
CEC-2005, Edinburgh, 2-5 September 2005, Volume 3, pp2621–2628, IEEE press

Evolutionary Solo Pong Players
W. B. Langdon and Riccardo Poli

Computer Science, University of Essex CO4 3SQ, UK

Abstract- An Internet Java Applet
http://www.cs.essex.ac.uk/staff/poli/
SoloPong/ allows users anywhere to play the Solo
Pong game. We compare people’s performance to a
hand coded “Optimal” player and programs automat-
ically produced by computational intelligence. The
computational intelligence techniques are: genetic
programming, including a hybrid of GP and a human
designed algorithm, and a particle swarm optimiser.
The computational intelligence approaches are not fine
tuned. GP and PSO find good players. Evolutionary
computation (EC) is able to beat both human designed
code and human players.

1 Introduction

Game playing is a long established human activity and has
been widely used as a test bed for artificial intelligence
experiments. Amongst these board games, like chess, go
and draughts, have been successfully played by both rule
based and evolutionary methods[Schaefferet al., 1993;
Fogel, 2001], however evolutionary computation can also
be applied to other types of games, in particular continu-
ous real-time games[Kendall and Lucas, 2005; Leen and
Fyfe, 2005]. Solo Pong is one such game (cf. Figure 1).
Not only must the player decide where to place the paddle
in order to keep the ball in play, including considering what
will happen in the longer term, but must also plan to get it
into position before the ball crosses the base line and goes
out of play. To really master the game, the player must also
consider what will happen after the next bounce.

It is interesting to see two computational intelligence
techniques being used for control. Not that this is the first
time they have been used in control applications. For exam-
ple, Koza has used genetic programming to evolve optimal
control strategies[Koza, 1992; Kozaet al., 1997]. While
PSO control applications tend to be in electrical power
transmission, e.g.[Yoshidaet al., 2000].

The following section describes Solo Pong in more de-
tail. Section 3 describes the Human and various computer
algorithms which play Pong. The length of time they can
keep each ball in play is given in Section 4, while their
strategies are described in Section 5 before we conclude (in
Section 6).

2 Solo Pong

In Solo Pong the user is presented with a rectangular two
dimensional Squash Court enclosed on 3 sides (Fig 1) con-
taining an elastic ball. The bottom side is open. The player
has a banana shaped paddle, which must be positioned so as
to prevent the ball going out of the court. The ball speeds

100 500
120

50560

Figure 1: Pong game. The goal is to move the paddle (black
arc) horizontally so ball that it bounces from it back into the
top arena and so keep the ball in play for as long as possible.
Five ball positions from the largest serve angle in the 21
training examples are shown.

up every time it hits the paddle. The paddle is both subject
to friction and has inertia. That is, the player cannot move
the paddle instantaneously. The game requires both thought
to predict where the paddle should be as well as dexterity
with the mouse to control it. In human play, the frame rate
was set at the best speed to allow sufficient thought as well
as time to move the paddle. The following two sections de-
scribe in detail the motion of the ball and paddle.

2.1 Simulating Ball Position and Bounces

The ball moves with constant velocity until it strikes one
of the walls or the paddle. Bounces from the walls are
perfectly elastic. Should the ball pass the base line, it is
considered lost and another ball is served from the centre
of the top line in a random direction (within±1 radians).
The paddle is not flat. This means, unless the ball strikes
its centre, the ball’s deflection angle will be different from
the incidence angle. This effect increases linearly along the
length of the paddle. A ball just clipping it will have its hor-
izontal velocity increased or decreased by 5 pixels/frame.
The ball’s vertical velocity is increases by 10% each time it
strikes the paddle, so each ball gets progressively more dif-
ficult to play. Eventually the ball becomes so fast that the
unavoidable integration instabilities in the simulator ensure
none of the algorithms can keep it in play.

2621

http://www.cs.essex.ac.uk/staff/W.Langdon
http://www.cs.essex.ac.uk/staff/poli
http://www.cs.essex.ac.uk/staff/poli/SoloPong/
http://www.cs.essex.ac.uk/staff/poli/SoloPong/

The simulation runs in discrete time, so changes in
ball/paddle location and velocity are calculated at regular
intervals (known as the frame rate, 10s−1). This effectively
adds some noise to the system. In particular it makes it
harder to predict the path of the ball after it bounces.

