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Abstract. Genetic programming (GP) based data fusion and AdaBoost
can both improve in vitro prediction of Cytochrome P450 activity by
combining artificial neural networks (ANN). Pharmaceutical drug design
data provided by high throughput screening (HTS) is used to train many
base ANN classifiers. In data mining (KDD) we must avoid over fitting.
The ensembles do extrapolate from the training data to other unseen
molecules. I.e. they predict inhibition of a P450 enzyme by compounds
unlike the chemicals used to train them. Thus the models might provide
in silico screens of virtual chemicals as well as physical ones from Glaxo
SmithKline (GSK)’s cheminformatics database. The receiver operating
characteristics (ROC) of boosted and evolved ensemble are given.

1 Introduction

Pharmaceuticals discovery research has evolved to the point of critical depen-
dence upon computerised systems, databases and newer disciplines related to
biological and chemical information processing and analysis. For instance, bioin-
formatics has enabled the discovery and characterisation of many more poten-
tial disease-related biological targets for screening, whilst cheminformatics con-
cerns the capture and processing of chemical and biological information required
to manage and optimise the overall screening process and to support decision-
making for chemical lead selection. Machine learning can contribute to discovery
processes in a variety of ways:

1. High-Throughput Screening (HTS), and increasingly Ultra-HTS, are resource-
intensive. Models developed from diverse sets of previously-screened molecules
may lead, via in silico screening, to smaller (or prioritised) screening-sets,
targeted to specific biological activities.

2. Better ways to choose which of the vast numbers of “virtual molecules”
should be synthesis and included in new chemical libraries.

3. After activity has been confirmed in primary screening, there are many ad-
ditional tests of key properties which are required before forwarding com-
pounds towards development. Traditionally, due to expense or the inabil-
ity to screen the initialy vast numbers of molecules available, these have
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been conducted on an as needed basis. This is expensive. Time and effort
could be saved by computer based screening out of unsuitable chemicals
earlier. Machine learning could produce predictions for other key properties
such as target-selectivity, toxicity, tissue-permeability, solubility and drug
metabolism (i.e. by P450 enzymes).

Here and in some other domains machine learning techniques based on a sin-
gle paradigm have not been sufficient and so researchers have investigated mech-
anisms for combining them [Kittler and Roli, 2001; Gunatilaka and Baertlein,
2001]. Existing classifier fusion techniques, such as committees of experts [Ja-
cobs et al., 1991], bagging [Breiman, 1996] and boosting [Freund and Schapire,
1996], typically combine experts of the same type using a fixed way of com-
bining their predictions. E.g. all the experts might be feed forward neural net-
works whose outputs are: simply summed, a weighted sum might be calculated,
or a majority vote taken, to give the collective view of the classifier ensem-
ble. That is, the fusion technique optimises the individual experts (e.g. using
back propagation) while keeping the combination rule fixed. Genetic program-
ming offers an alternative, which is to pretrain the experts and optimise the
non-linear combination rule. Binary GAs have been used to find good com-
mittees of experts [Opitz and Shavlik, 1996; Kupinski and Anastasio, 1999;
Kupinski et al., 2000]. However genetic programming gives us the ability not
only of deciding which experts to use in the ensemble but also how their predic-
tions are to be combined. I.e. to simultaneously solve both the feature selection
problem (at the individual expert level of granularity) and the combination rule.
Because the individual experts are pretrained the GP does not need to know
how they were trained and so has the ability to form superior ensembles of
heterogeneous classifiers [Langdon and Buxton, 2001b; Langdon et al., 2002].

Intelligent classification techniques, such as artificial neural networks (ANN),
have had some success at predicting potential drug activity and we have shown
genetic programming is able to fuse different neural networks to obtain better
predictions [Langdon et al., 2001]. We shall further demonstrate our system and
also compare results with a popular boosting technique, AdaBoost [Schwenk and
Bengio, 2000].

2 Receiver Operating Characteristics

The Receiver Operating Characteristics (ROC) of a classifier provide a helpful
way of illustrating the trade off it makes between catching positive examples and
raising false alarms [Swets et al., 2000]. Figures 4 and 5 show ROC curves.

[Scott et al., 1998] suggest the “Maximum Realisable Receiver Operating
Characteristics” for a combination of classifiers is the convex hull of their indi-
vidual ROCs, cf. also [Provost and Fawcett, 2001]. (“Lotteries” in game theory
[Binmore, 1990] are somewhat similar.) However we have already shown GP can
in some cases do better, including on Scott’s own benchmarks [Langdon and
Buxton, 2001a] and real world pharmaceutical classification tasks [Langdon et
al., 2001].
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3 The Pharmaceutical Data

The pharmaceutical data are similar to [Langdon et al., 2001] and [Langdon
et al., 2002]. Thousands of chemicals from a chemical library have been tested
(using 2 triplicated HTS runs) to see if they inhibit one of the P450 enzymes
involved in metabolism. This is an important screen in early drug discovery since
P450 inhibition could be expected to lead to problems (when a compound is first
evaluated in humans).

