Tutorial

Genetic Programming

This article presents a method for optimizing expressions to solve a given problem using the
strategy of Darwinism. In contrast to genetic algorithms, which evolve an encoded representation
of the solution, genetic programming evolves the solution expression directly. The Mathematica
implementation makes use of the built-in features of functional programming, recursion, and
hierarchical data structures. An application to symbolic regression is presented.

Robert B. Nachbar

Evolutionary computing has become a popular method to
robustly search very large solution spaces for optimal or
near-optimal solutions to a wide variety of problems. These
methods begin with an initial, usually randomly generated,
population of individual instances of a data structure. Each
element of the population can be evaluated to a solution for
the problem at hand. The term ‘solution’ is used rather
loosely here because these primordial individuals are gener-
ally not very good solutions. Then, in the spirit of survival of
the fittest, they are propagated directly, through recombina-
tion with mates, or by mutation into new, and hopefully
more fit, individuals. This iterative process is repeated until
either one grows weary or a satisfactory solution is found.
The governing principle of these stochastic methods is that
the fittest individuals possess a part of the optimal solution.
By operating on them to make more-fit individuals one will
eventually discover the optimal solution. Unlike the more
traditional analytic methods (such as least squares or conju-
gate gradients), these methods can avoid local minima and
sample a large portion of the solution space because of the
stochastic nature of the multiple search trajectories.

John R. Koza has recently described his approach to
genetic programming with the Lisp language [Koza 1992].
It is difficult to provide a more thorough introduction to this
topic than his, and the reader is directed to that work for fur-
ther examples and more detailed discussions. What I intend
to show here is that genetic programming is easily done in
Mathematica as well.

Evolutionary Computing

In a genetic algorithm (GA), the individuals are strings of
characters that encode the parameters that specify a solu-
tion for the problem at hand. A close analogy between the
strings and chromosomes has been drawn [Goldberg 1989].
In a GA, mutation is achieved by randomly selecting one of
the letters of a string and exchanging it for a different letter
of the alphabet. Typically, a binary alphabet is used (0 and
1). Recombination via mating is carried out by crossing over
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part of one parent with the homologous part of the other
parent. This is done by selecting a point at random along the
string and then exchanging the distal portions between the
parents, thus generating two new offspring. Because the
string is a coded representation of a solution, its length is
fixed. In spite of this rigid linear data structure, GAs have
been applied successfully to a large number of problems. See
[Goldberg 1989] and [Davis 1991] for further details and
examples. James Freeman has described the use of Mathe-
matica for GAs [Freeman 1993].

A genetic program (GP) shares most of the features of a
GA. However, the data structure that GP uses is hierarchical
rather than linear. In addition, instead of employing an
alphabet to encode the solution parameters, the parameters
themselves are stored in the data structure along with the
functions that operate on them. A graph-theoretical tree is a
suitable hierarchical data structure for a GP. (This is the same
data structure that most compilers use to parse mathematical
expressions.) The parameters occupy the terminal or external
nodes (sometimes called leaves) and the functions occupy the
internal nodes (the highest of which is known as the root). In
an expression tree, a subtree is the analog of a substring in a
genetic algorithm. The genetic operations of mutation and
crossover are applied to the subtrees.

Expression trees are customarily drawn upside down, with
the root at the top and the leaves at the bottom. For exam-
ple, the expression 2sinz + bz + ¢ can be represented as the
tree shown in Figure 1. This expression tree is in fact a
reusable program whose inputs are the symbolic terminal
nodes and whose output is the result produced by the root
node.

I first became interested in genetic programming for solv-
ing symbolic regression problems, a generalization of curve
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FIGURE 1. The hierarchical tree structure of the expression 2 sin x+ b x+ ¢.






fitting. In traditional methods, such as least squares, one uses
a presumed functional form (such as y = mz + b) and deter-
mines only the coefficients (m and b) that best fit the
observed data. In symbolic regression, one is interested in
finding the best functional form as well as the coefficients.
For example, given the sequence 5, 31, 121, 341, 781, 1555,
2801, 4681, what is the next entry? What is the 12th? To
answer these questions, we must discover the relationship
between ¢, the position in the sequence, and S;, the i-th entry.
The task of genetic programming is to find the appropriate
combination of functions, variables, and coefficients to
exactly reproduce this sequence. Then we can use the result
to calculate any element of the sequence.

Expression Trees

Functions and Terminals

The internal representation of expressions in Mathematica
(as revealed with the FullForm function) is similar to the
heirarchical tree structure shown in Figure 1.

= FullForm[(x+1)(y-2)]
outf1)/FullForm=Times [PLus[1, x], Plusly, Times[-1, z]1]

A powerful feature of the tree structure is that it is recur-
sive. Each subtree is itself a valid tree. All the internal nodes
(Times, Plus, Plus, and Times in this instance) are at the roots of
subtrees. Even the terminal nodes (1, x, y, -1, and z) are them-
selves trivial expression trees. From this example, it is obvi-
ous that functions occupy internal nodes, and numbers and
variables occupy terminal nodes.

