
Congress on Evolutionary Computation 2003, Canberra, 8–12 Dec 2003, pp807–814, IEEE press

Predicting Biochemical Interactions – Human P450 2D6 Enzyme Inhibition

W. B. Langdon
Computer Science, University

College, London. Gower Street,
London, WC1E 6BT, UK

http://www.cs.ucl.ac.uk/staff/W.Langdon

S. J. Barrett
Data Exploration Sciences,

GlaxoSmithKline, Research and
Development, Greenford, Middlesex,

UK

B. F. Buxton
Computer Science, University

College, London. Gower Street,
London, WC1E 6BT, UK

http://www.cs.ucl.ac.uk/staff/B.Buxton

Abstract- In silico screening of chemical libraries or vir-
tual chemicals may reduce drug discovery and medicine
optimisation lead times and increase the probability
of success by directing search through chemical space.
About a dozen intelligent pharmaceutical QSAR mod-
elling techniques were used to predict IC50 concentra-
tion (three classes) of drug interaction with a cell wall
enzyme (P450 CYC2D6). Genetic programming gave
comprehensible cheminformatics models which gener-
alised best. This was shown by a blind test on GlaxoWel-
come molecules of machine learning knowledge nuggets
mined from SmithKline Beecham compounds. Perfor-
mance on similar chemicals (interpolation) and diverse
chemicals (extrapolation) suggest generalisation is more
difficult than avoiding over fitting.

Two GP approaches, classification via regression us-
ing a multi-objective fitness measure and a direct winner
takes all (WTA) or one versus all (OVA) classification,
are described. Predictive rules were compressed by sep-
arate follow up GP runs seeded with the best program.

1 Introduction

GlaxoSmithKline (GSK) have evaluated a number of Quan-
titative Structure Activity Relationship (QSAR) computa-
tional modelling techniques. The merger of two major phar-
maceutical companies, GlaxoWelcome (GW) and Smith-
Kline Beecham (SKB) to form GSK, has given an oppor-
tunity to test generalisation of QSAR approaches. Both
companies developed sizable libraries of chemicals, with
surprisingly little overlap and occupying different areas of
chemical space. A blind trial was held, in which more than a
dozen different groups/techniques were invited to train clas-
sifiers on a labelled data set of former SKB chemicals. A
non-overlapping unlabelled data set of former GW chemi-
cals was also given. The task being to predict the activity of
the former GW data set. Twelve entries were received.

A complete description of all of the techniques is being
prepared for publication, however we give details of two
genetic programming techniques (Sections 3 and 4) includ-
ing mutation operators (Section 3.1) and simplification runs
(Section 4.2). This is followed by a general discussion (Sec-
tion 5) and conclusions (Section 6) but we start in the next
section with a description of the problem and data sets.

2 Human P450 Cytochrome 2D6 IC50 data

Over the last few years GlaxoSmithKline has been measur-
ing the in vitro activity of thousands of chemicals (drawn
from both former SKB and former GW libraries) against
Cytochrome P450. P450 are a family of important cell
membrane enzymes which interact with many drugs[Ball
and Borman, 1997; Cupp and Tracy, 1998]. An adverse re-
action with a P450 enzyme may prevent the use of a po-
tential drug. If the reaction of proto-drugs with P450 and
other important molecules where known in advance then
huge savings in drug discovery lead time could be made.
Also directing the search to more fruitful areas of chemical
space may increase the chance of finding a successful drug
treatment. Computer based screening has the advantage that
not only can it be applied to existing chemicals but it can,
in principle, be applied to virtual chemicals. I.e.in silico
screening can be applied to chemicals before they are syn-
thesised.

P450 CYC2D6 is a large and complex molecule. How-
ever these machine learning prediction techniques are not
specific to it. We may hope that a successful ML tech-
nique will be readily applied, by retraining, not only to other
P450 molecules, but to other pharmaceutically important
biomolecules. In contrast, techniques based on three dimen-
sional crystallographical chemical models (such as[Segall
et al., 1998]) are specific to a crystal structure. Not only
do they require the biomolecule structure (which in many
cases is not known) but considerable human endeavour may
be needed to re-engineer them for another molecule.

Initialy high throughput screening (HTS) was used
[Langdonet al., 2001; Langdonet al., 2002; Langdonet
al., 2003] however more accurate IC50 measurements are
now available. The correspondence between HTS and IC50
measurements has been disappointing, so we will concen-
trate on IC50.