2.2 Simulating Paddle Location and Velocity

The paddle is moved by an external force which has to over-
come both inertia and friction. In each frame its position
and velocity are updated. It cannot pass the left and right
walls but does not bounce off them as the ball does, nor do
collisions with the walls drop its velocity instantaneously
to zero. (So the simulator allows the paddle to appear to
be at rest, since it cannot move through the walls, but still
has inertia which must be overcome by the external force.)
The external force cannot exceed 1 pixelframe−2. The
frictional force is proportional to the velocity of the paddle
(both are unbounded). That is

Friction = −1.0× paddle velocity

(expressed in units of pixels and frames).

3 Players – Human, Optimal, GP and PSO

3.1 Human

In order to assess the typical performance of human play-
ers, we asked eight subjects to play Solo Pong in the same
experimental conditions. Each of the subjects was give a
short introduction to the game and a few minutes to play the
game and familiarise themselves with the paddle controls
and game dynamics. All player were fit young or middle
age adults with no disabilities. The simulation speed (10
frames per second) was chosen to be slow enough to achieve
high scores by people but fast enough not to become boring.

When a human player controls the paddle, the mouse
pointer horizontal position is constantly assessed and com-
pared with the position of the paddle. A positive force is
applied to the paddle when the paddle is to the left of the
pointer, and vice versa. The force is proportional to the hor-
izontal displacement between paddle and pointer, but it is
clipped to the range[−1,+1]. This is the same clipping as
is used for the automatic players described below.

3.2 Optimal Player

Since some automatic players are extremely good and can
keep a ball in play for a long time their frame rate was in-
creased ten fold to keep time for simulations reasonable. (In
automatic play frame rates as high as 400 per second can be
reached on an ordinary personal computer.)

All the automatic players are given the same informa-
tion, their control output is fed into the paddle controller in
the Pong simulator and their performance is calculated in
the same way. The strategy of the optimal player, which
we will call Optimus hereafter, is, given the current location
and velocity of the ball, to predict where it will cross the
base line. (Purely for illustrative purposes, the prediction is

displayed as a small red dot on the screen.) Except when
it comes into contact with the walls or the paddle, the ball
moves in a straight line at constant speed. Thus when no
bounces are involved, predicting the ball crossing point is
straightforward. However if the player waits until after the
last bounce he will often not have sufficient time to move the
paddle to intercept the ball. Apart from simulation noise,
Optimus is coded to deal correctly with bounces from the
walls. The other approaches find this very hard.

Given the current location and velocity of the paddle,
Optimus places the paddle at the predicted location as fast
as possible leaving it at rest (effectively using a bang-bang
type of control). Having the paddle at rest means it can be
driven to the left or the right with equal ease for the next
bounce. Since predicting bounces from the banana shaped
paddle is difficult, Optimus only tries to predict as far as the
next base line crossing. Optimus knows the physics used by
the simulator for both ball and paddle, whereas the GP and
PSO approaches have to learn these.

Optimus drives the paddle with maximum force towards
the predicted place where the ball will cross the base line
until the paddle and prediction are sufficiently close that it
must apply an opposing force to overcome the paddle’s in-
ertia and bring it to rest. Naturally this speed reduction is
also done with maximum force.

Assuming continuous time, rather than the discrete time
used by the simulator; letv represent the velocity of the pad-
dle. Thenv̇ = F − fv. WhereF is the applied force andf
is the frictional coefficient. The solutions to this differential
equation are linear combinations of decaying exponentials.
In particular when slowing,v = −v∞ + (v0 + v∞)e−ft

(note v∞ = F/f is the paddle’s terminal speed andv0

is its current velocity). Integrating this gives the distance
travelled asx = (v0 + v∞)(1 − e−ft)/f − v∞t. Opti-
mus wants to bring the paddle to rest (v = 0) so this will
taket = 1

f log(1 + v0/v∞) during which time it will travel
x = (v0 − v∞ log(1 + v0/v∞))/f .

