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Abstract. We extend our analysis of repetitive patterns found in genetic
programming genomes to tree based GP.

As in linear GP, repetitive patterns are present in large numbers. Size fair
crossover limits bloat in automatic programming, preventing the evolu-
tion of recurring motifs. We examine these complex properties in detail:
e.g. using depth v. size Catalan binary tree shape plots, subgraph and
subtree matching, information entropy, syntactic and semantic fitness
correlations and diffuse introns. We relate this emergent phenomenon to
considerations about building blocks in GP and how GP works.

1 Introduction

Repeated sequences are commonplace in natural genomes. Biologists have dis-
covered a vast amount of repetition in the DNA of microbes, plants and ani-
mals [1]. In fact it is now known that less than 3% of a human genome consists
of protein-coding genes whereas around 50% of it consist of repetitive sequences
[2; 3]. Biologists have recently turned their attention toward these patterned se-
quences [4; 5; 6] because the huge percentage of it indicates that these sequences
play a major role in hereditary biology. The question we are asking is whether
this emergent phenomenon might also be present in artificial genomes used for
genetic programming.

Our initial search turned up repetitive sequences in linear GP genomes [7].
Here we turn to tree GP genomes. We find there are indeed, small and large
repeated patterns in large trees which have been evolved by genetic program-
ming. It can be observed that evolved trees are incrementally constructed from
high fitness subtrees which are, however, not classic GP building blocks. Instead
diffuse introns ensure that most code is robust to change.

We suggest that observations of this type can shed some new light on the
old question of building blocks in GP [8]. Do they exist? If so, how does GP use
them? If they do not, how does genetic search succeed?

Our route in this paper is roundabout: we start by following up on our work
which suggests repeated patterns are prevalent in linear genetic programming
[7] but now look at tree based GP. We use our time series modelling and Bioin-
formatics classification test problems (described in Section 2 and [7]) to show
that, despite high mutation rates, multiple large syntactic and semantic repeated
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Fig. 1. Left: Mackey-Glass chaotic time series http://neural.cs.nthu.edu.tw/jang/
benchmark/, 7 = 17. Right: Number of amino acids in nuclear and non-nuclear proteins.
To reduce clutter only 5% of the proteins are plotted. The 3 (of 20) amino acids and
function where suggested by sensitivity analysis of the smallest GP model.

patterns can occur in standard subtree crossover as well (Section 3). We deepen
this analysis in Section 4: where we measure tree shape, entropy, sub-fitness and
sensitivity within trees. This will lead us back to suggest (Section 5) at least in
some simple modelling and prediction applications: 1) “introns” are somewhat
diffused rather than discrete subtrees with a well defined root node that imme-
diately nullifies their effect and 2) GP incrementally assembles solutions from
large fit components, which are somewhat different from the classic “building
block”. Section 6 concludes.

2 Demonstration Problems

We have chosen two moderately difficult benchmark problems to represent typ-
ical modelling and prediction applications of genetic programming. Both were
originally used as machine learning benchmarks. The Mackey-Glass chaotic time
series has been used to demonstrate scientific, medical and financial modelling,
e.g. [9]. The GP system is given historical data from which to predict a next
value. We used the IEEE benchmark discretised into 8 bit unsigned integers, see
Figure 1, left. All 1201 data points were used for training.

The second benchmark is a binary classification bioinformatics problem.
Reinhardt and Hubbard [10] have shown that amino acids in a protein can
be used to predict its location in the cell. They trained neural networks to dis-
tinguish between seven cellular locations in animals and microbes. We restrict
ourselves to localising animal proteins (normally it is known if a protein is animal
or bacterial) and a binary classification problem. To this end we evolve models
which predict if an animal protein will be found in the cell nucleus or elsewhere.
Le. in the cell cytoplasm, in the mitochondria or outside the cell [10]. We used
the same Swissprot data for 2427 proteins as used in [10]. There are 1097 nuclear
(and 1330 non-nuclear) sequences of amino acids (see Figure 1, right). Data were
split evenly into training and test sets.



Table 1. GP Parameters for Mackey-Glass time series prediction. (Parameters for
protein localisation, where different, are given in brackets [proteins:]).

