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ABSTRACT
Recently a GPGPU application had to be redesigned to
overcome performance problems. A number of software en-
gineering lessons were learnt from this and other projects.
We describe those about obtaining high performance from
nVidia GPUs and practical aspects of CUDA C software
development.
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Performance
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1. INTRODUCTION
For about forty years it was a given that if you wanted your
software to run faster, all you had to do was wait eighteen
months and a faster computer would come along. Those
days are gone. The software industry is still coming to terms
with having to live with 3GHz processors. However the orig-
inal Moore’s law did not promise ever faster CPUs but talked
of doubling the size of electronic circuits [1]. The consumer
computer games market continues to reap the benefits of
Moore’s law by diverting the extra transistors it continues
to deliver into ever more capable parallel computing.

Engineers and scientists noted that the graphics card in
their computers had become more powerful than its CPU
and started devising ways to speed up their applications by
running parallel versions of them on their computer’s GPU.
Thus the field of general purpose computation on graphics
hardware GPGPU was born [2].
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Figure 1: nVidia CUDA Mega Threading (Fermi).
Each thread executes the same instruction. When
program branches, some threads advance and oth-
ers are held. Later the other branches are run to
catch up (known as thread divergence). If a thread
is blocked waiting for off chip memory another set of
threads can be started. In Fermi (compute level 2.0)
shared memory and cache can be traded, either
16 kbytes or 48 kbytes. Constant memory appears
as up to 64 kbytes via a series of small on chip
caches [3]. Threads of the same warp can read the
same value but reads to different data are queued
(known as warp serialisation).

There are many documents and tutorials on how to pro-
gram graphics hardware for general purpose computing.
Mostly they are concerned with perfect code written by ex-
perts. After a quick introduction to CUDA, Section 3 gives
some practical ideas on how to produced reasonably fast
GPGPU applications. In practice this always requires in-
teraction between implementing “improvements” and mea-
suring your software’s performance to see if they really did
have the desired effect (speeding up your code). Section 4
describes real ways to measure performance. This is not
a general tutorial on CUDA, however the last two sections
give practical advice for when you get started (Section 5)
and some ideas for where to look for help if you hit prob-
lems and discuss alternative approaches (Section 6).
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Figure 2: Park-Miller random numbers created
per second (excluding host-GPU transfer time) on
three nVidia GPUs. Top 2 plots refer to the same
CUDA implementation and lower ones to Rapid-
Mind code. ftp code cs.ucl.ac.uk /genetic/gp-

code/random-numbers/ cuda_park-miller.tar.gz. Plots
from [4] extended to include Fermi C2050.

2. CUDA
Although the reader will need to be familiar with nVidia’s
parallel computing architecture, we start with Figure 1 which
shows how a CUDA application must make a trade off be-
tween the various storage areas, parallel computation threads
and how having very many threads ready to run helps keep
the many computation stream processors busy and the whole
application efficient. (Figure 1 assumes that the requested
data are not in Fermi’s cache.)

Figure 2 emphasises the need to divide the work between
many threads. As expected performance rises more or less
linearly as more threads are used. However notice that this
continues even when the number of threads exceed the num-
ber of processing elements. While application and GPU spe-
cific, a rule of thumb suggests maximum performance with
at least 10 threads per stream processing core.

3. PERFORMANCE
As novice programmers we were taught that we should get
the code working before we worried about performance. CUDA
programmers are often far from being novices. A common
assumption is that a serial version of the application exists
and it is “only”a matter of porting it to CUDA. Ideally then
we should start by planning how the code will be run in par-
allel, how many threads and how they are to be grouped into
blocks. Where data will be stored, how much memory will
they occupy and how and in what way will it be accessed. In
other words we should start by designing for performance.
However coding kernels remains difficult and no software
plan survives first contact with the GPU hardware. The al-
ternative of developing prototype kernels has its attractions
however getting a perfect prototype kernel is not necessarily
easier than coding any other perfect software. In practice,
GPGPU software production tends to fall between the two.
That is as problems arise, some can be fixed immediately,
others cause more drastic changes to the plan. These prob-

GPU Chip

2.6 GBytes

Processors

84 Gbyte/S

PCI

448

5.8Gbyte/S
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Figure 3: Links from GPU chip to host computer
via PCIe bus and to memory on the GPU board.
Fermi C2050.

lems need not cause the wrong answer to be calculated but
may be performance related or because, for a particular new
work load, it is realised that some data will not fit into an
available memory store. Since faulty kernels tend to give lit-
tle indication of ultimate performance it becomes necessary
to debug each new implementation of each new design. This
is time consuming [5].

