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Abstract- In silico screening of chemical libraries or vir- 2 Human P450 Cytochrome 2D6 IC50 data

tual chemicals may reduce drug discovery and medicine o

optimisation lead times and increase the probability Over the last few years GlaxoSmithKline has been measur-
of success by directing search through chemical space. iNd thein vitro activity of thousands of chemicals (drawn
About a dozen intelligent pharmaceutical QSAR mod- from both former SKB and former GW Iibrgries) against
elling techniques were used to predict IC50 concentra- Cytochrome P450. P450 are a family of important cell
tion (three classes) of drug interaction with a cell wall Membrane enzymes which interact with many dr[all
enzyme (P450 CYC2D6). Genetic programming gave anq Born_1an, 1997; Cupp and Tracy, 1898n adverse re-
comprehensible cheminformatics models which gener- action with a P450 enzyme may prevent the use of a po-
alised best. This was shown by a blind test on Glaxowel- tential drug. If the reaction of proto-drugs with P450 and
come molecules of machine learning knowledge nuggets other important molecules where known in advance then
mined from SmithKline Beecham compounds. Perfor- huge savings in drug discovery lead time could be made.
mance on similar chemicals (interpolation) and diverse Also directing the search to more fruitful areas of chemical

difficult than avoiding over fitting. treatment. Computer based screening has the advantage that
Two GP approaches, classification via regression us- ot only can it be applied to existing chemicals but it can,

ing a multi-objective fitness measure and a direct winner in principle, be applied to virtual chemicals.  lie.silico

takes all (WTA) or one versus all (OVA) classification, SCreening can be applied to chemicals before they are syn-

are described. Predictive rules were compressed by sep- thesised.

arate follow up GP runs seeded with the best program. P450 CYC2D6 is a large and complex molecule. How-
ever these machine learning prediction techniques are not

specific to it. We may hope that a successful ML tech-
nique will be readily applied, by retraining, not only to other

GlaxoSmithKline (GSK) have evaluated a number of Quar24°0 molecules, but to other pharmaceutically important
titative Structure Activity Relationship (QSAR) computa-b]°m0|eCU|eS- In contrast, techplques based on three dimen-
tional modelling techniques. The merger of two major phar3ional crystallographical chemical models (sucti$sgall
maceutical companies, GlaxoWelcome (GW) and SmitrEtals 1999) are specific to a crystal structure. Not only
Kline Beecham (SKB) to form GSK, has given an oppord0 they require the biomolecule structure (which in many
tunity to test generalisation of QSAR approaches. BotRASes IS not known) put considerable human endeavour may
companies developed sizable libraries of chemicals, with® needed to re-engineer them for another molecule.
surprisingly little overlap and occupying different areas of _Nitialy high throughput screening (HTS) was used
chemical space. A blind trial was held, in which more than &-@ngdonet al, 2001; Cangdoret al, 2002; [Langdoret
dozen different groups/techniques were invited to train cla&l-—2003 however more accurate IC50 measurements are
sifiers on a labelled data set of former SKB chemicals. AOW available. The correspondence between HTS and IC50

non-overlapping unlabelled data set of former GW chemfheasurements has been disappointing, so we will concen-
cals was also given. The task being to predict the activity dfateé on 1C50. _ _
the former GW data set. Twelve entries were received. The IC50 is the concentration at which a compound re-
A complete description of all of the techniques is beingluces the effectiveness of P450 by 50%. A chemical which
prepared for publication, however we give details of twdhtéracts very little will need to be present in high concen-
genetic programming techniques (Sectigns 3[@and 4) incluéfation to have a large affect. In order to find a chemlcqls
ing mutation operators (Sectign3.1) and simplification runt">0 value, repeated measurements must be made at differ-
(Section{ZR). This is followed by a general discussion (Se€nt concentrations. If a chemical is found to be inactive even
tion B) and conclusions (Secti@h 6) but we start in the nest high concentrations, this is all that need be known and it

section with a description of the problem and data sets. IS Common not to continue testing at even higher concen-
trations. Instead, its IC50 value is recorded as “at le&st

Figure[1 shows this effect in the training data, where 552
chemicals have an IC50 value of “100”, meaning that it is at
least 100.

