SCASE’99

Automatic Generation of High Level Functions using
Evolutionary Algorithms

Michael O’Neill & Conor Ryan
Dept. Of Computer Science And Information Systems
University of Limerick
Ireland
{Michael.ONeill|Conor.Ryan}@ul.ie

Abstract

Evolutionary Algorithms, based upon the Darwinian principle of Natural Selection, have
been applied with varying degrees of success to a broad range of problem domains, including
the automatic induction of computer programs. This paper describes Grammatical Evolution
(GE), an evolutionary algorithm approach to automatic programming, which employs variable
length, binary chromosomes. The binary chromosome is used in a genotype to phenotype
mapping process to select production rules of a Backus Naur Form (BNF) grammar definition
in order to generate syntactically correct programs in an arbitrary language specified by the
BNF definition.

Part of the power of GE is that it is closer to natural DNA than other Evolutionary
Algorithms, and thus can benefit from natural phenomena such as a separation of search and
solution spaces through the genotype to phenotype mapping, and a genetic code degeneracy
which can give rise to silent mutations (mutations that have no effect on the phenotype).

1 Introduction

Grammatical Evolution (GE) is a grammar based, linear genome system which is capable of
generating programs or expressions in any language. Rather than the functions and terminals
associated with GP [3], GE takes a BNF specification of a language, or subset thereof, from
which it can subsequently generate compilable code. The BNF is used to build a program
by applying production rules to elements of the non-terminal set of the BNF definition, in a
mapping process to generate the output code from a simple binary string. The evolutionary
process is thus applied to the binary strings that are the individuals in the population of the
evolutionary algorithm. During the development of GE we have attempted to harness some
of the features of the genetic machinery of living organisms which are theorised to have an
impact on the phenomenon of evolution [1].

GE has been successfully applied to a number of diverse problem domains such as symbolic
regression [8], finding trigonometric identities [9], symbolic integration [10], and the Santa Fe
trail {5]. The results compared favorably with systems such as GP, and have been shown to
outperform GP [5]. A description of GE follows.

21

SCASE’99

9 Backus Naur Form

Backus Naur Form (BNF) is a notation for expressing the grammar of a language in the form
of production rules. BNF grammars consist of terminals, which are items that can appear
in the language, and non-terminals, which can be expanded into one or more terminals and
non-terminals. A grammar can be represented by the tuple, {N,T, P, S}, where N is the set
of non-terminals, 7' the set of terminals, P a set of production rules that maps the elements
of N to T, and S is a start symbol which is a member of N. For example, below is the BNF
used for the Santa Fe ant trail problem [5], where

N = {code, line, expr,if — statement,op,if — true,if — false}

T = {left(), right(), move(), food_ahead(), else, if, {,}, ()}

S =< code >
And P can be represented as:
(1) <code> :: = <line> (4)
| <code><line> (B)
(2) <line> :: = <expr>
(3) <expr> :: = <if-statement> (4)
[<op> (B)

(4) <if-statement> :: = if (food_ahead ()) {<expr>}else{<expr>}

(5) <op> :: = left(); (a)
| right(); (B)
| move();)

Unlike a Koza-style approach, there is no distinction made at this stage between what
he describes as functions (operators in this sense) and terminals, however, this distinction is
more of an implementation detail than a design issue. In GE the BNF definition is used to
describe the output language produced by the system, that is, the compilable code produced
will consist of elements of the terminal set T'. As the BNF is a plug-in component of the
system it means that GE can produce code in any language that can be specified in the form
of a BNF definition giving the system a unique flexibility.

3 The Biological Approach

The GE system is inspired largely by the biological process of generating a protein from the
genetic material of an organism. Proteins are fundamental in the proper development and
operation of living organisms, and are responsible for traits such as eye colour, and height [1].

The genetic material, usually called DNA, contains the information required to produce
specific proteins at different points along the molecule. For simplicity, consider DNA to be a
string of building blocks called nucleotides, of which there are four, named A, T, G, and C, for
Adenine, Tyrosine, Guanine, and Cytosine respectively. Groups of three nucleotides, called a
codon, are used to specify the building blocks of proteins. These protein building blocks are
known as amino acids, and the sequence of these amino acids in the protein is determined by
the sequence of codons on the DNA. The sequence of amino acids is very important as it plays

22

a large part in determining the final three dimensional structure of the protein, which in turn
has a role to play in determining its functional properties.

