
GECCO’2002 Late Breaking paper E. Cantu-Paz, editor, New York, 9-13 July

Random Search is Parsimonious

W. B. Langdon
Computer Science, University College, London,

Gower Street, London, WC1E 6BT, UK
W.Langdon@cs.ucl.ac.uk http://www.cs.ucl.ac.uk/staff/W.Langdon

Abstract

We model in detail the distribution of
Boolean functions implemented by random
non-recursive programs, similar to linear ge-
netic programming. Most functions are con-
stants, the remainder are mostly simple.

Bounds on how long programs need to be be-
fore the distribution of their functionality is
close to its limiting distribution are provided
in general and for average computers.

1 Introduction

This late breaking paper presents extensions to work
in the main proceedings [Langdon, 2002]. Much of the
background is described in the main proceedings.

In [Langdon and Poli, 2002] we proved for a number of
systems close to practical tree and linear GP systems
that eventually, for big enough programs, their fitness
distribution will converge. In the main proceedings we
put numbers to and defined scaling laws for the length
of linear genetic programs, so that the distribution of
program outputs produced by random programs is ef-
fectively independent of their size. Here we provide
similar results on the distribution of functions.

The next section summarises our Markov model of
linear GP, total variation distance (Section 1.2) and
minorization (Section 1.3). Minorization is used to
provide a weak upper bound for any computer (Sec-
tion 2) and application to an average computer is dis-
cussed (Section 2.1). Section 3 describes detailed mod-
els for the distribution of functions implemented by a
computer similar to that used in linear genetic pro-
gramming. These models are compared with measure-
ments. This is followed by a brief discussion (Sec-
tion 4) and our conclusions (Section 5).

1.1 Markov Model of Programs

We want to know about every possible program. Our
approach is to sample randomly (both theoretically
and in real experiments) a large number of times. As
the sample becomes bigger its properties will approach
that of the distribution from which it is drawn. I.e. the
sample tells us how the whole search space behaves.
The major interest is to generate samples of different
sized programs to see how the search space changes.

We limit ourself to programs that run through a given
number of instructions and stop. They do not loop.

The computer’s data memory is zeroed. The pro-
gram’s inputs are loaded into the input register (a
memory cell). The program runs and in the process
reads and write to memory. When it stops, its answer
is read from the output register (a memory cell). It is
well known that a program can be interrupted (check
pointed) and restarted later without ill effect, provided
it is restarted from where it got to and the memory is
restored to the condition that it was in before the pro-
gram was suspended. The program counter and mem-
ory are all the state that is needed. If we treat the
program as a random sequence of instructions, then
we have a Markov process. This is important because
there are nice theoretical results about the behaviour
of Markov processes after many random steps and how
many random steps are enough for these results to ap-
ply.

1.2 Convergence Metric

In the next two sections we shall use the total variation
distance || · || between two probability distributions to
indicate how close they are. The total variation dis-
tance between probability distributions a and b is the
largest value (supremum, sup) of the absolute differ-
ence in the probabilities where the difference is taken
over all subsets, i.e. every possible grouping of states

1

http://www.cs.ucl.ac.uk/staff/W.Langdon


Figure 1: Total variation distance between probabil-
ity distributions a and b. The probability of being in
subset {1, 3, 4} with a and b are compared. ||a− b|| is
the largest difference across all 256 possible subsets.

x, not just single points. See Figure 1. In mathe-
matical terminology ||a − b|| = supx⊆χ |a(x) − b(x)|
[Rosenthal, 1995; Diaconis, 1988]. (If || · || were just
the largest difference, it would be small as long as a
and b were both small, even if the distributions a and
b were not similar).

