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ABSTRACT

Computers that “program themselves”; science fact or fiction? Genetic Programming uses novel
optimisation techniques to “evolve” simple programs; mimicking the way humans construct
programs by progressively re-writing them. Trial programs are repeatedly modified in the
search for “better/fitter” solutions. The underlying basis is Genetic Algorithms (GAs).

Genetic Algorithms, pioneered by Holland [Hol92], Goldberg [Gol89] and others, are evolu-
tionary search techniques inspired by natural selection (i.e survival of the fittest). GAs work
with a “population” of trial solutions to a problem, frequently encoded as strings, and repeat-
edly select the “fitter” solutions, attempting to evolve better ones. The power of GAs is being
demonstrated for an increasing range of applications; financial, imaging, VLSI circuit layout,
gas pipeline control and production scheduling [Dav91]. But one of the most intriguing uses of
GAs - driven by Koza [Koz92] - is automatic program generation.

Genetic Programming applies GAs to a “population” of programs - typically encoded as
tree-structures. Trial programs are evaluated against a “fitness function” and the best solu-
tions selected for modification and re-evaluation. This modification-evaluation cycle is repeated
until a “correct” program is produced. GP has demonstrated its potential by evolving simple
programs for medical signal filters, classifying news stories, performing optical character recog-
nition, and for target identification.

This paper surveys the exciting field of Genetic Programming. As a basis it reviews Ge-
netic Algorithms and automatic program generation. Next it introduces Genetic Programming,
describing its history and describing the technique via a worked example in C. Then using a
taxonomy that divides GP researchs into theory/techniques and applications, it surveys recent
work from both of these perspectives.

Extensive bibliographies, glossaries and a resource list are included as appendices.

Keywords – Automatic Programming, Machine Learning, Genetic Algorithms, Genetic Pro-
gramming.
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1 Introduction

Genetic programming is a technique pioneered by John Koza which enables computers to solve
problems without being explicitly programmed. It works by using John Holland’s genetic
algorithms to automatically generate computer programs.

Genetic algorithms were devised by Holland as a way of harnessing the power of natural
evolution for use within computers. Natural evolution has seen the development of complex
organisms (e.g. plants and animals) from simpler single celled life forms. Holland’s GAs are
simple models of the essentials of natural evolution and inheritance.

The growth of plants and animals from seeds or eggs is primarily controlled by the genes
they inherited from their parents. The genes are stored on one or more strands of DNA. In
asexual reproduction the DNA is a copy of the parent’s DNA, possibly with some random
changes, known as mutations. In sexual reproduction, DNA from both parents is inherited by
the new individual. Often about half of each parent’s DNA is copied to the child where it joins
with DNA copied from the other parent. The child’s DNA is usually different from that in
either parent.

Natural Evolution arises as only the fittest individuals survive to reproduce and so pass on
their DNA to subsequent generations. That is DNA which produces fitter individuals is likely
to increase in proportion in the population. As the DNA within the population changes, the
species as a whole changes, i.e. it evolves as a result of selective survival of the individuals of
which it is composed.

Genetic algorithms contain a “population” of trial solutions to a problem, typically each
individual in the population is modeled by a string representing its DNA. This population is
“evolved” by repeatedly selecting the “fitter” solutions and producing new solution from them
(cf. “survival of the fittest”). The new solutions replacing existing solutions in the population.
New individuals are created either asexually (i.e. copying the string) or sexually (i.e. creating
a new string from parts of two parent strings).

In genetic programming the individuals in the population are computer programs. To ease
the process of creating new programs from two parent programs, the programs are written as
trees. New programs are produced by removing branches from one tree and inserting them
into another. This simple process ensures that the new program is also a tree and so is also
syntactically valid.

As an example, suppose we wish a genetic program to calculate y = x2. Our population of
programs might contain a program which calculates y = 2x−x (see figure 1) and another which
calculates y = x

x
x−x3

−x (figure 2). Both are selected from the population because they produce

answers similar to y = x2 (figure 4), i.e. they are of high fitness. When a selected branch (shown
shaded) is moved from the father program and inserted in the mother (displacing the existing
branch, also shown shaded) a new program is produced which may have even high fitness. In
this case the resulting program (figure 3) actually calculates y = x2 and so this program is the
output of our GP.

The remainder of this paper describes genetic algorithms in more detail, placing them in the
context of search techniques, then explains genetic programming, its history, the five steps to
GP, shows these steps being used in our example and gives a taxonomy of current GP research
and applications. Current GP research and applications are presented in some detail.
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Figure 4: x2 (solid), test points (dots), values returned by Mum (dashed) and Dad (small
dashed)

1.1 Automatic Program Generation

A computer program can be thought of as a particular point within a search space of all such
programs and so computer programming can be thought of as searching this space for a suitable
program. Human programmers exercise their skills to direct their search so they find a suitable
program as quickly as possible. There are many tools (such as high level languages and code
generators) which transform the search space to make it easier for the human navigator to find
his goal.

To automatically generate programs we then need an algorithm that can navigate program
search spaces and find suitable programs with the minimum amount of effort. The program
search space however is likely to be infinitely large, even when only considering programs that
are syntactically correct. In the next section we look at a number of search techniques and
discuss their suitability for navigating a program search space.

1.2 Search Techniques

There are a large number of well established search techniques in use within the information
technology industry, figure 5 categorises them.

Enumerative techniques, in principle, search every possible point one point at a time.
They can be simple to implement but the number of possible points may be too large for direct
search. In some cases, eg game playing [UvA89], it is possible to curtail the search so that
points in regions which cannot contain the solution are not checked.
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Calculus based techniques treat the search space as a continuous multi-dimensional func-
tion and look for maxima (or minima) using its derivative. Indirect methods use that fact
that at the extrema the function’s derivative is zero. Where the function is smooth the volume
of space where its derivative is zero can be a very small sample of the whole search space.

Direct calculus techniques such Newton use the gradient/function values to estimate
the location of nearby extrema. These techniques, and others, are known as Hill Climbing
techniques because they estimate where a maximum (i.e. hill top) lies, move to that point, make
a new estimate, move to it and so on until they reach the top of the hill. These techniques can
be used upon “well behaved” problems or problems which can be transformed to become “well
behaved”.

Stochastic search techniques use information from the search so far to guide the probabilis-
tic choice of the next point(s) to try. They are general in their scope, being able to solve some
very complex problems that are beyond the abilities of either enumerative or calculus tech-
niques. Simulated annealing searches for minimum energy states using an analogy based
upon the physical annealing process, where large soft low energy crystals can be formed in
some metals (eg copper) by heating and then slow cooling [KGV83].

Evolutionary algorithms are based upon Darwin’s Natural Selection theory of evolution,
where a population is progressively improved by selectively discarding the worse and breeding
new children from the better. In Evolutionary Strategies points in the search space are
represented by a vector of real values. Each new point is created by adding random noise to
the current one. If the new point is better search proceeds from it, if not the older point is
retained1. In contrast, a genetic algorithm represents points in the search space by a vector

1Historically Evolutionary Strategies search only one point at a time but more recently they have become
more like genetic algorithms by using a population of points[BHS91].
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of discrete (typically) bit values. Each new child is produced by combining parts of the bit
vector from each parent. This is analogous to the way chromosomes of DNA (which contains
the inherited genetic material) are passed to children in natural systems.

When programming neural networks, calculus based search techniques such as back propa-
gation are often used2. Such search techniques are possible because the search space has been
transformed (and simplified) so that it is smooth. When the search has succeeded the neural
network is said to have been trained, ie a suitable combination of connection weights has been
found. Note that a program (a neural network) has been automatically generated by searching
for it.

An alternative to implementing a general transformation that converts the vast discrete
space of possible programs into a continuous one (which is sufficiently well behaved as to allow
it to be searched by calculus based techniques) is to search the original space itself. The
discrete nature of this space prevents the use of calculus based techniques and the vast number
of possible programs make enumerative search infeasible, however there has been some success
with some stochastic search techniques.

2 Genetic Algorithms

Genetic algorithms are perhaps the closest computation model to natural evolution. Their
success at searching complex non-linear spaces and general robustness has led to their use in a
number of practical problems such as scheduling, financial modeling and optimisation.

The inventor of genetic algorithms, John Holland [Hol92], took his inspiration for them
from nature. Genetic algorithms contain a population of individuals, each of which has a
known fitness. The population is evolved through successive generations, the individuals in
each new generation are bred from the fitter individuals of the previous generation. Unlike
natural evolution which continuous indefinitely, we have to decide when to stop our GA. As
with the breeding of domestic animals, we choose the individuals to breed from (using a fitness
function) to drive the population’s evolution in the direction we want it to go. As with domestic
animals, it may take many generations to produce individuals with the required characteristics.