The chemicals are a very diverse set, covering the most common types of
drug or drug-like compounds, such as would be found in the big pharmaceuti-
cal company compound banks. Hence they probably have a range of inhibition
mechanisms. Some “primary” enzyme inhibition mechanisms are likely to be
much more frequent within the tested set of compounds than others. This is
precisely the kind of situation which can defeat individual classifiers.

Chemicals which gave inconsistent screening results (i.e. more than 15% vari-
ation between readings) were discarded. The mean of the 6 measurements taken
was compared against an activity threshold. Those below the threshold are said
to be inactive, while chemicals whose mean exceeded the threshold were classified
as inhibitory, i.e. active against the P450 target.

These noise free chemicals were then hierarchically clustered using Ward’s
linkage in combination with Tanimoto similarity, computed from Daylight 2 Kbit
string chemical fingerprint data1. Clusters were defined at 0.8 tan. Note unlike
our previous work, active and inactive were not separated prior to clustering.
This leads to three types of cluster. 1) Pure clusters, i.e. clusters containing either
all active or all inactive compounds. 2) Impure, or mixed, clusters. 3) Singleton
clusters, i.e. clusters consisting of a single chemical compound.

A total of 699, numerical and categorical, chemical features from a diverse ar-
ray of families (electronic, structural, topological/shape, physico-chemical, etc.)
were computed for each chemical, starting from a SMILES2 representation of
it’s primary chemical structure (2-d chemical formula).

The chemicals selected for screening are naturally a highly biased sample.
It consists of those chemicals which were considered interesting and necessarily
were available. There are two things we would like to know about any predictive
classifier; how well it will work on chemicals like those on which it was trained
and secondly (and much more difficult), how well will it extrapolate outside the
training domain. Naturally we know the distribution of the first but, we do not
know the distribution of the second.

The classifiers are trained on chemicals selected from the clean data (i.e.
compounds with little HTS noise) at random, ensuring the training data has the
same proportion of inhibitory and inactive chemicals and the same proportions of
pure, mixed and singleton clusters, as the the whole dataset. The generalisation
performance of classifiers is estimated by measuring how well it predicts unseen
chemicals, drawn at random from the same distribution.
1 http://www.daylight.com/dayhtml/doc/theory/theory.finger.html
2 http://www.daylight.com/dayhtml/smiles/
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We keep back a number of the chemicals from the singleton clusters. Since
these are likely to be the most different from the training set. We use the clas-
sifiers’ performance on this “extrapolation set” to estimate how well they will
perform on novel chemicals.

4 Training the Neural Networks

As before, the 699 features were divided into 15 functionally related groups of
about 50 each. Clementine was used to train 5 feed forward neural networks on
each of the 15 groups of features. Clementine default parameters (including a
50/50 training set/stop set split, to enable early stopping in order to limit over
fitting) were used. (Following disappointing performance (due to over fitting)
with C4.5 decision trees we decided to only to use neural networks.)

An imbalance between positives and negatives is common in many data min-
ing tasks. However many machine learning techniques work best when trained
on “balanced data sets”, i.e. data sets containing an equal mix of inhibitory
and inactive examples. [Chawla et al., 2002]. The 1299 compounds were used
to create five data sets. Each contained the same 279 inhibitory chemicals and
approximately 200 different inactive chemicals. That is, each data set was ap-
proximately balanced. Each neural network was trained on one of the 15 groups
of attributes selected from one of the five balanced data sets. Making a total of
75 weak classifiers.

5 Genetic Programming Configuration

5.1 Function and Terminal Sets

The genetic programming data fusion system is deliberately identical (except
for the choice of random constants) to that described in [Langdon and Buxton,
2001c], cf. Table 1.

In order to use the neural networks within GP they are presented to GP
as 75 problem specific functions. Each returns the classification and associated
confidence of the corresponding neural network for the current chemical. The
Clementine neural networks yield a single floating point number (between 0
and 1). Values below 0.5 are treated as class 0, while those above 0.5 are regarded
as predicting class 1. We treat the magnitude of the difference from 0.5 as the
indicating the network’s confidence.

Normally the output of a neural network is converted into a binary classifi-
cation (i.e. the chemical is inhibitory or is inactive) by testing to see if the value
is greater or less than 0.5. This gives a single point in the ROC square. However
by replacing the fixed value of 0.5 by a tunable threshold (0 . . . 1) we can vary
this trade off, so that we get a complete curve in the ROC square. By mak-
ing the threshold the argument of the function we leave the choice of suitable
operating point to the GP. These arguments are treated like any other by the
GP and so can be any valid arithmetic operation, including the base classifiers
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Fig. 1. Area under ROC curve of P450 Clementine neural networks. Points
below the diagonal indicate possible over training. Their convex hull is indicated,
as are the corresponding points for the boosted and evolved classifiers (which lie
almost on top of each other).

themselves. Note GP simultaneously adapts how the non-linear combination of
the base classifiers and their operating points.