Function set: MUL ADD DIV SUB operating on unsigned bytes [proteins: floats]

Terminal set: Registers are initialised with historical values of time series. D128 128
time steps ago, D64 64, D32 32, D16 16, D8 8, D4 4, D2 2 and finally
D1 with the previous value. Time points before the start of the series
are set to zero. Constants 0..127.
[Proteins: Number (integer) of each of the 20 amino acids in the pro-
tein. (Counts for code B were split evenly between aspartic acid D and
asparagine N. Those for Z, between glutamic acid E and glutamine Q.)
100 unique constants randomly chosen from tangent distribution (50%
between -10.0 and 10.0) [13]. (By chance none are integers. )]

Fitness: RMS error [Proteins: %True Positive rate + %True Negative rate [14]]

Selection: non elitist, tournament size 7. Pop Size 500 [proteins: 5000].

Initial pop:  ramped half-and-half (2:6) (50% of terminals are constants)

Parameters: 50% mutation (point 22.5%, constants 22.5%, shrink 2.5% sub-
tree 2.5%). Max tree size 1000. Either 50% subtree crossover or 50% size
fair crossover (90% on internal nodes), FXO fragments < 30 [12]

Termination: 50 generations

3 Genetic Programming Configuration

Even though we expect crossover [11] to be responsible for repeated sequences,
we follow recent GP practise and use a high mutation rate and a mixture of
different mutation operators. In some runs, to avoid bloat, we also used size fair
crossover (FXO) [12]. See Table 1.

Ten runs each with an initial population of 500, suggested this was too small
for the protein localisation benchmark. There was a correlation (0.4 size fair and
0.2 two point (2XO) crossover) between the fitness of the best random tree and
that of the best 50 generations later. So a population of 5000 and 50 generations
was used. (The correlation co-efficient fell to 0.17 (FXO) and 0.12 (2XO) and
mean holdout fitness rose 4% for both types of crossover.)

4 Results

4.1 Performance and Size of Mackey-Glass and Protein Programs

Table 2 summarises each of the ten runs with the two types of crossover on the
Mackey-Glass modelling problem. As expected, size fair runs are both faster and
evolve significantly smaller trees (Wilcoxon Two Sample Test p=0.007). Also as
expected with standard GP, tree size increases up to the maximum size limit
(1000) when evolution is continued to 500 generations. Figure 2 shows the fall in
RMS error of the best individual in the population in each of the ten extended
runs with standard crossover. It is the formation of repeated subtrees in these
runs (and similar protein prediction runs) that we shall concentrate upon. While
at first sight progress appears continuous, note that there are many generations



Table 2. Best Mackey-Glass prediction error after 50 generations of tree GP runs.

Using size fair (FXO) and standard two point (2XO) crossover. Rows are RMS error

and size of best of run tree and elapse time. Results after 500 generations (2XO only)
show all runs improved fitness but trees increased enormously in size.

Mean

FXO error 4.42 438 485 4.89 4.01 492 3.84 4.65 3.66 4.80| 4.44

size 33 53 81 39 55 25 15 13 69 27 41

secs 226 342 363 275 363 205 83 44 467 163| 253

2XO error 3.82 3.59 3.81 4.27 4.28 220 2.78 4.16 2.38 3.47| 3.48

size 59 45 143 117 47 87 91 43 123 145 90

secs 617 384 610 416 412 503 543 269 967 645| 537

2XO error 3.74 1.51 1.18 3.66 3.41 1.09 2.78 3.78 1.08 1.85| 2.41

500 size 793 705 669 957 963 883 847 923 957 467| 816

gens secs 13200 12200 11400 16100 11900 14500 11000 14300 22300 9500 {13600

Fig. 2. Evolution of smallest RMS error
in ten 2XO M-G runs. Despite size and
shape changing from one generation to
the next, for many successive generations
the best fitness is identical to that in the
previous generation. (Initial fitness, not .

shown, of the ten runs varied from 5.5 0 50 100 150 200 250.300 350 400 450 500
to 18.3.) Generations

RMS error

where the best fitness is identical to that in the previous generation even though
the best individual in the population has been replaced (by crossover/mutation).

Table 3 summarises the ten runs on the protein prediction problem with both
types of crossover. Again size fair crossover produces small trees more quickly
than standard GP. As with Mackey-Glass both tree GP approaches produce
models with a similar performance to linear GP [7]. That is GP is comparable
to the best neural network approaches given in [10].