1.3 Markov Minorization

A Markov transition matrix P can be thought of as
telling us how a randomly chosen operation mixes
things up. The computer’s memory for each input to
the program defines the function the program imple-
ments at this point in its execution. Executing one
randomly chosen instruction will update the pattern
and so to the function. In practical computers the
number of possible instructions is large but much less
that the number of possible bit patterns in memory
and so very much less than the number of possible
functions. Thus after one instruction the implemented
function can only be one of a small fraction of the total.
That is, in one step the Markov matrix can only mix
things up a little. However if we consider executing
two instructions in sequence the number of functions
can increase. After a > 2 steps even more functions
can be reached. Minorization [Rosenthal, 1995] is a
way of quantifying this mixing (or at least provides a
lower bound on it). Specifically the difference between
the actual µk and limiting π distributions obeys:

||µk − π|| ≤ (1− β)k

where
β =

∑
j

min
i
P aij

and k is the number of groups of a instructions. I.e.
β is given by adding together the chance of getting,
in a steps, from one function to the least likely other
function. I.e. β is the sum of the minimum values of the
entries in each column of the matrix P ×P ×· · ·×P =
P a.

2 Convergence Bound on Functions
Implemented on Any Computer

Let a be the minimum number of program instructions
required to implement every one of the functions. That
is, from the initial starting condition, s0, for each of the
possible functions, there is at least one program of a
or fewer instructions which implements the function.
We will gloss over one difficulty, which is that here
we consider only functions from the input register to
the output register. I.e. we ignore the N − m bits
of memory not in the output register. Ignoring this
potential violation of the Markov property for the time
being, we have a minorization condition for P a. In
fact P as0,j ≥ I−a > 0 ∀j. (Where I is the number
of instructions provided by the computer.) Therefore
β ≥ I−a and so for any computer:

||µl − π|| ≤ (1− I−a)l/a (1)

I.e. we are guaranteed that the difference between the
probability distribution for our computer after execut-
ing a random program of length l instructions and its
limiting distribution (after ∞ instructions) falls geo-
metrically as the length increases.

Setting || · || to 10% yields a convergence length l for
any computer with I instructions l ≤ 2.3aIa. Where a
is the number of instructions to implement any of the
possible functions.

Now we come to the major difficulty, Inequality (1)
can be a very weak upper bound. Even for the sim-
plest possible instance of a useful computer (cf. Sec-
tion 3) the bound is too weak to help. E.g. With
two input bits (n = 2) and one output bit m = 1
there are 2m×2n = 16 functions. The most difficult
of these is parity. However only three instructions are
needed, i.e. a = 3. In fact there are 32(N − 1)(N − 2)
programs of length three that implement even-2 par-
ity. So we can improve our bound on β from 1/I3 to
32(N − 1)(N − 2)/I3. There are four operation codes,
two memory address are read in each instruction and
the output is written back to memory so I = 4×N3.

2



||µl − π|| ≤

(
1− 32(N − 1)(N − 2)

(4×N3)3

)l/3

Even for a 1 byte (N = 8) computer this gives a
convergence length of l ≈ 13.8N9/(N − 1)(N − 2) ≈
44 million. In fact near convergence is seen by pro-
grams of about 25 instructions cf. Figure 3.

2.1 The Average Computer

[Langdon, 2002] argues that each randomly connected
computer is representative of all computers. It uses the
minorization process (described above in Section 1.3)
to prove the distribution of outputs produced by it
converges and how may instructions are needed to
get close to the limit. An informal argument is pre-
sented that convergence of the distribution of func-
tions converges 2n times slower. It may be possible to
strengthen this result.

3 AND NAND OR NOR Computer

The model used in the main proceeding is used again
but we look at the functions implemented by programs
and give new examples.

3.1 Convergence of Random Outputs

In this model the computer comprises N bits of mem-
ory and the CPU. The memory contains the input
register (n bits) and the output register (m bits). In
our experimental work, the input and output registers
overlap. The CPU has 4 Boolean instructions: AND,
NAND, OR and NOR. Before executing any of these,
two bits of data are read from the memory. Any bit
can be read. The Boolean operation is performed on
the two bits and a one bit answer is created. The
CPU then writes this anywhere in memory, over writ-
ing what ever was stored in that location before.

Note the instruction set is complete in the sense that,
given enough memory, the computer can implement
any Boolean function.

We look at the distribution of memory patterns that
are produced by running all programs of a given
length, l, and by considering a large number of ran-
dom programs length l. I.e. programs with l randomly
chosen instructions.