The terminals or leaves of the trees being evolved by the GP are either
constants or the adjustable threshold “T” (see Table 1).

5.2 GP Representation

We continue to create each individual in the initial population with five random
trees [Jacobs et al., 1991; Soule, 1999; Langdon, 1998]. Each tree within an
individual returns a signed real number. The classification of the individual is
the sum of the answers given by the five trees. Note the GP can combine the
supplied classifiers in an almost totally arbitrary, non-linear way.

Following [Angeline, 1998] and others, we use a high mutation rate and a
mixture of different mutation operators. To avoid bloat, we also use size fair
crossover [Langdon, 2000], see Table 1.

5.3 GP Fitness Function

Unlike in previous work and in an effort to reduce over fitting, the chemicals
used to train the base level classifiers (ANN) were not used to train the GP.
Instead approximately the same number (1300) of chemicals, drawn from the
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Table 1. GP P450 Data Fusion Parameters

Objective: Evolve a combination of neural networks with maximum ROC convex
hull area on P450 inhibition prediction

Function set: INT FRAC Max Min MaxA MinA MUL ADD DIV SUB IFLTE
75 ANN trained on P450 data

Terminal set: T 0 0.5 1 plus 100 unique random constants -1..1
Fitness: Area under convex hull of 11 ROC points (plus 0,0 and 1,1)
Selection: generational (non elitist), tournament size 7
Wrapper: ≥ 0⇒ inhibitory, inactive otherwise
Pop Size: 500
No size or depth limits
Initial pop: Each individual comprises five trees each created by ramped half-and-half

(5:8) (half terminals are constants, each initial tree limited to 300)
Parameters: 50% size fair crossover, crossover fragments ≤ 30 [Langdon, 2000]

50% mutation (point 22.5%, constants 22.5%, shrink 2.5% subtree 2.5%)
Termination: generation 10

same distribution were used. I.e. a total of 2599 chemicals were used in training.
Almost twice as many (1500) as in [Langdon et al., 2002].

Fitness of each individual is calculated on the training set. The adjustable
threshold “T” is set to values 0.1 apart, starting at 0 and increasing to 1. For each
setting, the evolved program is used to predict the activity of each chemical in the
training set and true positive (TP) and false positive (FP) rates are calculated.
Each TP,FP pair gives a point on an ROC curve. The fitness of the classifier is
the area under the convex hull of these (plus the fixed points 0,0 and 1,1).

6 Forming a Composite using AdaBoost

Boosting [Freund and Schapire, 1996] is a deterministic algorithm whereby a se-
ries of weak (i.e. poorly performing) but different classifiers are trained. A single
composite classifier is formed by the weighted sum of the individual classifiers.
The composite should be better than the initial weak classifier.

At each boosting round, a new classifier is trained on weighted training data.
At each round the classifier produced is different because at each round the
weight associated with each training example is adjusted. The weights of exam-
ples on which the last trained classifier did badly are increased. The idea is to
encourage the next classifier to be trained to pay more attention to hard exam-
ples. Cf. “Dynamic Subset Selection” [Gathercole and Ross, 1994]. As well as
being used to adjust the weights of training examples, the performance of each
weak classifier is used to determine the strength of its contribution to the final
composite classifier.

Note AdaBoost uses the accuracy of the classifier, rather than its ROC, and
so implicitly assumes false positives and false negatives have equal costs.
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6.1 Matlab Neural Networks Ensembles

The Matlab neural network tool box was used to train single hidden layer, fully
connected feed forward networks. Each input unit is connected to one of the
networks trained by Clementine (75). The output layer consists of two output
units (one for each class). In preliminary experiments, the number of units in the
hidden layer was set to 20 and then progressively reduced. Little performance
variation was seen until it was reduced to a single node. In the hope of avoiding
over fitting and reducing run time the hidden layer was minimised to just two
units.

Approximately half the training data was used by Matlab as a stopping set.
The training and stop sets do not contain the same chemicals. Matlab used
between 7 and 55 training epochs (see Fig. 2).

The default parameters provided by Matlab were used (e.g. back propagation,
minimise the sum of square of the difference between output units and the actual
class and momentum constant of 0.95). Due to randomised initialisation training
a network on the same data will not necessarily produce the same final network
each time.

