SCASE’99

A Genetic Clustering Algorithm

Alan Sheahan & J.J. Collins & Conor Ryan
Dept. Of Computer Science and Information Systems
University Of Limerick
Ireland

Alan.Sheahan|J.J. Collins|Conor.Ryan@Qul.ie

Abstract

The SCARE project incorporates the design and implementation of an automatic, software
tool for generating functionally identical, parallel code from a given sequential program for
execution on an asynchronous, distributed memory message passing architecture. There are
two fundamental problems in automatic program parallelisation : (a) parallelism detection at
the granularity level of the parallel machine (b) efficient execution of the detected parallelism
(represented by a task graph) in order to balance computational loads and reduce unnecessary
communication.

This paper concentrates on the scheduling stage, (b) above. It describes a feasibility study
of the application of Genetic Algorithms to task clustering. Clustering is important in a
scheduling sense because a parallel program can conveniently be represented as a task graph,
with a node for each instruction and communication between instructions being denoted by
an edge. The program can be mapped directly from a graph onto a parallel architecture, with
all nodes in a particular cluster being executed on the same processor. We examine some of
the popular clustering methods and describe their suitability for scheduling, before describing
the application of a Genetic Algorithm to clustering. We show that not only is the GA is
competitive with existing methods but an emergent ability of the GA is that of being able to
discover the optimal number of processors.

1 Introduction

Until recently, parallel programming tended to be restricted to either purely academic activities
or to exotic super computer systems which were normally the preserve of wealthy institutions.
The advent of systems such as PYM[Geist, 1993] (Parallel Virtual Machine)/ MPI (Message Pass-
ing Interface) and Linda[Gelernter, 1985] have changed this, however, by treating a netwo rk of
(possibly heterogeneous) computers as though each were a node in a parallel computer. The per-
formance and practicality of these systems has further improved with the use of Beowulf systems,
which are generally groups of Intel or Alpha-based machines on a fast (100MBit or greater) local
network running a version of PVM or MPI. These systems have all the characteristics of the PVM
type systems mentioned above, with the added advantage of extremely fast communication, thus
allowing the possibility of increasingly fine grains of execution. Parallel processing is becoming in-
creasingly important as more and more sophisticated techniques are being developed for areas such
as simulations, engineering applications or graphics rendering. The Scare pro ject is concerned with
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creating an automated tool for converting serial programs into a functionally equivalent parallel
version. It consists of three stages, Program Comprehension, Autoparallelisation and Scheduling,
which this paper is concerned with.

The first stage, Program Comprehension, examines a program and prepares it for parallelisation,
i.e. the areas of the program most likely to benefit from parallelisation are identified, and any
necessary information for the parallelisation stage is extracted. The second stage, which we call -
Paragen, is concerned with the actual process of parallelisation. Paragen generates a program with
as much parallelism as possible, by performing a large number of transformations on the original,
serial program. A description of Paragen is available in (13]. Paragen is not architecture specific,
however, and generates a program that uses as much parallelism as it can extract from a program.

Figure 1: A highly efficient parallel program.

The ideal situation is that Paragen will generate a graph similar to that found in figure 1, in
which each column can simply be mapped onto a separate processor. In this attractive, yet unlikely,
scenario there would be no inter-processor communication, which would permit each processor to
work independently, generating a hugely quick program.

Figure 2: A more realistic lookiné parallel program.

Unfortunately, figure 2 is by far a more likely situation. Although Paragen extracts a large
degree of parallelism, it makes no effort to remove or even reduce inter-process communication,
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this is because Paragen is architecture independant. What is required is & scheduler that will tune
the output of Paragen to 2 particu\ax architecture, reducing communication 33 much as possible
in the process. This paper 18 concerned with using 2 GA to achieve this.