To confirm our previous results on the evolution of tree shapes [15; 16] also
hold on the two benchmarks, Figure 3 plots the size (total number of nodes) and
(maximum) depth of trees at every 10 (left) or 100 (right) generations during
each of the 2xten standard GP runs. The cross hairs give the population mean
and standard deviation. As expected, the GP runs do not converge, instead the
populations contain trees of different sizes and depths. Figure 3 is plotted on top
of statistics relating not to GP but to the underlying distribution of binary trees
(labelled “full”, “5%”, “peak”, “95%” and “minimal”) [16]. Cf. the Catalan
distribution of subtree sizes [17, p241-242]. While initial populations contain
only small trees, Figure 3 shows they evolve into populations of trees whose
shape lies near that of the most popular trees in the underlying distribution.
Note Figure 3 shows: in radically different problems, similar shaped trees evolve.



Table 3. Holdout set fitness on Bioinformatics benchmark. (Fitness is mean accuracy
over nuclear and non-nuclear animal proteins.) 10 tree GP runs with size fair (FXO)
and 10 with standard two point (2XO) crossover with a population of 5000 and 50 gens.
As with Mackey-Glass, size fair runs are both faster and evolve smaller trees.

Mean
FXO percent 80 82 81 79 82 78 82 80 79 &0 80
size 57 77 43 47 69 77 85 59 53 41 61

secs 1400 2300 1300 1200 2100 1700 1600 1700 1400 1400{ 1600
2XO percent 81 82 8 82 83 82 83 83 82 381 82
size 571 349 223 711 843 283 435 195 515 147 427
secs 6100 5600 4200 6500 9600 4100 4500 4200 4800 3900| 5400
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Fig. 3. Evolution of mean depth and size with mutation and standard crossover (2XO).
10 Mackey-Glass (left) and 10 protein runs (right). To reduce clutter standard devia-
tions are only plotted every 100 generations (10 right). As expected [15], size increases
until largest in population reach limit (1000) and much of the populations lie near the
peak in the distribution of tree shapes.

4.2 Shape of Subtrees

The previous section has established that standard GP finds good models on
both problems and programs’ size and shape evolves as expected. This section
starts to consider what is happening inside the trees. Figure 4 uses the same
size-depth plots as Figure 3 to look at the evolved programs. Instead of one
point per tree, there is a point for each node in each of the best trees in the
last population of each run. Mostly subtrees lie between the 5% and 95% lines.
This indicates that subtrees within the best program at the end of the runs have
distributions of size and shape similar to that of the whole trees in previous
generations. L.e. there is a strong tendency for trees to be composed of subtrees
which are also randomly shaped. This fractal self similarity would be expected
of random trees.

4.3 Repeated Code Fragments

In all cases using standard crossover (2X0), GP evolved best of run trees con-
taining large repeated patterns. As with linear GP, this happens despite a high
level of mutation and a size limit. Figure 5 shows the identical repeated patterns
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Fig. 4. Depth and size of every subtree in best of run trees (2X0O). 10 Mackey-Glass
(left) and 10 protein runs (right). Note the similarity with the shape of whole trees
as they evolved, Figure 3. (Small amount of noise added to spread data that would
otherwise be plotted directly on top of each other.)

(allowing overlaps) for one evolved program. Between 56% and 91% (mean 71%)
of the ten best of run Mackey-Glass (2XO) models are part of repeated sub-
graphs which are too big to have formed by chance. The figures for the ten best
of run protein prediction programs are: 33%-92%, mean 74%. See Figure 7. The
replications in Figures 5 and 7 refer to any fragment of the whole tree, while the
rest of Section 4 considers only whole non-overlapping subtrees.

4.4 Syntactically Repeated Subtrees

Figure 6 shows the location and size of exactly repeated subtrees in the largest
of the protein prediction trees. Figure 8 refers to the same twenty best of run
programs as Figure 7, however it considers only exactly repeated subtrees (rather
than any fragments). The requirement to include all the leafs in a repeated
fragment tends to reduce their size but we see a similar picture: in every run
repeated subtrees (too large to be due to chance) are evolved.