The IC50 is the concentration at which a compound re-
duces the effectiveness of P450 by 50%. A chemical which
interacts very little will need to be present in high concen-
tration to have a large affect. In order to find a chemical’s
IC50 value, repeated measurements must be made at differ-
ent concentrations. If a chemical is found to be inactive even
at high concentrations, this is all that need be known and it
is common not to continue testing at even higher concen-
trations. Instead, its IC50 value is recorded as “at leastx”.
Figure 1 shows this effect in the training data, where 552
chemicals have an IC50 value of “100”, meaning that it is at
least 100.
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Figure 1: Human P450 CYC2D6 IC50 training data

Figure 1 also shows that the continuous IC50 data is di-
vided into three classes. Inhibitory (IC50≤ 3), Substrate
(3 < IC50 < 30) and Inactive (IC50≥ 30). (The middle
class is called “Substrate” on the assumption that chemi-
cals with intermediate activity depress P450 metabolism of
the standard substrate by being an alternative substrate with
which the P450 molecules also react, thus leaving less P450
free for the original reaction.) Note also the training data
has been specifically prepared for use with other machine
learning techniques and so has been balanced to have ex-
actly 1000 chemicals in each of the three classes.

The supplied training data includes the compound id, its
“SMILES” representation1, its true class and IC50 value.
We did not used the compound’s id or SMILES directly, in-
stead (like most of the 12 groups taking part in the trial)
we used 121 “features” pre-calculated by GSK. (Note these
features are not the same as the 699 features we previously
used with HTS data [Langdonet al., 2001, 2002, 2003].)
Many of the features are proprietary and represent consid-
erable domain knowledge. A simple feature is charge im-
balance. Most of the participating approaches used these
features but a few used the SMILES representation.

In addition to the 3,000 training compounds, features
for 4,570 former SKB compounds were provided (without
IC50 values). This served as the first test set. Similarly,
features for 1932 former GW compounds (again without
IC50 values) were given. This served as the extrapolation
set. Both unlabelled sets have large class imbalances, with
a very much lower proportion of active chemicals than the
training data (see Tables 4 and 5). That is, the former SKB
test set contains69 + 19 + 3 = 91 inhibitory chemicals
out of 4570 (2%). While the former GW test set contains
41 + 32 + 41 = 114 P450 inhibitors out of a total of 1932
chemicals (6%).

1SMILES represents chemicals as a graph of atoms connected by
bonds. E.g. alcohol isCCO. Hydrogen atoms are not explicitly given.

Table 1: IC50 Prediction (Regression and Classification)
Objective: Predict Human P450 CYC2D6 IC50 class

(Inhibitory, Substrate, Inactive)
Function set: Max Min MaxA MinA MUL ADD DIV

SUB IFLTE
Terminal set: 121 features, 0 1 2 3 4 5 6 7 8 9, plus 90

unique constants -34..582.
Fitness: Fitness= 20000 hits−

∑
|fi − IC50i|2 or

hits
Selection: generational (non elitist), tournament 7
Initial pop: Each individual is either one or three trees.

Each tree created by ramped half-and-half
(2:6) (each initial tree limited to 300)

Parameters: Population 5000. Max program size 1000.
50% size fair crossover, crossover frag-
ments≤ 30 [Langdon, 2000]. 50% mu-
tation (point 22.5%, constants 22.5%,
shrink 2.5%, subtree 2.5%)

Termination: generation 50

3 Genetic Programming Configuration

We tried two GP approaches, classification via regression
and direct classification. In regression each individual in
the population consists of a single tree which yields a float-
ing point valuef . (Figure 6 gives an example tree.) The first
component of fitness is the square of the difference between
f and the measured IC50 value summed over all 3,000 train-
ing compounds.f is also converted to one of three classes
using the same cut points as had been applied to the IC50
value. I.e.f ≤ 3.0 indicates an active compound,f ≥ 30.0
predicts the compound to be inactive, while between 3 and
30 is a substrate. Each compound where the individual
correctly predicts the class is known as a hit. The fitness
measure combines error squared and hits by multiplying the
number of hits by 20,000 and subtracting the sum of error
squared, Fitness= 20000 hits−

∑
|fi− IC50i|2. (A certain

amount of experimenting was required in order to choose
20,000 as a reasonable weighting between the two factors.
Pareto multi-objective approaches[Langdon, 1998] might
also have been tried.)