Evaluation of an expression tree is carried out recursively.
Since the internal nodes are built-in functions, we do not
need a special evaluation function; Mathematica will do it
automatically. For a good description of trees and recursive
programming, see [Gaylord et al. 1993].

Notice that the expression above has been rearranged by
Mathematica into a canonical form equivalent to (1 + x) *
(y + (-1 * 2)). This rearrangement is relatively minor and
could be ignored. However, Times and Divide present difficul-
ties because their use can introduce a new function, namely
Power.

m2= Times[x, x] // FullForm
Outf2)//Fullform=Power {x, 2]

mEl= Divide[x, y] // FullForm
Outi3)/FullForm=Times[x, Power[y, -11]

The appearance of Power may be undesirable for the problem
at hand because genetic recombination of individuals could
easily replace the second argument of Power with an expres-
sion that does not evaluate to an integer. In addition, Power
may not be a member of the set of allowed functions. There-
fore, by letting Mathematica automatically evaluate the
expression tree, we lose some control over the function set.

Another difficulty arises when we use built-in functions
whose arguments are made up entirely of numbers. We loose
the full tree structure and are left with a single node.

4= Times[5, Plus[3, 2]] // FullForm
Out[4l//FullForm= 25

One way of overcoming these problems is to keep the
functions and their arguments in lists, such as {Times, {5},
{Plus, {3}, {2}}} (see [Gaylord et al. 1993]). Alternatively, we
can introduce our own arithmetic functions (plus, times, sub-
tract, and divide) that do not evalute to anything. Both meth-
ods preserve the full structure of the expression and both
require a function that can evaluate the expression and
return a usable result. The evaluator for the former repre-
sentation must recursively traverse the nested lists while it
builds up a Mathematica expression. For the latter method,
the evaluator need only provide a set of replacement rules.
We have found the second approach more convenient, and it
probably requires less memory as well.

= evalRules = {plus -> Plus, times -> Times,
subtract -> Subtract, divide -> Divide} ;
Evallexpr_] := expr /. evalRules

Thus, for the examples above:

m7l=  times[plus[x, 11, subtractly, zI]
ou7l- times[plus[x, 11, subtractly, zl]

nisk=Evall[¥%]
ouigl- (1 +x) {y - 2)

inig=  times{x, x]
owjgl= times[x, x]

inf10}= Evall¥%]
Ouf10l= X

aitll= divide[x, yl
ou11l= divide[x, y]

n121= Evall%]

X
Ouf12l= -
y

nn3k= times[5, plus(3, 211
ou13i= times[5, plus[3, 21]

mi4l= Evall¥%]
outl14= 25

At this point, it is appropriate to discuss two requirements
of the sets of functions and terminals used in GP: closure
and sufficiency. The value at any terminal node, or the result
of any function at an internal node, can be an argument to
the function at the next level up the tree. One must therefore
ensure that the choices of terminals and functions are fully
compatible so that functions can accept any arguments they
may receive and still yield valid results. That is, the func-
tions should be well defined and closed. For example, one
would not want to mix numerical and Boolean terminals, as
the result is still partially unevaluated:
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mpsk= Evall plus[2, True, 3] 1 // FullForm
Outf15)//FullForm=P1us[5, Truel

Nor does one want to encounter undefined results:

in(16}= Evall divide[subtract[x, xI, 0] 1 // FullForm

General::dbyz: Division by zero.
Infinity::indet:
Indeterminate expression O ComplexInfinity
encountered.

Outf16]//FullForm= Indeterminate

The problem of division by zero is easily remedied by
using protected division, which tests the denominator before
the division is carried out. If the denominator is zero, a value
such as 1 can be returned, which maintains closure [Koza
1992, 82]. However, it is more practical to return a very
large machine number, which is closer to the true (infinite)
value and so is more appropriate in real-world problems
[Lee 1994]. (We could allow 1/0 to evaluate to Infinity and
Infinity/Infinity to evalute to Infinity, but that would cause
problems further down the road if we try to compile the
result.) Similar protected functions should be used for Sqrt
and Log, and Exp should be protected from over- and under-
flow.