Inside a computer an individual’s fitness is usually calculated directly from its DNA (ie
without the need to grow it) and so only the DNA need be represented. Usually genetic
algorithms represent DNA by a fixed length vector. Where a genetic algorithm is being used
for optimisation, each individual is a point in the search space and is evaluated by the fitness
function to yield a number indicating how good that point is. If any point is good enough, the
genetic algorithm stops and the solution is simply this point. If not then a new population,
containing the next generation, is bred.

The breeding of a new generation is inspired by nature; new vectors are bred from the
fitter vectors in the current generation, using either asexual or sexual reproduction. In asexual
reproduction, the parent vector is simply copied (possibly with random changes, ie mutations).
Figure 6 shows a child vector being created by mutating a single gene (in this case each gene
is represented by a single bit). With sexual reproduction, two of the fitter vectors are chosen
and the new vector is created by sequentially copying sequences alternately from each parent.
Typically only two or three sequences are used, and the point(s) where the copying crosses over
to the other parent is chosen at random. This is known as crossover. Figure 7 shows a child

2Simulated Annealing, Evolution Strategy and Genetic algorithms have also been used to program artificial
neural networks.
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Parent 00 1 1 0 11

Child 0 1 1 0 111

Figure 6: Genetic Algorithms - Mutation

0 0 10 0 1Parents 1 0 1 0 11 1

.  .  .  .  .  .  . .  .  .  .

.  .  .  .  .  .  . .  .  .  .

0 01 1 0 10

Child 00 11 00 11 0 0 1

Figure 7: Genetic Algorithms - Crossover

being formed firstly by copying four genes from the left-hand parent then the three remaining
genes are copied from the right-hand parent. Figure 8 shows the genetic algorithm cycle.

Holland in his paper “Genetic Algorithms and the Optimal Allocation of Trials” [Hol73]
shows, via his schemata theorem, that in certain circumstances genetic algorithms make good
use of information from the search so far to guide the choice of new points to search. Goldberg
[Gol89] gives a less mathematical treatment of the schemata theorem.

The schemata theorem requires the vector representation and fitness function be designed
so that the required solution can be composed of short fragments of vectors which, if present
in a vector, give it a relatively high fitness regardless of the contents of the rest of the vector.
These are known as building blocks. They can be thought of as collections of genes which work
well together.

Given that a solution which can be decomposed into high fitness sub-solutions , i.e build-
ing blocks, exists, genetic algorithms, even starting from a random collection of vectors, can
progressively select the vectors with building blocks and using the crossover operator gradually
splice these together until the population contains vectors which are substantially correct.

Table 1 lists the stochastic search techniques including GAs, used with the classes of pro-
gramming languages to automatically generate programs. Clearly, work has been focused on
using genetic algorithms, leaving the techniques relatively untouched. The remainder of the
paper concentrates on the recent success achieved by combining genetic algorithms with tra-
ditional programming. The term genetic programming was suggested by David Goldberg to
describe the automatic production of programs by using a hierarchical genetic algorithm to
search the space of possible programs.

3 Genetic Programming

3.1 History

The idea of combining genetic algorithms (GAs) and computer programs is not new, it was
considered in the early days of genetic algorithms. However John Holland’s work on combining
genetic algorithms and production languages, rather than tradition computer languages, was
more actively pursued. This work led to classifier systems.
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Class of Programming Language
Search Technique Traditional Logic (eg

Prolog)
Expert Systems
(Rule based)

Automata

Simulated Annealing O’Reilly3

Evolution Strategy Evolution
Program

Genetic Algorithms Genetic
Programming

Nguyen4 BEAGLE
Classifiers5

Self6

Table 1: Automatic Programming using Stochastic Search

Richard Forsyth’s BEAGLE [For81] evolves programs (rules) using a (GA like) algorithm.
The rules are tree structured boolean expressions, including arithmetic operations and com-
parisons. BEAGLE’s rules use its own specific language, however Forsyth did suggest at some
point in the future Lisp might be used. BEAGLE is now commercially available as an expert
system (see section 5.1).

Nichael Cramer also applied genetic algorithms directly to special computer programming
languages [Cra85] and Fujiki and Dickinson used genetic algorithms on a subset of LISP [FD87].

3Una-May O’Reilly has compared GP, Simulated Annealing and Stochastic Iterated Hill Climbing [OO94]
4Nguyen has demonstrated evolving programs written in Mathematica [NH94] and some work has been done

on using genetic programming with Prolog [Nor94b]
5In Classifiers [HHNT86] a genetic algorithm, plus other techniques, is used to automatically generate both

a rule base and its interconnections. Feldman [Fel93], amongst others, has used genetic algorithms to evolve
aspects of Fuzzy Logic systems.

6Self demonstrated a genetic algorithm evolving a Turing Machine which recognised three bit even parity but
had less success with other more complex problems [Sel92].
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It was John Koza [Koz92] who successfully applied genetic algorithms on LISP to solve a wide
range of problems. Techniques like his have come to be known as “genetic programming”.
Koza claims ([Koz92] page 697) genetic programming to be the most general machine learning
paradigm.

A simple approach of breeding machine code and even FORTRAN source code which ignores
the syntax fails because the programs produced are highly unlikely to compile or run, let alone
approach the required solution [De 87]. There are countless examples of apparently minor
syntax errors causing programs to misbehave in a dramatic fashion. These two facts foster
the common belief that all computer programs are fragile. In fact this is not true; many
programs are used and yield economic benefit despite the fact that they are subject to many
minor changes, introduced during maintenance or version upgrades. Almost all programs are
produced by people making progressive improvements.

Genetic programming allows the machine to emulate, to some extent, what a person does,
i.e. to make progressive improvements. It does this by repeatedly combining pairs of existing
programs to produce new ones, and does so in a way as to ensure the new programs are
syntactically correct and executable. Progressive improvement is made by testing each change
and only keeping the better changes. Again this is similar to how people program, however
people exercise considerable skill and knowledge in choosing where to change a program and
how; genetic programming, at present, has no such knowledge and must rely on chance and a
great deal more trial and error.

Many variations of the basic genetic algorithm have been tried; in genetic programming the
fixed length vectors are replaced by programs. Usually, a tree (or structured or hierarchical)
representation of the program is used and individuals in the population are of different sizes.
Given the new representation, the new genetic operators such as tree crossover must be used. As
figure 9) shows tree crossover acts within branches of the tree to ensure that the the programs
it produces are still trees and have a legal syntax. Thus genetic programming is fundamentally
different from simply shuffling lines of Fortran or machine code. The sequence of operations in
genetic programming is essentially as that for other genetic algorithms (see Figure 10).

3.2 Basic Choices

Koza says there are five7 preliminary steps to solving a problem using genetic programming;
choosing the terminals (1), the functions (2), the fitness function (3), the control parameters
(4) and the termination criterion (5).

In Koza’s terminology, the terminals (1) and the functions (2) are the components of the
programs. In figure 9 functions +, − and ∗ are used, they form the junctions in the tree. In
figure 9 the only terminal is x which forms the end leafs. The connections between the terminals
and functions indicate the order in which operations are to be performed. For example the top
left tree in figure 9 shows a program which calculates (x ∗ x) + (x + (x − x)). Note how the
brackets, which denote the order of evaluation, correspond to the structure of the tree.

The choice of components of the program (ie terminals and functions) and the fitness func-
tion (3) largely determine the space which genetic programming searches, consequently how
difficult that search is and ultimately how successful it will be.

7In his later work [Koz94a] Koza adds a sixth step; determining the architecture in terms of the program’s
automatically define functions (ADFs). However he also shows that it is possible (but not necessarily easy) for
correct programs to be evolved even with arbitrary choices for his six steps. We shall not dwell on ADFs here.
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The control parameters (4) include the size of the population, the rate of crossover etc. The
termination criterion (5) is simply a rule for stopping. Typically the rule is to stop either on
finding a program which solves the problem or after a given number of generations, eg 50.

3.3 Example

In this sub-section we will outline a very simple example of genetic programming. We will use it
to perform symbolic regression on a set of test values. That is we will find a formula (symbolic
expression, program) whose result matches the output of the test values.

One use of symbolic regression is prediction, for once such a formula has been found, it can
be used to predict the output given a new set of inputs. Eg given a history of stock prices,
symbolic regression may find a formula relating the price on the next day to earlier ones, so
allowing us to predict the price tomorrow.

In our very simple example the test values are related by the formula y = x2. 8

Following the five steps outlined in the previous section:
8The C code for this example is available via anonymous ftp from cs.ucl.ac.uk, directory genetic/gp-

code/simple. The interested reader is invited to copy this code and try their own examples. Similar polynomials
eg x3, x+ x2, x4 − x3 + x2 − x may be produced by changing the test values and possibly population size.
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1. The leafs (terminals) on our programming trees will be the input value, x.