Each time a random instruction is executed, two mem-
ory locations are (independently) randomly chosen.
Their data values are read into the CPU. The CPU

0.001

0.01

0.1

1

0 10 20 30 40 50 60 70 80 90 100

T
ot

al
 v

ar
ia

tio
n 

di
st

an
ce

Program length

   8 bits
16 bits  

32 bits

64 bits

128 bits

Figure 2: Convergence of outputs of random 4 bit
Boolean (AND, NAND, OR, NOR) linear programs
with different memory sizes. Note the agreement with
upper bound

√
1/2(exp(me−2l/N )− 1) (dotted lines).

performs one of the four instructions at random. Fi-
nally the new bit is written to a randomly chosen mem-
ory location.

Now it considerably simplifies the argument, to note,
that the four instructions are symmetric. In the sense
that no matter what the values of the two bits read
are, the CPU is as likely to generate a 0 as a 1. That
is each instruction has a 50% chance of inverting ex-
actly one bit (chosen uniformly) from the memory and
a 50% chance of doing nothing. In [Langdon, 2002]
we proved that in there is a limiting distribution π
in which each possible output is equally likely and as
random programs (length l) get bigger

||µl − π||2 ≤ 1
2

(
eme

− 2
N l − 1

)
We can quantify how long programs need to be for
the actual probability distribution to be reasonably
close to the large program limit by requiring the total
variation distance, ||µl−π||, not to exceed 10%. This is
met by programs that are longer than 1

2N(log(m) + 4).
Figure 2 confirms this. If m or N are quite small,
one needs to be caution about extracting exact values.
However the bound gets tighter with larger memory.

3.2 Convergence of Random Functions

A given program can be thought of as a transforma-
tion from the initial memory pattern to the memory
pattern when the program terminates. Now when the
program starts, most of the memory is zero. Only the
input register can be non-zero. So we can consider ev-
ery program as a function from the inputs (0..2n−1) to

3



Table 1: Example of memory contents after running
a programs. Each row gives contents (8 bits) after
starting with corresponding input (2 bits, 2 left hand
columns). Note correlation between rows.

Input Memory
0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 1
1 1 1 1 0 0 0 0 1 1

the complete memory (0..2N −1). We assume here ev-
ery possible input value is tested. We will be primarily
interested in just the output register but for the time
being let us consider the whole memory. We can build
a table N bits wide with a row for each input. Each
row contains the memory pattern after the program
halts after having started with the corresponding in-
put, cf. Table 1.

We know (cf. Section 3.1) in the limit of long random
programs, that for any given input pattern each bit is
as likely to be set as clear. I.e. any row of the table is
a uniform random pattern. However the rows of the
table are not independent. In the large program limit,
each of the rows is identical.

This is a fairly general property of this type of com-
puter. However we can devise finite state machines
that do not have it. For example, a machine which only
allows increment or decrement of the whole memory in
a cyclic manner [Langdon, 2002, Sect. 3.2]. After run-
ning any program on a cyclic machine the output is
x + p mod 2m. Where x is the input and p is a con-
stant (specific to that program). That is, each row in
our table is unique. If we have 2n identical copies of
the computer. We run them in step. Each runs the
same program but with a different input. They start
in a different states. No matter how long the pro-
gram is, the computers will never synchronise. They
are also reversible, in the sense that the original input
can be calculated from the program and its output. In
contrast useful computers do not synchronise, they are
not reversible and they destroy information during the
course of a program run.

It is possible to devise a program for our four Boolean
operators computer that behaves like the cyclic ma-
chine, however if we look at the average long program
it does loose information and rows in its table are not
unique.

To prove this we note that we can consider our table
not just as the final state of the computer but as its
current state at each instruction of the program. We

trace how the table changes from being empty (apart
from the input register) to the state when the program
halts. Now each row represents the complete state
when the program was started with the corresponding
input. Each time an instruction is executed, two bits
are read and one bit is updated. Since there are no
branch instructions in this computer, which memory
locations are read and which is updated is the same
no matter what the program’s inputs were. So we
can think of each instruction reading two columns of
our table, performing the same logical operation on a
number of pairs of bits and writing the results back to
a column of our table.