4.5 Semantically Repeated Subtree Outputs

The previous sections have only considered repeated code at the syntax level.
Now we consider the semantics of the evolved programs. Since there are no
side-effects, repeated subtrees must return exactly the same values. Figure 9
shows on the training examples the fraction of the program where the semantic
value of the subtrees are the same, and where they are highly correlated. It
shows semantic repetition is even higher than when just considering program
syntax. Part of the difference is due to constants (which are always correlated
with each other). However this is not enough to explain all of the difference,
suggesting non-trivial syntactically different subtrees have been evolved which
produce correlated answers. Part of the explanation may be symmetries, such as
+ and X, whereby non-identical code calculates identical answers. Alternatively
the monolithic fitness function may encourage redundant code.
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Fig. 5. Repeated patterns in the largest protein prediction program (2XO, 843 nodes).
largest pattern (133 nodes) in black. Other nodes in repeated patterns are filled accord-
ing to size of the repeated pattern (33-132 grey and 11-32 light grey). Unique nodes
and nodes which are part of small patterns are not filled.
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Fig. 6. Same program as in Figure 5. Here whole subtrees are exactly repeated. Nodes
are filled according to size of the repeated subtree. Unique nodes and nodes which are
part of small patterns (3 nodes or less) are not filled. Two largest (59 nodes, right hand
side) coloured red. Note these are partially repeated elsewhere in the tree (e.g. 55 node
subtree shaded black).
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Fig. 7. Size of repeated pattern v. fraction of best of run trees (2X0O). 10 Mackey-Glass
(500 gens, left) and 10 protein runs (50 gens, right). In every run the largest repeated

pattern is too big to arise by chance.
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Fig. 8. Size of identical subtrees v. fraction of best of run trees (2X0O). 10 Mackey-Glass
(500 gens, left) and 10 protein runs (50 gens, right). In every run the largest repeated

subtree is too big to arise by chance.

Fig.9. Upper curves show number of
highly correlated subtrees v. fraction of
the best largest protein prediction tree
(2XO run 4, cf. Figures 5, 6 and 10-12).
For comparison, the lower (solid) curve
refers to syntactic repeats (rather than
semantic). It is the top curve from Fig-
ure 8 (right). Many subtrees (22%) pro-
duce a constant. This gives rise to the
sudden jump at 0.78 but only explains
part of the difference between syntactic
and semantic repeats.
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Fig. 10. Left: Entropy of each node in largest protein program (cf. Figures 5, 6 and
9-12.) Darker grey indicates more variation across the training set. At levels 7 and 9
there are two links where large subtrees pass through bottle necks. Right: Entropy on
each of 422 paths from leaf to root. The bottle necks near the root show up as repeated
dips in the tail. This structure is an artifact caused by paths passing through similar
routes near the root but having different lengths.

4.6 Entropy of Subtrees

As might be expected, variation in values calculated by subtrees across the train-
ing set has a strong tendency to increase from the leafs to the root. This is also
true of random programs. Figure 10 shows the variability within the largest
protein location tree (2XO, 50 generations). We use information entropy [18]
(calculated using signal value to 6 decimal places) as our measure of variation.

The protein location programs do not contain “classic” intron nodes. I.e. there
are few places deep in the tree where information passes only from one input of
a function to its output, totally ignoring the other input. The entropy, if any, of
“classic” intron nodes would come from just one input. Thus the entropy of an
“all or nothing” intron would be the same as that of its active argument.

Sometimes entropy (i.e. variability) falls from the leaf towards the root are
caused by a SUB subtree with both arguments referring to the same amino acid.
This has no variation since it always yields zero, so the subtree has less entropy
than either of its leafs. (Random programs also contain bottleneck nodes of low
entropy.) Most cases where entropy falls are very close to a leaf. However a few
of the largest protein location (2XO) programs do possess bottlenecks where
entropy falls on the output of a large subtree. This means the subtree has less
effect on the whole program.