2. Our program will use the four floating point arithmetic operators +, −, ÷ and ×.

Our choice is guided by the expectation that output will be a simple polynomial of x.
If we guess wrongly then it may not be possible to devise a correct program given our
functions and terminals. We can add others but this will increase the number of possible
programs to search, which might slow down the search.

The terminals and functions are chosen so that any function can have as any of its
arguments any terminal or any function call. This allows programs to be assembled from
any mixture of terminals and functions (this property is known as closure, see also section
4.1.2). In our case all terminals and functions are of type “float”. To avoid divide by
zero errors, we define divide by zero to be unity. Note as all the functions have two
operands, the programs evolved will each have the form of a binary tree.

3. Fitness is calculated by executing each program with each of nine x values and comparing
each answer with the corresponding y value. The nine (x, y) pairs are chosen so that
y = x2. They are shown as dots in figure 14. To yield a number which increases as
the program’s answer gets closer to the y value, 1.0 is added to the absolute difference
between the programs value and the corresponding y and the result is inverted9. The
final fitness is the mean of all nine calculations.

If the program is within either 0.01 or 0.01 × y we call this a hit, indicating that this is
close enough.

4. We chose control parameters so that:

• there are 16 individuals in the population;

• on average 60% of new individuals are created by crossover;

• of the other 40%, 99% are direct copies from the previous generation and 1% (ie
.004) are mutated copies;

• our programs contain no more than 25 nodes (ie no more than 12 functions and 13
terminals).

5. We stop when we have a found a program that correctly matches all nine test points (ie
there are nine hits) or when we reach 50 generations.

On one run the following 100% correct code was generated:

float gp( float x )
{

return ((x+(x)*(x))-(x));
}

By noting x-x is zero and removing excessive brackets it can be seen that the return state-
ment is equivalent to return (x*x); ie C code to calculate x2.

This 100% correct program is shown in Figure 13. It was produced by crossover between
the two programs shown in Figures 11 and 12, both of which were of above average fitness.
The subtrees affected by the crossover are shown shaded. It can be seen that the net effect of
crossover is to replace the middle x with a subtree which calculates x2 and this yields a program
which is exactly equivalent to x2.
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Figure 14: x2 (solid), test points (dots), values returned by mum (dashed) and dad (small
dashed)

Figure 14 shows the values calculated by the two parent programs against the test points
(which their offspring calculates exactly).

Having defined in detail the concepts of GP, in the next section we look at the some of the
active areas of research in Genetic Programming.

3.4 Genetic Programming Research

GP research can be broadly categorised into two groups:–

• GP Techniques and Theory

• GP Applications

The first group classifies research that is directed at the development and understanding of
the theory and techniques of genetic programming. The second group concerns research which
is directed mainly at the application of the GP technique. In the next two sections we look at
research in each of these categories.

9Adding 1.0 avoids the possibility of divide by zero.
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4 GP Techniques and Theory

There is significant scope for research into the theory and techniques used in the GP paradigm.
A taxonomy of the current areas of research is shown in figure 15 and detailed below. It should
be noted that some of the techniques mentioned in this section draw their inspiration from work
done in GAs. Table 2 lists exotic genetic algorithm techniques and indicates which have been
adopted by GP researchers. As can been seen many of these have been tried, but some are yet
to be explored.

Genetic Algorithms Technique Genetic Programming Reference
Fitness Scaling [IdS94]
Rank and Tournament Selection [Ang94] [Koz94a]
Co-evolution [AP93] [Sie94][Koz92]
Steady State Populations [Rey92] [TC94b] [Koz94a]
Parallel processors [Sin93]
Inversion and Permutation [Koz92]
Diplodity, Dominance and Abeyance [Ang94]
Introns, Segregation, Translocation and Mul-
tiple Chromosomes

[Ang94]

Duplication and Deletion
Sexual Determination and Differentiation
Speciation, Restrictive Mating, Demes and
Niches

[TC94b] [DB94] [Abb91] [Rya94]

Multiobjectives
Hybrids [ZM93] [Gru93]
Knowledge-augmentation
Approximate function evaluation [Koz92]

Table 2: Exotic GA Techniques Applied to Genetic Programming
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4.1 Syntax

In this section we look at various syntactical variations to the standard GP approach.

4.1.1 Pedestrian GP

Banzhaf ([Ban93]) has devised a GP system using a traditional GA binary string representation.
The mechanisms of transcription, editing and repairing are used to convert these bit strings
into computer programs. Each individual in the population consists of a string of 225 bits. The
225 bits are interpreted as sequence of 5-bit words. A transcription table is used to map these
5-bit words to functions and terminals. The bitstrings are made to satisfy two requirements
by a repair operator. These requirements are that the number of terminals in the resulting
program be greater than the number of functions, and secondly that each sequence begins with
a function call. Bit level mutation and crossover genetic operators were used to generate new
individuals. Banzhaf has used this approach to successfully evolve programs that predict simple
integer sequences.

4.1.2 Strongly Typed GP

In almost all genetic programming work the terminals and functions are chosen so that they
can be used with each other without restriction. This is achieved by requiring that the system
be closed so that all terminals are of one type and all functions can operate on this type and
always yield a result also of this type. For example measures are taken to protect against divide
by zero errors.

In Montana’s Strongly Typed Genetic Programming (STGP) [Mon94] a genetic program
can contain multiple different types simultaneously. When manipulating the program (eg using
crossover) care is taken that not only are there the correct number of arguments for each
function but that they are of the expected type. This leads to an increase in the complexity
of the rules that must be followed when selecting crossover points. However Montana shows
that tight type checking can considerably reduce the size of the search space, which he says will
reduce the effort to find the solution. Generic types are allowed in order to reduce the number
of functions which must be explicitly specified.

4.1.3 Minimum Description Length

One of de Jong’s arguments against the combination of traditional general purpose computer
programming languages and genetic algorithms [De 87] was that the behaviour of program
statements written in such languages depend upon statements before it. Iba, de Garis and
Sato10 have considered the problems of symbolic regression and classification using problem
specific languages which are better behaved with respect to changes in the order of statements.
In one case (GMDH) they show that earlier statements cannot reduce the value of latter ones.
Such languages fit well with the schema theorem if we view good sub-trees like good schema.
These languages ensure that good overall individuals can be constructed of good schema, thus
we should expect a genetic algorithm to perform well.

Iba etal use Quinlan’s “decision trees”, which are designed to classify sets of inputs. They
allocate fitness based upon Quinlan’s “Minimum Description Length” (MDL) which gives a

10Their work is spread over several publications, perhaps [IdS94] gives the most up to date summary.
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natural means of basing fitness not just upon how well the program (or decision tree, in this
case) performs but also on its size. Other investigators have used arbitrary combinations of
program size and score to calculate a composite fitness. MDL is calculated by considering how
many bits are needed to code the program and how many to code a description of its error, ie
those cases where it returns the wrong answer.

MDL = Tree Coding Length+ Exception Coding Length

where

Tree Coding Length = (nt + nf ) + nt log2 T + nf log2 F

nt is the total number of terminals and nf is the total number of function calls in the tree.
T is the number of terminals in the terminal set and similarly F is the size of the function set.

Exception Coding Length =
∑
x∈Terminals L(nx, wx, nx)

The summation is taken over all leafs in the program. nx is the number of cases represented
by the particular leaf, x and wx is the number of such cases which are wrongly classified.
L(n, k, b) is the total number of bits required to encode n bits given k are 1s and b is an upper
bound on k:

Symbolic regression (as was mentioned in section 3.3) is the problem of devising a formula
or program whose answer matches the output associated with a given set of inputs.

Iba etal’s STROGANOFF system use an MDL based fitness together with program trees
composed of GMDH primitives. The terminal GMDH primitives are the inputs on which we
wish to perform symbolic regression. The GMDH functions each have a two inputs, their output
is a quadratic function of the two inputs:

Gz1,z2(z1, z2) = a0 + a1z1 + a2z2 + a3z1z2 + a4z
2
1 + a5z

2
2

Good results have been obtained with both decision trees and STROGANOFF using small
populations (e.g. 60).

4.1.4 Stack Based GP

In most genetic programming work the programs being evolved use a prefix tree structured
syntax. For the most part the LISP language is used. This section describes experiments with
other syntax.

Keith and Martin [KM94a] considered postfix and infix and hybrid (mixfix) languages but
conclude that their postfix language and its interpreter are the more efficient.

Perkis [Per94a] uses a linear postfix language and claims some advantages over the more
standard tree approach.

It is interesting that Cramer [Cra85] started with a linear postfix language (JB) but moved
to a tree structured postfix language (TB). The move seems to have been partially due to fears
that JB could form indefinite loops but also because TB avoided the implicit GOTOs of JB.