3.1 Performance by Design
We have the usual problem that we do want to spend ages
debugging a poor design and we do not know for sure how
software will perform until we have written it. This section
gives some rules of thumb to consider when designing your
CUDA application. These might also be illuminating when
trying to tune it.

• How much of your application can be run in parallel?
If it it less than 90% then stop. Even if you are able
to speed up the parallel part infinitely, so that it takes
no time at all, you will still only increase the whole
application ten fold. This is not worth your time.

• In evolutionary computing applications the resource
consuming part is the fitness evaluation of the pop-
ulation. Usually the fitness of each member of the
population can be run independently in parallel and
so fitness evaluation is an ideal candidate for parallel
computation. This has been repeatedly recognised [6].
Indeed the comparative ease of parallelising popula-
tion based algorithms has lead to them being called
“embarrassingly parallel”.

Recall from Figure 2, CUDA applications typically
need thousands of threads to get the best of GPUs.
If your population does not contain thousands of in-
dividuals, perhaps there are aspects of each individual
fitness evaluation which could be run in parallel? Ob-
viously this is application specific.

• Estimate how much computation your application will
need. Express this as a fraction of your GPU’s perfor-
mance. Remember nVidia’s performance figures are
the best that the GPU can do and so are typically
much more than your kernel will get in practice. Is
the fraction low enough to make the GPU a viable
approach?

• From your block level design locate its bottle neck. See
GPU block diagram in Figure 3. We can try and find
the limiting part of your design in advance of coding
by estimating:
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1. The number of bytes of data uploaded into your
GPU.

2. The number of bytes from your GPU back to your
PC.

3. How many times the PC interacts with the GPU
(either to transfer data or start kernels).

4. Do the same for global data flows from global
memory into your kernel and from it back to global
memory. Assume you are going to code your ker-
nel so it does not use local memory.

5. In principle we could consider other bottle necks
but already we are getting into detail and relying
on assumptions which may turn out to be wrong.

For GPUs connected to a traditional PC via a PCIe
bus we can get a good estimate of the time taken to
transfer data across the PCIe by dividing the size of
the data to be passed by the advertised speed of the
bus. Take the lower estimate of your bus’s speed and
your GPU’s PCI interface speed. Remember the speed
into the GPU can be different from the speed back
from it. If you already have the hardware, nVidia’s
bandwidthTest program will report the actual speeds.
(bandwidthTest will also give you the maximum speed
of transfers between global memory inside your GPU.)

For PCIe transfers, with good coding, the estimates
can be accurate enough. With internal transfers so
much will depend upon the details: how well the threads
overlap computation with fetching data, how effective
are the various caches.

• Normally the ratio of the volume of PCIe data size
to the size of PCIe data buffers will give the number
of times the operating system has to wake up your
PC code so that it can transfer data. Typically there
are a few data transfers before and after each time
your kernel is launched. Usually the system overheads
of rescheduling your process and CUDA starting your
kernel are both well under a millisecond. Nonetheless
if your design requires more than a thousand PCIe I/O
operations or kernel launches per second it is probably
worth considering the initiation overhead.

• This should have given you an idea of where the bottle
neck is in your design and if your design is feasible.

If the bottle neck is the GPU’s computational speed,
then it probably makes sense to proceed. It probably
means your application is sufficiently compute inten-
sive that it needs to be run in parallel. If it still not go-
ing to be fast enough then a redesign could consider a
GPU upgrade, multiple GPUs and/or traditional code
optimisation.

If the bottle neck is bandwidth, which bus is limiting?
Concentrate upon the most constricting part of the
design. There are two things to consider: passing less
through the bottle neck and making the bottle neck
wider.

• In the case of the PCIe bus, only hardware upgrades
can widen the bottle neck.

Can you compress your data in some way? Often a
huge fraction of computer data is zero. Do you need to

pass so many zero’s? Can you pack data more tightly?
Can you use char rather than int? (Will the cost of
compress/decompress be excessive?)

