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Abstract— Particle swarm optimiser and genetic algorithm If we now turn our attention to the world of computation,
populations are macro-organisms, which perceive their envi- we see that many population-based search algorithms take
ronment as if filtered via a kernel. The kernel assimilates inspiration from some natural system involving groups of

each individual's sensory abilities so that the collective moves . . . . - ~
using a greedy hill-climbing strategy. This model is fitted to individuals. Particle Swarm Optimisers (PSQs) [2], [3], [4],

data collected in real PSO and GA runs by using genetic for examp|e, take direct |nSp|rat|0n from bird fIOCk|ng or
programming to evolve the kernel. fish shoaling. In a PSO, particles fly on the fitness landscape
~ In nature animals tend to live within groups. The social ynder the control of two forces representing cognition and
interactions effectively transform the fitness selection landscape qqigjity respectively. The cognition force drives individuals
seen by an isolated individual. In some cases a group behaves . - .

(or even can be said to think) like a single organism. Kernels to search arF’“”d their personal best, SOCIa!Ity ‘?'“Ve_s them _to
provide a lens which coarse-grains or averages individual senses conform their search to that of the best particle in either their
and so may help explain joint actions and social responses.  neighbourhood or in the whole swarm. Genetic algorithms,
_ The original multi-modal problem is smoothed by convolving ~ GAs, have a different source of inspiration. Nonetheless,
it with a problem specific filter designed by GP. Because oy 190 simulate groups of individuals with some sort of

populations see the transformed social fithess landscape, they ial int fi Indeed der the effects of d
can pass over local optima. GP can give a good fit between social Interaction. Indeed, under the efiects of crossover an

the predicted behaviour of the macroscopic organism and the Selection (but no mutation), in typical GAs the offspring
actual runs. sample the subspace represented by the convex hull of the

population. So, there is a kind of “social” bias towards
sampling areas where other individuals are located. Other
In plant and animals systems it is the rule rather than theypylation-based algorithms are based on the notion of the
exception that individuals, at least for some critical periodsegrch being performed by a population of locally interacting
live within groups [1]. In a school, individual fish have jgividuals.
limited perception, which is dominated by the movement of As g result of these interactions search algorithms show
other members of the school adjacent to them. Also, any fo%mplex emergent behaviours. For example, the ability to
source found by a group member will have to be sharegloig getting stuck in local optima. So too, in these com-
with other members. So, why should individuals stay in @ytational systems, groups appear to have, extended sensing
group? A reason is that there are many things that a grodpg acting capabilities. The question we want to explore in
of individuals or cells can do that an isolated individuakpis paper isito what degree can we interpret and model
or cell cannot. These increase the survival capabilities @he pehaviour of a particle swarm optimiser and other
each individual. For example, the group has increased actighificial population-based optimisation algorithms as that
and reaction capabilities. Some groups are able to: gathgy g corresponding, single macroscopic (or multicellular)
rain drops, overshadow competitors, or even build cathedralggividual or swarm?
Also, a group may have increased sensing capabilities. Forjn order to answer our main question, we will start by first
example, fish in a school can rapidly spread information byroviding a simplified, but realistic, model of the behaviour
copying each other’s behaviour. This may reveal the presengg swarms of interacting entities (Sectifrj 11). The model
of food or danger to all members of the group even if onlyyiginally arose and was refined in a series of meetings with
a small number (in fact, as low as 2) of individuals havg)jp|ogists (including the authors of[1]) collaborating in a
first hand information. Through these extended sensing aﬂ&’rge research project, the Extended Particle Swarms (XPS)
acting capabilities, in many circumstances, a group behaVﬁ?oject, involving several sites in the UK and numerous
like a single organism. international collaborators. Although the model is simple,
One might imagine that in order to model computationallyt explains in which sense the collective can be seen as a
or mathematically these rich sets of behaviours, one wouldngle individuals and how such an individual essentially
have to use very complex models. This, however, is Noperceives” its environment as if deformed or filtered via a
necessarily the case. For example, it is possible to obsegeptive field or “kernel” which assimilates each individual’s
the emergence of realistic fish school behaviours in modeignses.
where each fish is a simple agent controlled by forces which potivated by this model, the original question can then
implement its desire to both behave like and stay in proximitije recast as whether or not kernels, which allow accurate
of other fish, while at the same time keeping a certaifodelling of particle swarm optimisers and other population-
distance from other fish_[1]. based search algorithms, exist. To help us answer this new