4.1.5 Machine Code GP

Nordin [Nor94a] has implemented a system using a very restricted set of machine codes and
demonstrated, for his application, enormous (more than thousand fold) speed ups. However
this has been at a considerable loss of generality:
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1. there is no branching or looping

2. the program is of fixed length (12 instructions)

3. the program is specific to the SUN SPARC RISC instruction set

4. only a few instructions are used

It remains to be seen if such performance can be retained if a less restrictive approach is
taken.

4.2 Abstraction

If we chart the development of programming languages, we see a steady trend of higher and
higher levels of abstraction being applied. The earliest languages were machine code and were
quickly replaced by assembly level languages. These in turn lead to the development of high level
languages such as FORTRAN. The latter facilitated code reuse first in the form of subroutines
and later in the more easily parameterised forms of functions and procedures. Useful functions
were made available in the form of libraries which are themselves a higher form of functional
abstraction. The introduction of object oriented languages which support data abstraction or
abstract data types (ADTs) further increased the amount of code reuse.

The advantages of abstraction are that it allows the control of complexity and facilitates
code reuse. Code reuse is particularly useful for GP because it means that a block of useful
code need not be independently rediscovered at different places within the program where it is
needed. In this section we look at a number of techniques that have been used to introduce
abstraction into GP.

4.2.1 Automatically Defined Functions

ADFs are evolvable functions (subroutines) within an evolving genetic program, which the
main routine of the program can call. Typically each ADF is a separate tree; consisting of
its arguments (which are the terminals) and the same functions as the main program tree
(possibly plus calls to other ADFs). If side effects are prohibited, ADFs act as functional
building blocks. Crossover acting on the main program can then rearrange these building
blocks within the program. ADFs can also be evolved, eg when crossover acts upon them. The
overall format of the program is preserved by ensuring crossover and other genetic operations
acts only within each ADF. That is code cannot be exchanged by crossover between ADFs and
the main program11. The main program’s function set is extended to allow (but not require)
it to call the ADFs.

ADFs have been successfully used on problems that proved too difficult for genetic pro-
gramming without ADFs.

4.2.2 Module Acquisition

The Genetic Library Builder (GLiB) [Ang94] implements encapsulation by adding a comple-
mentary pair of genetic operators, compression (encapsulation) and decompression which are

11Koza has demonstrated that it is possible to relax this restriction allowing crossover between program
branches but the rules required to ensure the resulting offspring are still syntactically correct are much more
complex.
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applied to any point in the genetic program chosen at random. Compression takes (part of)
the subtree at the given point and converts it into a function which is stored in a library. Those
parts of the subtree not included in the function become its arguments. The original code is
replaced by the function call. Decompression is the replacement of a function with its definition,
ie it reverses the compression operator. Once code is encapsulated in a function it is protected
from dissociation by crossover or other operators.

The functions produced may be any mixture of functions, terminals and its own arguments.
Thus they need not be modular in the software engineering sense.

In one comparison [Kin94b] using EVEN-N-PARITY problems, it was found the ADF ap-
proach was superior to the standard non-ADF approach whereas no improvement was seen with
encapsulation.

4.2.3 Adaptive Representations

Whereas with module aquisition, subtrees are chosen at random to become modules, Rosca
and Ballard [RB94] perform an analysis of the evolutionary trace to discover building blocks.
Building blocks are compact subtrees which add to the fitness of individuals. These fit blocks
are parameterised and then added to the function set to extend the representation. The current
population is then enriched by replacing individuals by new randomly created individuals using
the new function set. In their experiments they compared the application of standard GP, GP
with ADFs and GP with adaptive representations to EVEN-N-PARITY problems of difficulty
ranging from N=3 to N=8. The results they report indicate superior performance compared to
both of the other methods in terms of the number of generations required to find the solution
and the size of the soulution found.

4.2.4 Abstract Data Types

Langdon [Lan95] used GP with index memory to successfully evolve queue and stack abstract
data types (ADTs) using a chromosome structure with multiple trees. Each tree in the chro-
mosome was used to represent one of the required ADT member functions. The results suggest
that it may be possible to extend the level of abstraction in GP from pure functional abstrac-
tion as in ADFs, MAs and adaptive representations to full ADTs. This may help increase the
scalability of GP.

4.3 Breeding Policies

A number of choices are determined by a breeding policy. These include the choice of parents,
the number of offspring produced, the choice of which individuals in the population are to be
displaced by newly created individuals. Research associated with such breeding policies are
reported below.

It should be noted that many of the techniques in this section are designed to deal with
a problem common to both GA and GP. This is the problem of premature convergence in
which the which the population converges to a less than optimal solution as a result of loosing
population diversity.
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4.3.1 Brood Selection

In [TC94a] Tackett and Carmi investigate the implications of brood selection for GP. They
describe brood selection as following phenomenon:-

“In nature it is common for organisms to produce many offspring and then neglect, abort,
reabsorb, or eat some of them, or allow them to eat each other.” The net effect of this behaviour
is “the reduction of parental resource investment in offspring who are potentially less fit than
others.”

They then propose and show that this process can be used to reduce CPU and memory
investment in an artificial genetic system. For this purpose they define a brood selection
recombination operator RB(n) which they substitute for the standard GP crossover operator.
The two operators are similar in that they both produce two offsprings from two parents.
The difference is that internally, RB(n) produces n pairs of offspring instead of the single pair
produced by the standard operator, but keeps only the two best. The choice of which pair of
offspring survive is defined by a culling function FB (brood fitness). The function FB can either
be equivalent or a simpler version of the normal fitness function

The results of their experiments (based on the “Donut Problem” [TC94b]) show that even
for the case of FB being the same as the normal fitness function, increasing the brood factor
n, gives better performance than an equivalent increase in population size in standard GP,
and hence significantly decreases the memory requirements. Furthermore, decreasing the cost
of FB also reduces the computational costs and surprisingly only very gradually reduces the
performance of RB(n).

4.3.2 Population Enrichment

In [Per94b] Perry separates the evolution of a GP into enrichment and consolidated phases. In
his experiments, the enrichment phase involved 40 runs with a population size of 2000 indi-
viduals, each processed for only 3 generations. The best of each of the 40 runs (the enriched
population) were then loaded into a consolidated run with 1960 members of population gen-
erated at random. This GP population was then processed for 50 generations. The results
indicate that one run of an enriched population produces better results than 3 traditional runs.
In addition fewer individuals are processed, the solutions are more robust and parsimonious
(concise).

4.3.3 Tournament Selection

In GA systems, individuals are chosen for reproduction from the population probablistically
in proportion to their fitness. In tournament selection, a number of individuals are selected at
random (dependent on the tournament size, typically 7) from the population and the individual
with the best fitness is chosen for reproduction. Reverse tournament selection is sometimes used
in steady state GP where, the individual with the worst fitness is chosen to be replaced by a
newly reproduced individual. The tournament selection approach allows a tradeoff to be made
between exploration and exploitation of the gene pool.
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4.3.4 Steady State GP

In GP the population size is kept constant, so that when reproduction takes place, new indi-
viduals must replace existing individuals. If the number of individuals created is equal to the
population size, then the entire population is replaced and an entire new generation is created.
This approach is hence referred to as generational GP. If on the other hand, the number of
individuals replaced is actually quite small, for example one, then the new population is actu-
ally a mix of new and old generations. This approach is called steady state GP(SSGP). The
term “generation equivalent” is often used in SSGP and refers to the point at which an entire
population has been created.

4.3.5 Elitism

Elitism refers to a breeding policies which try to preserve the best individuals in the population.
The implication is that it is possible for highly fit individuals to never be replaced. SSGP is
an elitist breeding policy since only the individuals with poor fitness are replaced by new
individuals. Elitism is also sometimes implemented in generational GP.

4.3.6 Locality/Demes

The standard GP breeding policy is described as panmictic since it potentially allows any
individual in the population to breed with any other individual. An alternative is to divide the
population into subpopulations called “demes”, or islands. These demes are typically positioned
on a two dimensional grid, and breeding is restricted so that any two parents have a much higher
probability of being selected from within the same deme or from geographically close demes.

This approach has been investigated both by D’Haeseleer and Bluming in [DB94], and by
Tackett and Carmi in [TC94b]. Tackett and Carmi use explicitly defined demes of different
sizes for a problem with tunable difficulty (the donut problem). Their results suggest that use
of demes significantly improves performance. In contrast D’Haeseleer and Bluming instead of
using explicit demes, introduce locality in the form of geographic neighbourhoods, and select
parents from the same neighbourhood and also place the child into the same neighbourhood.
They have detected the spontaneous emergence of deme like structures in their results and
report that the introduction of locality significantly improves population diversity which in
conjunction with slightly increased generality of individuals, yields a substantial improvement
in the generality of the population as a whole.