2 MultiprocesSor gcheduling

The multiprocessor scheduling problem is to map @ set of precedence—constrained tasks, Ti,(i=1:m)
jective. 1t can be sub-divi

onto a set of processors Py (k=1:9) in order to satisfy a specified ob

into the following steps -
(a) Assignment of tasks to processors
(b) Ordering of tasks within each processor

(©) Determination of execution times of tasks within each processor

Mutiprocessor scheduling problems can be classified according to the amount of information

available about the tasks at compile time, the extent to which they preempt and reallocate pro-

cessors among jobs, the arrival pattern of jobs, application scalability (ie way in which an

application can be expected t0 behave executing with a varying number of processors o1 a given

hardware architecture ) and resource requirements ..etc.
The objective from the SCARE viewpoint is t0 minimise the program completion time (Parallel

Time) for a specified number of processors assuming 2 dataflow task model of execution ( i-e- task

preemption is prohibited ). Finding optimal scheduling solutions without imposing 2 limitation
on the number of processors and ignoring communicatioh overhead is solvable in polynom'ial {ime
1,2]. However, taking communication into account, the problem of determining 2 schedule that
specifically minimises the Parallel Time has been shown to be NP-hard in the strong sense (3.4

There are 2 pumber of approa.ches one may adopt in attempting to address this problem :

9.1 Fully Dynamic
me information about tasks

This type of approach»is mainly used where the amount of compile-ti

to be scheduled is limited and as 3 result all scheduling decisions are post—poned until run-time.

This incurs 2 large run-time overhead in the form of increased execution time, necessary o resolve

such on-line decisions, coupled with the restriction that it is not practical to make globally optimal -

scheduling decisions at run-time.

The main advantage it has over other approaches is its flexibility in the re-direction of the
computational load based on runtime system load information in an effort to maximise throughput.
However, the efforts endured to collect load information compete with the underlying computation
during run-time, coupled with the processor reallocation cost leads to @ sacrifice in both quality

and speed of load balancing. In light of

facilitating the exploitation of compile-time information, it w
was more appropriate.

these issues and the advances in compiler technology
as felt that 2 non-dynamic approach

2.2 Fully Static
Fully Static of Compile Time Scheduling relies on the availability of reasonably accurate infor-
The

mation regarding task computation and interprocessor communicat.ion costs at compile time.
more information available, the greater the ability t0 construct determinist.ical\y optimal schedules.
Typically, ist scheduling algorithms , whereby runnable tasks are placed in 2 list sorted by their
priorities (priorities being assigned commonly by Hu’s level scheduling (8] or some variant of this)
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and the task with highest priority is assigned to the first available processor, are inappropriate as
they ignore interprocessor communication cost ( IPC ) when assigning tasks to processors which
is very significant at the scheduling phase.

Consequently, a 2-step scheduling approach has been chosen as a scheduling methodology suit-
able for the SCARE project. This involves a low complexity, Clustering heuristic (particularly
suited to coarse grain parallelism applications represented by large task graphs) which is designed
to minimise the communication overhead. This paper is concerned with an exploration of the
performance of Genetic Algorithms when applied to the Clustering technique. Other approaches
incorporate a hybridization of both dynamic and static methodologies some of which are mentioned
below: -

2.3 Other Scheduling Techniques

Quasi-Static Scheduling is used to handle the scheduling of non-deterministic tasks or dynamic
constructs such as conditional, data-dependent iteration or recursive procedures. The most chal-
lenging problem associated with it, though, is the compile-time profiling of the dynamic constructs
( involving the statistical distribution of the run-time behaviour of the constructs). This methodol-
ogy is typically employed in DSP applications, where the program is executed once for every sample
of an input stream. For such iterative executions, the objective is to maximise the throughput or
minimise the iteration period. A

Static Assignment Scheduling is where tasks are assigned to processors at compile time
but the order of execution is not. A run-time scheduler, local to each processor, orders the tasks
and invokes their execution based upon data availability. o

The Self-Timed approach orders the task execution on each processor at compile time but
leaves the exact firing time to be determined at run-time. At run-time, ‘each processor waits for
data to be available for the next task in its ordered list and then executes the task. Consequently,
the schedule can compensate for certain fluctuations in execution times. This approach is adopted
typically where there is no hardware support for scheduling (except synchronisation primitives)
or where data dependence is not a crucial issue. It is applied usually in the areas of scientific
computations and Digital Signal Processing (DSP). '

The choice between all types depends on compromises between hardware cost, performance,
flexibility and the amount of data-dependent behaviour in the expected application.