The second approach is a “winner takes all” or “one ver-
sus all” in which each GP individual contained three trees
[Langdon, 1998], one per class. Each tree is like the sin-
gle one used in the regression approach. They each re-
turn a floating point number. The class predicted is that
corresponding to the tree which yielded the largest value.
Fitness is simply the number of compounds correctly pre-
dicted. (cf. Figure 9). Apart from the number of trees and
the fitness function, the two approaches are identical. The
GP parameters and function and terminal sets are similar to
our earlier work. Table 1 contains the details.

The functions within the evolved trees are binary except
for the four argument IFTLE (If less than or Equal). IFLTE
evaluates its first two arguments and then returns either the
third (if the first is less than or equal to the second). Other-
wise it returns its fourth argument.
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In both approaches five GP runs were made. The best
model for each was simplified by a separate GP run to give
the final two models.

3.1 Mutation

As in our earlier work we used a high mutation rate and a
mixture of different mutation operators[Angeline, 1998].
The four mutation operators are.

Subtree chooses a tree uniformly at random, then chooses
uniformly at random a node within it. Replace the
subtree rooted at that node (which may be a leaf or
function) with a new random one. The new sub-
tree is created in the same way as those in the initial
population, i.e. ramped half-and-half. Ramped half-
and-half’s maximum depth is randomly chosen from
one to the depth of the subtree being replaced. This
may lead to either a decrease or increase in program
size. Should the mutant be larger than the maximum
program size, it is aborted and a new mutation is at-
tempted.

Shrink replaces a subtree with part of itself. A node is cho-
sen in the same way as in subtree mutation. If it is a
leaf, no action is taken and the offspring is identical
to its parent. If it is an internal node (function), a
function amongst its argument subtree is chosen uni-
formly at random and is promoted up the tree replac-
ing the whole subtree (cf. hoist[Kinnear, Jr., 1994]).
It is possible the same internal node may be chosen a
second time, in which case (as with a leaf) no change
is made.

Point Mutation replaces a function with another with
same number of inputs or replaces an input by an-
other. Note if the Gaussian mutation of constants op-
erator is enabled (as it was in these runs) then point
mutation does not change leaves.

Point mutation differs from Subtree and Shrink mu-
tations in that it can make multiple changes and be-
cause it applies to the whole of an individual, not just
a single tree within it. (Remember, in the case of
the classification approach, each individual consists
of three trees.) Essentially point mutation scans the
whole program from beginning to end. At each point
within it, a random choice is made. With a probabil-
ity of 100/1024 the point is replaced with a function
(or a leaf) with the same number of inputs. (It is pos-
sible the function or terminal chosen for replacement
is identical to the existing one, in which case there is
effectively no change.)

Gaussian mutation replaces constants with another given
by adding approximately Gaussian zero mean noise.
If the constant is an integer, the noise standard devia-
tion is 2.0, otherwise it is 5% of the constant’s value.

All components of evolved programs (i.e. function
and terminal sets), including constants, are fixed
when the GP is started. Our GP has no ephemeral

Table 2: GP parameters used in run to simplify evolved
P450 IC50 regression model (differences from Table 1)
Selection: Keep best in population (elitism)
Pop Size: 500
Max Size: 68
Initial pop: 100% Seeded
Parameters: 10% size fair (crossover parameters as be-

fore). 90% mutation (point 5%, con-
stants 5%, shrink 85%, subtree 5%). New
subtrees created by subtree mutation created
by ramped half-and-half (as before) but max
depth 2 (min depth 1).

random constants. Hence the constant is replaced by
the predefined constant nearest the randomly gener-
ated value.

4 GP Results

4.1 GP Classification via Regression

Figures 2 and 3 show the performance of the best model
from the last generation of each of the five runs. Of these the
smallest and fittest was chosen. As a final stage the model
was simplified, reducing its size from 65 to 45.

4.2 Simplification of Evolved Model

Except for the use of size fair crossover to avoid bloat
[Langdon, 2000] we had not taken particular pains to evolve
a compact model. A final stage was to perform a single
small GP run in which the initial population was 100%
seeded with 500 copies of the best model, and parameters
(cf. Table 2) were adjusted with the aim of simultaneously
reducing the size of the models in the population and keep-
ing their performance high.