In order to generate a protein from the sequence of nucleotides in the DNA, the nucleotide
sequence is firstly transcribed into a slightly different format, that being a sequence of elements
on a molecule known as RNA. The RNA molecule contains elements that are a slightly modified
form of the nucleotides that are contained within the DNA molecule. Codons within the RNA
molecule are then translated to determine the sequence of amino acids that are contained
within the protein molecule. .

The result of the expression of the genetic material as proteins in conjunction with environ-
mental factors is termed it’s phenotype. In GE the phenotype is a running computer program.
The process of generating the phenotype from the genetic material (the genotype) is termed
a genotype-phenotype mapping process, which is unlike the standard method of generating a
solution (a program in the case of GE) directly from an individual in an evolutionary algo-
rithm by explicitly encoding the solution within the genetic material. Instead, a many-to-one
mapping process is employed within which the real power of the GE system lies.

Figure 1 outlines the mapping process employed in both GE, and biological organisms.

Grammatical Evolution Biological System
T mwmem] XO000000CK ma
¢ TRANSCRIPTION ¢
[msm] ANANANS
* TRANSLATION ‘

Amino
Acids

' %

' #

Program Phenotypic Effect

Figure 1: The Grammatical Evolution System and a Biological System

4 Grammatical Evolution

When tackling any problem with GE, a suitable BNF definition must first be decided upon.
The BNF can be either the specification of an entire language, or perhaps more usefuily, a
subset of a language geared towards the problem at hand.

SCASE’99

23

SCASE’99

4.1 The Mapping Process

The genotype is then used to map the start symbol onte terminals by reading codons of 8
bits to generate a corresponding integer value, from which an appropriate production rule is
selected. A rule is selected by using the following,

(Integer Codon Value) MOD

(Number of Production Rules for the current non — terminal)

Considering the following rule,

(5) <op» :: = left(); €y
| right(Q); ' “(B)
| move(); ©)

i.e. given the non-terminal op there are three production rules to select from. If we assume
the codon being read produces the integer 6, then 6 MOD 3 = 0 would select rule (4) le).
Each time a production rule has to be selected to map from a non-terminal, another codon is
read, and in this way, the system traverses the genome.

During the genotype to phenotype mapping process it is possible for individuals to run out
of codons, and in this case we wrap the individual, and reuse the codons. This is quite an
unusual approach in EA’s, as it is entirely possible for certain codons to be used two or more
times. This technique of wrapping the individual draws inspiration from the gene overlapping
phenomenon which has been observed in many organisms in nature [1].

In GE, each time the same codon is expressed it will always generate the same integer
value, but depending on the current non-terminal to which it is being applied, it may result
in the selection of a different production rule.

What is crucial, however, is that each time a particular individual is mapped from its
genotype to its phenotype, the same output is generated, this is because the same choices are
made each time. It is possible that an incomplete mapping could occur, even after wrapping,
and in this event the individual in question is given the lowest fitness value possible, then the
selection and replacement mechanisms should operate accordingly to increase the likelihood
that this individual is removed from the population.

An incomplete mapping could arise if the integer values expressed by the genotype were
applying the same production rules over and over. For example, given an individual with three
codons, if the first codon specified rule B from below,

(1) <code> :: = <line> 1)
|<code><line> (B)

and the second, and third also specified this same rule, even after wrapping the mapping
process would be incomplete and would carry on indefinitely unless stopped. To reduce the
number of invalid individuals being passed from generation to generation, a Steady State re-
placement mechanism is employed, which in itself is a more biologically plausible than the
standard generational replacement mechanisms employed by many other evolutionary algo-
rithms. A result of the Steady State method is its tendency to maintain fit individuals at the
expense of less fit, and in particular, invalid individuals.