1 Introduction
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100 Inhibitory ~ x ' ' iy Table 1: 1C50 Prediction (Regression and Classification)
o Slljr?:(t:rt?\ﬁg + 1 Objective: Predict Human P450 CYC2D6 IC50 class
80 iy (Inhibitory, Substrate, Inactive)
70 - 7 Function set: Max Min MaxA MinA MUL ADD DIV
60 | _ - SUB IFLTE
8 sof Inctve =30 | Terminal set: 121 features, 0123456 7 8 9, plus 90
T sk i unique constants -34..582.
ol | Fitness: Fitness= 20000 hits — " | f; — 1C50;|? or
Substrate 3...30 -~ hits
2 L 1 Selection: generational (non elitist), tournament 7
107 Inhibitory <3 — 7 Initial pop: Each individual is either one or three trees.
0 0-_"'2500 1000 1500 2000 2500 3000 Each tree created by ramped half-and-half

(2:6) (each initial tree limited to 300)
Parameters: Population 5000. Max program size 1000.
Figure 1: Human P450 CYC2D6 IC50 training data 50% size fair crossover, crossover frag-
ments< 30 [Langdon, 200D 50% mu-
tation (point 22.5%, constants 22.5%,
Figure[l also shows that the continuous IC50 data is di- shrink 2.5%, subtree 2.5%)
vided into three classes. Inhibitory (IC50 3), Substrate Termination: generation 50
(3 < IC50 < 30) and Inactive (IC50> 30). (The middle
class is called “Substrate” on the assumption that chemi-
cals with intermediate activity depress P450 metabolism & Genetic Programming Configuration
the standard substrate by being an alternative substrate with o ] )
which the P450 molecules also react, thus leaving less P4¥(§ tried two GP approaches, classification via regression
free for the original reaction.) Note also the training datélnd direct plaSS|f|ca}t|on_ In regression egch |_nd|V|duaI in
has been specifically prepared for use with other machirﬁBe population consists of a single tree which yields a float-

learning techniques and so has been balanced to have £ Pointvaluef. (Figure(® gives an example tree.) The first
actly 1000 chemicals in each of the three classes. component of fitness is the square of the difference between

The supplied training data includes the compound id, it;é and the measured IC50 value summed over all 3,000 train-

“SMILES" representatiofy its true class and IC50 value. N9 compounds.f is also converted to one of three classes

We did not used the compound's id or SMILES directly, in.Using the same cut points as had been applied to the IC50

stead (like most of the 12 groups taking part in the trialy@/ué- I.€.f < 3.0 indicates an active compounfl,> 30.0

we used 121 “features” pre-calculated by GSK. (Note thegfedicts the compound to be inactive, while between 3 and
features are not the same as the 699 features we previousf) IS & substrate. Each compound where the individual
used with HTS data [Langdoet al, 2001, 2002, 2003].) correctly predicts the class is known as a hit. The fitness
Many of the features are proprietary and represent consii€@sure combines error squared and hits by multiplying the
erable domain knowledge. A simple feature is charge inflUmber of hits by 20,000 and subtracting the sum of error

. . 9 .
balance. Most of the participating approaches used theSguared, Fitness 20000 hits—5_ | f; —1C50;|°. (A certain
features but a few used the SMILES representation. amount of experimenting was required in order to choose

In addition to the 3,000 training compounds, feature€0,000 as a reasonable weighting between the two factors.

for 4,570 former SKB compounds were provided (withouPa"eto multi-objective approachgisangdon, 1998 might
IC50 values). This served as the first test set. SimilarliS0 have beentried.) .

features for 1932 former GW compounds (again without 1N€ Second approach is a *winner takes all” or “one ver-
IC50 values) were given. This served as the extrapolatigi'S @ll” in which each GP individual contained three trees
set. Both unlabelled sets have large class imbalances, wiynddon, 199B one per class. Each tree is like the sin-
a very much lower proportion of active chemicals than thg!€ 0ne used in the regression approach. They each re-
training data (see Tabl€s 4 afid 5). That is, the former skigm a roat!ng point number.' Thg class predicted is that
test set containg9 + 19 + 3 = 91 inhibitory chemicals corresponding to the tree which yielded the largest value.