In the limiting case, both of the columns read by any
instruction contain either all zeros or all ones, as does
the second. Therefore no matter which operation the
CPU performs, the whole of the output column will be
either all zeros or all ones. That is, the 2N patterns are
attractors. If the computer ever reaches one of them,
it will remain in one of them. Note this means the
original input has been erased, and any program will
return a constant no matter what its input was.

Each row of the table corresponds to the action of the
program with a specific input. We have shown [Lang-
don, 2002] that in the limit of large random programs
each memory pattern is equally likely. Therefore in the
limit each of the 2N attractors are also equally likely.
I.e. each of the 2m possible constants are equally likely.
We consider how long it will take to get close to the
limiting distribution by constructing a number of mod-
els of the convergence process.

Consider what happens when the CPU reads two
columns that are not in the limiting distribution. That
is, one (or both) contains a mixture of zeros and ones.
Consider one of the elements which is not in the ma-
jority class. Tables 2, 3 and 4 show the state of each
output bit generated by each instruction, both in terms
of its value and also how it compares to the other bits
within the same column. In particular if it is in the
majority or not.

Tables 2, 3 and 4 show if the elements of a particular
row in both input columns both contain the major-
ity bit value (i.e. 0 or 1) then that row of the output
column will always have the majority value, for that
column. Conversely, if both elements are of the minor-
ity class then (depending on their values) the output
row may be in the majority class. Table 4 shows that
when one element contains a majority bit and the other
a minority and given equal chance of the four Boolean
operations, each output is equally likely. Therefore
overall there is a consistent basis towards generating
output columns with an increased number of bits that

4



Table 2: Output of Boolean AND on Function ta-
ble. Note operations between bits in the majorityM

always yield outputs in the majority and on average
the majority tends to increase.

AND 0M 0 1M 1
0M 0M 0M 0M 0M

0 0M 0 0 0M

1M 0M 0 1M 1
1 0M 0M 1 1

Table 3: Output when both input bits are not in the
majorityM . Note if the bit values are different, the
output is in the majority.

AND 0 1
0 0 0M

1 0M 1

OR 0 1
0 0 1M

1 1M 1

NAND 0 1
0 1 1M

1 1M 0

NOR 0 1
0 1 0M

1 0M 0

Table 4: Output when one input bit is not in the
majorityM . Note if AND, NAND, OR and NOR are
equally likely, the output is in the majority 50% of the
time.

AND 0M 1M

0 0M 0
1 0M 1

OR 0M 1M

0 0 1M

1 1 1M

NAND 0M 1M

0 1M 1
1 1M 0

NOR 0M 1M

0 1 0M

1 0 0M

are the same. I.e. each random operation tends to
move the function table closer to one of the patterns
in the limiting distribution.

3.3 Model of Convergence of Functions

This is a some what empirical model of convergence
of the function implemented by random Boolean pro-
grams. We consider the fraction of programs that im-
plement a function which is not in the limiting distri-
bution. I.e. those which do not yield a constant. (The

0 10 20 30 40 50 60 70 80 90 100
Length OffNOR2 ND14 ND0XORNANDANDEQD011D113OROn

Function index

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

Proportion

Figure 3: Convergence of binary Boolean random lin-
ear functions (AND, NAND, OR, NOR, 8 bits). Half
long programs implement Always-on and half Always-
off. Short programs are more varied and many im-
plement the identity function “D0”. Longer programs
are needed to achieve convergence of functions than of
outputs

distribution of constants converges rapidly to each be-
ing equally likely, and we do not worry about this.)

Initially, where the input and output registers overlap,
the outputs are equal to the inputs. As random oper-
ations are performed, the proportion of non-constant
functions falls. See Figure 4.

Initially convergence is rapid and dominated by the re-
moval of the identity function. As programs get longer
converges continues but at slower exponential rate. We
construct two models to explain this.

