean function lin-

ear computer falls exponentionally with program length with an exponent O(N−3/2).

Figures 9 and 11 shows empirical evidence that the fraction of interesting functions

does indeed have this two stages behaviour.

10 Reversible/Quantum Computers

A reversible computer is one where every program’s input can be inferred from its

output (Langdon 2003). This is usually imagined as feeding the program’s outputs

back into the program and running it backwards from its end to its start. (Hence the

name reversible). Once it reaches its start, it will have calculated its inputs. Recently
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Fig. 10 Number of programs which implement 2-bit odd parity (AND, NAND, OR, NOR,
8 bits). Cf. Section 5.3.

there has been interest in reversible computers for use in high integrity systems (Bishop

1997).

The exponential speed up in theory possible from quantum computers comes from

simultaneous processing of many quantum-bits which are held in a carefully constructed

superposition of multiple quantum states (qubits). The states of the system are de-

scribed by complex numbers and the transformation are treated as complex unitary

matrices. Until measurements are made to collapse the entangled qubits, each ma-

trix has an inverse and quantum computations can be reversed. Note simulations of

quantum computing proceed by taking a complex vector as the starting state and pro-

gressively multiplying it by unitary matrices. (Each matrix represents a transformation

brought about by a quantum gate.) Apart from the use of special complex matrices,

this can be thought of as similar to our process of modelling Markov processes by

multiplying by matrices.

Reversible computers can be considered as a special case of quantum computers.

The matrices contain only real numbers (i.e. non-complex). A unitary matrix whose

elements are all real numbers is known as an orthogonal matrix.

For us to be able to reverse a computation, we cannot destroy information at any

step, so our programs must be composed only of reversible instructions. (This is directly

analogous to quantum computers. Which, except when measurements are taken, must

be composed only of reversible quantum transformations.) The reversible instructions

can move data about memory but compressing information in one region (e.g. the

output register) will imply corresponding expansion elsewhere in memory. To run our

program backwards, we will need to know the state of the whole memory when it

stopped, not just the output register.
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Fig. 11 Fraction of non-constants in 4 input bit Boolean random linear functions (AND,
NAND, OR, NOR, 128 bits). Steep line is prediction of exponential overwriting of Identity
function. While dotted line is slower exponential decrease in non-constant functions. Experi-
mental fit is near that predicted in (Langdon 2002b) Note the proportion of all non-constant
functions appears to decrease with the same exponent.

We are now familiar with the idea that a program is an inputs × memory table,

which maps inputs to final memory. In the case of a reversible computer, we expand

this to cover the whole of memory, so the table becomes memorystart × memoryend

transformation matrix.

Since we can always uniquely determine which input gave rise to the final contents

of memory, in a reversible computer no two inputs can give the same final memory.

This means none of the rows of the table can be identical. In other words reversible

programs permute the states. (A permutation matrix is a special kind of orthogonal

matrix). Similarly every reversible instruction can be represented by a permutation

matrix. The permutation matrix of the complete program is given by multiplying the

matrices of its component instructions together, in the same sequence that they occur

when the program is run.

As an example, consider the cyclic machine described in Section 6. After running

any program on a cyclic machine the memory holds the value (x + p) mod 2N . Where

x is the input and p is a constant (specific to that program). Since x, and therefore the

number of rows, cannot exceed 2N, each row in the table is unique.

Suppose we have 2n identical copies of a reversible computer. We run them all in

step. Each runs the same program but with a different input. They start in different

states. No matter how long the program is, the computers will never synchronise. In

contrast typical computers (and also random computers, cf. Section 8) do synchronise,
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they are not reversible and they destroy information during the course of a program

run.

11 Convergence in bit string genetic algorithms

The bit flipping model (in Section 7) is very close to standard mutation in bit string

genetic algorithms (GAs). The principle difference is in standard GAs the number of

bits flipped follows a Poisson distribution (unit mean is often recommended (Bäck

1996)). Thus 0.38 (rather than 1/(l + 1) ) of chromosomes are not mutated and 0.26

(rather than zero) chromosomes have two or more bits flipped. (In this section, the

length of the bit string chromosome is denoted by l.) Ignoring these differences, it

takes only 1
4 (l + 1)(log(l) + 4) mutations to scramble a chromosome from any starting

condition.

It is no surprise to find asymptotic bounds of O(l log(l)) reported before (Garnier

et al. 1999), but note that 1
4 (l + 1)(log(l) + 4) is quantitative and does not require

l →∞. Also it is a reasonably tight bound in the sense that replacing “+4” by a

modest negative constant leads to a lower bound. However we include this section

mainly because the answer comes straight from standard results without hard work.