W(171= bigInteger = 2763 - 1 ;
bigReal = N[bigInteger] ;
PDivide[n_Integer, 0] := bigInteger
PDivide[n_Integer, 0.] := bigInteger
PDivide[n_, 0] := bigInteger
PDivide[n_Real, 0] := bigReal
PDivide[n_Real, 0.] := bigReal
PDivide[n_, 0.] := bigReal
PDivide[n_, d_?NumberQ] := Divide[n, dI

n26l= evalRules = evalRules /. Divide -> PDivide
ou2e= {plus -> Plus, times -> Times, subtract -> Subtract,
divide —> PDivide}

inz7t= Eval[ divide[subtract{x, x], 0] ]
outf27l= 9223372036854775807

All of the type-testing for PDivide is necessary so that actual
division does not take place before it is known that the
denominator is nonzero and that an appropriate precision
result is returned.

injzs}= Evall divide[subtract[x, 11, y] ]
oufz8 PDivide[-1 + x, y]

Sufficiency of the function set and terminal set means that
some combination of their elements is capable of producing
an expression that is the solution to the problem. Ensuring
sufficiency is the responsibility of the user and is not always a
straightforward task. If variables and functions without suf-
ficient explanatory power are used, the solution cannot be
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found. For example, if the data shows periodic behavior, but
periodic functions (such as Sin or Mod) are not included in the
function set, an adequate solution cannot be constructed.
One must also be careful not to include extraneous func-
tions or terminals as this can hamper the performance of the
search for the solution.

Conditional Functions

Logical tests are very common in procedural programs writ-
ten in languages such as FORTRAN or C, but somewhat
unexpected in mathematical expressions, The If function in
Mathematica not only controls which branch is followed,
but it also returns the final value of the branch followed.
Because the first argument of If must be a Boolean, we can-
not use it directly. The functionality we seek can be imple-
mented with a modified If function that uses only numerical
arguments. For example:

Ini29}= Attributes[1tz] = {HoldRest} ;
AppendTo[evalRules,
Itzftest_, t_, f_] :> Ifl[test <O, t, f]] ;

na1= Evall 1tz[-3, x, y] ]
Outf31}= X

2= Evall 1tz[2, x, y] 1
w3z y

The attribute HoldRest is necessary to prevent Mathematica
from evaluating t and f prior to comparing test against zero.
The reason is not obvious from this example, but if either t
or f produced a side effect that was used elsewhere, we
would want only the correct side effect to be produced. (The
reader might try clearing the attribute and including a Print
in each of the branches to see the effect.)

Constant Terminals

Frequently we need constants to describe fully the solution to
a problem. Even if we do not include them in the terminal
set, they can be constructed during the evolution of the run.
Integer and rational constants are the easiest to come across.

na3k= Evall pluslx, x] ]
Outf33l= 2 x

Irrational constants can also be spontaneously generated.
In a GP used to find trigonometric identities [Koza 1992,
242-245], the constant /2 was approximately constructed
as

in3ak= Eval[ Subtract[2,
Sin[Sin[Sin[Sin[Sin[Sin[Times[Sin[Sin[1]],
Sin[Sin[11111111173 1 // N
Ou34k 1.56721

ini3sk= Pi/2 // N
Outi35l= 1.5708



To facilitate the incorporation of constants, the ephemeral
random constant is introduced. Whenever it is encountered,
a random number of the appropriate type is generated. Ran-
dom constants are used as terminals during the creation of
the initial generation. During the evolution of the population,
they can be recombined in many ways to form new con-
stants.

in36}= ephemeralReal := Random[Real, {-1, 1}]

ma7i= Table[ephemeralReal, {5}]
outs7i= {-0.894461, -0.84196, -0.367542, 0.300289, 0.0639713}

Algebraic Simplification

As mentioned above, we chose to define our own arithmetic
functions so that we can maintain better control of them.
With this change we also lost all of Mathematica’s built-in
simplification. For example,

ms= Plus[Subtract[x, x], Times[2, Divide[Plus[x, 21, 2]1]]
Outi3sl 2 + X

masy= plus{subtract[x, x], times[2, divide[pluslx, 21, 2111
ouf3sl- plus[subtract[x, x], times[2, divide[plus[x, 21, 2111

Just how much simplification is necessary is not always
clear. The result 2 + x is certainly concise, which is desirable
for a solution to a regression problem. However, we have
also lost a great deal of genetic flexibility. For example, there
are only three positions available at which genetic opera-
tions may occur in the simplified result, compared with 11 in
the original expression.

We hope to strike a useful balance by employing just the
associative, identity, and inverse properties of algebra. Asso-
ciativity is conferred by flattening out immediate subexpres-
sions with the same head. We could have given the attribute
Flat to the functions, but then plus[x] would not reduce to x.

miaol= plusltimesfu, x], plusly, zI]
owfani= plus[times[u, x], plusly, z]]

mia1y= plusfa___, b_plus, c___] :=
Flatten[Unevaluated[plus[a, b, c11, 1, plus]
plusfa_] := a
times[a___, b_times, c¢__] :=
Flatten[Unevaluated[times[a, b, c]1, 1, times]
times[a_] := a

n4st= plus[times[u, x], plusfy, 21
outasi= plus[timesfu, xJ, y, z]

Very often we encounter expressions that contain subex-
pressions that reduce to zero or one (such as subtract[x, x1).
It is probably useful to provide rules for these cases. The fol-
lowing evaluation rules use the identity and inverse proper-
ties of addition and multiplication:

———)

m4gk= plusfa___, 0, b___] := plus[a, bl
plusfa___, 0., b___] := plus[a, b]
subtract[a_, 0] :=a
subtract[a_, 0.] := a
subtractfa_, a_] := 0
times[a___, 1, b___] := times[a, b]
timesla___, 1., b___]1 := times[a, b]
divide[a_, 1] := a
divide[a_, 1.] := a
dividela_, a_] :=1

Finally, here is the full effect:

misel= plus[subtract[x, x1, times[2, divide[plus[x, 2], 2111
outsel= times[2, divide[plus[x, 2], 21]

Adam and Eve

The initial population in a GA is created by generating ran-
dom character strings of a prescribed length, which is a fairly
trivial task. In GP, on the other hand, we must generate ran-
dom expression trees, which have not only a length (depth),
but also breadth. The inputs to a random expression genera-
tor are the lists of functions and terminals, and the number
of arguments that each function takes. (For simplicity, we
restrict plus and times to two arguments even though Mathe-
matica has no such restriction for Plus and Times.)

7= funcs = {{plus,2}, {subtract,2}, {times,2}, {divide,2}} ;
terms := {x, y, z, Randon[Integer, 31} ;

We use recursion to construct an expression tree. The
depth of the tree is controlled by decrementing a counter as
we enter each level. The attribute HoldRest is necessary so
that Random can be used in the terminal list.

Infsgk= randomElement[list_] :=
Llist[[ Random[Integer, {1, Length[list]}] 1]

Iisok= RandomExpression[depth_7Positive, funcs_, terms_] =
Module[{f, n},
{f, n} = randomElement{funcs] ;
Ifln > 0,
f @@ Table[RandomExpression[depth - 1,
funcs, terms], {n}],
(* else *)
f
]
1
RandomExpression[1, funcs_, terms_] :=
randomElement [terms]
Attributes[RandomExpression] = {HoldRest} ;

3= RandomExpression[3, funcs, terms]
outes times[divide[x, yI, plusx, x1]
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All the expressions produced in this manner have the same
shape. They are full trees, that is, the distance from the root
to each leaf is the same, and they always have a maximal
number of nodes (before simplification). This is accom-
plished by restricting the use of terminals to the last level.
Variably shaped trees are produced when terminals are
allowed at any level. They can be generated using Random-
Expression simply by including the terminals in the function
set as functions of zero arguments.

n6ak= comb = Join[funcs, {#, 0}& /@ terms] ;

iiesl= re = RandomExpression[4, comb, terms]
outesl- times[plus[x, yl, divide[times[y, x], plus[1, x]1]

The built-in function Depth and the recursive function Size,
defined below, allow us to ascertain the structural diversity of
the expressions in the constructed population. This is impor-
tant because the early use of terminals may prevent even one
branch of a tree from reaching the prescribed depth.

mieek= Sizel [args__]] := 1 + Plus @@ Map[Size, {args}]
Size[_7AtomQ] := 1

ini68l= Size[re]
Outisl= 11

In constructing the initial population of expression trees,
one should strive for variety. In the ramped-half-and-half
method [Koza 1992, 93], the population is divided into equal
groups for each depth, and half the expression trees in each
group are full and the other half are not. The function makePop
does this. The attribute HoldA11 is necessary so that Random can
be used in the terminal set.

Injs9k= makePop[funcs_, terms_, nPop_, maxDepth_, minDepth_:3] :=
Module[{comb = Join[funcs, {#, O}& /@ terms],
d = maxDepth - minDepth + 1, i, depth, r},
Table[depth = minDepth + Floor[(i-1)d/nPop] ;
If[0ddQlil,
While[Depth[r =
RandomExpression[depth, funcs, terms]] < depth] ;
r,
(* else ¥)
While[Depth[r =
RandomExpression[depth, comb, terms]] < depth] ;
rl,
{i, nPop}]
]
Attributes[makePop] = {HoldAll} ;

If71}= pop = makePop[funcs, terms, 500, 7] ;
We can use Depth and Size to check that our generative
" method achieved the variety we sought. For a depth of seven

and all the functions taking two arguments, there will be a
maximum size of 27 — 1 = 127 nodes.
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in72= Needs["Statistics®DataManipulation™"] ;

In73}= depths = Depth /@ pop ;
d = Range[Min[depths], Max[depths]] ;
¢ = CategoryCounts[depths, d] ;
TableForm[Transpose[{d,c}],
TableHeadings -> {None, {"depth", "# trees"}},
TableSpacing -> {0,3}]

0ut{76]//TableForm=
depth # trees
3 100
4 100
5 100
6 100
7 100

n7i= sizes = Size /@ pop ;
s = Range[0, 128, 8] ;
¢ = RangeCounts[sizes, s] ;
s = Transpose[{Prop[s, -11, Dropls, 11}] ;
s = Apply[ToString[#1] <> " <=size< " <>
ToString[#214, s, {1}] ;

injg2l= TableForm[Transposel{s, Take[c, {2, Length[c]-1}1}],
TableHeadings -> {None, {"size", "# trees"}},
TableSpacing -> {0, 3}