3.4 Initial Convergence of Boolean Functions

Initially the output register column contains the iden-
tity function and the rest is all zeros. Only m/N in-
structions write their output to the output register. If
this proportion were fixed the proportion of Identity
functions would fall as (1−m/N)l. Rearranging, and
assuming N � m (so log(1−m/N) ≈ −m/N) we can
get a lower bound on program length for convergence
of the distribution of functions 2.3N/m.

In Figure 4 we have further refined this model by tak-
ing advantage of the fact that we know which of the
operations overwrite the output register with the iden-
tity function given they are reading either from mem-
ory which still contains zero or from the output register
itself. For our four function instruction set and m = 1,
this introduces an ≈ 1/2 n/N correction term.

5



0.01

0.1

1

0 10 20 30 40 50

F
ra

ct
io

n 
of

 P
ro

gr
am

s

Program length

Exponetial decay, 0.75 predicted rate
Fraction non-constants

Fraction Identity function
Predicted loss of Identity function

Figure 4: Convergence of binary Boolean random lin-
ear functions (AND, NAND, OR, NOR, 8 bits) Steep
line is prediction of exponential overwriting of identity
function, “D0”.

As other parts of the memory are written to the rapid
convergence due to lose of the identify function (cf. D0
in Figure 3) slows. Cf. “knee” in observations as pro-
gram length passes N .

3.5 Later Convergence of Boolean Functions

After O(N) instructions the majority of the memory
is likely to have been overwritten and (initially) is cor-
related with the input data. In this section we provide
a crude model of the distribution of functions in long
linear programs. The first thing to stress is that we
do see convergence towards the limiting distribution
(equal numbers of each of the 2m constants). Fig-
ures 4, 7 and 8 show the proportion of non-constant
functions falls exponentially, albeit with a smaller ex-
ponent. It is also worth pointing out that since the
exponent is much smaller than that associated with
the increase in numbers of programs with increase in
their length, that the total number of interesting func-
tions continues to increase dramatically, cf. Figure 5.

In order to model the small fraction of interesting func-
tions we assume that they only arise in programs which
have avoided over writing all of the input register with
a constant before saving multiple copies of it elsewhere
in memory. Computer instructions reading (parts of)
these copies of the input register lead to other inter-
esting (i.e. non-constant functions). The proportion of
each such function, appears to, fall dramatically with
the number of operations needed to create them from
the input data. However the ratio of frequencies of
these functions appears to stabilise when programs are
long, cf. Figure 3. This could allow us to estimate the

0

500

1000

1500

2000

2500

3000

3500

0 50 100 150 200 250 300 350 400

Lo
g 

N
um

be
r 

X
O

R
 P

ro
gr

am
s

Length

Figure 5: Number of programs which implement 2-bit
odd parity (AND, NAND, OR, NOR, 8 bits).

proportion of functions which are too low to measure,
either from measurement or models of more frequent
functions.

Let x be the fraction of memory containing copies (or
inverted copies) of one of the bits of the input register.
After executing one randomly chosen instruction, the
number of copies will be the same, one higher or one
lower.

The only way the number can increase, is by selecting
one or more copies as input, selecting a non-copy for
output, and then the operation not generating a con-
stant. Given either one or two random non-constants
as input and a random operation (from our set of
four, AND NAND, OR and NOR), the chance of cre-
ating a constant is 50%. So P (x → x + 1/N) =
1/2(1− (1− x)2)(1− x) = x− 3/2x2 + 1/2x3

Similarly the number of copies can fall by selecting
a copy as output, and either selecting constants for
both input columns or selection one or more copies but
generating a constant from them. So P (x→ x− 1/N)
= x((1− x)2 + 1/2(1− (1− x)2)) = x− x2 + 1/2x3

Notice that there is a slight imbalance between these.
So, as expected, random operations tend over time to
reduce the fraction of copies of the input register in
memory.

f(x) = P (x→ x− 1/N)− P (x− 1/N → x)
= 1/N + 3/2/N2 + 1/2/N3

−3(1/N + 1/2/N2)x
+(1/2 + 3/2/N)x2

f(x) = A+Bx+ Cx2

6



0.0001

0.001

0.01

0.1

1

10

0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

R
at

e 
of

 lo
ss

Fraction of memory occupied by non-constants

f, 8 bits
f/(Nx), 8 bits

f, 128 bits
f/(Nx), 128 bits

Figure 6: Dependence of expected rate of loss of
non-trivial functions depends upon number of copies
in memory. Note semi-stable region at ≈

√
2/N .