One of the advantages of the demic approach is that it is easy to implement using parallel
or distributed architectures. Koza [KA95] has developed a next generation GP system using a
network of transputers to exploit the parallelism inherent in the demic model. The results of
his experiments with EVEN-N-PARITY problems indicated that more than linear speed-up in
solving the problem using GP was obtained.

4.3.7 Disassortative Mating

In an effort to reduce premature convergence in the presence of elitism, Ryan ([Rya94]) intro-
duces an algorithm that he calls the pygmy algorithm. Elitism has the benefit that it speeds
the convergence to a solution, but at the cost of reducing the population diversity. This in
turn can lead to premature convergence. The pygmy algorithm uses disassortative mating to
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maintain population diversity in the presence of the powerful selection pressure of elitism.

Disassortative mating is breeding policy that uses phenotypically different parents. In the
pygmy algorithm, two lists of individuals, each list with a different fitness function and each
sorted by fitness value are maintained. The individuals in one list are referred to as civil servants,
and the individuals in the other are referred to a pymies. The list containing civil servants uses
a fitness function equivalent to the performance of the individual, with ties resolved by rating
parsimonious individuals higher. A new individual is added to this list if it’s performance is
higher than a certain threshold. If it is lower an attempt is made to add it to the pygmys list.
The pygmys list uses a fitness function that includes the performance of the individual plus a
weight for the length. In the pygmy list, a shorter individual is considered better.

During breeding, one parent is selected from the pymies list and the other from the civil
servants list. The two lists are analogous to different genders, with the exception that unlike
nature, gender is determined after fitness evaluation. The aim is to promote children which
have the best attributes of the individuals in each of the two lists; high fitness and parsimony.
The results of experiments performed by Ryan in which minimal sorting networks were evolved
indicated that this approach was superior to both standard GP and GP extended to include a
secondary feature in the fitness function. Their conclusion was that pygmy algorithm helps to
maintain population diversity in the face of an elitist breeding policy and low population size.

4.4 Memory/State

Most computer programs make extensive use of storage, yet in almost all genetic programming
examples, each genetic program is a function of its inputs and almost all storage requirements
are dealt with by the framework used to support the genetic programs. Some of Koza’s examples
include limited storage which is used via side effects. This is in contrast with Cramer’s work
where a small number of global integers within the evolving program form the framework for
input and output but are also available for storage.

Teller [Tel94] includes explicitly 20 small integer storage cells. The programs he evolves may
freely use them. This problem, a mobile robot simulation problem, was chosen because it has
not been solved (either by genetic or human programming) without some form of storage. He
states that this allows genetic programming to tackle all cases of machine learning which are
turing computable. Teller’s read and write primitives have also been used by Andre [And94b]
and Jannink [Jan94].

4.5 Fitness Evaluation

There are a number of issues associated with the fitness function. These issues range from
the way that the fitness function is defined, to how it is evaluated. Below we look at research
directed at these issues.

4.5.1 Absolute and Relative Fitness

In the majority of GP applications the fitness of an individual is an absolute measure determined
by running the individual against a set of test cases of fixed difficulty. In co-evolution, the test
cases themselves are evolving programs which may be members of the same population or of
different populations. Since the test cases are evolving too, the difficulty of the test cases would
be changing from generation to generation (hopefully getting progressively more difficult). This
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has the effect that the fitness value of both the test program and the tested program are mutually
dependent and hence relative as opposed to absolute. This in turn means that knowledge of
the optimal strategy is not required.

Angeline and Pollack [AP93] used absolute and competitive fitness to evolve players for the
game of Tic Tac Toe (TTT). They found that co-eveolved players developed better strategies
than players using absolute fitness measures.

Similar results were obtained by Reynolds [Rey94a] when he used competitive fitness for
the evolution of vehicle steering control programs used for the game of tag. He reports that
near optimal solutions were found solely from direct competition between individuals in the
population.

4.5.2 Multi-Phase Fitness

Andre [And94b] used GP to evolve programs that are capable of storing a representation of
their environment (map-making), and then using that representation to control the actions
of a simulated robot. He used GP to effectively co-evolve two programs (each making use of
ADFs) for each individual. He split the fitness evaluation of each individual into two phases
hence the term multi-phasic fitness. In the first phase, the first program is run to extract
and store features from the environment. Only the first program is provided with the set of
functions to probe the environment. In the second phase, the second program is executed to
use the stored representation to control the actions of a robot. The fitness value was awarded
only for the success of this second phase. He found that using this approach, he was able
to successfully evolve programs that solve simple problems by examining their environment,
storing a representation of it, and then using the representation to control action.

4.5.3 Full and Partial Fitness

Genetic programming determines the fitness of an individual by running it. This makes it,
compared to other genetic algorithms, particularly susceptible to badly behaving individuals.
Badly behaved programs can be produced where there are recursive or iterative features, as
these promote very long or even infinite loops. The presence of only one such program in the
population effectively halts the whole genetic programming system. Where a program may be
expected not to halt (or take a very long time) Koza [Koz92] implements ad-hoc loop limits
which time out badly behaving individuals and give them poor fitness scores.

A more general mechanism to ensure programs which loop infinitely do not hang up the
system has been suggested by Maxwell [Max94]. This applies an external time limit after which
programs are interrupted if they are still running, thus allowing other members of the population
to be run. The interrupted program is not aborted but is given a partial fitness. The partial
fitness is used when selecting which programs to breed from and which are to be replaced by the
new programs created. Programs which remain in the population are allowed to run for another
time interval. Looping programs are given low partial fitness and so are eventually removed
from the population, as new programs are bred. Maxwell claims his technique “effectively
removes arbitrary limits on execution time (eg iteration limits) and yet still produces solutions
in finite time” and often it will require “less effort” and produce solutions of “greater efficiency”.
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4.5.4 Generality and Noise

Many examples attach no importance to the efficiency or size (parsimony) of the programs pro-
duced, the only important factor is how close the result given by the program is to being correct.
Perhaps as a consequence many of the evolved programs are large (ie non-parsimonious). How-
ever in some cases, such as classification, the size of the program is important in itself, rather
than as an indicator of wasteful coding. In such cases the size of the program gives an indi-
cation of lack of generality or overfitting training data, section 4.1.3 presents one approach to
this problem.

Koza [Koz92] and Kinnear [Kin93] have combined program size with how well it works to
yield a composite fitness. In Koza’s example a functionally correct program was evolved of
near theoretically minimum size. However more effort, that is more fitness evaluations, were
required to evolve the correct program than when program size was ignored. Kinnear found he
could evolve more general solutions by adding a term inversely proportional to program length
to its fitness.

Reynolds [Rey94b] introduced noise into fitness tests used to evolve programs to steer a
simulated 2D vehicle through connected corridors at various angles. He concluded that the
addition of noise into fitness tests discouraged solutions that were brittle, opportunistic, or
overly complicated, so that the discovered solutions were simple and robust.

4.5.5 Evaluation Efficiency

Individuals in a GP population are usually represented as a forest of trees. Handley [Han94a]
represents the entire population of parse trees as a single directed acyclic graph (DAG). This
approach brings immediate benefits in term of memory requirements since identical subtrees do
not need to be duplicated. In addition if the value computed for each subtree is cached, it does
not need to be re-evaluated for each each instantiation, even if it occurs in a different generation.
The important restrictions in this approach are that all functions must have no side effects and
the fitness cases must be bounded and fixed for all individuals and all generations. With this
approach Handley reports a 15-28 fold reduction in the number of nodes per generation and an
11-20 fold reduction in the number of nodes evaluated per run.

4.5.6 Pareto Scoring

Most genetic programming work uses a single fitness criterion namely the functionality of the
program, ignoring issues such as size and run time. There has been some interest in using
Pareto scoring [Gol89], [Sin94a], [Lan95], which allows members of the population to be scored
or compared using multiple criterion, such as functionality and runtime. Scoring systems which
combine several criteria (such as functionality and efficiency) to yield a single fitness score have
been tried with some success.

4.6 Genetic Operators

A number of alternatives to the standard GP crossover and mutation genetic operators have
been proposed. Some of these operators [Kin94b] are introduced below.
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4.6.1 Hoist

The hoist operator creates a new individual entirely from a randomly chosen subtree of an
existing individual. The operator is useful for promoting parsimony.

4.6.2 Create

The create operator is unique in that it does not require any existing individuals. It generates an
entirely new individual in the same way that an individual in the initial population is generated.
This operator is similar to Hoist in that helps to reduce the size of program trees.

4.6.3 Self-Crossover

The self-crossover operator uses a single individual to represent both parents. The single indi-
vidual is itself can be selected using the standard fitness proportional selection or tournament
selection methods. Kinnear reports that no performance advantage was obtained using this
operator.