24

SCASE’99

4.2 Example Genotype to Phenotype Mapping

Using the grammar as given in Section 2, we shall show how the following individual is mapped
onto the output language, i.e. elements of the grammars terminal set.
Consider an individual made up of the following codons (expressed in decimal for clarity) :

(220 [10 [17 | 3 [109 | 2i5 | 104 | 30 |

The mapping process begins from the Start symbol, in this case <code>, which has two
productions to choose from. To select the rule to use the first 8 bit codon on the individual is
read and converted to an integer value, in this case 220. Using the formula given in Section 4.1
we obtain the rule to be applied to this non-terminal, i.e. 220 MOD 2 = 0, selecting rule
(A) <line>. <code> has now been replaced with <line>. The mapping process continues by
selecting productions rules for the leftmost non-terminal by reading the next codon on the
individual being mapped. The next non-terminal in this case has to be <line> which has no
choices, and therefore no codon value is read, instead it is replaced by <expr>. The <expr>
non-terminal however has two choices and so the next codon value , 10, is read in order to
select the next production rule. This gives 10 MOD 2 = 0, i.e. rule (A) <expr> is replaced
with <if-statement>. There are no choices for the <if-statement> non-terminal and so it
is replaced directly with if (food_ahead()){<expr>}else{<expr>}. The next leftmost non-
terminal is now <expr>, which is replaced with <op>, according to 17 MOD 2 = 1, which
selects rule (B). The incomplete individual now has the following form,

if (food_ahead()) {<op>}else{<expr>}.

The next non-terminal to be mapped is <op> which has three choices, and the next codon has
the integer value 3 which gives 3 MOD 3 = 0, this selects rule (A). The individual has become,

if (food_ahead()){left () ; }else{<expr>}.

The <expr> non-terminal is now replaced by reading the next codon value, 109, and getting
modulus two of it as there are two choices to be made, i.e. 109 MOD 2 = 1, rule (B). The
individual now takes the form,

if{food_ahead()){left () ; }else{<op>}.

Again, the non-terminal <op> has three choices, and so by reading the next codon value we
get the following, 215 MOD 3 = 2, rulc (C). This says that <expr> is replared with move ().
There now exists a completely mapped individual of the form,

if(food_ahead()){left();}else{move();}.

The extra codons at the end of the individual are simply ignored in the mapping process.

4.3 Genetic Code Degeneracy

Given an 8 bit binary number, each codon in GE can represent 256 distinct integer values.
However, many of these integer values can represent the same production rule, taking produc-
tion rule 5 as an example, if the current codon value was 6, then 6 MOD 3 = 0 would select
rule (A) left() as shown above. The same rule would be chosen if the codon value was 3, 9,
12, etc.

25

- SCASE’99

GENETIC CODE PARTIAL PHENOTYPE

CODON AMINO ACID
(A group of 3 Nucleotides) (Protein Component)
GGC
GGA =» Glycine
GGG
GE CODON GE RULE
00000010
00010010 _ > <line>
06100010

For Rule (1) in the example BNF, where
<code> :: = <line> (0)
t <code><line> (1)
‘i.e. (GE Codon Integer Value) MOD 2 = Rule Number

Figure 2: Genetic Code Degeneracy

A similar phenomenon can be observed in the genetic code of biological organisms, referred
to as Degenerate Genetic Code [1]. There are 43, i.e. 64, unique combinations of nucleotides in
a codon, 61 of these coding for a specific amino acid, the other three are special codons which
delimit the end of a gene on the DNA. On average, there are three codons for every amino acid,
that is more than one codon can represent the same amino acid, and it has been observed that
the first two nucleotides in the codon are often sufficient to specify a particular amino acid,
and so the value of the nucleotide at the third position is often irrelevant. Code degeneracy
has interesting implications when it comes to mutation effects. A mutation at the third codon
position can often produce what is called a silent mutation, meaning that the amino acid
specified will be the same as the one before the mutation event, due to the flexibility at the
third codon position. With respect to GE this means that subtle changes in the search space
(genotype) may have no effect on the solution space (phenotype), which could result in the
maintenance of genotypic diversity throughout a run of the system, and the preservation of
valid individuals. Figure 2 shows that in the genetic code of biological organisms the nucleotide
at position three of the codon is independent of the amino acid produced (Valine). Similarly
with GE, it can be seen in the given example that a single bit mutation has no effect on the
rule used in this case i.e. 2 MOD 2 = 18 MOD 2 = 34 MOD 2 = 66 MOD 2 = 0, the Oth
rule line.