3 Task Clustering

The Clustering technique itself requires that a data dependence graph (DDG) representation of
the parallelism be extracted initially from the data dependency analysis stage. The nodes of this
graph are then mapped onto labelled tasks, which are defined as indivisible units of computation.
The resultant partitioning, containing the set of task nodes and communication/dependency edges,
may be represented by a Directed Acyclic Graph (DAG). Now, the mapping of the nodes onto an
unbounded number of completely connected, virtual processors (clusters) is carried out in order
to minimise the Parallel Time. This pre-processing step is known as Clustering (also known as
internalisation pre-pass or processor assignment) completing the first stage of the process. '
The second stage merges the clusters into p completely connected, virtual processors corre-
sponding to p physical processors in the parallel architecture, using a load balancing algorithm.
Next, the mapping of the virtual processors onto the physical ones is done so as to minimise the
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total communication cost between physical processors, taking processor distances in the parallel ar-
chitecture into account. Finally, the ordering of task execution within each processor is determined
so as to minimise the Parallel Time.

3.1 Dominant Sequence Clustering

All Clustering algorithms in the literature attempt to find the trade-off point between parallelism
exploitation and communication minimisation. Heuristic algorithms such as Kim & Browne [5],
Sarkar[3] and Wu & Gajski [6], proposed in the literature have high computational complexity (due
to a search for the longest path of the graph at each step of the algorithm) and are not optimal
for primitive DAGs (due to the zeroing of edges that do not explicitly reduce the Parallel Time).

The Clustering algorithm that we have chosen for our feasibility study is that proposed by
Gerasoulis, Venugopal and Yang [7] called Dominant Sequence Clustering. This has been shown
to perform extremely well in terms of producing a schedule for large DAGs with near-optimal
minimisation of Parallel Time (PT). Its main advantage over the other clustering algorithms is that
it clusters with low computational complexity ( O(v+e)logv time complexity). Also, it produces
optimal schedules for primitive DAGs such as fork, join or coarse grain tree graphs.

It operates by incrementally identifying the critical path of the scheduled DAG known as ihe
Dominant Sequence (DS). A scheduled DAG defines not only the partitioning of the tasks onto
processors but the local execution order aswell. Since the length of the Dominant Sequence is
equivalent to the Parallel Time, the algorithm attempts to reduce the length of the DS thus
reducing the PT. The DS is minimised using an edge-zeroing strategy, such that two or more
nodes connected by zeroed edges execute on the same processor.

n, @M

o .
1
\ PT =13
o "3 (V) FL = (n2™h)

. ~  PFL = (n*!)

n,(5) ® n2 e ns(2)

(1)

Figure 3: Dominant Sequence Clustering

Two prioritised lists are updated as the algorithm progresses, a free list, FL, containing a list of
task nodes whose predecessors have already been scheduled and a partially-free list, PFL, containing
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a list of task nodes which has at least one, but not all, scheduled predecessors. Prioritisation of
a node comprises the sum of its maximum indegree edge from a scheduled predecessor (known
as the startbound of the node) and the longest exit path from the node to a sink (known as the
node level). This is denoted by the superscript associated with each node in the FL and PFL in
Figure 3. '

In this example, n; and n, have already been scheduled in that order on the same processor
resulting in the freeing of nz and the partial-freeing of ny;. The Dominant Sequence path is
ni,ns3,ns, N, Ny yielding a Parallel Time of 13. At any stage of the algorithm, the idea is to reduce
the startbound of a node in the DS (by zeroing one of its incoming edges) thus reducing the PT.
The DS path, itself, must be going through either the head of the FL or the PFL (or both). Nodes
are always selected from the head of the FL for scheduling (since the partially free nodes are not
ready to be scheduled) and zeroing is only carried out if the startbound of the node is seen not to
increase. In such a case the target node is scheduled after the previously scheduled node in the
same cluster (for execution on the same processor). Otherwise, the target node is scheduled for
execution on a new processor. In either case, scheduling of the node incorporates the designation of
a definitive execution time and deletion of the node from the free list. In Figure 3, the target node,
ng, is scheduled on a different processor as its startbound will increase from 2 to 6 if scheduled on
the same processor as n; and ng.