Does your application need so much data to be passed?
Could you pass some of it to the GPU once, when the
application starts, and leave it on the the GPU to be
reused, rather than being passed to the GPU each time
the kernel is used?

The host–GPU bottle neck can be critical to the whole
GPU approach. The above calculations have the ad-
vantage of often being feasible to estimate in advance
and typically applications really do get the host–GPU
advertised bandwidth. So you can get good estimates
of its impact on your application at the design stage.
However the PCIe bus is inflexible. Unlike internal
GPU buses, there is no coding to increase its band-
width. If your design requires 110% of the PCI’s band-
width it is not going to get more than 100%. At this
point many GPU designs fail and alternatives must be
considered.

• As already mentioned with internal GPU transfers de-
sign stage calculations are much trickier. Perhaps con-
sider algorithm or design level changes, e.g. splitting
kernels, spreading the work differently across different
kernels. Again can the bottle neck be made wider?
E.g. by larger data transfers and/or coalesced trans-
fers. Remember advertised figures and data reported
by bandwidthTest have already taken into account such
optimisations.

With the much lower bandwidth of PCIe it might make
sense to reduce data transfer size by compression, e.g.
using 8-bit bytes rather than 32 bits. This is probably
not true within the GPU. Although the full range of
C types are supported by the CUDA C/C++ compiler
nvcc, the hardware works on multiples of 32-bits.

Whilst Fermi caches local and global data and earlier
GPUs cache textures, it is usually better to “cache at
the design stage”. I.e. read data once, process it (with-
out re-reading), then write the processed data once.
This is unlike traditional coding, where it appears to
cost nothing to read and write to program variables
and it is often better to calculate intermediate results,
save them, then read them back and use them again.
Whereas in a GPU it might be better to recalculate
rather than save–re-read.

3.2 Performance By Hacking
Once implemented the same basic idea applies to perfor-
mance. Is performance good enough? Stop. Can perfor-
mance be made good enough? If not then also stop. Identify
and remove the bottle neck.

3.3 Performance By Omission
Fundamentally the best way to improve performance is not
by doing things better but by doing less.

The following need not be the best example but it is real.
It turned out that about 30% of the time used by a kernel
was spent looking for just one case in hundreds of thou-
sands. It was not even a particularly interesting case and it
was guaranteed to be found eventually. So a 30% speed up
could be made by ignoring it. Further, once it was treated
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as impossible other parts of the kernel could be simplified
giving a further speed up. By leaving out something unim-
portant to the users, the code went about twice as fast.

3.4 Multiple GPUs
To take advantage of multiple GPUs, parts of the host ap-
plication must be run in parallel. Although CUDA provides
some support for multi-threading of your PC code, it may
be better to use your operating system’s multi-threading
support (e.g. the p-threads library). The standard advice
is that your PC should have one CPU core per GPU card
plugged into it. However the host multi-threading support
should ensure 1) this is not absolutely necessary 2) your ap-
plication will be able to take advance of dual or quad core
CPUs without coding changes.

CUDA requires cudaSetDevice() to be used to initialise
each thread. To avoid the surprisingly high CUDA initial-
isation overhead it is a good idea to start one thread per
GPU. This is associated it with its GPU when your ap-
plication starts. Normally the threads live as long as your
application itself. I.e. each thread is repeatedly used to pass
data between the host and its GPU and to launch kernels
on its GPU. Dual cards like the 295 GTX are programmed
as two CUDA devices and so should have two threads (one
each) in your host code. It is a good idea to record which
devices your application is using.

cudaDeviceProp deviceProp;

cutilSafeCall( cudaSetDevice( dev ));

cutilSafeCall(

cudaGetDeviceProperties(&deviceProp, 0));

printf("Using CUDA device %d: \"%s\"\n",

dev, deviceProp.name);

4. MEASURING PERFORMANCE

4.1 CUDA Profiler
nVidia’s CUDA profiling tools can be downloaded from their
web pages. As with other parts of CUDA, nVidia also freely
provides downloadable documentation in PDF format.