4.6.4 Modular/Cassette-Crossover

One of the restrictions of the standard crossover operator is that is not possible to swap blocks
that occur in the middle of a tree path. The standard crossover operator only allows entire
subtrees to be swapped. One of the reasons for the success of ADFs might be due to an
effective relaxation of this restriction. This possibility lead Kinnear and Altenberg to develop
the Modular or Cassette crossover operator. One can best view the operator as a module swap
between two individuals. A module is defined in the program tree of the first individual, and
another in the program tree of the second individual. The module in the first individual is then
replaced by the one in the second individual. The new module is then expanded. Clearly there
is problem created by the possible mismatch of the arguments passed to the module (actual
parameters) and the formal parameters defined by the module. There are two such possibilities,
either the number of formal parameters are greater than the number of actual parameters or
vice-versa. The former is resolved by extending the existing actual parameters with random
chosen copies of themselves. The latter is resolved by choosing at random a subset of the
existing actual parameters. Kinnear reports performance gains when any form of modular
crossover is used with the Basic (non-ADF) GP approach, even with modular self-crossover.

4.6.5 Context Preserving Crossover (SCPC/WCPC)

D’Haeseleer [D’h94] also inspired by the success of ADFs has suggested alternative genetic
operators called Strong Context Preserving Crossover (SCPC) and Weak Context Preserving
Crossover (WCPC). Both of these operators require a system of coordinates for identifying
node positions in a tree. SCPC allows two subtrees to be exchanged during crossover between
two parents only if the points of crossover have the same coordinates. WCPC relaxes this rule
slightly by allowing crossover of any subtree of the equivalent node in the other parent. Exper-
iments were performed by D’Haeseleer using these operators on four different problems taken
from [Koz92]; the obstacle avoiding robot, the boolean 11-multiplexer, the obstacle avoiding
robot (iterated form) and the central place food foraging problem. The results of experiments
using these operators suggests that when SCPC is combined with regular crossover, the results
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are for most cases superior to using just regular crossover. WCPC however did not show any
benefits.

4.6.6 Constant Perturbation

Spencer [Spe94] describes a genetic operator that he calls the Constant Perturbation operator.
This operator only affects special terminals called ephemeral random constants which are used
to introduce constants into a GP individual [Koz92]. The constant perturbation operator as
used by Handley multiplies all constants in a GP individual by a random number between 0.9
and 1.1 (i.e. perturbs the constants by up to 10% of their original value). Handley reports
two positive effects of the operator for the experiments that he performed. Firstly it allowed
“fine-tuning” of the coefficients in programs which is otherwise difficult to achieve. Without
constant perturbation, the only way of modifying the constant is to replace it via mutation or
crossover, which tends have a more coarse effect. Secondly, constant perturbation enriches the
set of terminals by adding new constants. Handley believes this operator to be an improvement
over the ephemeral random constants constants used by Koza. Some of the experiments that
he performed with symbolic regression showed dramatic improvements.

4.7 GP Theory

One of the most important deficiency in GP at the moment is the lack of sound theoretical
foundations. Some work has however commenced to address this need.

4.7.1 Fitness Landscapes

In the traditional GA individuals in a population are represented as fixed length bitstrings.
The total number of possible individuals is equal to the total number permutations of the
bitstring, or 2n where n is the of bits in the bitstring. Suppose that we plot these individuals as
points on a horizontal plane such that the distant between individuals is equal to the number
of bit changes required to get from the one individual to the other (the hamming distance).
Suppose then that we give these points a vertical component proportional to the fitness values
of the individuals that they represent. What we end up with is called a fitness landscape,
where the peaks represent location of high fitness, and the valleys locations of poor fitness.
The actual ruggedness of this landscape would depend on the difficulty of the fitness function.
A particularly difficult function might result in a fitness landscape which is flat and virtually
featureless, with the exception of a few widely distributed spires (figure 16). Conversely a very
easy fitness function might consist of a “mountain” with a single peak (figure 17).

When we generate an initial random population of individuals, we are effectively placing
a mesh over the fitness landscape, simultaneously sampling the fitness function at different
places. Genetic operators such as mutation and crossover then provide a means for exploring
this landscape. Single bit mutation allows us to move one point at a time across the landscape.
Crossover and multi-bit mutation allow us to take giant leaps across the landscape. An assump-
tion of the GA is that if we select individuals of higher fitness, then by applying the genetic
operators, we should end up on the landscape at a point of high fitness. Thus there should be
some correlation between parents and children, This notion is called auto-correlation.

The fitness landscape provides a powerful tool for visualising the difficulty of a problem.
However, if we try to use this tool in GP, we run into one major difficulty; how to decide

28



Figure 16: A difficult to search fitness landscape.

Figure 17: An easy to search fitness landscape.

which points are adjacent to each other. In the fixed-length standard GA we use the hamming
distance, but this is not possible in the GP representation which is neither bit oriented nor
is it of fixed length. The individuals in GP are program trees which must be compared in
some way to determine how far apart they are to be plotted on the fitness landscape. The
latter is not very obvious. Kinnear [Kin94c] examines the structure of the fitness landscape
on which GP operates, and analyses the landscapes of a range of problems of known difficulty
in order to determine the correlation between landscape measures and problem difficulty. The
landscape analysis techniques that he employs include adaptive walks, and the autocorrelation
of the fitness values of random walks. His results indicate that former shows better correlation
with the problem difficulty than the latter for GP.

4.7.2 GP Schema Theorem and Building Block Hypothesis

O’Reilly and Oppacher [OO92] extend Koza’s schema theorem for GP. The particular weakness
that they identify with Koza’s schema theorem is that no schema is defined by an incompletely
specified S-Expression such as (+ # 2) where ’#’ is a wild card. They go on to form a more
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Name Author Language Notes
Implementation Evolved

Koza Lisp Lisp Code from [Koz92] &
[Koz94a], widely copied

SGPC Tackett
and Carmi

C own Can import/export Lisp

GPSRegress Nguyen Mathematica Mathematica Package to do symbolic
regression

CEREBRUM Dudey Lisp ANN (in Lisp) Framework for genetic
programming of neural
networks

gpc++-0.4 Fraser C++ own
gepetto Glowacki C own Similar to SGPC but

with enhancements
GPQUICK Singleton C++ own Described in [Sin94b]
GPEIST White Smalltalk 80

Table 3: Some Public Domain Genetic Programming Implementations

general schema theorem that encorporates schemas of the form mentioned. They then use this
to attempt to formulate a building block hypothesis (BBH) for GP, but conclude that “the
GP BBH is not forthcoming without untenable assumptions”. In their analysis, they are also
critical of the GA BBH.

4.7.3 Evolvability

Altenberg [Alt94] introduces evolvability as a performance measure for genetic algorithms. He
defines evolvability in this context as “the ability of the genetic operator/representation scheme
to produce offspring that are fitter than their parents”. He describes evolvability as a local or
fine grained measure of a genetic algorithms performance compared to the production of fitter
offspring during one or more runs of a GA which is a more global or large scale performance
measure.

His theoretical analysis of the dynamics of GP predicts the existence of an emergent selection
phenomenon that he calls the evolution of evolvability. He explains that this phenomenon is
cause by the proliferation within programs of blocks of code that have a higher a chance of
increasing fitness when added to programs. He proposes new selection techniques and genetic
operators (some of which have been introduced in previous sections) to give better control over
the evolution of evolvability and and improve evolutionary performance.

4.8 GP Development Systems

Almost all of the genetic programming experiments described in this paper have used imple-
mentations either written or adapted by the experimenter. Table 3 lists the general purpose
genetic programming implementations that have been placed in the public domain, Table 4 list
others that have been described.
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Name Author Language Notes
Implementation Evolved

STGP Montana C++ Ada/Lisp Section 4.1.2

STROGANOFF
Iba, de Garis,
Sato

Decision Trees
GMDH

Section 4.1.3

GLiB Angeline Section 4.2.2
SSGP Craig

Reynolds
Steady State GP
Section 4.3.4

GP-GIM Andrew
Singleton

C++ 486 distributed network
desk top supercomputing

Table 4: Some other Genetic Programming Implementations
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Art

Patterns VR

Mapmaking Monitoring
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Artificial
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Artificial
Life & Classification

Robots &
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Agents

Prediction

Proteins OCR Text Classification

Optimisation

GP Applications

Robotic
Control
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Figure 18: A Taxonomy of GP Applications

5 GP Applications

This section briefly lists real applications where genetic programming has been tried. Although
these are real world applications the claims for genetic programming should not be over stated,
ie the success of genetic programming should not be taken as implying there are no better
techniques available for the particular application. Figure 18 shows a taxonomy of the GP
applications reported below.

5.1 Prediction and Classification

Although developed before the term genetic programming was coined, BEAGLE [For81] may
be classified as a genetic programming system in that it evolves tree structured programs.
BEAGLE is a rule-finder program that uses a database of case histories to guide the evolution
of a set of decision rules (programs) for classifying those examples. Once found the rule base
(knowledge base) can be used to classify new examples. BEAGLE is commercially available
and has been widely applied; eg in insurance, weather forecasting, finance and forensic science
[JRFT94].