At some stage it may happen that the DS goes through the head of the PFL (in which case the
priority of the head of the PFL is greater than the priority of the head of the FL). We obviously
cannot schedule this node as it is only partially free and scheduling the head of the FL may pose
a problem if we are tempted to reduce it’s startbound, as this could possibly affect the potential
reduction of the startbound of the PFL head node and hence affect the Parallel Time minimisation
potential. Hence, we schedule the head of the FL and only reduce its startbound if it is not seen
to affect the reducibility of the PFL head.

4 Genetic Algorithms

Genetic algorithms (GAs) are probabilistic search methods based on the principles of neo-Darwinian
evolution. Two pillars of this model are the mechanics of natural selection and survival of the fittest
[9]. GAs are traditionally used as optimisation tools, but now, there is a greater emphasis on the
role of GAs within the context of genetic learning and artificial evolution {11]. The focus of design
in GAs is on the representation and fitness, and not the processing mechanism itself which has
a widely accepted qualitative formulation [9]. As this suggests, the GA paradigm referred to is
portable from domain to domain, without requiring prior knowledge about the structure of the
domain topology and any implicit correlations between the problem and representation.

A GA consists of a population of solution strings or chromosomes. The string itself is known
as the genotype. The phenotype is the mapping of the genotype to the environment or problem
domain. Fitness is a measure of the viability of the phenotype within the context of a particular
environment. In GAs, an initial population of strings is generated randomly. The process of
evolution is applied in which parents of above average fitness in the population are selected for
reproduction, and their offspring added to the next generation of individuals. GAs use probabilistic
transition rules as opposed to deterministic ones. Inherent to GAs is the concept of implicit
parallelism. The genotype is composed of variants of different schemata or building blocks. Despite
the fact that GAs process only n individuals per generation, n® schemata are actually processed,
where n is the number of parents selected for reproduction. Critical to GAs is the specification
of a fitness function which is the designer’s most important task when implementing a GA. The
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fitness function specifies constraints that the GA will attempt to satisfy.

It is worth noting that processor scheduling using GAs is a one pass computational paradigm
whereas deterministic methods employ two passes. The first pass employs methods such as Domi-
nant Sequence Clustering (DSC) which map the DAG onto a multi-processor machine with infinite
processing units. The second pass maps the output of pass one onto an architecture with a specified
number of processors. In contrast, for genetic scheduling, the number of processors that the DAG
is mapped onto is specified initially.

4.1 Representation

2
~
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O"
-‘_-_—"

Input DAG Chromosome

Figure 4: Left: an example of an input DAG which is sorted topologically, each node having a computation
time and weights representing communication costs. Right: mapping of chromoseme which represents
processors to nodes.

The GA uses a fixed length Gray encoded string to represent processor scheduling. Each
string consists of genes, the number being identical to the number of nodes in the input directed
acyclic graph (DAG), which is sorted topologically. The problem of deriving undesirable correlation
between representation and the problem domain is overcome by the use of a Gray code which
preserves numerical adjacency in Hamming space [12]. This has the property that any two points
next to each other in the problem space differ by only one bit, thereby reducing the possibility of
obliteration of fit schemata or building blocks under the effects of mutation. Another advantage
of using this scheme over a floating point scheme is that it is unnecessary to explicitly define a
mutation operator, thus eliminating the introduction of hidden biases.

4.2 Fitness Function

Critical to the evolution of better solutions over time in GAs, is the evaluation of fitness which
is a measure of the success of the genotype to phenotype mapping for a specific problem doamin.
Fitness is a measure of the performance of a string, and in this caseis a metric of the speedup gained
from mapping of the DAG to a multi-processor architecture, compared to the time required for a
serial execution on a single node machine. The serial execution time is calculated by summing the
computation time of all nodes in the graph. Using serial to normalise the fitness of the string yields
an online performance measure. AA string with a fitness less than 1 yields poorer performance
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than a single node machine, fitness of one indicates equivalent performance and greater than 1
indicates the percentage gain in speedup. - ' v

Processors in the string are mapped to the corresponding nodes in the DAG. Fitness is calcu-
lated using critical path analysis, in which the DAG is viewed as an activity node graph, in which
the edges represent precedence relationships. For each node n and given

e Computation time ¢,.
e m input edges c representing communication costs from its m predecessor nodes.