There are two parts to the CUDA performance profiler.
The part on the GPU which records when certain operation
took place. It logs the time of host-GPU data transfers
and when kernel start and when they finish. It also counts
others GPU operations. E.g. it can count the number of each
type of global memory read and write operation. Finally
it transfers these to the host PC. The second part runs
on the PC. It can control the GPU based profile logging
and also display both this data and previously logged data.
Unfortunately certain Linux versions of this part (known
was the CUDA Visual Profiler) are not stable.

As may be imagined the GPU part of the profiler is lim-
ited. Its job is to monitor performance not to interfere with
it. Top end GPU contain several multiprocessors, since they
are identical it is assumed their workloads and hence per-
formance will be similar, therefore only one of them is mon-
itored. The profiler can count a wide range of operations
but not simultaneously. One of the main jobs of the Visual
Profiler is to allow you to easily specify which data should
be collected. (Different GPUs support different counters.
Sometimes counters are not supported on a particular GPU
because the counter was introduced to monitor a particular

performance bottle neck which has been removed from the
new GPU.)

If you specify more counters than the GPU can manage
in one go, the Visual Profiler automatically runs your ap-
plication multiple times collecting different profile data each
time and then integrating them for you. Again the number
of simultaneous counters depends on which type of GPU you
are using. It also provides a wide range of plots and tables
for showing you this. A few of the interactive menus are a
bit difficult to navigate and the documentation and menu
layout may be slightly out of step.

Under Linux there is an alternative route, based on envi-
ronment variables, see Table 1, whereby you can gather the
same data and control the GPU end of the profiler.

The CUDA profiler gives some performance information
which could be very useful but which would be either diffi-
cult or impossible to get elsewhere. It also gives ready access
to some critical information about the code that the com-
piler, nvcc, generated for your kernel. E.g. the number of
registers the kernel needs.

If using CUDA PROFILE LOG directly, some counters
become very large and difficult to comprehend. It would
probably be worth using a spread sheet or simple script
to rescale counters by the “instruction” count. (E.g. divide
warp serialize count by total number of instructions.) It
then becomes clearer which ratio are near zero (even if their
counter has five or six digit values) and can be ignored.

Another useful measure is to calculate the number of “in-
structions”your kernel is executing per microsecond.1 (Again
the profiler is the only convenient route to these data.) On
a GTX 295 the profiler says a totally compute bound kernel
will run in the region of 370 instructions per microsecond.
Because of the arcane way in which the profiler reports “in-
structions” other GPUs will have fundamentally similar val-
ues. (It is a useful exercise to construct your own compute
bound kernel and see what figure your GPU gives.) Your
kernel will not reach 370 instructions per microsecond. If
you are getting more than half of 370, congratulate yourself
and stop. I have had kernels as disastrously low as 5.

4.2 CUDA timing functions
CUDA’s timing functions can be used to time operations.
They have the advantage of using the GPU’s own high reso-
lution clock but, as the following example shows, they tend
to end up with voluminous code.

As well as the reassurance of knowing what your code is
doing, using the CUDA timing routines allows easy integra-
tion of timing information with the other data about your
use of the GPU. However very similar timing information
is available from the CUDA profiler without coding (Sec-
tion 4.1).

CUDA provides timing routines. It is often convenient to
create a CUDA timing data structure at the same time as
you create your CUDA buffers.

cutilCheckError(cutCreateTimer(&hTimer));

...

1Fermi compute level 2.0 provides different profile informa-
tion which replaces the “instruction” count. However new
counters like “inst issued” can be used in a similar way.
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Table 1: Unix environment variable controlling CUDA profiling

Name: Example
CUDA PROFILE 1 Switch on profiling
CUDA PROFILE CSV 0 Produce“comma separated values”suitable for importing into a spreadsheet.

With the value 0 a simple text file is produced.
CUDA PROFILE CONFIG profile r266a.txt The name of a file containing instructions for the GPU profiler including

which counters to enable (see also Table 2). I suggest you start by copying
CUDA Profiler 3.0.txt from nVidia’s web pages and then modifying it.