WCCI 2006, 6-21 July, Vancouver, IEEE press. Department of Comput&uesuonl we decided to apply genetic programmlng_ (GP)
Science, University of Essex, CO4 3SQ, UK. to explore the space of possible kernels. Our experiments
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with small PSOs, show that the kernel approach has someTo simplify the analysis, let us imagine that the environ-
credibility. We show several examples where we can modetent is simply a functioryf (z) which represents the resource
movement of a PSO swarm as a whole, even though PSiBstribution at each point in space. For example, we could
swarms are composed of semi-independently moving immagine that this function represents the density of food.
dividuals. In contrast, early work on understanding PSO#aturally, we should not expect individuals to be able to
started by considering each individual's movements as fferceive the whole environment, so perception will have to be
they were isolated from the swarm before looking at theilimited to a certain area around each individual. Furthermore,
combined effects[[5],[16]. In our model, the centre of thandividual animals have to spend time and energy to move to
swarm responds to the underlying optimisation problem viadifferent locations, so it is sometimes preferable to go for a
receptive field. We model the receptive field by transforminglace which is nearer even if it has less resources. Essentially
the problem landscape by convolving it with a kernel evolvethe net value that an animal could gain per unit of food
for this purpose. In principle evolution might have producedvailable is some decreasing functiaiid) of the distancel

any kernel. However, as we shall see, those evolved act fssm the current location. Naturally, animals prefer places
low pass filters, which smooth the landscapé [7]. That isyhere there are plenty of resources, so the attractiveness
they effectively remove high frequency landscape featuresf a particular location depends on the average or sum of
such as local, optima. So, the motion of the population onthe available perceived resources. To sum up we can model
landscape can be seen as the motion of a hill-climber ontle perceived attractiveness the environment at any given
transformed, smoother landscape. In line with recent researdtation z for an individual as

on population dynamics [8][_[9]/.[10]/_[11] we can see this

new landscape as a coarse-grained, population-level version a(z) = /ﬂy)wu —y)dy

of effective fitness landscape. That is, the perceived attractiveness of the environment

The next section gives the mathematical background to the .y 5 the convolution between the actual food distribution

kernel model. Sectiorfs |[I-Y! describe and give parameters ) ang a kerelw(x) representing the perceptual and

for the PSO, GA, gradient follower and GP. (Embolden bYocomotion capabilities of the individual

our success with PSOs, we also evolved kernels to describewe expect each individual to move in order to maximise

more traditional evolutionary algorithms, such as a GA.) Thgye perceived attractiveness of its position. This could be
two o_ptlmilsanon .benchmarll<s 3 Gau§3|aps z_and Rastrigipd s delled by simply computing the gradient ofz) and
are give in Sectiorf V]I. Finally the implications of the moving accordingly (hill climbing). We can, for example,

high quality kernels evolved (Sectign MIll) are discussed in,gq;me that the force generated by each individual would be
Section T} and our conclusions are given in Secfign X. proportional toVa(z), i.e.