That is, Optimus continues to push the paddle towards
the target until it is withinx of its prediction, after which
it directs the force away in order to bring the paddle to rest
as fast as possible. So all Optimus has to do, each frame,
is to calculate1

f (v − v∞ log(1 + v/v∞)) and decide if this
is bigger or smaller than the distance between the paddle’s
current position and where Optimus wants it to be. (Given
the discrete nature of the simulation, in practice this control
strategy gives rise to small oscillations about the target set
point.)

3.3 Genetic Programming
Genetic programming is a well known automatic program
induction method[Koza, 1992; Banzhafet al., 1998; Lang-
don, 1998; Langdon and Poli, 2002]. We used a Java ver-
sion of tinyGP, extended to include double precision con-
stants[Poli, 2004]. Details are summarised in Table 1. GP
evolves a function. Each frame, the evolved function, as
with the optimal player, is given the current state of the ball
and paddle. It returns a number which is truncated to the
range−1 . . . + 1 and this is used to force the motion of the
paddle.

2622

Table 1: GP Solo Pong Parameters

Function set: +−× DIVa

Terminal set: 110 terminals, including: ballx, bally,
paddlex in pixels, ball velocity (x, y) and
paddle velocity (x) in pixels per frame (hy-
brid uses Optimus’ prediction as its7th ter-
minal). The remaining terminals are con-
stants uniformly randomly chosen in the
range−2 . . . + 2

Fitness: 21 balls are served from the middle of the
top line of the court (401 × 385) each at a
different angle,−1 . . . + 1 every 0.1 radi-
ans. Initial vertical velocity is 10 pixels s−1

Selection: steady state binary tournaments for both
parent selection and who to remove from
the population

Initial pop: Trees randomly grown with max depth of 6
(root=0)

Parameters: Population 5000. 10% crossover, 90% mu-
tation (2% chance of mutation per tree
node).

Termination: generation 20

a DIV is protected division I.e. if|y| <= 0.001 DIV(x, y) = x
else DIV(x, y) = x/y.

When a child is produced by mutation, it is created by
copying its parent and then every node with in it is sub-
jected to a 2% chance of random change. This counteracts
bloat [Langdonet al., 1999] since larger programs tend to
suffer more mutations. The fitness function used to guide
the evolution of the GP and the other two players (described
in the following sections) is also given in Table 1.

3.4 Optimus/GP Hybrid

A hybrid of the Optimus player and genetic programming
is evolved by first running the prediction part of the optimal
algorithm. This prediction is passed to the GP as a seventh
input (leaf of the tree) and GP is evolved as before.

3.5 Particle Swarm Optimisation

An initial study of the functions evolved by tinyGP sug-
gested that many evolved trees were simple polynomials.
This was used as inspiration for a fixed representation to be
used by the particle swarm[Kennedyet al., 2001; Crichton,
2002]. This allows all constant, linear and quadratic inter-
actions between the same six inputs as used by the optimal
and GP algorithms, making a total of1 + 6 + 21 = 28
terms. Each is scaled by a double precision parameter, ini-
tially chosen at random from the range0 . . . + 1. For each
parameter the PSO also maintains a velocity (initially zero)
and remembers the parameter value associated with the best
performance achieved by the particle. In preliminary ex-
periments we tested various other alternative initialisation
strategies, including more standard ones with symmetric
ranges and non-zero initial velocities. However, these pro-

vided no noticeable performance improvement with respect
to the simple one we finally adopted.

As with genetic programming (cf. Sections 3.3-3.4), we
used a standard PSO without special mutation operators, re-
stricted neighbourhoods or problem specific parameter tun-
ing. However, we have not tried a hybrid combination of
PSO and Optimus.

The particle swarm consists of 20 particles. In addition
to remembering the best set of parameters seen by each par-
ticle, separately the swarm maintains the best set seen over-
all. This becomes the final set used. At each iteration the
fitness of each individual is calculated (in the same way as
for the GP) and the best statistics are updated. Then the
velocities and positions of each particle are updated before
running the next iteration. A total of 1000 iterations are
used. At each iteration, the velocity in each of the 28 di-
mensions is changed by a random fraction of the distance
between where the particle is and the best point it has seen,
plus a random fraction of the distance between it and the
best point seen by the whole swarm. Both random fractions
are chosen uniformly from the range0 . . . 0.5. As is usual in
PSO, the parameters are clipped to lie in the expected range
of sensible values. Guided by the results of GP runs, we
chose−5 . . . + 5.