CUDA PROFILE LOG profile r266a.csv The name of the profiler’s output file. NB. the file will be overwritten if it
already exists.

cutilSafeCall( cudaThreadSynchronize() );

cutilCheckError( cutResetTimer(hTimer) );

cutilCheckError( cutStartTimer(hTimer) );

cutilSafeCall(

cudaMemcpy(d_1D_in,In,In_size*sizeof(int),

cudaMemcpyHostToDevice));

cutilSafeCall( cudaThreadSynchronize() );

cutilCheckError(cutStopTimer(hTimer));

const double gpuTimeUp = cutGetTimerValue(hTimer);

gpuTotal += gpuTimeUp;

Notice some CUDA calls are asynchronous. Typically, this
means, on the host they start a GPU operation and then
return and allow the PC code to continue operation even
though the GPU operation has only been started and will
finish some time later. This allows 1) host PC and GPU op-
erations to be overlapped and 2) the use of multiple GPUs
on a single PC. However it does mean care is needed when
timing operations on the PC, hence the heavy use of cuda
ThreadSynchronize() in the timing code. A common er-
ror is to omit calling cudaThreadSynchronize(). If it is not
used hTimer typically gives the time taken to start an oper-
ation, e.g. the time taken to launch your kernel, rather than
the time your kernel takes to run.

Except where multiple GPUs are to be used and assuming
the GPU is doing the heavy computation, there is little ad-
vantage in allowing GPU and PC to operate asynchronously.
This sort of parallelism is radically different from that pro-
vided by the CUDA and the GPU, it is just as error prone
and hard to debug and typically offers only a modest per-
formance advantage.

In production code you can use conditional compilation
switches to disable hTimer. However, in practice (even when
removing many cudaThreadSynchronize() calls) typically
this will only make a marginal difference.

4.3 Kernel Code Timing
Although the GPU has on chip clocks, a useful approach
is to add code to your kernel and see how much longer the
kernel takes. This can be quite informative but needs to be
done with care. Usually it is best to ensure the new code
does not change subsequent operations in any way since their
timing effects could totally cancel the timing effect of your
new code.

Timing operation of the kernel from the PC is subject to
noise from other activities on the PC. Random noise can be
averaged out but it is better to ensure (perhaps by doing the
operation a thousand times) the timing effect that is being
measured is much bigger than the noise. When adding code

you must remember that nvcc is an optimising compiler. In
particular this means it will try to remove code that makes
no difference to the kernel’s outputs. To prevent nvcc opti-
mising away the timing code we have just added, what is of-
ten done is to make the new code calculate a result and then
use an “if” to ensure the result is discarded. Perhaps the if
can depend upon one of the kernel’s inputs, so that nvcc can-
not easily reason about it, but we ensure that the if is always
false. (E.g. if(in_length<0) d_out=junk_timing_info;)

This can be a useful way of confirming which parts of your
kernel are expensive. However benefits can be disappointing.
Kernels that are working well usually overlap reading from
global memory with computation. So even large reductions
in computation time can have little reduction in total time
because the I/O time is unchanged. In the worse case, the
more efficient coding simply increases the idle time waiting
for global memory to arrive.

Of course there is also always the dilution effect of Am-
dahl’s law. In one example a function was made thirty times
faster. However even the inefficient version of the function
was responsible for only a small proportion of the total time.
So vastly speeding it up made only an 11% change to the
speed of the whole application.

5. DEVELOPMENT ENVIRONMENT

5.1 Hardware Environment
The hardest problem to debug is probably when the kernel
fails. Since CUDA GPUs do not have timeouts, this can
mean the kernel never returns. It may lock the whole GPU
up. If you are using the same GPU to drive your computer’s
monitor, it will appear as if the whole computer has failed.
It may require the computer to be restarted to reset the
GPU. This is especially painful where you are remote from
the computer housing the GPU or where the computer is
shared with other people or applications.

Notice not only is the result painful but you can get no
indication of what has gone wrong or where. With the wor-
rying probability that it will happen again after you get the
system running once more.

Possible approaches:

• Test kernels on a dedicated computer.

• Have the test computer and GPU physically adjacent
to your desk.

• Have multiple GPUs in the computer. E.g. a small
cheap one that only drives the monitor and one or
more GPU that are used for kernel development.
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Table 2: CUDA Profile Counters
timestamp
dynsmemperblock The size of shared memory you specified, via kernel<<<,,shared_mem>>>, when the kernel was

started.
stasmemperblock This seems to be typically 80 and represents an overhead in which CUDA uses your shared memory.