out of 4570 (2%). While the former GW test set containd tN€SS is simply the number of compounds correctly pre-
41 + 32 + 41 = 114 P450 inhibitors out of a total of 1932 dicted. (cf. Figure]9). Apart from the number of trees and
chemicals (6%). the fitness function, the two approaches are identical. The

GP parameters and function and terminal sets are similar to
ISMILES represents chemicals as a graph of atoms connected Byr earlier work. Tabl@ 1 contains the details.

bonds. E.g. alcohol iECO Hydrogen atoms are not explicitly given. The functions within the evolved trees are binary except

for the four argument IFTLE (If less than or Equal). IFLTE

evaluates its first two arguments and then returns either the

third (if the first is less than or equal to the second). Other-

wise it returns its fourth argument.
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In both approaches five GP runs were made. The bagt

L . Table 2: 'GP parameters used in run to simplify evolved
model for each was simplified by a separate GP run to give® . .
the final two models P y P 9 450 IC50 regression model (differences from Table 1)

Selection: Keep best in population (elitism)

. Pop Size: 500

3.1 Mutation Max Size: 68

As in our earlier work we used a high mutation rate and #nitial pop:  100% Seeded

mixture of different mutation operatof@ngeline, 1998 Parameters: 10% size fair (crossover parameters as be-

The four mutation operators are. fore). 90% mutation (point 5%, con-
_ stants 5%, shrink 85%, subtree 5%). New
Subtree chooses a tree uniformly at random, then chooses subtrees created by subtree mutation created
uniformly at random a node within it. Replace the by ramped half-and-half (as before) but max
subtree rooted at that node (which may be a leaf or depth 2 (min depth 1).

function) with a new random one. The new sub-
tree is created in the same way as those in the initial

population, i.e. ramped half-and-half. Ramped half- random constants. Hence the constant is replaced by
and-half’s maximum depth is randomly chosen from the predefined constant nearest the randomly gener-
one to the depth of the subtree being replaced. This ated value.

may lead to either a decrease or increase in program

size. Should the mutant be larger than the maximurn GP Results

program size, it is aborted and a new mutation is at-

tempted. 4.1 GP Classification via Regression

Shrink replaces a subtree with part of itself. A node is choFigures[R and]3 show the performance of the best model
sen in the same way as in subtree mutation. If it is &om the last generation of each of the five runs. Of these the
leaf, no action is taken and the offspring is identicabmallest and fittest was chosen. As a final stage the model
to its parent. If it is an internal node (function), awas simplified, reducing its size from 65 to 45.
function amongst its argument subtree is chosen uni-
formly at random and is promoted up the tree replac4.2 Simplification of Evolved Model
ing the whole subtree (cf. hoifiKinnear, Jr., 199).

It is possible the same internal node may be chose
second time, in which case (as with a leaf) no chan
is made.

nI_=Ei(cept for the use of size fair crossover to avoid bloat
9ILL_anqdon, 200Pwe had not taken particular pains to evolve
a compact model. A final stage was to perform a single
small GP run in which the initial population was 100%
Point Mutation replaces a function with another with seeded with 500 copies of the best model, and parameters
same number of inputs or replaces an input by ar(ef. Table[R) were adjusted with the aim of simultaneously
other. Note if the Gaussian mutation of constants ogeeducing the size of the models in the population and keep-
erator is enabled (as it was in these runs) then poiimg their performance high.
mutation does not change leaves. Mechanistic rules for transforming programs to exactly
Point mutation differs from Subtree and Shrink mu_equivalent but smaller programs have been previously re-
tations in that it can make multiple changes and be2°rted: El.g[Hooper and Flann, 1996; Ekart, 2000, [barra
cause it applies to the whole of an individual, not jus;et al, ZOO‘Z_aII use explicit edit rul_es as sp_eC|aI mutation op-
a single tree within it. (Remember, in the case ofrators which change the genetic material or program trees

the classification approach, each individual consist? yield equiyalent offspring. cHigh level Ian_guages such
of three trees.) Essentially point mutation scans th@® MathematicdNachbar, 199band Maple include ex-

whole program from beginning to end. At each poinpression simplification within the language. Alg0Issor],
within it, a random choice is made. With a probabil-lggfi produced a program to simplify programs which can

ity of 100/1024 the point is replaced with a functionbe expressed as polynomials. However finding the small-