4 Results

Pong is one of those applications where there is no known
perfect solution to a problem. In cases such as this, we are
not really interested in how quickly or how reliably each
method solves a problem, but rather what’s the best solution
a method can provide after repeated runs. So, each of our
automated methods was run numerous times, in an attempt
to evolve a really good player. We then chose the best play-
ers we were able to obtain with each method and compared
them.

In preliminary runs we adjusted the parameters of each
method so as to maximise solution quality. As a result we
ran GP with a population of 5000 individuals for 20 genera-
tions and while we ran the PSO with a population of 20 in-
dividuals for 1000 iterations. So, in each run GP did 5 times
more fitness evaluations than PSO. However, since the PSO
runs much faster than GP, we could compensate for this by
running the PSO many more times than GP.

The players performance on the 21 fixed training cases
and in general is summarised by Table 2. Even with the high
variation between individual balls, non-parametric tests,
such as Kolmogorov-Smirnov, confirm each type of player’s
performance is significantly different from the others.

There are two differences between training and testing:
1) in training balls are initially served at an angle chosen at
random between−1 . . . + 1 rather than at 21 fixed angles.
2) the limit of 1000 frames is removed, the ball remains in
play until it is lost. With all the players, the length of time
they can keep a ball in play is very variable. It appears to
depend mainly on whether the player can return the initial
serve or not. Balls at a large angle strike the walls multiple
times and are most difficult (see Figure 1).

2623

Table 2: Pong performance. Average time ball is kept in
play. All times normalised to 10 frames s−1. The4th col-
umn refers to the number of times when the paddle did not
return the ball even once. I.e. the game scored anaceagainst
the player.

Player Training Balls unplayed Mean (SD)
Human - 10 5 16 (13)

- 10 5 25 (24)
- 15 - 26 (24)
- 10 4 21 (19)
- 10 6 15 (18)
- 10 7 10 (12)
- 10 4 17 (15)

10 7 10 (10)
- 10.6 5.7 18 (18)

PSO 40 200 79 32 (31)
Optimus - 200 32 50 (25)
GP 59 200 141 126 (151)
GP Hybrid 91 130 44 564 (548)

5 Strategies

5.1 Human

Even over only ten balls each, there is clearly high varia-
tions between players. People would complain of having
had several difficult serves to play. We view the serving of a
ball immediately after the previous one went out of play as
part of the game. The means the player has to concentrate
throughout. Loss of concentration can be immediately pun-
ished by failing to return a succession of balls. To prevent
user fatigue the number of balls used to collect data was
limited to ten (there was no limit on the number available
for practise).

The best strategy appears to be to carefully predict where
the ball will cross the base line and position the paddle there
as fast as possible. The best human players were able to use
the off-centre bounces from the paddle to straighten the ball
to be nearly vertical, but most others could not do that.

5.2 Optimus

The human designed player is clearly very good. Its princi-
ple strength is predicting where the ball will cross the stop
line. As noted in Section 2.1 the simulator does not simu-
late Newtonian physics exactly and some noise is injected
at each bounce. Optimus does not know about this and is
incapable of learning it, thus its long range predictions are
slightly inaccurate. Nevertheless they are good enough for
most situations. The hand coded strategy does not try to
play more than one return in advance.