Hence your kernel does not actually have the full 16Kbytes (up to 48Kb on Fermi). Usually CUDA
will refuse to start your kernel if you ask for all 16K.

regperthread Fortunately recent GPUs have many registers and simple kernels do not run out of threads. and
so this should not be a worry during debugging and perhaps only if really straining at the end of
development to get the best of your GPU.
The threads have to be shared between all active copies of your kernel. Suppose your kernel uses 17
registers per thread and you have a block size of 512 (total 8704). On a GPU with 16384 registers
this would mean at most you could only have one block per multiprocessor.
nvcc can also be told to report the number of registers when your kernel was compiled. nvcc may
also be induced to reduce the number of registers it allocates to your kernel (nvcc --maxrregcount

command line option). This might have the effect of it no longer unrolling loops.
memtransfersize
memtransferhostmemtype 0 or 1. 0 if you forgot to tell CUDA to use non-paged memory.
streamid I have not covered overlapping CUDA kernels by using CUDA streams, so streamid will be 0.
local load If the kernel is working well local load should be zero. Zero means that the kernel is not using off

chip “local memory”, either via local arrays or because it ran out of registered and so they “spilled
over” into local memory.
Notice that Fermi GPU contain a cache which intercepts access to local memory. The cache is shared
but if your kernel’s local data is within it accessing local memory need no longer have disastrous
consequence for performance.

local store If a kernel is working well local store should be zero. See local load.
gld request Total number of reads from off chip global memory. There are various types of more or less efficient

reads. The different types also have their own counters.
gst request Total number of write to global memory. See gld request.
divergent branch
branch The number of conditionals (including ifs, loops and switch statements). A divergent branch (pre-

vious line) is where some threads in a warp go one way at the branch and others go another. This
is obviously a performance issue, since the hardware cannot do both simultaneously but must do
both in series and then resynchronise itself. Nonetheless divergent branch need not be critical and
typically global memory access time should be considered first.
Suggest you create a script to calculate divergent branch divide by“instructions”. Typically the ratio
will be less than a few percent. Only if this ratio is much bigger should you consider divergent branch.

sm cta launched
gld incoherent if the kernel is working well both reading and writing to global memory should be coherent.

I.e. gld incoherent should be zero.
gld coherent
gld 32b Number of 32 byte reads from global memory
gld 64b Number of 64 byte reads from global memory
gld 128b Number of 128 byte reads. Obviously it is more efficient to read data in larger units. However this

is for the perfectionist performance tuner. Do not worry over much whilst debugging.
It is more efficient if adjacent threads read (or write) adjacent data. E.g. with a two dimensional
array a 41% saving in a kernel’s run time was made by reversing the order of the indexes.
There are equivalent gst counters for writing to global memory.

instructions The number of “instructions” run by your kernel. This gets tricky because of course your kernel
is being run simultaneously many times. Here instructions refers to the particular multiprocessor
which is being profiled, not the whole of your GPU. The deviceQuery program will tell you how
many multiprocessors your GPU has. Multiplying by this (e.g. multiplying by 14) will give an
estimate of the total number of GPU instructions needed by your kernel. But even then we are not
done. How many threads can a single “instruction” process and how does the instruction rate relate
to GP clock. Eventually it all becomes consistent with nVidia claims for the performance of their
hardware but it is easy to get lost in the details.

warp serialize Apart from divergence their are an number of other things which can cause threads to stop being
synchronised. warp serialize counts the number of instructions where the hardware ran threads in
series rather than in parallel. I suggest you create a script to calculate warp serialize divide by
“instructions”. Only if this ratio approaches or exceed 1.0 need you consider warp serialize further.

cta launched
tex cache hit GPU textures or user specified profiling not covered. There are also some Fermi specific counters.
tex cache miss
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Make sure your CUDA application uses the GPU you
want it to. The ability to specify which CUDA de-
vice your application will use via the command line, is
probably sufficient.

if(argc>1 && argv[1][0]) {

const int dev = atoi(argv[1]);

cutilSafeCall( cudaSetDevice( dev ));

}

else cudaSetDevice( cutGetMaxGflopsDeviceId() );

• If your CUDA test PC is on the network, arrange that
another networked computer is nearby so that you can
log in via the network (e.g. using ssh). While this may
allow you to gain reassurance that it really is a GPU
problem rather than anything else, in the event of a
GPU lock up it may be that there is little you can
do, other than reboot. However you should have the
option of telling the operating system to shutdown in
a more controlled fashion. Perhaps informing other
users/applications before their resources are removed.