Out[76]//TableForm=
size # trees
0 <=size< 8 117
8 <=size< 16 155
16 <=size< 24 64
24 <=size< 32 54

32 <=size< 40 7
40 <=size< 48 8
48 <=size< 56 K
56 <=size< 64 11
64 <=size< T2 0
72 <=size< 80 0
80 <=size< 88 0
88 <=size< 96 3
96 <=size< 104 18
104 <=size< 112 26
112 <=size< 120 3
120 <=size< 128 0

Cain and Abel

The evolution of the population is carried out by applying
the genetic operators to selected individuals to create off-
spring that become the next generation. The most frequently
used genetic operators are reproduction and crossover; muta-
tion is used less often. Reproduction, as the name suggests, is
a direct copying of an individual expression from one gener-
ation to the next, crossover exchanges subexpressions from
two parents to create two children, and mutation replaces a
subexpression in an individual with a randomly generated
subexpression. We also use a fourth operator, constant per-
turbation [Spencer 1994}, in applications that employ con-
stants as part of the terminal set.



Crossover

Crossover in GP is a bit more complicated than in a GA.
Two parents are selected at random from the population.
Then a subexpression is randomly selected from each parent
and the two subexpressions are exchanged.

ing3}= Adam = RandomExpression[3, funcs, terms]
outs3l= plus[divide[z, x], times[y, 2]]

Inga}= Eve = RandomExpression[4, funcs, terms]
outedl- divide[subtract[plus[1, 1], times[y, x11,
divide[subtract[z, x], plus[z, 1]1]

Given two expression trees drawn on paper, a pair of scis-
sors, and some glue, it is easy to perform a crossover. How-
ever, this is the trickiest function to program. The process can
be divided into two parts: identifying the subexpressions to
exchange, and swapping them. We use the built-in function
Position to obtain a list of positions of all subexpressions,
which are the parts that match the simple pattern _ (Blank).

Ini8sk= Position[Adam, _, Heads -> Falsel
oufes- {{1, 1,}, {1, 2}, {1}, {2, 1}, {2, 2}, {2}, {3}

We select at random one element of this list of parts and
use the built-in function Part to extract the corresponding
subexpression. Part takes a sequence of indices, so to use one
of the lists returned by Position, the list has to be recast as a
sequence.

ligel= Part[Adam, Sequence @ %[[6]] ]
outigel= times[y, 2]

The built-in function ReplacePart can be used to insert the
subexpressions. It takes as its third argument the position
for replacement (we have to make a slight amendment to
the function so that the whole expression can be replaced).

n(g7l= Unprotect[ReplacePart] ;
ReplacePart[expr_, new_, {}] := new
Protect[ReplacePart] ;

Here is the function that performs the crossover:

ingo}= CrossOver[parents_] :=
Module[{ind, sub},
ind = randomElement[
Position[#, _, Heads -> False]l& /@ parents ;

sub = MapThread[Part[#1, Sequence €¢ #2]&,
{parents, ind}] ;

MapThread[ReplacePart,
{parents, Reverse[sub], ind}] ]

mg1:= {Cain, Abel} = CrossOver[{Adam, Eve}] ;

Inf92= Cain
ouiszk plus[divide[z, x], x]

Ing2l= Abel
oue2k divide[subtract[plus[1, 1], timesly, xI1,
divide[subtract{z, times[y, 21, plus[z, 1111

As one can see in Figure 2, part {2} of Adam (times[y, 2]) was
swapped with part {2, 1, 2} of Eve (x).

There are some interesting special cases that should be dis-
cussed. If the exchange takes place between two terminal
nodes, the result is the same as for two mutations. Even if
crossover takes place between two identical parents, the off-
spring will in general not be identical because the subexpres-
sions selected for exchange will not necessarily be the same.
This is in contrast to a GA where the fixed data structure
forces the creation of two offspring not only identical to each
other, but also identical to the parents.