Mechanistic rules for transforming programs to exactly
equivalent but smaller programs have been previously re-
ported. E.g.[Hooper and Flann, 1996; Ekart, 2000; Ibarra
et al., 2002] all use explicit edit rules as special mutation op-
erators which change the genetic material or program trees
to yield equivalent offspring. High level languages such
as Mathematica[Nachbar, 1995] and Maple include ex-
pression simplification within the language. Also[Olsson,
1995] produced a program to simplify programs which can
be expressed as polynomials. However finding the small-
est equivalent program is hard and so such rules have been
heuristics. In using GP we also use a heuristic approach,
however, we do not require the evolved models to be equiv-
alent. Instead we rely on the fitness selection to try and find
programs of similarly good performance. In fact after 50
generations a smaller model (51) with marginally improved
performance was found. Figure 4 shows the evolution of the
population’s scores on the training data while Figure 5 show
their size. On inspection six nodes in it were found which
could be removed by hand to yield an even more compact
model (45) with identical behaviour. It uses eight of the 121
available features (see Figure 6).
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Figure 6: P450 IC50 (regression) model. f1, f2, ... f8 are GSK domain specific features calculated for each chemical from
its SMILES representation. These 8 were chosen by GP from the 121 available.
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Table 3: GP (regression) Training (on SKB) Performance
Inhibitory Substrate Inactive Accuracy

Inhibitory 579 294 127 58%
Substrate 188 504 308 50%
Inactive 45 200 755 76%

Overall 1838/3000 = 61%

Table 4: GP (regression) former SKB test set
Inhibitory Substrate Inactive Accuracy

Inhibitory 69 19 3 76%
Substrate 306 778 479 50%
Inactive 153 566 2197 75%

Overall 3043/4570 = 67%

Table 5: GP (regression) former GW extrapolation set
Inhibitory Substrate Inactive Accuracy

Inhibitory 41 32 41 36%
Substrate 92 119 235 27%
Inactive 103 242 1027 75%

Overall 1187/1932 = 61%

The predictive accuracy, in terms of confusion matrices,
of the final simplified model (using regression to obtain a
classification) are shown on the training and two tests sets
in Tables 3–5.

4.3 GP Direct Classification

Figure 3 gives the performance of the best classifier from
the last generation of each of the five runs. Of these the
smallest and fittest was chosen. Again the classifier was
simplified, using the GP procedure described in the previous
section with the same parameters (cf. Table 2), except the
maximum size of the classifiers was 100 rather than 68. This
reduced the classifier size from 93 to 75. See Figures 7
and 8. The final three way classifier uses 21 of the 121
available features (see Figure 9). Features f1 and f6 are used
by both GP approaches.

The confusion matrices of the final simplified classifier
as measured on the training and two tests sets are given in
Tables 6–8.

5 Discussion

One of the biggest problems in applying machine learning
to Quantitative Structure Activity Relationship (QSAR) has
been over fitting. However both GP approaches do not ap-
pear to have suffered too badly, in that performance on the
former SKB test set has been similar to that on the (SKB)
training set (cf. Figure 3, Table 3 v. Table 4 and Table 6 v.
Table 7). In other words, both GP approaches have gener-
alised to unseen compounds from the same library. How-
ever when we look at performance (particularly on predict-
ing active compounds) on the former GW compounds per-
formance falls (cf. Table 5 and 8).

All the techniques tested in the blind trial gave worse
performance on the former GW compounds, indicating that
there is a systematic difference between the former SKB
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Figure 8: Using GP to shrink P450 classifier

Table 6: GP (classification) Training (SKB) Performance
Inhibitory Substrate Inactive Accuracy

Inhibitory 568 352 80 57%
Substrate 187 569 244 57%
Inactive 64 275 661 66%

Overall 1798/3000 = 60%

Table 7: GP (classification) former SKB test set
Inhibitory Substrate Inactive Accuracy

Inhibitory 56 31 4 62%
Substrate 342 813 393 53%
Inactive 179 740 2012 69%

Overall 2881/4570 = 63%

Table 8: GP (classification) former GW extrapolation set
Inhibitory Substrate Inactive Accuracy

Inhibitory 45 26 43 39%
Substrate 62 148 236 33%
Inactive 96 360 916 67%

Overall 1109/1932 = 57%
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Figure 9: “Substrate” tree for P450 IC50 classifier. Each tree yields a value. The tree whose value is largest of the three
indicates the predicted class. f1, f6, f9, ... f27 are proprietary features calculated from each chemical’s formula. 21 features
were chosen by GP from the 121 available.

and former GW sets of compounds. One possible cause is
that the IC50 values were measured differently, although it
appears the same chemical assay was used for all the com-
pounds. Instead it is thought that the systematic difference
is due to the former SKB and former GW chemical libraries
occupying different portions of chemical space. Indeed, this
was part of the reason why the trial was set up this way.
Computer models which can make predictions about chem-
icals similar to those within existing chemical libraries are
useful in their own right. However it would also be very
useful to be able to make predictions about chemicals (in-
deed even virtual chemicals) somewhat unlike those in use.
The former GW compounds were thought to be different to
those from SKB, and so it has proved. However none of
the other techniques performed as well as GP on the second
(former GW) extrapolation set.