(or a leaf) with the same number of inputs. (It is IOOS_est equivalent program is hard and so such rules have been
In using GP we also use a heuristic approach,

sible the function or terminal chosen for replacemerff€uristics. , _
is identical to the existing one, in which case there i§OWeVer, we do not require the evolved models to be equiv-

effectively no change.) alent. Instead we rely on the fitness selection to try and find
programs of similarly good performance. In fact after 50
Gaussian mutation replaces constants with another givegenerations a smaller model (51) with marginally improved
by adding approximately Gaussian zero mean noisperformance was found. Figufe 4 shows the evolution of the
If the constant is an integer, the noise standard devigopulation’s scores on the training data while Figure 5 show
tion is 2.0, otherwise it is 5% of the constant’s value their size. On inspection six nodes in it were found which
All components of evolved programs (i.e. function¢@uld be removed by hand to yield an even more compact
and terminal sets), including constants, are ﬁxeaqodel (45) with identical behaviour. It uses eight of the 121

when the GP is started. Our GP has no epherg&ﬁya"able features (see Figuie 6).
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Figure 6: P450 IC50 (regression) model. f1, f2, ... f8 are GSK domain specific features calculated for each chemical from
its SMILES representation. These 8 were chosen by GP from the 121 available.
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Figure 2: P450 CYC2D6 IC50 regression training v. test.

(Remember the goal is to use regression as a route to clas-Figyre 4: Using GP to shrink P450 regression model
sification. A poor RMS error need not imply a poor classi-

fication.)
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Figure 3: P450 CYC2D6 IC50 training v. test. Best of 5 re-
gression runs and 5 classifications runs are plotted togetherFigure 5: Using GP to shrink P450 regression model
with best simplified model of both GP approaches.
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Table 3: GP (regression) Training (on SKB) Performance

Inhibitory Substrate Inactive Accuracy 1900 T T T T T T T
Inhibitory 579 294 127 58% 1800 %ﬁ i T
Substrate 188 504 308 50% |
Inactive 45 200 755 76% 1700 - -
Overall 1838/3000 = 61% ;
@ 1600 X || ookl S —
Table 4: GP (regression) former SKB test set < 1500 | k e dox RO
Inhibitory Substrate Inactive Accuracy
Inhibitory 69 19 3 76% 1400 | 4 -
Substrate 306 778 479 50% ey 1
Inactive 153 566 2197 75% 1300 stinpopulation — 4 AT
Overall 3043/4570 = 67% 1200 | Populationmean ~o i
0 5 10 15 20 25 30 35 40 45 50
Table 5: GP (regression) former GW extrapolation set Generations
Inhibitory Substrate Inactive Accuracy , ) ) B
Inhibitory a1 32 41 36% Figure 7: Using GP to shrink P450 classifier
Substrate 92 119 235 27% 100 s I - - - -
Inactive 103 242 1027 75%

Overall 1187/1932 = 61%

ze

The predictive accuracy, in terms of confusion matrices®
of the final simplified model (using regression to obtain ag
classification) are shown on the training and two tests set§
in TabledBES.

4.3 GP Direct Classification P Lol oy i
max *
1 1

1 1 1
0 5 10 15 20 25 30 35 40 45 50
Generations

Figure[B gives the performance of the best classifier from 50
the last generation of each of the five runs. Of these the
smallest and fittest was chosen. Again the classifier was
simplified, using the GP procedure described in the previous Figure 8: Using GP to shrink P450 classifier
section with the same parameters (cf. Tdble 2), except the

maximum size of the classifiers was 100 rather than 68. This

reduced the classifier size from 93 to 75. See Fig{res 7

and[8. The final three way classifier uses 21 of the 121

available features (see Figute 9). Features f1 and f6 are us§dje - Gp (classification) Training (SKB) Performance

by both GP approaches. . .
The confusion matrices of the final simplified classifier Inhibitory - Substrate  Inactive  Accuracy