The expected decrease is small but never negative,
cf. Figure 6. The expected fractional decrease is
(1− f(x)/(Nx)). If this were constant, the conver-
gence would be exponential. The convergence rate will
be dominated by the slowest stage, i.e. the decay rate
closest to zero. Differentiating (1 − f(x))/(Nx) and
setting this to zero yields

1/xf ′(x)− 1/x2f(x) = 0
1/x(B + 2Cx)− 1/x2(A+Bx+ Cx2) = 0

−A+ Cx2 = 0

min =
√
A/C

=

√
2 + 3/N + 1/N2

(N + 3)
≈
√

2/N (2)

Substituting the minimum given by Equation 2 gives
an estimate of the convergence rate for long programs.

f(min)/minN = 2
√
AC/N +B/N

≈ 1.4N−3/2

Figures 4, 7 and 8 indicate our model gives a rough
approximation (within 40%) to the observed exponen-
tial decay rate. Interestingly, the average number of
non-constants in 128 bits of memory used by programs
implementing function D1 was 14. (Equation 2 suggest
the minimum rate of loss of non-constant functions is
when the memory contains 16 columns which are not
all zero or all one).

4 Discussion

The slower convergence of functions implemented by
random programs than of their outputs can be as-
cribed to two causes. Firstly all the popular non-trivial
functions yield outputs that exactly match the limiting
distribution of outputs. Thus considering only out-
puts can indicate near convergence even when there
is a high fraction of non convergence when looking at
the functions. More fundamentally there are many
more functions that can be implemented than outputs
that can be returned but exactly the same number of
computer instructions to mix things up. So the min-
imum program size needed to implement every func-
tion is much longer than that needed to return every
output value. Markov Minorization can be used to
formalise this with lower bounds, unfortunately so far
the bounds appear to be too weak to be useful.

Practical linear GPs write protect the input register.
We anticipate convergence in such systems and tree
GP will be similar to “slow phase” (Section 3.5). How-
ever the frequency of “Identity” functions will be much
higher and so too will that of other “interesting” (i.e.
non-constant) functions. Indeed they will be present
in the limiting distribution. Thus interesting functions
in tree GP and protected input linear GP are more fre-
quent, but there is still a bias in favour of simple func-
tions. Possibly these may be related to GP’s ability
to find general solutions [Langdon, 1998] and Occam’s
razor.

The numerical factors calculated by the model pre-
sented in Section 3.5 are only approximately correct.
This warrants further analysis, perhaps based on a
“gambler’s ruin” approach.

We have considered the convergence of the distribution
of all functions. How long it takes for a specific fitness
distribution to converge will depend upon the nature of
the fitness function. Once the distribution of functions
has converged the fitness distribution must also con-
verge. However it could converge substantially faster.
If we are right in suggesting each non-trivial function
approaches convergence exponentially with the same
exponent, then so too must the distribution of pro-
gram fitness’ for every non-trivial fitness function.

5 Conclusions

The use of variable length linear programs in genetic
programming is wide spread We have investigated a
model of such GP systems, which while restricted to
Boolean operations at present is not totally unrealis-
tic. This allows us to predict the distribution of fitness

7



1e-06

1e-05

0.0001

0.001

0.01

0.1

1

0 5000 10000 15000 20000

F
ra

ct
io

n 
of

 P
ro

gr
am

s

Program length

Exponetial decay, 0.60 predicted rate
Fraction non-constants

Fraction Identity function
Fraction And function

Predicted loss of Identity function

Figure 7: Fraction of non-constant in binary Boolean
random linear functions (AND, NAND, OR, NOR,
128 bits) Steep line is prediction of exponential over-
writing of identity function, “D0”. While dotted line is
slower exponential decrease in non-constant functions.
Note the proportion of all non-constant functions ap-
pears to decrease with the same exponent.