During the evolution of the population, the depth of indi-
viduals tends to grow because subexpressions of different
depths are exchanged. While this will allow great flexibility
in finding a solution, the larger expressions take longer to
evaluate. Therefore it is practical to impose an upper limit on
the depth of an expression. In the event that a crossover will
exceed this limit, the offending offspring is replaced with
one of its parents [Koza 1992, 104], as shown in this revised
definition of CrossOver:

Ing3l= Clear[CrossQver] ;
CrossOver[parents_, maxDepth_:17] :=
Module[{ind, sub, children},
ind = randomElement[
Position[#, _, Heads -> False]l& /@ parents ;
sub = MapThread[Part[#1, Sequence €0 #2]&,
{parents, ind}] ;
children = MapThread[ReplacePart,
{parents, Reverse[sub], ind}] ;
MapThread[
If[Depth[#1] <= maxDepth, #1, #2]&,
{children, parents}] ]
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FIGURE 2. The crossover of Adam and Eve to produce Cain and Abel.
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Mutation

In the traditional GA, mutation merely replaces one ran-
domly selected gene with another one from the allowed
alphabet. Typically, a bit is flipped, as most GAs use a binary
representation. In genetic programming, mutation replaces a
randomly selected subexpression with a new, randomly gen-
erated subexpression. The depth of the new subexpression
can be anywhere from zero (a terminal) to some maximum
based on the overall maximum depth for an expression,
which may be larger than the orignal subexpression.

ings]= Mutate[expr_, funcs_, terms_, maxDepth_:17] =
Module[{pos, ind, depth, newSub},
ind = randomElement[
Position[expr, _, Heads -> False]] ;
depth = Random[Integer,

(maxDepth - 1 - Length[ind])/4] + 1 ;
newSub = RandomExpression[depth, funcs, terms] ;
ReplacePart[expr, newSub, ind] ]

Attributes[Mutate] = {HoldRest} ;

Ing7;= Simon = RandomExpression[3, funcs, terms]
outt7i= times[dividely, z], subtractlt, z]]

neg}= Peter = Mutate[Simon, funcs, terms]
outigsl- times[divide[y, z], subtract[times[z, y], zl]

In Figure 3, we see that part {2,1} of Simon, of depth 1, was
replaced by a subexpression of depth 2 to become Peter.

Constant Perturbation

In many instances, an expression tree can be improved by
making a small change in one of the component constants.
Fine tuning of this sort is often more efficient than relying on
mutation to achieve the same effect. We use the pattern
_?NumberQ to identify the terminal parts of an expression tree
that hold a constant numeric value.

times
divide subtract
y z 1 z
Simon
Peter
times
divide subtract
y z times z
z ¥

FIGURE 3. The mutation of Simon to produce Peter.
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Injs}= Saul = RandomExpression[4, funcs,
{x, Random[Integer, {-5, 5}1}]

outiegl= divide[times{subtract[4, x], 3, -1],
subtract[subtract[-5, x], subtract[3, x]1]

Note that we have used a larger set of terminals in this exam-
ple. Here are the positions of the numeric terminals.

nf100)= Position[Saul, _?NumberQ]
oupoo={{1, 1, 13, {1, 2}, {1, 3}, {2, 1, 1}, {2, 2, 1}}

Here are their values.

inno1k= Part[Saul, Sequence €@ #1& /@ %
ouron={4, 3, -1, -5, 3}

Now, one of these nodes is randomly selected and its value
is perturbed by a small amount. Note that Real, Integer,
Rational, and Complex constants are replaced by values of the
same type.

Inoz1= perturbConstant[n_Real] := Random[Real, n {0.8, 1.25}]
perturbConstant[n_Integer] := Random[Integer,
{Min[n-3, Floor[0.80 n}l,
Max[Ceiling[1.25 n], n+31}] /; n>= 0
perturbConstant[n_Integer] := Random[Integer,
{Min[n-3, Floor[1.25 nl],
Max [Ceiling[0.80 nl, n+3]1}] /; n < 0

inf105}= Perturblexpr_]:=
Module[{constants, ind},
constants = Position[expr, _?NumberQ] ;
If[Length[constants] > 0,
ind = randomElement[constants] ;
ReplacePart [expr,
perturbConstant [expr[[Sequence @@ ind]]1,
ind],
(* else *)
expr
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In(108}= Paul = Perturb[Saul]
outj106}-divide[times[subtract[1, x], 3, -1],
subtract[subtract[-5, x], subtract[3, x1]]

Figure 4 shows that the value 4 at part {1, 1, 1} of Saul was
replaced with the value 1 in Paul.

Fitness and Selection

How does one judge the “fitness” of an individual expression
tree? We need to measure how well the program represented
by the expression solves the problem at hand. The better the
program performs, the more fit it is and thus the more likely
it is to survive to the next generation or mate with other
individuals. The progression from performance to probabil-
ity of selection is controlled by a well-defined series of fitness
calculations [Koza 1992, 94-98].
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FIGURE 4. The perturbation of Saul to produce Paul.

For the problem of generating a particular sequence, we
have a set of observations or cases against which we can
measure the performance of the program.

mjio7= seq = {5, 31, 121, 341, 781, 1555, 2801, 4681};

First, we couple the sequence with the values of the inde-
pendent variable i to make a list of pairs. (For problems with
more than one independent variable, the data is usually
obtained as an array.)