- : Inhibitory 568 352 80 57%
as measured on the training and two tests sets are given I bstrate 187 569 244 5706
Tables588. Inactive 64 275 661 66%
) . Overall 1798/3000 = 60%
5 Discussion
Table 7: GP (classification) former SKB test set
One of the biggest problems in applying machine learning Inhibitory ~ Substrate Inactive Accuracy
to Quantitative Structure Activity Relationship (QSAR) has Inhibitory 56 31 4 62%
been over fitting. However both GP approaches do not ap-g psirate 342 813 393 530
pear to have suffered too badly, in that performance on the |5 ctive 179 740 2012 69%
former SKB test set has been similar to that on the (SKB) Overall 2881/4570 = 63%

training set (cf. Figurg] 3, Tablg 3 v. Talle 4 and Tdble 6 v.
Table[F). In other words, both GP approaches have geneTable 8: GP (classification) former GW extrapolation set

alised to unseen compounds from the same library. How- Inhibitory ~ Substrate  Inactive Accuracy
ever when we look at performance (particularly on predict- Inhibitory 45 26 43 39%
ing active compounds) on the former GW compounds per- g pstrate 62 148 236 33%
formance falls (cf. Tablg 5 arfd 8). Inactive 96 360 916 67%
All the techniques tested in the blind trial gave worse Overall 1109/1932 = 57%

performance on the former GW compounds, indicating that
there is a systematic difference between the former 8SlKlB



in MUL MipnA {27
MaxA fl1 6 14.52 DIV 439.2
f9 MaxA 19 £26

f10 6

“Active” (left) and “inactive” (right) trees for P450 IC50 classifier.

Figure 9: “Substrate” tree for P450 IC50 classifier. Each tree yields a value. The tree whose value is largest of the three
indicates the predicted class. f1, 16, f9, ... f27 are proprietary features calculated from each chemical’s formula. 21 features
were chosen by GP from the 121 available.

and former GW sets of compounds. One possible causeTibe extrapolation set is from a different distribution to that
that the IC50 values were measured differently, although itsed to train the classifier. However this is what industrial
appears the same chemical assay was used for all the carthemists want to do. Often they do not need a model of ex-
pounds. Instead it is thought that the systematic differenésting chemicals (usually they can look up their properties),
is due to the former SKB and former GW chemical librarieshey want to be able to make predictions about novel chem-
occupying different portions of chemical space. Indeed, thisals. They want to have some confidence that the chemical
was part of the reason why the trial was set up this waghey are about to make will react in the body in the way they
Computer models which can make predictions about chemant.

icals similar to those within existing chemical libraries are We should remember that biochemistry occurs in three
useful in their own right. However it would also be verydimensions and so it should not come as a surprise that ap-
useful to be able to make predictions about chemicals (iproaches based on treating complex molecules as two di-
deed even virtual chemicals) somewhat unlike those in useensional graphs (i.e. using their chemical formulae) are
The former GW compounds were thought to be different taot 100% accurate. However real economic advantage
those from SKB, and so it has proved. However none afould be obtained by using models with less than 100% ac-
the other techniques performed as well as GP on the secotutacy provided they are predictive enough to be able to
(former GW) extrapolation set. guide the drug discovery chemist.

In our earlier HTS experiments, GP performance had Where proto-drugs are simple enough that their three di-
held up well when tested on outliers taken from the sammensional structure is known or could be inferred, more
library [Langdonet al, 2003, so its GW performance is complex three dimensional featured could be used. How-
disappointing. Of course, that GP extrapolated well on HT8ver the structure of biomolecules, including disease caus-
data, may have been due to the particular nature of the HTi®y targets, may be unknown. This prevents the use of three
dataset or perhaps due to the particular clustering technigdinensional modelling software which tries to find geomet-
used to designate chemicals as outliers. rical “docking” configurations between molecules. Never-

From a machine learning point of view, it is easy to crittheless 3D features could still be used by adaptive machine
icise the experiment, as it violates the underlying assumpearning approaches. Unfortunately the number of possible
tion that the training data is representative of the problenfieatures is huge, so the first part of the data mining process
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becomes one of feature selection. Il.e. deciding which fea- ciinicai impiications. American Family Physiciarpage
tures to use. 107, 1 January 1998.