Handley [Han93] uses genetic programming to predict the shape of proteins. He was able to
evolve programs which, using the protein’s chemical composition, were able to predict whether
each part of a protein would have a particular geometric shape (an α-helix) or not. Genetic
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programming was able to do this broadly as well as other techniques but all suffered from
the fact that the structure depends upon more than local composition. Koza [Koz94a] reports
similar success on other protein geometry problems.

Iba etal [IKdS93] use genetic programming to fit chaotic time series data, see section 4.1.3.

Masand [Mas94] applied genetic programming to find a program that gives confidence values
to automatically classified news stories. Automatic text classification using multiple keywords
results in multiple scores (one score for each keyword). The problem is to decide how to combine
the scores to obtain an overall confidence value for the classification. This confidence value is
used to decide whether or not the story needs to be referred to a human editor. On a defined
set of test news stories, the best genetically produced program was better than the best human
coded program.

Perry [Per94b] used GP to predict winning horses using horse racing past performance data.
He divided the data into training and test sets, using only the former to evolve the prediction
program, and the latter to check the generality of the best evolved program. The results of the
best program showed profit levels of 181.2% during the training phase and 111.1% during the
test phase.

Andre has successfully used genetic programming in optical character recognition problems
(OCR). In [And94a] he combines genetic programming with a two dimensional genetic algorithm
to produce an OCR program from scratch. In [And94c] he shows genetic programming can be
used to maintain existing hand coded programs. He shows genetic programming automatically
extending an existing manually written OCR program so that it can be used with an additional
font.

5.2 Image and Signal Processing

Tackett describes [Tac93] the use of genetic programming to extract targets from low contrast
noisy pictures. Various (≈20) standard metrics are abstracted from the image using standard
techniques, which are then processed by a genetic program to yield target details. In his
experiments, Tackett compared GP with a neural network and a binary tree classifier system.
He reports better results from GP than both of the other techniques. Furthermore, the ability
to analyse the evolved program enabled him to get insight into the features that assist in pattern
discrimination, which would not have been possible with the “more opaque methods of neural
learning.”

Oakley describes [Oak94] obtaining blood flow rates within human toes using laser Doppler
measurement. These measurements are both noisy and chaotic. He compares the effectiveness
(at removing noise but preserving the underlying signal) of special filters evolved by genetic
programming and various standard filters. He concludes that a combination of genetic pro-
gramming and heuristics is the most effective.

Genetic programming has been used [HBM94] to construct a program which detects engine
misfires in cars. A GP approach was found to be superior to one based on neural networks.
A further advantage claimed for genetic programming in this application is that the program
produced was more easily integrated into the existing (software based) engine management
system than would have been the case with other approaches, such as the neural network. This
may be the case in many embedded systems.
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5.3 Optimisation

Nguyen and Huang [NH94] have used genetic programming to evolve 3-D jet aircraft models,
however the determination of which models are fitter is done manually. This work is similar to
that in section 5.8; however the aircraft models are more complex.

5.4 Financial Trading

Andrews and Prager [AP94] used genetic programming to create strategies which have traded in
simulated commodity and futures markets (the double auction tournaments held by the Santa-
Fe Institute, Arizona, USA). Their automatically evolved strategies have proved superior to
many hand-coded strategies. A number of commercial firms are also active in this area.

5.5 Robots and Autonomous Agents

Andre [And94b] used GP to evolve programs that are capable of storing a representation of
their environment (map-making), and then using that representation to control a simulated
robot in that environment. In his experiments, he was able to evolve solutions yielding 100%
fitness.

Handley [Han94b] used GP to generate plans for a simulated mobile robot. The plans
were represented as programs, and the success of the plans were evaluated by executing them.
Handley describes the genetic planner as different from traditional methods in that it does not
require a logical model of the agent’s world, nor does it depend on any reasoning about the
effect of any generated plans on that world.

The process of monitoring the environment can be expensive for an agent, but so too can
be the cost of working with inaccurate or out of date information. An agent therefore needs to
establish strategies that make tradeoffs between the two costs. Atkin and Cohen [AC94] first
used a GA to evolve monitoring strategies and spurred by their success applied GP to solve
problems where monitoring as well as behaviour is required. Their work is probably the first
example of applying GP to a real-time application.

5.6 Artificial Life

Artificial Life is the study of natural life by computer simulation. There is a ready connection to
autonomous robots. For example, evolving a program to control a robot’s leg may be considered
either as an engineering problem or as a simulation of a real insect’s leg.

Spencer [Spe93] used GP to generate programs that enable a “six-legged insect” to walk in
a simulated environment. He reports that in every experiment, GP evolved programs capable
of efficient walking and furthermore that the performance of these programs were at least as
good and often better than that of hand-generated programs.

One aspect of Artificial Life is the study of natural evolution using computer simulation.
Early simulations [Ray91] relied heavily upon mutation but genetic algorithms (eg [Sim94] and
genetic programming using crossover have also been used more recently. For example Reynolds
[Rey92] describes a simulation of herding behaviour based upon genetic programming12.

12[Rey93] and [Rey94c] gives more recent results.
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5.7 Neural Networks

The normal use of the term genetic programming implies the data structures being evolved can
be run as computer programs. The term has also been applied to using a genetic algorithm to
evolve data structures which must be translated into another form before they can be executed.
Both linear and tree (or hierarchical) data structures have been used. This process can be
likened to an individual (the executable program) growing according to the instructions held
in its DNA (the genetic algorithm’s data structures).

The final form is often a neural network. Many ways of representing a network using a
genetic algorithm have been used [PU93] [Rom93] [ZM93] [HHC93]. Kodjabachian and Meyer
[KM94b] summarise various approaches to evolving artificial nervous systems.

One such is cellular encoding; Gruau [Gru93] has used cellular encoding, in conjunction
with a hierarchical genetic algorithm, to produce complex neural networks with a high degree
of modularity.

5.8 Artistic

There have been a number of uses of genetic programming, perhaps inspired by Dawkins’
morphs [Daw86] or Karl Sims’ panspermia, which generate patterns on a computer display.
Singleton, with his Doodle Garden, has taken this as far as a commercial product, where the
patterns grown can be used as pleasing screen savers.

Das etal [DFP+94] uses genetic programming to generate sounds and three dimensional
shapes. Virtual reality techniques are used to present these to the user. As in section 5.3, there
is a manual fitness function, with the user indicating a preference between the four objects
presented to him.

6 Conclusions

This paper has briefly surveyed recent work on the technique of automatic program generation
known as genetic programming. It has presented program generation as the task of searching
the space of possible programs for one that is suitable. This search space is vast and poorly
behaved, which is the sort of search for which genetic algorithms are best suited. It is therefore
reasonable to apply genetic algorithms to this search and, as this paper shows, this has had a
measure of success.

Genetic programming has been demonstrated in the arena of classification (section 5.1),
albeit not under the name genetic programming; with at least one commercial package available.
It is as a general technique that genetic programming is a particularly new and emerging
research area. It has solved a number of problems from a wide range of different areas. Genetic
programming has also been successfully applied to real world applications, such as optical
character recognition (OCR) and signal processing (section 5.2).

It is expected that use of genetic programming in the production of commercial software will
become more widespread, perhaps first in signal processing and control (section 5.2). Current
research directed at refining GP and making it more scalable (such as parallel implementations
and abstraction) should greatly improve the range of applications.
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A Resources

A.1 Books and Videos

For anyone starting out in GP, the following books are highly recommended:-

The Blind Watchmaker Both GAs and GP take their inspiration from natural evolution.
This book [Daw86] provides a fascinating introduction to this subject.

Genetic Algorithms in Search, Optimisation and Machine Learning Much of the tech-
niques used in GP originate from work in GAs. This book [Gol89] written by one of the
pioneers of GAs therefore provides an excellent background to those interested GP.

Genetic Programming: On the Programming of Computers by Natural Selection
This book [Koz94a] (referred to as GP I by GPers) is considered the bible for GP and
provides complete introduction and tutorial. It has many worked examples.

Genetic Programming: The Movie This video [KR92] is an excellent companion to the
above book. GP concepts are explained and solutions to example problems used in the
book can be seen evolving.

Genetic Programming II: Automatic Discovery of Reusable Programs This sequel [Koz94a]
extends the concepts introduced in the original with the notion of ADFs. Worked exam-
ples again are extensively used.

Genetic Programming: The Next Generation This video [Koz94b] does for GP II what
“GP the Movie” did for GP I.

Advances in GP This book [Kin94a] contains an excellent collection of GP papers.