• Some computer rooms have facilities to allow remote
reboot. This may be under software control or you
may have to ring up the operator and ask them to do
it for you. Make sure you tell them the right computer!

• Make sure all of your CUDA system restarts automat-
ically on reboot. Remember to include all the “little”
tweaks to the operating system and X-11 windows that
were done when CUDA was installed. This is espe-
cially important if CUDA was installed by someone
else or if any of them need the root system password
to reapply them.

• Notice the possible interaction between CUDA and
X-11 give similar symptoms (i.e. the system appears
to lock up). With its default setting X-11 times out
your screen if it fails to respond in about 10 seconds.
E.g. suppose your kernel sometimes takes 12 seconds.
Every so often it will cause the GPU on which it is
running not to respond to X windows fast enough. For
someone who is using the screen, this appears the same
as if the GPU had failed, even though the GPU may
be ok. Since this only effects X-11, you may be able
to recover without rebooting Linux. For example, use
one of the methods mentioned above to log into the
host PC and restart X. It is also possible to disable
the X-11 timeout or change its default setting.

If the GPU can be reserved for calculations only, it
might make sense to configure X-11 to ignore the mon-
itor connected to the compute only GPU.

5.2 Compiling CUDA
You will need to compile your kernel with nVidia’s CUDA
compiler, nvcc. nvcc is also able to compile regular C and
C++ code. nvcc host and GPU code can be linked with
PC code compiled in the normal way. nvcc recognises many
of the command line switches used by the GNU gcc com-
piler, such as setting conditional compilation switches (e.g.
-DUNIX) and the debug flag -g). You will probably also
need the GPU specific switch which tell the compiler to pro-
duce code for a particular nVidia GPU compute level (e.g.

-arch sm_20 for Fermi compute level 2.0). Check with the
nvcc compiler documentation.

CUDA supports both 32 bit and 64 bit host PCs. You
may need to double check you are linking the right libraries
when you ask the linker to create your executable program.

5.3 SDK Makefile common.mk
The CUDA SDK examples include compilation scripts, known
as Makefile. Most of their complexity is common to all
SDK examples and is kept in a common make file (known
as common.mk). One approach is to organise your applica-
tion so that it follows the same directory structure and file
naming conventions as CUDA’s SDK. This will allow you
to use common.mk. However it is also possible to adapt one
of the SDK Makefile for your own project.

A disadvantage of using common.mk is that it assumes par-
ticular locations for your object and executable files. By
default, the GNU GDB debugger run within emacs, is not
compatible with this and refuses to show your host sources
inside an emacs window as you use step through (the host
part) of your application. If so, it may be easier to compile
and link in your usual fashion. (cuda-gdb and commer-
cial debuggers, e.g. Parallel Nsight and Allinea DDT, are
increasingly available and increasingly capable.)

5.4 Compilation and Linking Problems
We next describe some errors that are common when you
first use CUDA or after upgrading it and suggest potential
solutions.

If using Unix and SDK’s common.mk a helpful option is
to run make in verbose mode so that it tells you the com-
mands it is running. This is enabled in Unix by setting the
environment variable verbose. E.g. setenv verbose 1.

On some older CUDA systems the additional line, "NVCC
FLAGS += -include=vararg-fix.h" in common.mk may be
required to get your kernel to compile.

Error mkdir: cannot create directory ‘/opt/cuda/

sdk’: Read-only file system suggests a problem with
ROOTDIR or some inconsistency between your Makefile and
common.mk. Perhaps you need to try overriding ROOTDIR,
e.g. ROOTDIR := /my_directory/cuda/sdk, where /my_dir

ectory... refers to the directory tree you are using for your
application.

nvcc compilation error error: cutil_inline.h: No such

file or directory suggests a problem with COMMONDIR or
some inconsistency between common.mk and your Makefile.
Perhaps try overriding ROOTDIR2, e.g. ROOTDIR2 := /usr/

local/cuda/NVIDIA_GPU_Computing_SDK/C/tools. Of course
the actual setting for ROOTDIR2 will depend on where exactly
the files were placed when CUDA was installed.