Since each chromosome in a GA population is mutated independently, and the

variance is small, the time taken to scramble an entire GA population is scarcely more

than to scramble each of its chromosomes. Crossover makes the analysis more complex

but since it moves bit values rather than changing them, we do not expect it to radically

change the time needed (Gao 1998). E.g. for a GA population of 32 bit strings, mutation

alone (note we turn off selection) will scramble it within about 61 generations. (For

standard mutation the value may be slightly different.) Notice this is independent of

population size, in contrast the number of generations taken by selection to unscramble

the population depends on the size of the population but not l (Blickle 1996). According

to (Bäck 1996, Table 5.4) binary tournament selection (without mutation or crossover)

takes only 9 generations to remove all diversity from a population of 100.

12 Discussion

The results in Sections 5–10 refer to several specific types of computation. Nevertheless

we they are useful, particularly for common varieties of genetic programming (GP),

other unconventional programming techniques or cases where knowing how functions

are distributed is important. For example, we now know that in many cases the dis-

tributions converge very rapidly so that the length of programs used by real GPs can

be greater than the convergence length. That is, in some cases (even without excessive

bloat (Langdon et al. 1999)) evolved programs lie in the “infinitely long” part of the

search space. Indeed in some cases some of the longer programs in the initial random

population can effectively be treated as if they were infinitely long. This may be a par-

tial explanation for the anti-bloat shrinkage often seen in the first generations of GP

runs (Langdon 1998, Figure 4.16) as GP selectively removes long low fitness random

programs. Knowing this and facts about the behaviour of long programs, our results

can be used as a to guide in the redesign of the way the initial GP population is created.

The model does not cover programs that contain instructions that are executed

more than once. I.e. no loops or jumps. This is, of course, a big restriction. However,
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many problems have been solved by GP systems without such loops or recursive func-

tion calls (Banzhaf et al. 1998). We have recently started to be able to map the search

space of program with loops (Langdon 2006).

While the proofs suggests that the program will halt after l instructions, they can

be made slightly more general by extracting the answer from the output register after l

time steps. This is called an “any time algorithm”. Any time algorithms have been used

in GP, e.g. (Teller 1994). Another potential extension is to “programming without a

program counter” (Banzhaf 2005). PC less programming treats each program as a set of

instructions which the computer is free to execute in any order. Typically instructions

are chosen at random. (Hence there is no need for a program counter (PC).) It should

be possible to model such stochastic programs with our approach.

The dominant factors in determining the length required for near convergence are

the type of computer considered and the size of its (data) memory. Comparing the four

types in Sections 5–9 suggests that the degree of interconnections in the state space

is the important factor in determining the form of the scaling law. That is the type

of scaling is given by the nature of the sparsity of the Markov matrix. The ability to

move directly from one memory pattern to another leads to linear scaling, while only

being able to move to 2 adjacent data patterns leads to exponential scaling. We suggest

that the “bit flipping” and “4 Instruction” models are more typical and so we suggest

O(N log N) would be found on real computers.

The random computer (cf. Section 8) gives an interesting model. Indeed it rep-

resents the average behaviour over all possible linear program computers. While we

are unaware of research in this area, it might be feasible to generate Turing complete

“random” computing elements using nanotechnology.

An alternative view is to treat random instructions as introducing noise. Some

instructions, e.g. clear, introduce a lot of noise, while others e.g. NAND, introduce

less. So we start with a very strong, noise free, signal (the inputs) but each random

instruction degrades it. Eventually, in the limiting distribution, there is no information

about the inputs left. Thus the entropy has monotonically increased from zero to a

maximum.

Practical linear GP systems write protect their inputs (Francone 2001; Langdon

and Nordin 2001). Such systems can be viewed as like tree based GP (Langdon and

Poli 2002). The proofs can be extended to cover this by viewing the read-only register

as part of the CPU (i.e. not part of the data memory). Then we get a limiting dis-

tribution as before, but it depends on the contents of the read-only register, i.e. the

programs’ input. In general we would expect this to give the machine a very strong bias

(i.e. an asymmetric limiting distribution) and in some cases this might be very useful.

Indeed the limiting distribution will contain “Identity” functions and other “interest-

ing” (i.e. non-constant) functions. Thus interesting functions in tree GP and protected

input linear GP are more frequent, but there is still a bias in favour of simple functions

(see Figure 12). Possibly these may be related to GP’s ability to find general solutions

(Langdon 1998) and Occam’s razor. Initialising the memory with multiple copies of

the input register might also bring some benefit to GP runs.

Figures 9, 11, and 12, suggest it might be worthwhile investigating linear GP sys-

tems which impose a program length limit of about 10 N/m.

Performance gains might be achieved by including analysis of the memory when pro-

grams terminate. Programs whose inputs×memory table was full of constant columns

might be prevented from breeding, and those with many non-constants might receive

a fitness bonus. While on-line monitoring of the non-constant count, could reduce run
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time if it were used to abort programs early when it falls to zero. However, even us-

ing machine code level parallelism (Poli and Langdon 1999), the monitoring overhead

might be excessive. New fitness measures, for problems like parity, might be devised

where partial fitness would be credited using information content rather than Hamming

distance to the target pattern.