Kimura’s neutral theory of evolution [2] states that it is these silent mutations that are
responsible for the genetic diversity which has been observed in natural populations, a phe-
nomenon which has been exhibited within GE.

As the population being evolved comprises simple binary strings, we do not have to employ
any special crossover or mutation operators, and as such an unconstrained search is performed
on these strings due to the genotype to phenotype mapping process which will generate syn-

26

SCASE’99

Santa Fe Trail
100 T T T T
GP -o—
GE -+~
A -
80 | el L
/"’
& o
e} *]
3
g
i@
2 #
k]
=]
£ 40 + b
3
r"’
20 b B
o 4

0

Figure 3: A cumulative frequency measure of GE in comparison to GP.

if (food_ahead())

{ move(}; }
else

{ move(); }
if (food_ahead())

{ 1eft(; }
else

{ left(); }
if(food_ahead())

{ 1left(); }
else

{ rightQ; }
if(food_ahead())

{ right(; }
else

{ rightQ; }
if (food_ahead())

{ move(); }
else

{ 1left();}

6 Conclusions

This paper has served to describe the biological principles employed by the Grammatical
Evolution system. Future papers [6] [7] will show that the benefits of a complex mapping
process show that the one-to-one genotype to phenotype mapping that is so prevalent in other
evolutionary algorithms is not necessarily a good idea, and that by incorporating this and
other biological principles taken from natural genetics that the performance of this system
and perhaps other evolutionary algorithm techniques can be improved.

28

SCASE’99

References

[1] Elseth Gerald D., Baumgardner Kandy D. 1995.
Principles of Modern Genetics. West Publishing Company.

[2] Kimura, M. 1983. The Neutral Theory of Molecular Evolution. Cambridge Univer-
sity Press.

[3] Koza, J. 1992. Genetic Programming. MIT Press.

[4] Langdon, W. & Poli, R. Why Ant’s Are Hard. In Proceedings of Genetic Program-
ming 1998, pages 193-201 .

[5] O’Neill M., Ryan C. 1999. Evolving Multi-line Compilable C Programs. In Pro-
ceedings of the Second European Workshop on Genetic Programming 1999.

[6] O’Neill M., Ryan C. 1999. Under the Hood of Grammatical Evolution. In Proceed-
ings of the Genetic & Evolutionary Computation Conference 1999.

[7] O’Neill M., Ryan C. 1999. Genetic Code Degeneracy: Implications for Grammatical
Evolution and Beyond. Submitted to the 5th European Conference on Artificial Life
1999.

[8] Ryan C., Collins J.J., O'Neill M. 1998. Grammatical Evolution: Evolving Programs
for an Arbitrary Language. Lecture Notes in Computer Science 1391, Proceedings
of the First European Workshop on Genetic Programming, pages 83-95. Springer-
Verlag. i

[9] Ryan C., O'Neill M., Collins 3.J. 1998. Grammatical Evolution: Solving Trigono-
metric Identities. In Proceedings of Mendel '98: 4th International Conference on
Genetic Algorithms, Optimization Problems, Fuzzy Logic, Neural Networks and
Rough Sets, pages 111-119.

[10] Ryan C., O'Neill M. Grammatical Evolution: A Steady State Approach. In Late
Breaking Papers, Genetic Programming 1998, pages 180-185.

29

= s S e

UNIVERSITY OF LIMERICK, IRELAND
APRIL 1999

Kapjong ‘[pue ueky °D

:SIOYPH

6661 THAV ¥ 1-4C1
"puepai] Yo

SuLouiduyg aremyos
03 parjddy Sunndwo)) yog uo doysyiom
[BUONRUINU]] SY} JO SUIPIIV0I]

66.ASVIS

ISBN: 1-874653-52-6
Limerick University Press.

SCARE

Soft Computing and Re-Engineering Group.
University of Limerick, Ireland.

Funding by Forbairt.

ii