(108 cases = Transpose[{Range[8], seq}]
ourtos{{1, 5}, {2, 31}, {3, 121}, {4, 341}, {5, 781},
{6, 1555}, {7, 2801}, {8, 4681}}

Next, for computational efficiency, we separate the observa-
tions into the independent and dependent parts.

if10a1= prepData[cases_, vars_] :=
Transpose[{Drop[#,-1], Last[#]}& /@ cases] /;
Length[First[cases]] = Length[vars] + 1
prepDatalcases, {i}]

oupoe{{{1}, {2}, {3}, {4}, {8}, {6}, {7}, {81},
{5, 31, 121, 341, 781, 1555, 2801, 4681}}

In this case, the performance of a program is measured by
an error function, which compares the given data values with
the values computed by the program. We could use the sum
of absolute errors or the sum of squared errors over the fit-
ness cases, and there is no compelling reason to choose one
over the other. The functions SumAbs and SunSqr compute the
sums of absolute error and squared error for a list of expres-
sions.

imi10k= SumAbs[{x_, y_}, vars_, exprs_] :=
Module[{f},
(f = Function @@ {vars, Eval[#1} ;
Plus @@ Absfy - Apply[f, x, {1}]] // W& /@ exprs ]

1= SumSqr{x_, y_}, vars_, exprs_] :=
Module[{f, d},
(f = Function @@ {vars, Eval[#]} ;
d=y - hpply[f, x, {1t // N ;
d.d)& /@ exprs ]

To demonstrate how we select individual expressions using
a measure of the error, we’ll first generate a small population
using the following sets of functions, terminals, and vari-
ables.

2= funcs = {{plus,2}, {subtract,2}, {times,2}, {divide,2}} ;
terms := {i, Random[Integer, {-3, 3}} ;
vars = {i} ;

mi15}= data = prepDatalcases, vars] ;

In116= pop = makePop{funcs, terms, 10, 6] ;

The list of errors obtained by applying SumAbs to the popula-
tion is known as the raw fitness.

In[1171= rawFit = SumAbs[data, vars, pop]
20 19
ouft17={1.47574 10 , 10280., 7.3787 10 , 10208., 10316.,

18 6 19
11420., 10298.6, 2.78531 10 , 1.68461 10 , 7.3787 10 }

It is always possible to minimize the error by adding more
adjustable parameters to the fitting function, and we have
done nothing to protect against this so-called overfitting.
One could build parsimony into the fitness function by
inflating the error proportional to the number of terminals or
functions in the expression tree. However, it has been shown
that penalizing the fitness by the expression size seriously
degrades performance [Koza 1992, 612—-614]. Therefore, it is
more convenient to enforce parsimony via the genetic opera-
tors (maximum depth) and algebraic simplification.

Depending on the problem, we may want either to mini-
mize or maximize the raw fitness. To simplify things, the
raw fitness is converted to standardized fitness, a non-nega-
tive quantity which is always minimized. When raw fitness is
error, we can let the standardized fitness be the same as the
raw fitness.

n18L= standardizedFit{rawfit_] := rawfit

Inf1191= standFit = standardizedFit[rawFit] ;

When the raw fitness should be maximized (such as a
score in a game), the following definitions may be appropri-
ate. If there is no theoretical upper bound to the score,
maxScore may be set to the maximum value of the popula-
tion’s raw fitness, or to some other practical value.

standardizedFit[rawfit_] := maxScore - rawfit
standardizedFit[rawfit_] := Max[rawfit] - rawfit

The standardized fitness is inverted to give the adjusted fit-
ness, which is proportional to the probability of selection.
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n120= adjFit = 1 / (1 + standFit)
-21 -20
ouf1201={6.77626 10 , 0.0000972668, 1.35525 10 , 0.0000979528,
-19
0.0000969274, 0.000087558, 0.0000970908, 3.59026 10 ,

-7 -20
5.93609 10 , 1.35525 10 }

There are three main types of selection. In fitness-propor-
tionate selection (or roulette wheel selection), the probability
of selection is directly proportional to the magnitude of the
fitness. This type of selection is most easily accomplished by
using a list of cumulative sums of adjusted fitnesses [Freeman
1993].

if121}= cumSum = FoldList[Plus, 0, adjFit] // Rest

-21
ou121={6.77626 10 , 0.0000972668, 0.0000972668, 0.00019522,
0.000292147, 0.000379705, 0.000476796, 0.000476796,
0.000477389, 0.000477389}

We generate a random number between zero and the final
cumulative sum, and find the position of the first cumulant
that exceeds it. The function selectOne returns the index of
the selected individual.

In1221= selectOne[cumProb_] :=
Module[{r = Random[] Last[cumProb]},
Position[cumProb, _?(# >= r &), {1}, 1J([1, 111 ]

Inf123k= selectOne[cumSum]
Out123=4

inl124= pop[[#]]
Outii24=divide[times[-1, i], divide[subtract[0, -1], -311

This functional definition of selectOne is not very fast
because each element of the list of cumulative fitnesses must
be examined in turn until one matches the pattern. The algo-
rithm is of order O(n). Because the list is nondecreasing, we
can use a more efficient binary search algorithm of order
O(log, n). The following procedural binary search version is
more than three times faster for a list of 500 elements.