4.7 Fitness of Subtrees

As might be expected, correlation or anti-correlation with training data tends
to rise from the leafs to the root. Between 15 and 78 (depending on the run)
subtrees in each best of run program exceed the performance of random search
(10° ramped half-and-half trees). See Figure 11. Since fitness tends to fall away



Fig.11. High fitness (or anti-fitness)
subtrees as a fraction of the 10 best pro-
tein trees (2X0O). Note range of horizon-
tal axis. Since fitness is a very non-linear
function, we define a normalised fitness
as being, for each run, the generation in
which a program of the corresponding fit-
ness was first found. All runs exceeded
the best fitness found in a million ran-
dom trees programs by generation 8.
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Fig. 12. Importance of nodes within protein prediction trees. Left: Largest protein
prediction tree. The 125 (15%) subtrees which change more than 10 training cases are
highlighted in black. (Same example as in Figures 5, 6-10.) Note several large repeated
subtrees do not contribute to fitness. Right: Number of training cases which subtrees
influences as a fraction of the 10 2XO best of run programs. Solid curves plot where
impact is more than 0.005%. Dashed lines: node causes prediction to change.

from the root, there are more lower fitness subtrees. Secondly, despite being non-
elitist, fitness increases monotonically. Therefore the fitness distribution within
the best subtrees can also be explained by saying: the longer evolution has had to
work since a fitness level was reached the larger the number of subtrees exceeding
that fitness there will be.

4.8 Importance of Subtrees (Sensitivity analysis)

While the trees do not contain “classic introns”, where one argument of a func-
tion has no impact on its output, some nodes do have much more impact than
others. To see this, we replaced each subtree in turn by its median value and
counted the number of training cases where this changed the output. The upper
solid curves on the right of Figure 12 plot the number of fitness cases where
the output was changed by more than 0.005%. While the lower dashed curves
show the number of cases where subtrees contribute to fitness, i.e. the number of
training cases where replacing it changed the program’s prediction. Between 5%
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and 23% of nodes in protein prediction programs have less than 0.005% impact
on all training cases. If we consider just fitness (lower dashed curves) this rises
to between 7% and 57% of the program. I.e. on average 30% of subtrees can be
replaced without changing any of the program’s predictions.

5 Discussion

Sections 4.1 and 4.2 confirm (cf. [15]) trees have evolved to the same fractal
shape as random trees but Sections 4.3—4.5 show repeated syntactic and semantic
patterns which are far from random. Sections 4.6 and 4.7 suggest GP programs
(with non-Boolean function sets without side effects) are composed of high fitness
subtrees which mostly pass information upwards towards the root. That is, they
are not dominated by classic “introns” (which ignore data from one or more
subtrees). However the sensitivity analysis (Section 4.8) shows large parts of the
tree, including repeated parts, can be replaced by a constant and have no or
little effect on fitness.

We suggest the repeated patterns seen in GP used for modelling and predic-
tion are not like classic GA “building blocks” [8]. They are not small. They have
high fitness on the whole problem, rather than sub-components of it. It appears
evolution is gradually, haphazardly, assembling a complete program by repeat-
edly reusing subtrees it has already discovered in ways allowing it to squeeze out
marginal incremental improvements. In the process some components become of
lesser importance in the final program.

6 Conclusions

Correlation between performance of initial and evolved populations suggests
lack lustre initial random programs can have an impact on the final outcome.
Correlation might be a useful population size analysis tool.

As expected, size fair crossover (FXO) [12] and a range of mutation operators
controlled bloat [15]. In these experiments, the compact models were slightly
worse than the much larger ones evolved with standard crossover and mutation.

Entropy and subtree fitness analysis suggest genetic programming (GP) suc-
ceeds in finding ways to put together moderately sized fit subtrees to yield larger
trees containing few highly sensitive components with higher performance.

While it is always difficult to generalise from a limited number of examples,
we have seen for two diverse non-trivial problems the spontaneous emergence of
repeated patterns in both linear and tree based GP and with a variety genetic
operations. This leads use to tentatively suggest on problems, without tight lim-
its on tree size, depth, etc., where bloat is possible, GP will generally evolve
programs containing copious repeated patterns. Although this work is far from
complete, we suggest future analysis may: discover further spontaneous effects
which arise from evolution rather than the programmer, cast light on the work-
ings of GP and may lead to new automatic programming techniques.
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Source Code

Code to generate Graphviz format dot files from GP programs can be found at
http://www.cs.ucl.ac.uk/staff/W.Langdon/lisp2dot.html.
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