While the problem was posed as a three way classificm[;:‘[k 2000 Aniko EK sh f. . i
tion, and most approaches were multi-class, it appears t art_, niko Ekart. orter fitness preserving ge
the most important distinction is between active compounds netic programs. In C. Fonlupt, ‘J'.'K' ch_), E. Lutton,
and the rest. l.e. a binary classification. Perhaps binary clas- - Ronald, and M. Schoenauer, ed|,to¢&st|f|0|al Evolu-

R . tion. 4th European Conference, AE’99, Selected Pgpers
sification would have been easier.

Our results suggest that perhaps using the IC50 measure-VOIume 1829 oLNCS pages 73-83, Dunkerque, France,
ment as part of the fithess function (via an error squared 3-5 November 2000.
term) may give the classification via regression approach[glooper and Flann, 1996Dale Hooper and Nicholas S.
modest advantage. However the small difference betweenFlann. Improving the accuracy and robustness of ge-
the two GP approaches might also be due to using one treenetic programming through expression simplification. In
instead of three[Loveard and Ciesielski, 20investigates John R. Koza, David E. Goldberg, David B. Fogel, and
other ways to evolve multi-class classifiers. Rick L. Riolo, editorsGenetic Programming 1996: Pro-

Figure[l shows the exponential nature (common in many ceedings of the First Annual Conferenpage 428, Stan-

chemical systems) of the distribution of IC50. It has been ford University, CA, USA, 28-31 July 1996. MIT Press.
suggested that instead of IC50 values, we should have tried

to model— log;, IC50 (pIC50) instead. [Ibarraet'al., 2004 Aitor Ibarrg, J. Lanchares, J. Mendias,

The models GP evolved (Figurés 6 afid 9) do provide J l. H|dalgc'J,' anq R. Hermida. Transformatlon of equa-
some predictive ability. Another important aspect is that tional specification by means of genetic programming.
while evolved as “black box” classifiers, their inner work-  IN James A. Foster, Evelyne Lutton, Julian Miller, Conor

ings are available to inspection, even alteration, by their Ryan, and Andrea G. B. Tettamanzi, editosgnetic
USErs. Programming, Proceedings of the 5th European Confer-

Since the GP classifiers are simple programs written in €Nce, EuroGP 200Z/olume 2278 oLNCS pages 248
plain text, they can be readily translated to any format, be it 227, Kinsale, Ireland, 3-5 April 2002. Springer-Verlag.
C++, JavaScript or even a spreadsheet. Being simple thg¥innear, Jr., 1994 Kenneth E. Kinnear, Jr. Alternatives in
can be applied to even the largest chemical database withaytomatic function definition: A comparison of perfor-
negligible overhead (compared to the database’s own over- mance. In Kenneth E. Kinnear, Jr., editdvances in
heads and the cost of calculating the features). Genetic Programmingchapter 6, pages 119-141. MIT

Press, 1994.

[Langdonet al, 2001 W. B. Langdon, S. J. Barrett, and
Compact, comprehensible predictive models of the interac- B. F. Buxton.[Genetic programming for combining neu-
tion between potential drugs and an important biological ral networks for drug discovery. In Rajkumar Roy, Mario
enzyme (human P450 CYC2D6) have been evolved using Koppen, Seppo Ovaska, Takeshi Furuhashi, and Frank
genetic programming. Their inputs are knowledge rich fea- Hoffmann, editors,Soft Computing and Industry Re-
tures which are readily computed from chemical formulae. ¢ent Applicationspages 597-608. Springer-Verlag, 10—
They predict reasonably well on similar chemicals but have 24 September 2001. Published 2002.

difficulty with compounds outside the chemical space Of_angdonet al, 2004 William B. Langdon, S. J. Barrett
which they were trained. Nevertheless their extrapolation ;.15 £ Buxton. Combining SeCiSion fees and neural

performance was found to be the best on a blind trial. networks for drug discovery. In James A. Foster, Evelyne
Lutton, Julian Miller, Conor Ryan, and Andrea G. B.
Acknowledgements Tettamanzi, editorsGenetic Programming, Proceedings
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6 Conclusions
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