5.3 Genetic Programming

All the evolved players learn to exploit the banana shape
of the paddle so as to deflect the ball not at the same an-
gle (which is what Optimus is effectively trying to do) but
closer to the vertical. A vertical ball is both easier to pre-

-

+ +

/ bvx -0.73 *

-0.73 +

- -3.58

+ -

by bvy px pvx

- 0.62

+ -

0.62 pvx + px

bx bvx

Figure 2: GP evolved strategy to play Pong
(simplified by collapsing constant expressions).
Given the magnitude of the various parameters
This is approximately ballx−velocity + 0.62 ×(
(ballx − paddlex) + (ballx−velocity − paddlevelocity)

)
dict and requires less movement of the paddle making the
next bounce easier to deal with. Figure 2 describes a pro-
gram evolved in a typical run. Since the subtree under the
protected division operation typically returns a small value,
to a first approximation we can interpret the GP strategy as
follows. In order to catch the ball the program constantly
tries to reduce the difference both inx position and in speed
between paddle and ball (see term multiplied by 0.62). If
the ball does not move too fast and the trajectory is not too
angled, this is sufficient to hit the ball with the middle of
the paddle. When the paddle matches both the ball’s posi-
tion and speed, the termballx−velocity becomes prominent.
This modifies the basic strategy just described: unless the
ball’s trajectory is vertical, it will try to hit the ball with one
of the sides of the paddle in such a way as to straighten the
ball’s trajectory. This is what provides evolved players an
edge over Optimus.

5.4 GP Hybrid

The hybrid program (see Figure 3) is the clear winner. It
appears that giving GP the same prediction as is calculated
for Optimus enables GP to concentrate on the finer parts of
controlling the ball with the paddle. However, GP is not
presented with more information than before: it is given the
same information but crucially it is presented in a different
way. (Optimus’ prediction, which is given to the hybrid
GP, is also calculated from this information. So no new
data is being given to the GP.) So, we expect that with a
very large population GP would be able to evolve players as
good as those evolved by GP Hybrid, but it is clear the new
representation makes evolving superb players much easier.

2624

/

0.46 /

-0.34 -

-0.69 +

- bvx

+ +

bvx pred pvx px

Figure 3: Hybrid evolved strategy to play Pong (after
original 51 node tree simplified by collapsing constant ex-
pressions). Given the magnitude of the various param-
eters this is approximately1.34((prediction − ballx)+
(ballx−velocity − paddlevelocity) + ballx−velocity + 0.69)

While slightly simplistic, if we compare the hybrid strat-
egy with the previous GP one (Figure 2) the principal struc-
tural difference is to replace the ball’s current position with
the prediction of where it will be.

Figure 4 suggests the hybrid strategy has traded a small
reduction in the number of initial serves it successfully re-
turns for the ability to play the others for much longer.

5.5 Particle Swarm Optimisation

The swarm finds 28 non-zero coefficients to the quadratic
polynomial used to drive the paddle. The polynomial is
very fast to evaluate but difficult to interpret in terms of a
game strategy. The fitness function does not seem to be
well suited to PSO, with large areas of the 28 dimensional
parameter space having identical scores. Nevertheless the
swarm produces players nearly as good as the hand-coded
optimal strategy.

5.6 Discussion

The optimal player was coded knowing the Newtonian laws
of motion for the whole system. Thus given the current state
the entire future should be known. In practice (as in real
life) the physics simulator introduces noise. It is not sur-
prising the optimal player does so well. However, given the
size of the court, the ball speed etc., there are some serves,
which even it cannot return. This explains the initial peak in
length of time each ball is played, see Figure 4. Subsequent
smaller peaks corresponding to balls being initially returned
but lost the next time and even (for some players) after two
successful returns.

For illustration purposes, Figure 6 shows five typical
paths taken by balls across the court when the paddle is
controlled by evolved players. Note how the player has
learnt to straighten the path so when the ball next returns
to the base line it has moved only a small amount. However
eventually the exponential increase in ball speed defeats the
player. The four other traces correspond to higher angle
initial serves. These are harder to play (so the traces are
shorter). When the angle is high the ball will bounce from
the walls. Except Optimus, this defeats many players.

Figure 4 makes it clear for hard serves, the length of play
distribution is dominated by discrete effects associated with
how long it takes the ball to pass from one end of the court
to the other. If failure to return the ball was an independent
random event, i.e. the chance of returning each bounce is
approximately constant, the length of time the ball was kept
in play would be an exponential distribution. Of course, we
cannot expect our players to match this simple model, since
the speed of the ball increases each time it hits the paddle.
However, Figure 5 hints that an exponential distribution is
compatible with our observations, particularly for the hy-
brid player. The exponential distribution has a standard de-
viation equal to its mean. Looking back to Table 2 we see
this is approximately true of every player. This indicates
although the players ability to return each ball increases
with time thanks to their trajectory-straightening strategy,
this increase in performance is matched by a correspond-
ing increase in difficulty due to the ball speeding up over
time. So, the number of balls lost per unit of time is ap-
proximately constant, thereby leading to an approximately
exponential distribution.