In our earlier HTS experiments, GP performance had
held up well when tested on outliers taken from the same
library [Langdonet al., 2003], so its GW performance is
disappointing. Of course, that GP extrapolated well on HTS
data, may have been due to the particular nature of the HTS
dataset or perhaps due to the particular clustering technique
used to designate chemicals as outliers.

From a machine learning point of view, it is easy to crit-
icise the experiment, as it violates the underlying assump-
tion that the training data is representative of the problem.

The extrapolation set is from a different distribution to that
used to train the classifier. However this is what industrial
chemists want to do. Often they do not need a model of ex-
isting chemicals (usually they can look up their properties),
they want to be able to make predictions about novel chem-
icals. They want to have some confidence that the chemical
they are about to make will react in the body in the way they
want.

We should remember that biochemistry occurs in three
dimensions and so it should not come as a surprise that ap-
proaches based on treating complex molecules as two di-
mensional graphs (i.e. using their chemical formulae) are
not 100% accurate. However real economic advantage
could be obtained by using models with less than 100% ac-
curacy provided they are predictive enough to be able to
guide the drug discovery chemist.

Where proto-drugs are simple enough that their three di-
mensional structure is known or could be inferred, more
complex three dimensional featured could be used. How-
ever the structure of biomolecules, including disease caus-
ing targets, may be unknown. This prevents the use of three
dimensional modelling software which tries to find geomet-
rical “docking” configurations between molecules. Never-
theless 3D features could still be used by adaptive machine
learning approaches. Unfortunately the number of possible
features is huge, so the first part of the data mining process
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becomes one of feature selection. I.e. deciding which fea-
tures to use.

While the problem was posed as a three way classifica-
tion, and most approaches were multi-class, it appears that
the most important distinction is between active compounds
and the rest. I.e. a binary classification. Perhaps binary clas-
sification would have been easier.

Our results suggest that perhaps using the IC50 measure-
ment as part of the fitness function (via an error squared
term) may give the classification via regression approach a
modest advantage. However the small difference between
the two GP approaches might also be due to using one tree
instead of three.[Loveard and Ciesielski, 2001] investigates
other ways to evolve multi-class classifiers.

Figure 1 shows the exponential nature (common in many
chemical systems) of the distribution of IC50. It has been
suggested that instead of IC50 values, we should have tried
to model− log10 IC50 (pIC50) instead.

The models GP evolved (Figures 6 and 9) do provide
some predictive ability. Another important aspect is that
while evolved as “black box” classifiers, their inner work-
ings are available to inspection, even alteration, by their
users.

Since the GP classifiers are simple programs written in
plain text, they can be readily translated to any format, be it
C++, JavaScript or even a spreadsheet. Being simple they
can be applied to even the largest chemical database with
negligible overhead (compared to the database’s own over-
heads and the cost of calculating the features).

6 Conclusions

Compact, comprehensible predictive models of the interac-
tion between potential drugs and an important biological
enzyme (human P450 CYC2D6) have been evolved using
genetic programming. Their inputs are knowledge rich fea-
tures which are readily computed from chemical formulae.
They predict reasonably well on similar chemicals but have
difficulty with compounds outside the chemical space on
which they were trained. Nevertheless their extrapolation
performance was found to be the best on a blind trial.
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Köppen, Seppo Ovaska, Takeshi Furuhashi, and Frank
Hoffmann, editors,Soft Computing and Industry Re-
cent Applications, pages 597–608. Springer-Verlag, 10–
24 September 2001. Published 2002.

[Langdonet al., 2002] William B. Langdon, S. J. Barrett,
and B. F. Buxton. Combining decision trees and neural
networks for drug discovery. In James A. Foster, Evelyne
Lutton, Julian Miller, Conor Ryan, and Andrea G. B.
Tettamanzi, editors,Genetic Programming, Proceedings
of the 5th European Conference, EuroGP 2002, volume
2278 ofLNCS, pages 60–70, Kinsale, Ireland, 3-5 April
2002. Springer-Verlag.

[Langdonet al., 2003] W. B. Langdon, S. J. Barrett, and
B. F. Buxton. Comparison of adaboost and genetic pro-
gramming for combining neural networks for drug dis-
covery. In G̈unther R. Raidl, Stefano Cagnoni, Juan
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