o Allocation of node n to processor pp.
its earliest completion time EC, is calculated as follows:

EC] = tl
ECn = m"éx (EC,, +pn + aiﬂ)
i=1
where oy, = { g iff i and n on same processor )
n

The fitness F of string s which is mapped onto a DAG of d nodes is:
d
F, = iax (EC:) @

For all pairs of independent nodes on the same processor ie no edge from one to the other, a
transitive edge of weight 0 was inserted into the adjacency matrix resulting in a scheduled DAG.
However, applying this rule in real world applications will lead to a combinatorial explosion in
the search space. We are evaluating the heuristic that only transitive edges need be inserted for
topologically adjacent independent nodes on the same processor. We are currently working on
using Dijkstra’s shortest path algorithm to compute earliest completion time. The running time
for thisis O( | E | +|V?1).

4.3 Operators

During reproduction in which two parents are selected and their genetic material combined to form
two children, three genetic operators with associated probability factors are applied.

e Crossover: this operator randomly partitions the parent strings and recombines partitions in
the genotype of their children. Several crossover mechanisms are available, one point, two
point and uniform. This is an exploitation operator.

e Mutation: this operator changes the value of a randomly selected bit in the string. Because
a Gray encoding scheme uses only two symbols, 0 and 1, mutation just involves flipping the
selected bit. Mutation helps to maintain genetic diversity in the population of strings and
thus facilitates exploration of the search space.

e Duplication: a randomly selected gene in the child string is replaced by another randomly
chosen gene from the same string.

5 Empirical Results

A population size of 50, run for 500 generation equivalent cycles.1-point crossover was used with
a probability of 0.5. Mutation probability was set to 0.001 and 0.5 for duplication. A steady state
replacement policy was used.
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Genetic Clustering
Problem Domain

1 2 | 3

No. nodes in DAG 7 12 12

No. Processors 2 6 2

Serial Time 13 30 19

Theoretically Max DSC PT 9 17 12

Maximum GA PT 9 17 13

Achieved by generation 2 60 55

Mean processing time | 14 38, | 94 05ms | 22.2ms
per generation

Table 1: Results for genetic clustering. PT is parallel time. The maximum GA PT for each problem
domain was achieved in all test runs

The viability of genetic clustering was evaluated on three problem domains. The first DAG as
depicted in fig. 5 is a simple, yet classic one consisting of 7 nodes. The next two DAGs tested
are larger, the second as shown in fig refprob3 possesses a finer measure of granularity resulting in
the general increase in communication costs throughout the DAG. For each problem, 20 tests were
run and average fitness and generation times calculated. The results are depicted in table 1. It is
interesting to note that while problem 2 specified that six processors were available, GA clustering
scheduled the tasks using only five processors in all test runs, while still achieving theoretically
maximum parallel time (PT). This is surprising because the fitness function does not incorporate
any metric on processor usage or load balancing.

The results in figs. 5 6 and 7 illustrate and contrast both deterministic clustering using DSC
with load balancing, against genetic processor scheduling. For problem domain 1 in . refprobl
both DSC and the GA yielded identical clusters at all times. The results demonstrate that genetic
clustering can yield comparable performance to deterministic methods. For problem domains 1
and 2, the GA was able to optimize the processor schedule within a very short time span. Our
research is now directed at implementation of deterministic methods to enable benchmarking of
the GA method. Of particular interest will be the issues of scalability and load balancing.

6 Conclusions

We have shown that a GA is competitive with existing methods at capable of generating graph
clusters. The results in table 1 illustrate how similar the results are. However, the GA also appears
to demonstrate the ability to determine the optimal number of processors, while existing methods
rely on the user to supply this information to the system.
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INPUT DAG 2 NODE CLUSTER

Figure 5: Shown for problem 1 and a 2 node machine: input DAG (left), resultant clustering which
was identical for DSC and the GA (right).

INPUT DAG DSC CLUSTER (6 NODE MACHINE) GA CLUSTER ( 6 NODE MACHINE )

Figure 6: Shown for problem 2 and a 6 node machine: input DAG (left), resultant clustering using
DSC (middle), and and arbitrarly chosen cluster using the GA (right). Notice that the GA only
uses five of the six processors.
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