Il. MASS-SPRING KERNEL MODEL OF EMERGENT F; = nVa(x;)

BEHAVIOUR where n is an appropriate constant,; is the position of

The following simple analysis justifies some of the modindividuali andVa(z;) is the gradient of(z) atxz;. Because
elling choices we make in the following sections. Let u®f the linearity of convolution we have
start by analysing a very simple situation where we assume
that each individual is a mass which interacts with other Va(z) = /f(y)vw(i_y)dy‘

individuals via springs. Let us imagine that each mass h%%, the direction and amplitude of the motion force is pro-

an dactlve Congpl Isys_ﬁ]m anld can perﬁewe dthe env'ronm%kgrtional to the convolution between the original landscape
and act accordingly. The only action allowed is to move thg | ihe derivative of the receptive field

mass using an external force. , As mentioned above, each animal is constrained in its
Let us initially imagine that the springs are extremelyy,iion by its social interactions. Let us start by assuming

stiff, so much so that the population behaves exactly likge interactions are rigid links. Then the motion of the centre
a rigid body. When an individual decides to generate g massz of the population is controlled by a force
propulsion force, all of the population is affected. If more

than one individual generates forces, the forces will be F(Z) =Y F.=n)» Va(z:)=nY_ Va(T+d)
added vectorially and the motion of the population will be i i i
determined by the resultant force. So, the links betweamhered; represents the displacement of individiu&lom the
individuals transfer information and coordinate behaviougentre of masg, i.e., ; = z; — . So,
without any centralised mechanism.

The situation is not very different if we reduce the stiffness F@) = n) / fW)Vo(T +0i —y)dy
of the springs. As a result of this change it may take longer i
for information to be integrated along the whole “body” of
the population, but eventually information is transferred and,
looking at the behaviour over appropriately long time scales, _
the resulting behaviour is almost identical. = 1 / Fy)Vw,(@ —y)dy,

0 [ 1) 3 Vol + 8- iy



where TABLE I.  TinyGP_Swarm and GA Kernel Parameters

wp(z) = Zw(z +0;). Function set: + — x DIVH
Terminal set: 110 terminals, including: The remaining terminals are
constants uniformly randomly chosen in the rafge. 1

)

In other words,the motion of the population is controlled Fitness: Sum of squared prediction error. See Seffion|VI-A

by a force which is proportional to the convolution betweerpelection: steady state binary tournaments for both parent selection
L . . and who to remove from the population

the resource distribution and the gradient of a new, coarsefpiia) pop: ~ Trees randomly grown with max depth of 4 (root=0)

grain kernel, w,, representing the perceptual and motorParameters: Population 10 or 1000. 10% crossover, 90% mutation (2%

capabilities of the population seen as a single individual chance of mutation per tree node).

. . . Termination:  generation 100
This macroscopic and emergent animal (swarm) moves #

the environment following the gradient of an attractivenessa ¢ |, — .001 DIvV(z, ) = « else DIV@, 1)
function 7 7

=z/y.

(@) = [ Fwne— v)dy.

the hill climber is required to match the centre of the GA
So, the food distribution, which from now on we will population immediately. I.e. from generation 0 to 19.
interpret as a fitness function, is seen by the population As we are dealing with continuous problems, we used
through the |00king gIaSS lens of the filter/kernel. Note thqhe standard binary-reﬂected Gray code [20, page 297], [2]_,
the model does not break down even in the special capgge 100] from[[22] to encode the rangd1 to +11.
in which the receptive fieldsw, of each individual are The GA uses binary selection tournaments with point
Dirac delta functions, that is when each individual has nghutation and one-point crossover on a steady state population
knowledge about its neighbourhood. Indeed, in this particulqgg], [24] The chromosome |ength (16 bits), crossover rate
casew, would be a moving-average-type of (low-pass) filter(609%), mutation bit flip rate (1/16) and population size (100)

l1l. PARTICLE SWARM OPTIMISER are as[[1B]'s Rastrigin experiments.