We have considered the convergence of the distribution of all functions. How long

it takes for a specific fitness distribution to converge will depend upon the nature

of the fitness function. Once the distribution of functions has converged the fitness

distribution must also converge, but it could converge substantially faster. If each non-

trivial function convergences exponentially with the same exponent O(N−3/2), then,

provided we exclude the constants, so too must the distribution of program fitness’ for

every non-trivial fitness function. That is in the limit of long programs in simple linear

systems (cf. Section 9) all such fitness distributions will converge exponentially fast

to a limiting distribution at the same rate. I.e., if we exclude constant functions, the

distribution of fitness will converge to a limit as program exceed O(N3/2). (If constants

are allowed to dominate the fitness distribution, convergence will be seen by 2.30N/m.)

13 Conclusions

Both the distribution of all programs’ outputs and their functionality converge when

we consider longer and longer programs. In Section 5 we showed an exponential up-

per bound on the length of programs for both distributions to approach their limits.

To counter the argument that this upper bound is weak, we have shown an example
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(Section 6) where we can calculate tight upper and lower bounds. Both are exponen-

tial. The exponential lower bound shows there are some cases which really do require

exponentially long programs before either the distribution of outputs or functionality

approaches its limit. That is, the general exponential bound is not weak.

We next showed, by establishing the speed of convergence, there are special cases

where convergence occurs very much faster. For example, in Section 7, both the distri-

butions of outputs and functionality of programs of length of only O(N log N) approach

the distributions of the whole infinite program space. Another rapidly converging exam-

ple is Amorphous computing. Section 8 showed barely a handful of random instructions

can be enough for the distribution of outputs to get to within 10% of the limit.

Section 9 describes a linear GP system with the four common Boolean operations.

We showed its space of programs also converges rapidly. Indeed programs need only be

twice as long for this CPU (which can do real computation) than the rapidly converging

example of Section 7. Section 9 describes in some detail how interesting functions

approach their limits.

We have given results which map the vast majority of the infinite space of certain

classes of programs. Our main results show that useful programs are exceedingly rare.

Yet genetic programming has repeatedly demonstrated that progressive fitness based

evolution is able to find them. This reiterates the power of evolution to solve problems

which would be impossible for blind search.
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A Summary

The distribution of outputs produced by all computers converges to a limiting distribution as
their (linear) programs get longer. We provide a general quantitative upper bound (2.30aIa,
where I is the number of instructions and a is the length of programs needed to store every
possible value in the computer’s memory, Section 5). Tighter bounds are given for four types
of computer. There are radical differences in their convergence rates. The length of programs
needed for convergence depends heavily on the type of computer, the size of its (data) memory
N and its instruction set.

The cyclic computer (Section 6) converges most slowly, ≤ 0.35 22N , for large N . In contrast
the bit flip computer (Section 7) takes only 1

4
(N + 1)(log(m) + 4) random instructions (m bits

in output register). In both computers, the distributions of outputs and of functions converge
at the same rate to a uniform limiting distribution.

In Section 8 we introduced a random or amorphous, model of computers. This represents
the average behaviour over all computers (cf. NFL (Wolpert and Macready 1997)). It takes
less than (15.3 + 2.30m)/ log I random instructions to get close to the uniform output limit.
The limiting distribution contains only functions that are constants. Again convergence is
exponential with 90% of programs of length 1.6 n2N yielding constants (n is the size of the
input register in bits).

Section 9 shows the output of programs comprised of four common Boolean operators con-
verges to a uniform distribution within 1

2
N(log(m) + 4) random instructions. The importance

of the pragmatic heuristic of write protecting the input register, is highlighted, since without
it there are no “interesting” functions in the limit of large programs.



30

In Section 10 we showed quantum and reversible computers do not have synchronising
sequences and consequently the behaviour of their long programs is radically different from
that of conventional computers.

Section 11 shows the number of generations ( 1
4
(l + 1)(log(l) + 4)) needed for mutation

alone to randomise a bit string genetic algorithm (chromosome of l bits).
Practical GP fitness functions will converge faster than the distribution of all functions,

since they typically test only a small part of the whole function. Real GP systems allow
rapid movement about the computer’s state space and so appear to be close to the bit
flipping (Section 7) and four Boolean instruction (Section 9) models. We speculate rapid
O(|test set|N log m) convergence in fitness distributions may be observed.

The number of minimal solutions to XOR (even-2 parity) grows quadratically in memory
size (cf. Section 5.3) but this corresponds to a rapid fall in proportion as memory is increased.

In the Boolean linear systems considered, complex functions are very rare even in short
programs and appear to reach a peak in their frequency near l = N/m. This suggests a size
limit of O(N/m) might be beneficial to linear GP. The peak is followed by exponential decline,

with the same exponent (≈
√

2/N3) as the other non-trivial functions. Since
√

2/N3 < I,
the number of solutions grows exponentially with program length l. It is also appears that the
frequency of complex functions decreases dramatically as the number of operations needed to
created them from the program’s inputs increases. I.e. most functions are parsimonious.
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