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

0 5000 10000 15000 20000

F
ra

ct
io

n 
of

 P
ro

gr
am

s

Program length

Exponetial decay, 0.60 predicted rate
Fraction non-constants

Fraction Identity function
Fraction And function

Predicted loss of Identity function

Figure 8: As Figure 7 but with 4 input bits rather
than 2.

for arbitrary fitness functions. It also stresses the im-
portance of some pragmatic choices which have been
made in GP but without justification. For example,
if the input register is not write protected, then the
proportion of “interesting” functions decreases rapidly
(i.e. within ≈ 2.3 N/m) to near zero as programs get
longer.

However, in the Boolean linear systems considered,
more complex functions are initially very rare and ap-
pear to reach a peak in their frequency near N/m.
Followed by exponential decline, with the same expo-
nent (≈

√
2/
√
N3) as the other non-trivial functions.

It is also appears that the frequency of complex func-
tions decreases dramatically as the number of opera-
tions needed to created them from the program’s in-
puts increases. I.e. most functions are parsimonious.

References

[Diaconis, 1988] Persi Diaconis. Group Representa-
tions in Probability and Statistics, volume 11 of Lec-
ture notes-Monograph Series. Institute of Mathe-
matical Sciences, Hayward, California, 1988.

[Langdon and Poli, 2002] W. B. Langdon and Ric-
cardo Poli. Foundations of Genetic Programming.
Springer-Verlag, 2002.

[Langdon, 1998] William B. Langdon. Genetic Pro-
gramming and Data Structures: Genetic Program-

ming + Data Structures = Automatic Program-
ming!, volume 1 of Genetic Programming. Kluwer,
Boston, 24 April 1998.

[Langdon, 2002] W. B. Langdon. Convergence rates
for the distribution of program outputs. In W. B.
Langdon, E. Cantú-Paz, K. Mathias, R. Roy,
D. Davis, R. Poli, K. Balakrishnan, V. Honavar,
G. Rudolph, J. Wegener, L. Bull, M. A. Pot-
ter, A. C. Schultz, J. F. Miller, E. Burke, and
N. Jonoska, editors, GECCO 2002: Proceedings of
the Genetic and Evolutionary Computation Confer-
ence, pages 812–819, New York, 9-13 July 2002.
Morgan Kaufmann Publishers.

[Poli and Langdon, 1999] Riccardo Poli and
William B. Langdon. Sub-machine-code ge-
netic programming. In Lee Spector, William B.
Langdon, Una-May O’Reilly, and Peter J. Angeline,
editors, Advances in Genetic Programming 3,
chapter 13, pages 301–323. MIT Press, Cambridge,
MA, USA, June 1999.

[Rosenthal, 1995] Jeffrey S. Rosenthal. Convergence
rates for Markov chains. SIAM Review, 37(3):387–
405, 1995.

8

http://www.springer.de/cgi-bin/search_book.pl?isbn=3-540-42451-2#english
http://www.wkap.nl/prod/b/0-7923-8135-1
http://www.wkap.nl/prod/b/0-7923-8135-1
http://www.wkap.nl/prod/b/0-7923-8135-1
http://www.wkap.nl/prod/b/0-7923-8135-1
ftp://cs.ucl.ac.uk/genetic/papers/wbl_gecco2002.pdf
ftp://cs.ucl.ac.uk/genetic/papers/wbl_gecco2002.pdf

	Introduction
	Markov Model of Programs
	Convergence Metric
	Markov Minorization

	Convergence Bound on Functions Implemented on Any Computer
	The Average Computer

	AND NAND OR NOR Computer
	Convergence of Random Outputs
	Convergence of Random Functions
	Model of Convergence of Functions
	Initial Convergence of Boolean Functions
	Later Convergence of Boolean Functions

	Discussion
	Conclusions