6.2 Boosting Matlab Neural Networks

The first neural network is trained using all the training data (half is used for the
stopping set) and initialy each training chemical has the same weight. After the
first network has been successfully trained the weights are adjusted, using the
AdaBoost algorithm [Schwenk and Bengio, 2000]. At each subsequent iteration,
a new training set is created by randomly sampling from training examples in
proportion to their weights. The training set used by Matlab is the same size
on each boosting cycle. Each time the training set is split approximately equally
into actual training and stopping sets.

[Schwenk and Bengio, 2000] suggests boosting should stop once the error
exceeds 50%. However, in this application, low performing networks were pro-
duced very early in the boosting process, even in the first round. We discard such
networks, create a new random sample of training chemicals using the current
distribution of weights and then train again. Boosting is stopped after train-
ing 20 networks (successful or otherwise). The composite is based only on the
successful networks. Approximately 10% of trained networks have to be ignored.

AdaBoost specifies that the class with the highest (weighted) vote of all the
weak classifiers will be taken as the predicted class. To produce a complete ROC
curve, we use the normalised difference between the weighted votes for each
output neuron (i.e. class) as the ensemble’s confidence.

7 Results

Figure 3 plots the evolution of fitness (on the GP training set). For the best in
the population, the area under ROC on the verification set was also measured. In
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Fig. 2. Performance of individual Matlab neural networks (RMS training error
and the AdaBoost weighted pseudoloss function, beta) and of complete Ad-
aBoost ensemble AUROC during boosting. Note beta = error/(1-error) does
not converge to zero.

contrast to previous work, the gap in performance on the training and verification
sets is modest and grows only slowly. There are two causes for this.

Firstly GP is stopped after generation 10. Earlier work indicated that on
problems of this type most of the useful learning was accomplished at the start
of the run and most of the apparent performance gain achieved later was illusory,
caused by over fitting. (Stopping early also has the advantage of shortening run
time to 27 minutes.)

The second potential cause for reduced over fitting, is that the GP is now
trained on data that the lower level classifiers have not seen. This appears to
have had the beneficial affect of countering any lack of generality which has
slipped into the neural networks as they were being trained (see Fig. 1). However
the evidence for this is not overwhelming. Certainly in Fig. 3 we see strong
correlation between the performance of different GP individuals on the different
datasets and so we could reach the conclusion that some parts of the P450 HTS
data are simply harder than others.

Figure 4 shows the classifiers produced by AdaBoost and genetic program-
ming have essentially the same performance. (Earlier experiments indicated a
small, but significant advantage for a classifier evolved by GP.) However they
are significantly better than, not only each classifier in their function set, but
also the convex hull of these base classifiers

The use of size fair crossover [Langdon, 2000] and mutation means we do
not see explosive increase in program size (bloat [Langdon et al., 1999]) and
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Fig. 3. Evolution of performance of best of generation evolved classifier on other
datasets.

preliminary experiments suggest over fitting is more closely related to number of
generations over which the population has been exposed to the same environment
than to the size of the programs.

While earlier experiments using different training data for the base and
evolved classifiers were not encouraging, the results for both GP and boosting in-
dicate that using separate chemicals to train base level classifiers and composites
of them can indeed be successful.

The performance of the composite classifiers on an “extrapolation” set (cf.
Fig. 5) is good. This is encouraging, since we really wish to make predictions for
untested chemicals.

8 Conclusions

AdaBoost [Schwenk and Bengio, 2000], like genetic programming (GP), can be
used to form non-linear combinations of lower level classifiers. Again like, GP,
these exceed Scott’s “Maximum Realisable Receiver Operating Characteristics”
[Scott et al., 1998] on a non-trivial industrial problem (cf. Figs. 1 and 4).

It is especially encouraging that both methods of automatically forming clas-
sifier ensembles are able to extrapolate away from their training data and make
predictions on new chemicals, cf. Fig. 5.

Acknowledgements

We would like to thank Sunny Hung, George Seibel, David Corney and Matthew
Trotter.

95



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Tr
ue

 P
os

iti
ve

 R
at

e

False Positive Rate

GP gen 10
Adaboost

ANN

Fig. 4. Receiver Operating Characteristics of evolved and boosted composite
classifiers (1298 verification chemicals). In both cases the classifier lies outside
the convex hull of their base classifiers (lines without crosses). Note the convex
hull classifiers are determined on the training set and so need no longer be convex
when used to classify the holdout data.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Tr
ue

 P
os

iti
ve

 R
at

e

False Positive Rate

GP gen 10
Adaboost

ANN

Fig. 5. Receiver Operating Characteristics of evolved and boosted composite
classifiers on extrapolation set (779 singleton chemicals).

96



Source Code

C++ and AdaBoost.M2 Matlab source code can be obtained from ftp://cs.
ucl.ac.uk/genetic/gp-code/ and ftp://cs.ucl.ac.uk/genetic/boosting/
respectively.
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