In our experiments we use a simple five-member PSO V. HiLL CLIMBER

swarm. There is no ConStriCtion, instead we use a Standard’rhe hill climber is started at the centre of mass of the pop-
[12, page 1227] PSO where the speed is limited to 1.Qyation. Its next twenty moves are compared with the centre
Constriction is often beneficial, e.g. [13], however it carpf the swarm at successive generations. (In the GA runs, we
lead to swarms getting stuck at non-optimal values, even gjjculate the mean position of the population every 100 GA
values below nearby local peaks [14]. It is common to USftness evaluations). The memoryless hill climber responds
“small” swarms. For example| [15] and [16] both achievegjirectly to the gradient, accepting all moves, regardless of
substantial results on real-world problems with only tefheir fitness. By gradient, of course, we mean the gradient
particles. However multi-objective problems are often solvegf the landscape resulting from the convolution of the actual
with larger swarms[[17]. Also genetic search, next sectiofandscape with kernel evolved by GP. For numerical stability,
even for one objective, seems to require bigger populatiofge function evolved by GP is treated as the gradient of
[18]. This may explain why sometimes [19] PSOs can behe kernel, rather than the actual kernel. We do not need
more effective than GAs. the actual kernel during the run. When this is needed (as

To ensure there are some interesting dynamics the swajim Figures[$ and]9) it is reconstructed by integrating its
is started well away from the optimum. Individuals are giverjitferential after the run.

random initial positions uniformly chosen from the range 9.0
to 11.0. Similarly the initial velocities are randomly chosen VI. EVOLVING KERNELS WITHGP
from their legal range=-1.0...+1.0. Since the natural period We use the TinyGP genetic programming system, cf.
of the oscillations of this PSO is 6l[5, Table[l] [6, page 1942]Tabl€]. It evolves a kernel, i.e. a function, which is convolved
the PSO is run for 25 cycles. This allows the first five cyclesith the one-dimensional problem landscape. This gives
to be treated as settling time and discarded and still requisgother landscape which is “perceived” by a hill climber.
the model (effectively a hill climber, see below) to matchn these initial experiments, the hill climber is deliberately
three oscillations. l.e., the GP tries to make the hill climbesimple (e.g. it has a fixed learning rate, we chagse: 1).
match the last 20 generations of the PSO run. More sophisticated gradient based techniques are described
V. GENETIC ALGORITHM in [25, pages 276-279]. It updates its positienin the
landscape using the rule;,; = z; + Vz. WhereVz is
Having applied the kernel approach to swarm systemge gradient at:. The goal for the GP is to evolve a kernel

we wondered if it could also work with more traditionalwhich causes the hill climber to move so as to resemble
optimisation techniques. We chose to try it on a genetigyovement of the whole PSO swarm.

algorithm. Again to see interesting dynamics, we start the _ _

initial population well away from the optimum and, as the® GP Fitness function

PSO, uniformly randomise the initial chromosomes in the The optimiser (i.e. PSO or GA) is run 5 times with inde-
range 9 to 11. Since the GA has no concept of momenturpendently chosen random initialisations. The fitness of each
it is not necessary to allow it five generations to settle. Insteaolved kernel is the sum, over the last twenty generations
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Fig. 1. Sum of three unit variance Gaussians centred at -2, 1 and 4. Fig. 2.  Rastrigin.

0.50N (2, —2,1) + 0.35N (,1,1) + 0.15N (z, 4, 1)

PSO individual (5 runs)
Swarm center (5 runs) ———x--—-

of each run, of the squared distance between the position jof
N Hill Climber (5 runs) —+—

the hill climber and the mean position of the members of %
population. kN

To reduce the impact of lucky individuals (who got a high "
score once due to fortunate random initialisations), the fithess
of each potential parent is re-evaluated in each tournamgnt,s o
(The most recent fitness value is used in tournaments to
decide who to remove from the population.) In Secfion VIl
(esp.[VITI-B) we will see that this gives kernels with low 3% Peak
training errors, which also predict the path of optimisers
starting from initial conditions never used by the GP. l.e.2if 50 Peak .
helps to avoid overfitting.

VIl. DEMONSTRATION LANDSCAPES 5 b
A. 3 Gaussians 0 5 10 15 20 25

The first test landscape is asymmetric and multi-modal. It Time

is created by addmg together three different sized GaUSSIEB. 3. Testing evolved kernel. Comparison of five actual PSO runs (dashed

curves, each with unit variance, centred at -2, 1 and 4es) with five hill climbing runs on three Gaussians landscape (solid lines)
cf. Figure[]_. Training RMS error 0.91 v. test RMS error 0.87

B. Rastrigin

The Rastrigin benchmark is widely used since its many _ _ o
local peaks give interesting dynamits|[25],][12, page 149]. A ighest fitness value. However in all of the first five test runs
suggested in [26], we easily converted it to a maximisatiof-igure[3) the swarm oscillates about the intermediate peak.
problem. We clip it so that it is only non-zero inside theNote this divergence does not prevent GP transforming the

range—10 to +10. See Figuré]2. landscape so that the hill cli_mber usually follows the.cen.tre of
the swarm. The average difference between the hill climber
VIIl. RESULTS and the mean position of the swarm at each of the twenty

A. PSO on 3 Gaussians PSO update cycles (i.e. 5-24) is given in Tgble II.

The behaviour of the five particle PSO and the hill climber As with the other kernels, GP uses the protected division
on the kernel (evolved in the first GP run with a populatioroperator to evolve a sharp spike in the differential of the
of ten trees) are given in Figufé 3. kernel. The evolved function is plotted in Figdrg 4, whilst

In all runs the swarms are able to climb upto the first peakigure[$ shows the kernel. (The kernels are obtained by
but are not trapped by it. Instead they all get at least as faumerical integration of their differentials). While Figure 6
as the second peak. Here in some runs the swarms diverghpws the gradient (solid line) produced by convolution and
some succeed in passing over it and start oscillating about ttiee corresponding effective fitness landscape (dashed line).

4



TABLE Il.  Performance of Evolved Differential Kernels (5 runs) 90 T

T T
; PSO 3 Gaussians ——
GP Pop RMS Train error RMS Test error GA 3 Gaussians ——————
PSO 3 Gaussians 10 0.91 0.87
PSO Rastrigin 1000 0.47 0.58
GA 3 Gaussians 10 0.91 1.02
GA Rastrigin 1000 0.45 0.65

PSO 0.12 - 5.83/x

GA-1.86-6.13/x
A0+ |
20 |
30 | S

-40 1 1 1
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Fig. 5. Kernels evolved in first GP run for 3 Gaussians (pop 10) (Obtained

-10 - by numerical integration of curves in Figyrg 4)
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Fig. 4. Differential of kernels for 3 Gaussians problem. (evolved in first GP
run, pop 10). Convolutions are truncated to zero outside rasige. . .+ 10.

1+

B. PSO on Rastrigin 0.5

The five members of the PSO easily step over the multipl€’
local optima traps in the Rastrigin problem and oscillate negg | 4
the global optimum. The first GP run, with a population of
1000 trees, evolved a kernel which transforms the landscapé |
seen by the five members of the PSO swarm into a landscapgel ]
where a simple hill climber emulates their centre of mass. | . .  Near zero at 0.16,0.008 . .

See Figureg|7,/§]9 and]10. e 1 8 s 2 1 4 7 10 1

C. GA on 3 Gaussians Fig. 6.  Gradient used by hill climber for PSO 3G. Gradient calculated
. ) . by convolving 3 Gaussians with evolved differential kernel (cf. Fiddre 4,
Figure [I1 shows paths taken by the hill climber orPSO). For comparison (linearly rescaled) 3 Gaussians and new landscape

the transformed landscape produced by the first GP ripptained by integration) are also plotted.

(10 trees). Notice that the hill climber takes almost the same

path in each of the five test runs. This is not a surprise since o

it is started from very similar positions (the mean of thd®- GA On Rastrigin

GA population, of 100 bit strings) each time. In fact, the The first GP run, with a population of 1000 trees, evolved

hill climber paths tends to converge over time. Fighré 14 kernel (Figure$]8 anf] 9, dashed line) which transforms

also shows the location of every individual in each of thehe Rastrigin landscape so that the hill climber tracks the

five GA populations over time. (Noise along the x-axismean of the GA population. (Again our simple hill climber

has been added in Figufe]11 to spread the data.) We cascillates a little.) The GA populations move rapidly towards

see, despite the high point mutation rate, in each run thke optimum (at the origin) easily stepping over the multiple

population clusters tightly near the optimum. The gradient itocal optima traps. The first five test runs are shown in

the transformed landscape causes the hill climber to oscillafégure [I3. (As before, in Figurf L3, noise is added to

nearby. (Actually between -3 and -2.) spread out horizontally the individual members of the five
The evolved function is plotted in Figure] 4 and thepopulations.) Figurg 14 gives the gradient (solid line) of the

corresponding kernel is in Figuré 5. (GA, dashed lines in bottiansformation of Rastrigin, produced by convolution with

graphs). The result of convolving with the three Gaussiarthe evolved function (cf. Figurg] 8, GA). Notice again the

is given in Figurg 1P. effective landscape (dashed line) has been smoothed with
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Fig. 7. Comparison of first five PSO test runs on Rastrigin with five hillFig. 9. Kernels evolved in first GP run for Rastrigin (pop 1000). (Obtained
climbing runs (solid lines) on kernel transformed runs Training RMS erroby numerical integration of curves in FigUrg 8)
0.47 v. test error 0.58.
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Fig. 8.  Differential of kernels for Rastrigin (evolved in first GP run, Fig. 10. Gradient used by hill climber for PSO Rastrigin. Gradient

pop 1000). calculated by convolving Rastrigin with evolved differential kernel (cf.
Figure[8, PSO). For comparison (linearly rescaled) Rastrigin and new
landscape (obtained by integration) are also plotted. Note the transformed

.. . . | i h i i is slightly off . th iginal.
respect to the original Rastrigin (dotted line). andscape is smooth but its optimum is slightly offset wrt. the origina

The high mutation rate means that, while most of the
population clusters near the origin, a small humber of in-
dividuals are well away from it. These extreme membergained on the three Gaussians landscape when faced with
of the population have a proportionately large impact on thRastrigin (Tabl€Tll). These are due to the first step of the
mean so that it may be slightly(0.2) away from the origin. || climber. The gradient of the transformed landscape is in
the direction of the global optimum but is very steep. l.e. the
scaling constants appropriate to the three Gaussians problem

As Tableqd 1] and Tl make clear, performance when testedre not appropriate for Rastrigin. (Note the difference in
with different random initial conditions, is not significantly vertical scales of Figur€]1 y.] 2 and Figuré 4[V. 8.) The
different from that when each differential kernel was trainedgradient is so big that the hill climber is directed to make
That is, the kernels do not over fit their training dataan enormous leap. This takes it far out of the true range of
However they have adapted to their environment, in that thefie problem, where there is no gradient. Therefore the hill
are useless when faced with a different problem. climber remains stuck at a large negative value, which, in

Extremely high errors are seen for both differential kernelarn, gives the huge RMS error.

E. Generality of Evolved Differential Kernels
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Fig. 13. Comparison of first five GA test runs on Rastrigin with five hill

with five hill climbing runs (solid lines) on kernel transformed landscape.

. . e ’ imbing runs (solid lines, GP pop 1000) on kernel transformed landscape.
Fig. 11. Comparison of first five GA test runs on three Gaussians pmble%aining RMS error 0.45 v. test error 0.65.