nvcc compilation error error: cuda_runtime.h: No such

file or directory. Again perhaps a problem with ROOT

DIR2, however also check your system does really have a copy
of cuda runtime.h installed somewhere. It might also be a
problem with CUDA_INSTALL_PATH. If so, you could try over-
riding it with something like CUDA_INSTALL_PATH := /usr/

local/cuda-3.0

The Unix linker error /usr/bin/ld: cannot find -lcutil

suggests a problem with LIBDIR or inconsistency between
make files. This can occur when there are multiple versions
of CUDA installed. Perhaps try overriding LIBDIR, e.g. by
adding something like LIBDIR := /my_directory/cuda_3.1/

cuda/NVIDIA_CUDA_SDK/lib. However eventually it may be

429



better to resolve the problem of multiple version of CUDA
and/or create your own make file or compilation script or
process.

The Unix linker error ld: skipping incompatible /usr

/local/cuda-3.0/lib/libcudart.so when searching for

-lcudart might be a 32 bit v 64 bit problem. The Unix file

utility will tell you if libcudart.so contains 32 or 64 bit
code. Perhaps you need to change LIBDIR with something
like LIBDIR := /usr/local/cuda/lib64

If you get error while loading shared libraries:

libcudart.so.2: cannot open shared object file: No

such file or directory this suggests your LD_LIBRARY_

PATH environment variable is incorrectly defined. LD_LIBRARY
_PATH allows the Unix program starter to search for libcudart
.so.2 in multiple directories. These are separated by a
“:”. Assuming you have an existing LD_LIBRARY_PATH en-
vironment variable then an option is to append the direc-
tory holding libcudart.so.2 E.g. setenv LD_LIBRARY_PATH
"$ LD_LIBRARY_PATH":/usr/opt/cuda/lib

6. OTHER SOURCES OF HELP

6.1 nVidia
nVidia has made available a host of documentation for CUDA
and each of its components. Typically these are freely down-
loadable in PDF format.

A typical CUDA installation comes in three parts: GPU
operating system drivers, CUDA toolkit and CUDA SDK.
It is well worth installing the SDK directory tree when you
install the first two. It contains more than 70 CUDA pro-
gramming examples and GPGPU utilities, including their
source code and in some case detailed documentation.

The SDK examples often both explain and give examples
of tricky but highly efficient parallel computing approaches
and are of course written for a GPU like yours. Examples
include fast matrix multiply and calculating histograms in
parallel. These examples show how to efficiently use shared
memory in CUDA C.

6.2 nVidia Forums
nVidia hosts an impressive array of discussion fora at
forums.nvidia.com. There are perhaps too many for an in-
dividual and it is better to stick to the one closest to your
interest. For GPGPU the CUDA Programming and Devel-
opment forum has proved useful.

6.3 Alternative Approaches
We have talked about CUDA C. Is CUDA C the right lan-
guage to choose? C is notoriously difficult and other lan-
guages are slowly being added (e.g. Fortran, Matlab, Math-
ematica and Python). Nevertheless we can be reasonably
confident that in the near term C/C++ will remain both the
most efficient high level language for GPU computing and
the most advanced and best supported CUDA programming
language. CUDA is and is expected to remain nVidia’s best
way into the GPGPU world. However you might want your
application to run on other manufacturer’s GPUs or even
non-GPU parallel hardware. OpenCL has been proposed by
a small group of companies (including nVidia, AMD, Intel,
Apple and IBM) as a way of implementing parallel applica-
tions. In theory it offers the possibility of running code on
both GPUs from different manufactures and other parallel
architectures. Currently support is patchy in practice.

In 2007 Harding gave a nice summary GPGPU tools [7].
It is notable that many have already fallen out of use. The
software side of GPU computing has proved less stable than
the underlying GPU architectures.

7. CONCLUSIONS

Computation is cheap. Data is expensive
Perhaps slightly too strong but I have put it strongly to make
the point. It can be more efficient to waste computation. It
may be better to have divergent code than be unable to use
a GPU. It may be better to recalculate intermediate results
than to store them. E.g. in some large matrix calculations.
This is especially true if the intermediate results have to be
saved on the host computer. In terms of elapse time, in
GPGPU, it often costs more to move data than it does to
calculate with it once it has arrived.

In the future, the trend is for the cost of computation
versus the cost of moving data to continue to move in favour
of intensive calculations.
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