In(1251= selectOne[cumProb_] :=
Module[{lo = 1, hi = Length[cumProb], mid,
r = Random[] Last[cumProbl},
While[lo != hi-1,
mid = Round[ (1o + hi)/2] ;
If[r < cumProb{[mid]], hi = mid, lo = mid]
1;
Iflr <= cumProb[[10]], 1o, hi] ]

Rank selection is closely related to fitness proportionate
selection. In this method, the probability of selection is pro-
portional to only the rank, or order, of the adjusted fitness,
and not its actual magnitude. Rank selection is used when
one wants to enhance the distinction between individuals of
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nearly equal fitness. The function toRank takes a list of
adjusted fitnesses and returns their ranks (where 1 is low
and ties are allowed).

lf126]= toRank[adjFit_] :=
Module[{f = Union[adjFit, SameTest -> Sameq], c,
r = Range[Length[adjFitl], g, b, nr},
¢ = CategoryCountsfadjFit, f] ;
g = (b = Take[r, #]; r = Droplr, #]; b)& /@ c ;
nr = (Plus @@ #)/Length[#]& /0 g ;
nr[[Flatten[Position[f, #I& /@ adjFit]]] ]

Inj127}= toRank[ad jFit] // N
ouf127{1., 9., 2.5, 10., 7., 6., 8., 4., 5., 2.5}

The cumulative sum of ranks is used in place of the cumula-
tive sum of adjusted fitnesses in selectOne.

Inf128}= cumSum = FoldList[Plus, 0, %] // Rest
oufizei={1., 10., 12.5, 22.5, 29.5, 35.5, 43.5, 47.5, 52.5, 55.}

The third method of selection is tournament selection. In
this method, a set of individuals is drawn at random from
the population and the most fit individual is selected.

Finally, we need to define a success predicate that returns
True when an optimal or, depending on the problem, near-
optimal solution is found. When the raw fitness is error, a
perfect solution has zero error; otherwise, we might accept
an error below a specified threshold, as in this example:

successQ[rawfit_] := Or @@ Thread[rawfit < 0.5]

GeneticProgram

The function GeneticProgram combines the pieces of code we
have developed (an excerpt is shown in Listing 1). It takes as
arguments the lists of cases, variables, functions, and termi-
nals; the function to preprocess the fitness cases; the stan-
dardized fitness function; and the success predicate function.
The numerical values for the population size and the maxi-
mum number of generations over which the population is
allowed to evolve, as well as the list of genetic operators,
can be changed from their default values with the use of
options. Our function generates an initial population and
evolves successive generations. The result returned by
GeneticProgram is a list of replacement rules which includes
the following expressions: Best0fRun is a couplet of the raw
fitness and the expression for the best individual found dur-
ing the entire course of the run, FinalFit is a list of the stan-
dardized fitnesses for the final population, and FinalPop is
the corresponding list of expressions. In many of the prob-
lems we encounter in medicinal chemistry, there is no one
correct answer, so we prefer to look at an ensemble of good
answers.

We have also included Print statements so that the evolu-
tion of the population can be monitored. The generation (g),
best over-all standardized fitness (run best), cpu time used
{cpu), and the memory used (mem) are reported periodically.



data = prepData[cases, varlist] ;

stdFit = standardFit{data, varlist, pop] ;
adjFit =1 / (1 + stdFit) ;

best = Position[adjFit, Max[adjFitl][[1, 111 ;
bestOfRun = {adjFit[[best]], pop[lbest]]} ;

While[g < maxGen && !successQ[stdFitl,
probExpr = FoldList[Plus, 0, adjFit] // Rest,
newPop = Table[Null, {popSize}] ;
i=0;
While[i < popSize,
{op, np} = genOpers[[ selectOne[probOper] 11 ;
parents = pop[[ Table[selectOne[probExpr]l, {np}] 11 ;
children = op[parents] ;
For[j =1, j <= np & i < popSize, j++,
newPop[[++i]] = children[[jI] ;
I
13
pop = newPop ;
g+ ;
stdFit = standardFit[data, varlist, pop] ;
adjFit = 1 / (1 + stdfFit) ;

best = Position{adjFit, Max[adjFit]1[[1, 11] ;
Tf[adjFit[[best]] > First[bestOfRun],

bestOfRun = {adjFit[[best]], popl[[best]]}] ;
1;

LISTING 1. Part of the definition of GeneticProgram.

The genetic operators are specified in a list, together with
their numbers of input expressions and their relative fre-
quencies. This format allows us to draw any one of them at
random and apply it to the appropriate number of individu-
als drawn from the population. The relative frequencies do
not indicate the frequency with which the operators are
invoked, but rather the frequency with which new individu-
als are created. