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Abstract— Particle swarm optimiser and genetic algorithm
populations are macro-organisms, which perceive their envi-
ronment as if filtered via a kernel. The kernel assimilates
each individual’s sensory abilities so that the collective moves
using a greedy hill-climbing strategy. This model is fitted to
data collected in real PSO and GA runs by using genetic
programming to evolve the kernel.

In nature animals tend to live within groups. The social
interactions effectively transform the fitness selection landscape
seen by an isolated individual. In some cases a group behaves
(or even can be said to think) like a single organism. Kernels
provide a lens which coarse-grains or averages individual senses
and so may help explain joint actions and social responses.

The original multi-modal problem is smoothed by convolving
it with a problem specific filter designed by GP. Because
populations see the transformed social fitness landscape, they
can pass over local optima. GP can give a good fit between
the predicted behaviour of the macroscopic organism and the
actual runs.

I. I NTRODUCTION

In plant and animals systems it is the rule rather than the
exception that individuals, at least for some critical periods,
live within groups [1]. In a school, individual fish have
limited perception, which is dominated by the movement of
other members of the school adjacent to them. Also, any food
source found by a group member will have to be shared
with other members. So, why should individuals stay in a
group? A reason is that there are many things that a group
of individuals or cells can do that an isolated individual
or cell cannot. These increase the survival capabilities of
each individual. For example, the group has increased action
and reaction capabilities. Some groups are able to: gather
rain drops, overshadow competitors, or even build cathedrals.
Also, a group may have increased sensing capabilities. For
example, fish in a school can rapidly spread information by
copying each other’s behaviour. This may reveal the presence
of food or danger to all members of the group even if only
a small number (in fact, as low as 2) of individuals have
first hand information. Through these extended sensing and
acting capabilities, in many circumstances, a group behaves
like a single organism.

One might imagine that in order to model computationally
or mathematically these rich sets of behaviours, one would
have to use very complex models. This, however, is not
necessarily the case. For example, it is possible to observe
the emergence of realistic fish school behaviours in models
where each fish is a simple agent controlled by forces which
implement its desire to both behave like and stay in proximity
of other fish, while at the same time keeping a certain
distance from other fish [1].
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If we now turn our attention to the world of computation,
we see that many population-based search algorithms take
inspiration from some natural system involving groups of
individuals. Particle Swarm Optimisers (PSOs) [2], [3], [4],
for example, take direct inspiration from bird flocking or
fish shoaling. In a PSO, particles fly on the fitness landscape
under the control of two forces representing cognition and
sociality, respectively. The cognition force drives individuals
to search around their personal best, sociality drives them to
conform their search to that of the best particle in either their
neighbourhood or in the whole swarm. Genetic algorithms,
GAs, have a different source of inspiration. Nonetheless,
they too simulate groups of individuals with some sort of
social interaction. Indeed, under the effects of crossover and
selection (but no mutation), in typical GAs the offspring
sample the subspace represented by the convex hull of the
population. So, there is a kind of “social” bias towards
sampling areas where other individuals are located. Other
population-based algorithms are based on the notion of the
search being performed by a population of locally interacting
individuals.

As a result of these interactions search algorithms show
complex emergent behaviours. For example, the ability to
avoid getting stuck in local optima. So too, in these com-
putational systems, groups appear to have, extended sensing
and acting capabilities. The question we want to explore in
this paper is:to what degree can we interpret and model
the behaviour of a particle swarm optimiser and other
artificial population-based optimisation algorithms as that
of a corresponding, single macroscopic (or multicellular)
individual or swarm?

In order to answer our main question, we will start by first
providing a simplified, but realistic, model of the behaviour
of swarms of interacting entities (Section II). The model
originally arose and was refined in a series of meetings with
biologists (including the authors of [1]) collaborating in a
large research project, the Extended Particle Swarms (XPS)
project, involving several sites in the UK and numerous
international collaborators. Although the model is simple,
it explains in which sense the collective can be seen as a
single individuals and how such an individual essentially
“perceives” its environment as if deformed or filtered via a
receptive field or “kernel” which assimilates each individual’s
senses.

Motivated by this model, the original question can then
be recast as whether or not kernels, which allow accurate
modelling of particle swarm optimisers and other population-
based search algorithms, exist. To help us answer this new
question, we decided to apply genetic programming (GP)
to explore the space of possible kernels. Our experiments

http://www.cs.essex.ac.uk/staff/W.Langdon/
http://www.cs.essex.ac.uk/staff/rpoli/


with small PSOs, show that the kernel approach has some
credibility. We show several examples where we can model
movement of a PSO swarm as a whole, even though PSO
swarms are composed of semi-independently moving in-
dividuals. In contrast, early work on understanding PSOs,
started by considering each individual’s movements as if
they were isolated from the swarm before looking at their
combined effects [5], [6]. In our model, the centre of the
swarm responds to the underlying optimisation problem via a
receptive field. We model the receptive field by transforming
the problem landscape by convolving it with a kernel evolved
for this purpose. In principle evolution might have produced
any kernel. However, as we shall see, those evolved act as
low pass filters, which smooth the landscape [7]. That is,
they effectively remove high frequency landscape features,
such as local, optima. So, the motion of the population on a
landscape can be seen as the motion of a hill-climber on a
transformed, smoother landscape. In line with recent research
on population dynamics [8], [9], [10], [11] we can see this
new landscape as a coarse-grained, population-level version
of effective fitness landscape.

The next section gives the mathematical background to the
kernel model. Sections III–VI describe and give parameters
for the PSO, GA, gradient follower and GP. (Embolden by
our success with PSOs, we also evolved kernels to describe
more traditional evolutionary algorithms, such as a GA.) The
two optimisation benchmarks (3 Gaussians and Rastrigin)
are give in Section VII. Finally the implications of the
high quality kernels evolved (Section VIII) are discussed in
Section IX and our conclusions are given in Section X.

II. M ASS-SPRING KERNEL MODEL OF EMERGENT

BEHAVIOUR

The following simple analysis justifies some of the mod-
elling choices we make in the following sections. Let us
start by analysing a very simple situation where we assume
that each individual is a mass which interacts with other
individuals via springs. Let us imagine that each mass has
an active control system and can perceive the environment
and act accordingly. The only action allowed is to move the
mass using an external force.

Let us initially imagine that the springs are extremely
stiff, so much so that the population behaves exactly like
a rigid body. When an individual decides to generate a
propulsion force, all of the population is affected. If more
than one individual generates forces, the forces will be
added vectorially and the motion of the population will be
determined by the resultant force. So, the links between
individuals transfer information and coordinate behaviour,
without any centralised mechanism.

The situation is not very different if we reduce the stiffness
of the springs. As a result of this change it may take longer
for information to be integrated along the whole “body” of
the population, but eventually information is transferred and,
looking at the behaviour over appropriately long time scales,
the resulting behaviour is almost identical.

To simplify the analysis, let us imagine that the environ-
ment is simply a functionf(x) which represents the resource
distribution at each point in space. For example, we could
imagine that this function represents the density of food.
Naturally, we should not expect individuals to be able to
perceive the whole environment, so perception will have to be
limited to a certain area around each individual. Furthermore,
individual animals have to spend time and energy to move to
different locations, so it is sometimes preferable to go for a
place which is nearer even if it has less resources. Essentially
the net value that an animal could gain per unit of food
available is some decreasing functionw(d) of the distanced
from the current location. Naturally, animals prefer places
where there are plenty of resources, so the attractiveness
of a particular location depends on the average or sum of
the available perceived resources. To sum up we can model
the perceived attractivenessof the environment at any given
locationx for an individual as

a(x) =
∫

f(y)ω(x− y)dy

That is, the perceived attractiveness of the environment
a(x) is the convolution between the actual food distribution
f(x) and a kernelω(x) representing the perceptual and
locomotion capabilities of the individual.

We expect each individual to move in order to maximise
the perceived attractiveness of its position. This could be
modelled by simply computing the gradient ofa(x) and
moving accordingly (hill climbing). We can, for example,
assume that the force generated by each individual would be
proportional to∇a(x), i.e.

Fi = η∇a(xi)

where η is an appropriate constant,xi is the position of
individual i and∇a(xi) is the gradient ofa(x) atxi. Because
of the linearity of convolution we have

∇a(x) =
∫

f(y)∇ω(x− y)dy.

So, the direction and amplitude of the motion force is pro-
portional to the convolution between the original landscape
and the derivative of the receptive fieldω.

As mentioned above, each animal is constrained in its
motion by its social interactions. Let us start by assuming
the interactions are rigid links. Then the motion of the centre
of massx of the population is controlled by a force

F (x) =
∑

i

Fi = η
∑

i

∇a(xi) = η
∑

i

∇a(x + δi)

whereδi represents the displacement of individuali from the
centre of massx, i.e., δi = xi − x. So,

F (x) = η
∑

i

∫
f(y)∇ω(x + δi − y)dy

= η

∫
f(y)

∑
i

∇ω(x + δi − y)dy

= η

∫
f(y)∇ωp(x− y)dy,
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where
ωp(z) =

∑
i

ω(z + δi).

In other words,the motion of the population is controlled
by a force which is proportional to the convolution between
the resource distribution and the gradient of a new, coarser-
grain kernel, ωp, representing the perceptual and motor
capabilities of the population seen as a single individual!

This macroscopic and emergent animal (swarm) moves in
the environment following the gradient of an attractiveness
function

ap(x) =
∫

f(y)ωp(x− y)dy.

So, the food distribution, which from now on we will
interpret as a fitness function, is seen by the population
through the looking glass lens of the filter/kernel. Note that
the model does not break down even in the special case
in which the receptive fields,ω, of each individual are
Dirac delta functions, that is when each individual has no
knowledge about its neighbourhood. Indeed, in this particular
case,ωp would be a moving-average-type of (low-pass) filter.

III. PARTICLE SWARM OPTIMISER

In our experiments we use a simple five-member PSO
swarm. There is no constriction, instead we use a standard
[12, page 1227] PSO where the speed is limited to 1.0.
Constriction is often beneficial, e.g. [13], however it can
lead to swarms getting stuck at non-optimal values, even at
values below nearby local peaks [14]. It is common to use
“small” swarms. For example, [15] and [16] both achieved
substantial results on real-world problems with only ten
particles. However multi-objective problems are often solved
with larger swarms [17]. Also genetic search, next section,
even for one objective, seems to require bigger populations
[18]. This may explain why sometimes [19] PSOs can be
more effective than GAs.

To ensure there are some interesting dynamics the swarm
is started well away from the optimum. Individuals are given
random initial positions uniformly chosen from the range 9.0
to 11.0. Similarly the initial velocities are randomly chosen
from their legal range:−1.0 . . .+1.0. Since the natural period
of the oscillations of this PSO is 6 [5, Table I] [6, page 1942],
the PSO is run for 25 cycles. This allows the first five cycles
to be treated as settling time and discarded and still require
the model (effectively a hill climber, see below) to match
three oscillations. I.e., the GP tries to make the hill climber
match the last 20 generations of the PSO run.

IV. GENETIC ALGORITHM

Having applied the kernel approach to swarm systems,
we wondered if it could also work with more traditional
optimisation techniques. We chose to try it on a genetic
algorithm. Again to see interesting dynamics, we start the
initial population well away from the optimum and, as the
PSO, uniformly randomise the initial chromosomes in the
range 9 to 11. Since the GA has no concept of momentum,
it is not necessary to allow it five generations to settle. Instead

TABLE I. TinyGP Swarm and GA Kernel Parameters

Function set: +−× DIVa

Terminal set: 110 terminals, including: The remaining terminals are
constants uniformly randomly chosen in the range0 . . . 1

Fitness: Sum of squared prediction error. See Section VI-A
Selection: steady state binary tournaments for both parent selection

and who to remove from the population
Initial pop: Trees randomly grown with max depth of 4 (root=0)
Parameters: Population 10 or 1000. 10% crossover, 90% mutation (2%

chance of mutation per tree node).
Termination: generation 100

a If |y| <= 0.001 DIV(x, y) = x else DIV(x, y) = x/y.

the hill climber is required to match the centre of the GA
population immediately. I.e. from generation 0 to 19.

As we are dealing with continuous problems, we used
the standard binary-reflected Gray code [20, page 297], [21,
page 100] from [22] to encode the range−11 to +11.

The GA uses binary selection tournaments with point
mutation and one-point crossover on a steady state population
[23], [24]. The chromosome length (16 bits), crossover rate
(60%), mutation bit flip rate (1/16) and population size (100)
are as [18]’s Rastrigin experiments.

V. H ILL CLIMBER

The hill climber is started at the centre of mass of the pop-
ulation. Its next twenty moves are compared with the centre
of the swarm at successive generations. (In the GA runs, we
calculate the mean position of the population every 100 GA
fitness evaluations). The memoryless hill climber responds
directly to the gradient, accepting all moves, regardless of
their fitness. By gradient, of course, we mean the gradient
of the landscape resulting from the convolution of the actual
landscape with kernel evolved by GP. For numerical stability,
the function evolved by GP is treated as the gradient of
the kernel, rather than the actual kernel. We do not need
the actual kernel during the run. When this is needed (as
in Figures 5 and 9) it is reconstructed by integrating its
differential after the run.

VI. EVOLVING KERNELS WITH GP

We use the TinyGP genetic programming system, cf.
Table I. It evolves a kernel, i.e. a function, which is convolved
with the one-dimensional problem landscape. This gives
another landscape which is “perceived” by a hill climber.
In these initial experiments, the hill climber is deliberately
simple (e.g. it has a fixed learning rate, we choseη = 1).
More sophisticated gradient based techniques are described
in [25, pages 276–279]. It updates its positionx in the
landscape using the rule:xt+1 = xt + ∇x. Where∇x is
the gradient atx. The goal for the GP is to evolve a kernel
which causes the hill climber to move so as to resemble
movement of the whole PSO swarm.

A. GP Fitness function

The optimiser (i.e. PSO or GA) is run 5 times with inde-
pendently chosen random initialisations. The fitness of each
evolved kernel is the sum, over the last twenty generations
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Fig. 1. Sum of three unit variance Gaussians centred at -2, 1 and 4.
0.50N(x,−2, 1) + 0.35N(x, 1, 1) + 0.15N(x, 4, 1)

of each run, of the squared distance between the position of
the hill climber and the mean position of the members of the
population.

To reduce the impact of lucky individuals (who got a high
score once due to fortunate random initialisations), the fitness
of each potential parent is re-evaluated in each tournament.
(The most recent fitness value is used in tournaments to
decide who to remove from the population.) In Section VIII
(esp. VIII-E) we will see that this gives kernels with low
training errors, which also predict the path of optimisers
starting from initial conditions never used by the GP. I.e. it
helps to avoid overfitting.

VII. D EMONSTRATION LANDSCAPES

A. 3 Gaussians

The first test landscape is asymmetric and multi-modal. It
is created by adding together three different sized Gaussian
curves, each with unit variance, centred at -2, 1 and 4,
cf. Figure 1.

B. Rastrigin

The Rastrigin benchmark is widely used since its many
local peaks give interesting dynamics [25], [12, page 149]. As
suggested in [26], we easily converted it to a maximisation
problem. We clip it so that it is only non-zero inside the
range−10 to +10. See Figure 2.

VIII. R ESULTS

A. PSO on 3 Gaussians

The behaviour of the five particle PSO and the hill climber
on the kernel (evolved in the first GP run with a population
of ten trees) are given in Figure 3.

In all runs the swarms are able to climb upto the first peak
but are not trapped by it. Instead they all get at least as far
as the second peak. Here in some runs the swarms diverge;
some succeed in passing over it and start oscillating about the
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Fig. 2. Rastrigin.
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Fig. 3. Testing evolved kernel. Comparison of five actual PSO runs (dashed
lines) with five hill climbing runs on three Gaussians landscape (solid lines)
Training RMS error 0.91 v. test RMS error 0.87

highest fitness value. However in all of the first five test runs
(Figure 3) the swarm oscillates about the intermediate peak.
Note this divergence does not prevent GP transforming the
landscape so that the hill climber usually follows the centre of
the swarm. The average difference between the hill climber
and the mean position of the swarm at each of the twenty
PSO update cycles (i.e. 5–24) is given in Table II.

As with the other kernels, GP uses the protected division
operator to evolve a sharp spike in the differential of the
kernel. The evolved function is plotted in Figure 4, whilst
Figure 5 shows the kernel. (The kernels are obtained by
numerical integration of their differentials). While Figure 6
shows the gradient (solid line) produced by convolution and
the corresponding effective fitness landscape (dashed line).
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TABLE II. Performance of Evolved Differential Kernels (5 runs)
GP Pop RMS Train error RMS Test error

PSO 3 Gaussians 10 0.91 0.87
PSO Rastrigin 1000 0.47 0.58
GA 3 Gaussians 10 0.91 1.02
GA Rastrigin 1000 0.45 0.65
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PSO 3Gaussians min -584,       GA 3Gaussians min -615

PSO  0.12 - 5.83/x
 GA -1.86 - 6.13/x

Fig. 4. Differential of kernels for 3 Gaussians problem. (evolved in first GP
run, pop 10). Convolutions are truncated to zero outside range−10 . . .+10.

B. PSO on Rastrigin

The five members of the PSO easily step over the multiple
local optima traps in the Rastrigin problem and oscillate near
the global optimum. The first GP run, with a population of
1000 trees, evolved a kernel which transforms the landscape
seen by the five members of the PSO swarm into a landscape
where a simple hill climber emulates their centre of mass.
See Figures 7, 8, 9 and 10.

C. GA on 3 Gaussians

Figure 11 shows paths taken by the hill climber on
the transformed landscape produced by the first GP run
(10 trees). Notice that the hill climber takes almost the same
path in each of the five test runs. This is not a surprise since
it is started from very similar positions (the mean of the
GA population, of 100 bit strings) each time. In fact, the
hill climber paths tends to converge over time. Figure 11
also shows the location of every individual in each of the
five GA populations over time. (Noise along the x-axis
has been added in Figure 11 to spread the data.) We can
see, despite the high point mutation rate, in each run the
population clusters tightly near the optimum. The gradient in
the transformed landscape causes the hill climber to oscillate
nearby. (Actually between -3 and -2.)

The evolved function is plotted in Figure 4 and the
corresponding kernel is in Figure 5. (GA, dashed lines in both
graphs). The result of convolving with the three Gaussians
is given in Figure 12.
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Fig. 5. Kernels evolved in first GP run for 3 Gaussians (pop 10) (Obtained
by numerical integration of curves in Figure 4)
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Fig. 6. Gradient used by hill climber for PSO 3G. Gradient calculated
by convolving 3 Gaussians with evolved differential kernel (cf. Figure 4,
PSO). For comparison (linearly rescaled) 3 Gaussians and new landscape
(obtained by integration) are also plotted.

D. GA on Rastrigin

The first GP run, with a population of 1000 trees, evolved
a kernel (Figures 8 and 9, dashed line) which transforms
the Rastrigin landscape so that the hill climber tracks the
mean of the GA population. (Again our simple hill climber
oscillates a little.) The GA populations move rapidly towards
the optimum (at the origin) easily stepping over the multiple
local optima traps. The first five test runs are shown in
Figure 13. (As before, in Figure 13, noise is added to
spread out horizontally the individual members of the five
populations.) Figure 14 gives the gradient (solid line) of the
transformation of Rastrigin, produced by convolution with
the evolved function (cf. Figure 8, GA). Notice again the
effective landscape (dashed line) has been smoothed with
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Fig. 7. Comparison of first five PSO test runs on Rastrigin with five hill
climbing runs (solid lines) on kernel transformed runs Training RMS error
0.47 v. test error 0.58.
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Fig. 8. Differential of kernels for Rastrigin (evolved in first GP run,
pop 1000).

respect to the original Rastrigin (dotted line).
The high mutation rate means that, while most of the

population clusters near the origin, a small number of in-
dividuals are well away from it. These extreme members
of the population have a proportionately large impact on the
mean so that it may be slightly (≈ 0.2) away from the origin.

E. Generality of Evolved Differential Kernels

As Tables II and III make clear, performance when tested
with different random initial conditions, is not significantly
different from that when each differential kernel was trained.
That is, the kernels do not over fit their training data.
However they have adapted to their environment, in that they
are useless when faced with a different problem.

Extremely high errors are seen for both differential kernels
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Fig. 9. Kernels evolved in first GP run for Rastrigin (pop 1000). (Obtained
by numerical integration of curves in Figure 8)
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Fig. 10. Gradient used by hill climber for PSO Rastrigin. Gradient
calculated by convolving Rastrigin with evolved differential kernel (cf.
Figure 8, PSO). For comparison (linearly rescaled) Rastrigin and new
landscape (obtained by integration) are also plotted. Note the transformed
landscape is smooth but its optimum is slightly offset wrt. the original.

trained on the three Gaussians landscape when faced with
Rastrigin (Table III). These are due to the first step of the
hill climber. The gradient of the transformed landscape is in
the direction of the global optimum but is very steep. I.e. the
scaling constants appropriate to the three Gaussians problem
are not appropriate for Rastrigin. (Note the difference in
vertical scales of Figure 1 v. 2 and Figure 4 v. 8.) The
gradient is so big that the hill climber is directed to make
an enormous leap. This takes it far out of the true range of
the problem, where there is no gradient. Therefore the hill
climber remains stuck at a large negative value, which, in
turn, gives the huge RMS error.

6



-8

-5

-2

1

4

7

10

0 2 4 6 8 10 12 14 16 18 20
Time

 .50 Peak

 .35 Peak

 .15 Peak

GA individual (5 runs)
GA center (5 runs)

Hill climber prediction (5 runs)

Fig. 11. Comparison of first five GA test runs on three Gaussians problem
with five hill climbing runs (solid lines) on kernel transformed landscape.
Training RMS error 0.91 v. test error 1.02.
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Fig. 12. Gradient used by hill climber for GA 3G. Gradient calculated by
convolving 3 Gaussians with evolved differential kernel (cf. Figure 4, GA).
For comparison (linearly rescaled) 3 Gaussians and new landscape (obtained
by integration) are also plotted.

TABLE III. Test RMS error of evolved differential kernels on both
problems (means of 25 runs). Note: differential kernels are specific to the
environment where they were trained and in all 4 cases perform much worse
in a different environment.

GP Pop 3 Gaussians Rastrigin
mean (sd) mean (sd)

PSO 3 Gaussians 10 0.97 (0.21) 1020.00 (132.00)
PSO Rastrigin 1000 5.30 (0.69) 0.66 (0.29)
GA 3 Gaussians 10 1.10 (0.30) 2700.00 (132.00)
GA Rastrigin 1000 10.64 (0.29) 0.86 (0.35)
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Fig. 13. Comparison of first five GA test runs on Rastrigin with five hill
climbing runs (solid lines, GP pop 1000) on kernel transformed landscape.
Training RMS error 0.45 v. test error 0.65.
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Fig. 14. Gradient used by hill climber for GA Rastrigin. Gradient
calculated by convolving Rastrigin with evolved differential kernel (cf.
Figure 8, GA). For comparison (linearly rescaled) Rastrigin and new
landscape (obtained by integration) are also plotted.

IX. D ISCUSSION

These experiments actually provide the effective landscape
seen by simple particle swarm optimisers and evolutionary
algorithms. It is nice that, as so often assumed, those found
by genetic programming are “smoothed” versions of the true
fitness landscape. We think this result is general, and, in
future research, we will seek experimental confirmation in
real-world problems. Naturally, given their typically enor-
mous size and the costs associated with convolutions, we
expect to be able to do so only where kernels are small and
limited resolution is needed.

Also, we believe that it may be possible to apply our
kernel-based approach to natural swarms, in particular fish
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shoal and flocks of chickens, as well as in the time domain.
That is, in the same way that a spatial kernel can model a
group of individuals spread over some area of space, a tempo-
ral kernel can show the effects of an individual remembering
sensory readings from its past locations. I.e. one might try
to use kernel methods to show the benefits and drawbacks of
memory. One could even think of combined space and time
kernels, showing how a collective uses “group memory”.

Naturally, we expect that there are situations where it
may be impossible to find a single kernel which describes
the behaviour of the swarm as a whole. For example, it is
possible that modern explorative PSOs [12] are too dynamic
for the swarm to behave as a cohesive whole.

So far we have looked at static landscapes but natural
environments, and indeed many engineering challenges, are
dynamic and multiple threats must be overcome simultane-
ously. For dynamic and multi-objective problems, PSOs can
do better than other approaches [27], [28], [17]. Of course
real life is much more complicated and multiple interacting
problems must be solved. Co-evolution [29] suggests an
approach. It is possible, both in coevolution and where there
is a need to find all Pareto undominated solutions, that
a swarm will lose cohesion and so predicting its average
behaviour would be impossible or not useful. However it
would be interesting to apply our kernel approach to the time
dimension and see if it reveals how such multi-swarm PSOs
filter problems to give smooth dynamic fitness landscapes.

X. CONCLUSIONS

We have shown on two problems that genetic program-
ming can automatically find simple kernels which transform
the optimisation problem seen by individual members of a
PSO swarm into a social landscape on which a single-point
hill-climber matches the average behaviour of the whole
swarm. Given the stochastic nature of PSOs, the agreement
between the movement of the single point and the PSO centre
of mass is surprisingly good. It is also pleasing, given their
different behaviours [30, page 270], that the same approach
can also be used with genetic algorithm populations.

The no free lunch theorems and considerable experimental
work [31] confirm that there is no universal problem solver.
Instead we must continue to analyse both problems and
solvers, in the hope of finding better matches between them.
By showing, in principle, we can generate coarse-grained
effective landscapes on which simple hill climbers move in
step with sophisticated algorithms, such as PSOs, we have
strengthened the fitness landscapes metaphor and contributed
an important analysis tool.
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