Training RMS error 0.91 v. test error 1.02.
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4 L L L L L L L ! ! Fig. 14. Gradient used by hill climber for GA Rastrigin. Gradient
-4 -1 -8 -5 -2 4 7 10 13 calculated by convolving Rastrigin with evolved differential kernel (cf.
Figure [8, GA). For comparison (linearly rescaled) Rastrigin and new
Fig. 12. Gradient used by hill climber for GA 3G. Gradient calculated byandscape (obtained by integration) are also plotted.

convolving 3 Gaussians with evolved differential kernel (cf. Figdre 4, GA).
For comparison (linearly rescaled) 3 Gaussians and new landscape (obtained

by integration) are also plotted.

IX. DISCUSSION

These experiments actually provide the effective landscape

TABLE Il Test RMS error of evolved differential kernels on both Seen_by S|mp!e p_amCle swarm optimisers and eV0|Utlonary
problems (means of 25 runs). Note: differential kernels are specific to tlgorithms. It is nice that, as so often assumed, those found
environment where they were trained and in all 4 cases perform much worpg genetic programming are “smoothed” versions of the true
fitness landscape. We think this result is general, and, in
future research, we will seek experimental confirmation in

in a different environment.

GP Pop 3 Gaussians Rastrigin . . .
mean  (sd) mean (sd) real-world problems. Naturally, given their typically enor-
PSO 3 Gaussians 10 097 (0.21) 102000 (132.00) Mous size and the costs associated with convolutions, we
PSO Rastrigin 1000  5.30 (0.69) 0.66 (0.29) expect to be able to do so only where kernels are small and
GA 3 Gaussians 10 110 (0.30) 2700.00 (132.00) |irmi ion i
GA Rastrigin 1000 10.64 (0.29) 0.86 (0.35) limited resolution is needed.

Also, we believe that it may be possible to apply our
kernel-based approach to natural swarms, in particular fish



shoal and flocks of chickens, as well as in the time domain2]
That is, in the same way that a spatial kernel can model a
group of individuals spread over some area of space, a temp
ral kernel can show the effects of an individual remembering
sensory readings from its past locations. l.e. one might try®]
to use kernel methods to show the benefits and drawbacks of
memory. One could even think of combined space and timgs]
kernels, showing how a collective uses “group memory”.

Naturally, we expect that there are situations where itm
may be impossible to find a single kernel which describes
the behaviour of the swarm as a whole. For example, it ig8]
possible that modern explorative PSOs|[12] are too dynamigy,
for the swarm to behave as a cohesive whole.

So far we have looked at static landscapes but natural
environments, and indeed many engineering challenges, élrg
dynamic and multiple threats must be overcome simultane-
ously. For dynamic and multi-objective problems, PSOs cadall
do better than other approachés][27].1[28].1[17]. Of coursgy,
real life is much more complicated and multiple interacting
problems must be solved. Co-evolution [[29] suggests didl
approach. It is possible, both in coevolution and where there
is a need to find all Pareto undominated solutions, that
a swarm will lose cohesion and so predicting its averagé?l
behaviour would be impossible or not useful. However i
would be interesting to apply our kernel approach to the time
dimension and see if it reveals how such multi-swarm PSQ%]
filter problems to give smooth dynamic fitness landscapes.

X. CONCLUSIONS [17]

We have shown on two problems that genetic program-
ming can automatically find simple kernels which transforr‘rﬂ18
the optimisation problem seen by individual members of a
PSO swarm into a social landscape on which a single-poiR€!
hill-climber matches the average behaviour of the Wh0|&0
swarm. Given the stochastic nature of PSOs, the agreement
between the movement of the single point and the PSO centre
of mass is surprisingly good. It is also pleasing, given the
different behaviours [30, page 270], that the same approagtz)
can also be used with genetic algorithm populations.

The no free lunch theorems and considerable experimen%?f]
work [31] confirm that there is no universal problem solver24]
Instead we must continue to analyse both problems and
solvers, in the hope of finding better matches between theff:
By showing, in principle, we can generate coarse-grainggs)
effective landscapes on which simple hill climbers move in
step with sophisticated algorithms, such as PSOs, we h 8
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