6 Conclusions

Despite tuning the speed of the game to suit Human players
all of the computer algorithms were able to beat even the
best human player.

The use of particle swarms for game playing is not well
established, so we are pleased that not only did PSO beat all
the Human players but also came near the Optimus player.
It was also faster to train than either genetic programming
approach.

Not surprisingly the optimal player is hard to beat. Nev-
ertheless it is not omnipotent and looks ahead only as far
as where the paddle must be placed next. The first genetic
programming approach is given the same information but
managed to evolve a program which exceeds it. The combi-
nation of genetic programming and the optimal player read-
ily evolves programs which not only intercept the ball but
control it, leading to enormous scores.

Acknowledgements

We would like to thank Simon Lucas, Pierre Collet and oth-
ers for helpful suggestions, and the volunteers for their par-
ticipation in this study. Also, we would like to acknowledge
support from EPSRC grant GR/T11234/01.

2625

http://gow.epsrc.ac.uk/ViewGrant.ASPx?Grant=GR/T11234/01&bannerlink=Programme%20support

0

10

20

30

40

50

60

70

80

90

4secs 12s 20s 32s 1min 2m 4m 6m 10m 20m 1hour 2h
Length of play

PSO
Optimal

GP
GP hybrid

Figure 4: Histogram of lengths of time individual balls are in play. (Data for the GP Hybrid has been rescaled to be in the
same proportions as the others.) The peak at 4 seconds corresponds to serves which were not returned. Peaks at 12 and
20 seconds can be explained as the player returning the serve once (12) or twice (20). While the third peak may be due to
the time taken to transit the court seven times being somewhat more than7× 4 seconds and so players failing to return the
ball a third time tends to fall into data collection bin 32 rather than 28. The other peaks remain unexplained. Nevertheless
it is clear that the GP hybrid, GP and PSO keep the ball in play longer than the hand coded player and the human players.
(Human data given in Table 2). See also Figure 5 for a discussion of the tail of the distribution.

1

10

100

0 15 30 45 60 75 90 105 120

B
al

ls
 n

ot
 re

tu
rn

ed

Length of play (mins)

Figure 5: Histogram of lengths of time individual balls are in play for GP hybrid (same data as Figure 4) An exponential
tail after 15 minutes of play is hinted at by linear (on this log scale) reduction in balls lost with time played. Note there are
few data after 30 minutes, and so they are subject to large amounts of noise.

2626

base line

top

wall 300wall

54deg 3.9 secs
48deg 3.9 secs

base line

top

wall 300wall

 26deg 11.1 secs
-23deg 17.7 secs

base line

top

wall 300wall

Times paddle stopped ball

1
2

3
4

5

6
789

10

11
12
13
1415

16
17
18

19
2021

-2deg 72.8 secs

Figure 6: Examples ball play. Here we show a PSO player but GP is similar. The ball is initially served from the top
in the centre (300). Larger initial server angles are more difficult to reach, leading to many misses and a high variance in
performance. The lower box shows a long game (72.8 seconds) in which the PSO returns the ball 21 times. Good players
learn to use the banana shape of the paddle to progressively reduce the angle, making the next return more vertical and so
easier to play. Near the middle of the rally there are periods when the ball moves almost vertically (6-10, 11-15, 16-19).
However the exponential increase in ball speed makes it harder to control. After return 19, the angle increases and the PSO
player can only return it twice more (20, 21).

2627

Bibliography

[Banzhafet al., 1998] Wolfgang Banzhaf, Peter Nordin,
Robert E. Keller, and Frank D. Francone.Genetic Pro-
gramming – An Introduction; On the Automatic Evolu-
tion of Computer Programs and its Applications. Morgan
Kaufmann, 1998.

[Crichton, 2002] Michael Crichton.Prey. HarperCollins.