Advances in GP II This sequel to the above book is due to published soon and will contain
a new set of papers.

A.2 Internet Resources

The GP home page is located at University College London (UCL) and has the URL
“http://www.cs.ucl.ac.uk/research/genprog/”. The home page includes a GP Frequently Asked
Questions (FAQ) list with answers, and links to many other GP related resources.

The FTP site at UCL (cs.ucl.ac.uk) has a directory (/genetic) archiving GP related re-
sources. The directory contains a complete mirror of the GP archive at “ftp.io.com” and an

35



additional collection of papers, code and an extensive GP bibliography. A subdirectory called
“incoming” allows resources to be submitted to this archive. Bill Langdon has put together
simple example programs for both GAs and GP, which are available in the ga-demo and gp-code
subdirectories respectively.

Adil Qureshi maintains both the GP home page and the FTP site at UCL, and can be
contacted at the email address “A.Qureshi@cs.ucl.ac.uk”.

There is a GP Mailing List which is used by GP researchers to exchange informations and
obtain help. To join the mailing list, send a message to:-

“genetic-programming-REQUEST@cs.stanford.edu”

The body of the message should consist of a single line with the words “subscribe genetic-
programming” or “subscribe genetic-programming <my-address>”, depending on whether you
want to be subscribed using the address you mailed the message from, or an alternative address.
The FAQ at the GP home page (see above) gives further details regarding the use of the mailing
list.
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B Glossary

Building Block A pattern of genes in a contiguous section of a chromosome which, if present,
confers a high fitness to the individual. According to the building block hypothesis, a
complete solution can be constructed by crossover joining together in a single individual
many building blocks which were originally spread throughout the population.

Cellular Automata A regular array of identical finite state automata whose next state is
determined solely by their current state and the state of their neighbours. The most
widely seen is the game of Life in which complex patterns emerge from a (supposedly
infinite) square lattice of simple two state automata whose next state is determined solely
by the current states of its four closes neighbours and itself.

Classifiers An extension of genetic algorithms in which the population consists of a co-
operating set of rules (ie a rulebase) which are to learn to solve a problem given a number
of test cases. Between each generation the population as a whole is evaluated and a fitness
is assigned to each rule using the bucket-brigade algorithm or other credit sharing scheme
(eg the Pitt scheme). These credit sharing schemes aim to reward or punish rules which
contribute to a test case according to how good the total solution is by adjusting the
individual rules fitness.

At the end of the test data a new generation is created using a genetic algorithm as if
each rule were independent using its own fitness (measures may be taken are taken to
ensure a given rule only appears once in the new population).

Co-evolution Two or more populations are evolved at the same time. Often the separate
populations compete against each other.

Convergence Tendency of members of the population to be the same. May be used to mean
either their representation or behaviour are identical. Loosely a genetic algorithm solution
has been reached.

Chromosome Normally, in genetic algorithms the bit string which represents the individual.
In genetic programming the individual and its representation are the same, both being
the program parse tree. In nature many species store their genetic information on more
than one chromosome.

Crossover Creating a new individual’s representation from parts of its parents’ representa-
tions.

Deme A separately evolving subset of the whole population. The subsets may be evolved on
different computers. Emigration between subsets may be used (see Panmixia).
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Elitist An elitist genetic algorithm is one that always retains in the population the best indi-
vidual found so far.

Evolution Programming A population containing a number of trial solutions each of which
is evaluated to yield an error. Typically, at the end of each generation, the best half of the
population is retained and a new solution is produced from each survivor. The process
is continued with the aim that the population should evolve to contain an acceptable
solution.

Evolutionary programming like Evolution Strategy produces new children by mutating
at random from a single parent solution. The analogue components (eg the connection
weights when applied to artificial neural networks) are changed by a Gaussian function
whose standard deviation is given by a function of the parent’s error called its temperature.
Digital components (eg presence of a hidden node) are created and destroyed at random.

Evolution Strategy or Evolutionsstrategie A search technique first developed in Berlin. Each
point in the search space is represented by a vector of real values. In the original Evolution
Strategy, (1 + 1)-ES, the next point to search is given by adding gaussian random noise
to the current search point. The new point is evaluated and if better the search continues
from it. If not the search continues from the original point. The level of noise is adjusted
so that on average 1

5 of new points are accepted.

Evolutionary Strategies can be thought of as like an analogue version of genetic algorithms.
In (1+1)-ES, 1 parent is used to create 1 offspring. In (µ+λ)-ES and (µ,λ)-ES µ parents
are used to create λ children (perhaps using crossover).

Finite State Automata (FSA) or Finite State Machine (FSM) A machine which can be
totally described by a finite set of states, it being in one these at any one time, plus a set
of rules which determine when it moves from one state to another.

Fitness Function A function that defines the fitness of an individual as a solution for for the
required problem. In most cases the goal is to find an individual with the maximum (or
minimum) fitness.

Function Set The set of operators used in a genetic program, eg +−×÷. These act as
the branch points in the parse tree, linking other functions or terminals. See also non-
terminals.

Generation When the children of one population replace their parents in that population.
Where some part of the original population is retained, as in steady state GAs, generation
typically refers to the interval during which the number of new individuals created is equal
to the population size.

Genetic Algorithm A population containing a number of trial solutions each of which is
evaluated (to yield a fitness) and a new generation is created from the better of them. The
process is continued through a number of generations with the aim that the population
should evolve to contain an acceptable solution.

GAs are characterised by representing the solution as an (often fixed length) string of
digital symbols, selecting parents from the current population in proportion to their fitness
(or some approximation of this) and the use of crossover as the dominate means of creating
new members of the population. The initial population may be created at random or from
some known starting point.
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Genetic Operator An operator in a genetic algorithm or genetic programming, which acts
upon the chromosome to produce a new individual. Examples are mutation and crossover.

Genetic Program A program produced by genetic programming.

Genetic Programming A subset of genetic algorithms. The members of the population are
the parse trees of computer programs whose fitness is evaluated by running them. The
reproduction operators (eg crossover) are refined to ensure that the child is syntactically
correct (some protection may be given against semantic errors too). This is achieved by
acting upon subtrees.

Genetic programming is most easily implemented where the computer language is tree
structured so there is no need to explicitly evaluated its parse tree. This is one of the
reasons why Lisp is often used for genetic programming.

This is the common usage of the term genetic programming, however the term has also
been used to refer to the programming of cellular automata and neural networks using a
genetic algorithm.

Hits The number of hits an individual scores is the number of test cases for which it returns
the correct answer (or close enough to it). This may or may not be a component of
the fitness function. When an individual gains the maximum number of hits this may
terminate the run.

Infix Notation Notation in which the operator appears between the operands. Eg (a+ b)× c.
Infix notation requires the use of brackets to specify the order of evaluation, unlike either
prefix or postfix notations.

Non-Terminal Functions used to link parse tree together. This name may be used to avoid
confusion with functions with no parameters which can only act as end points of the parse
tree (ie leafs) and so are part of the terminal set.

Mutation Arbitrary change to representation, often at random. In genetic programming, a
subtree is replaced by another, some or all of which is created at random.

Panmixia When a population is split into a number of separately evolving populations (demes)
but the level of emigration is sufficiently high that they continue to evolve as if a single
population.

Parsimony Brevity. In GP, this is measured by counting the nodes in the tree. The smaller
the program, the smaller the tree, the lower the count and the more parsimonious it is.

Postfix Notation Reverse Polish Notation or Suffix Notation Notation in which the operator
follows its operands. Eg a+ b× c represented as abc×+.

Prefix Notation Polish Notation Notation in which the operator comes before its operands.
Eg a+ b represented as +ab.

Premature Convergence When a genetic algorithm’s population converges to something
which is not the solution you wanted.

Recombination as crossover.

Reproduction Production of new member of population from existing members. May be used
to mean an exact copy of the original member.

44



Simulated Annealing Search technique where a single trial solution is modified at random.
An energy is defined which represents how good the solution is. The goal is to find
the best solution by minimising the energy. Changes which lead to a lower energy are
always accepted; an increase is probabilistically accepted. The probability is given by
exp(−∆E/kBT ). Where ∆E is the change in energy, kB is a constant and T is the
Temperature. Initially the temperature is high corresponding to a liquid or molten state
where large changes are possible and it is progressively reduced using a cooling schedule
so allowing smaller changes until the system solidifies at a low energy solution.

Stochastic Random or probabilistic but with some direction. For example the arrival of people
at a post office might be random but average properties (such as the queue length) can
be predicted.

Terminal Set A set from which all end (leaf) nodes in the parse trees representing the pro-
grams must be drawn. A terminal might be a variable, a constant or a function with no
arguments.

Tournament Selection A mechanism for choosing individuals from a population. A group
(typically between 2 and 7 individuals) are selected at random from the population and
the best (normally only one, but possibly more) is chosen.
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