[Fogel, 2001] David B. Fogel. Blondie24: Playing at the
Edge of AI. Morgan Kaufmann Publishers, 2001.

[Kendall and Lucas, 2005] Graham Kendall and Simon
Lucas, editors.IEEE 2005 Symposium on Computational
Intelligence and Games CIG’05, Essex, UK, 4-6 April
2005. IEEE Press.

[Kennedyet al., 2001] James Kennedy, Russell C. Eber-
hart, and Yuhui Shi.Swarm Intelligence. Morgan Kauf-
mann, San Francisco, 2001.

[Kozaet al., 1997] John R. Koza, Forrest H Bennett III,
Martin A. Keane, and David Andre. Evolution of a time-
optimal fly-to controller circuit using genetic program-
ming. In John R. Koza, Kalyanmoy Deb, Marco Dorigo,
David B. Fogel, Max Garzon, Hitoshi Iba, and Rick L.
Riolo, editors,Genetic Programming 1997: Proceed-
ings of the Second Annual Conference, pages 207–212,
Stanford University, CA, USA, 13-16 July 1997. Mor-
gan Kaufmann.

[Koza, 1992] John R. Koza.Genetic Programming: On the
Programming of Computers by Means of Natural Selec-
tion. MIT Press, 1992.

[Langdon and Poli, 2002] W. B. Langdon and Riccardo
Poli. Foundations of Genetic Programming. Springer-
Verlag, 2002.

[Langdonet al., 1999] William B. Langdon, Terry Soule,
Riccardo Poli, and James A. Foster. The evolution of size
and shape. In Lee Spector, William B. Langdon, Una-
May O’Reilly, and Peter J. Angeline, editors,Advances
in Genetic Programming 3, chapter 8, pages 163–190.
MIT Press, 1999.

[Langdon, 1998] William B. Langdon. Genetic Program-
ming and Data Structures. Kluwer, 1998.

[Leen and Fyfe, 2005] Gayle Leen and Colin Fyfe. Train-
ing an AI player to play pong using a GTM. In Graham
Kendall and Simon Lucas, editors,IEEE 2005 Sympo-
sium on Computational Intelligence and Games CIG’05,
pages 270–276, Essex, UK, 4-6 April 2005. IEEE Press.

[Poli, 2004] R. Poli. Tinygp. See TinyGP GECCO
2004 competition athttp://www.cs.essex.ac.
uk/staff/sml/gecco/TinyGP.html .

[Schaefferet al., 1993] Jonathan Schaeffer, Norman
Treloar, Paul Lu, and Robert Lake. Man versus machine
for the world checkers championship?AI Magazine,
14(2):28–35, 1993.

[Yoshidaet al., 2000] H. Yoshida, K. Kawata,
Y. Fukuyama, S. Takayama, and Y. Nakanishi. A
particle swarm optimization for reactive power and
voltage control considering voltage security assessment.
IEEE Transactions on Power Systems, 15(4):1232–1239,
2000.

2628

http://www.genetic-programming.com/jkpdf/gp1997flyto.pdf
http://www.genetic-programming.com/jkpdf/gp1997flyto.pdf
http://www.springeronline.com/3-540-42451-2
http://www.cs.bham.ac.uk/~wbl/aigp3/ch08.ps.gz
http://www.cs.bham.ac.uk/~wbl/aigp3/ch08.ps.gz
http://www.cs.ucl.ac.uk/staff/W.Langdon/gpdata/
http://www.cs.ucl.ac.uk/staff/W.Langdon/gpdata/
http://www.cs.essex.ac.uk/staff/sml/gecco/TinyGP.html
http://www.cs.essex.ac.uk/staff/sml/gecco/TinyGP.html

	Introduction
	Solo Pong
	Simulating Ball Position and Bounces
	Simulating Paddle Location and Velocity

	Players -- Human, Optimal, GP and PSO
	Human
	Optimal Player
	Genetic Programming
	Optimus/GP Hybrid
	Particle Swarm Optimisation

	Results
	Strategies
	Human
	Optimus
	Genetic Programming
	GP Hybrid
	Particle Swarm Optimisation
	Discussion

	Conclusions

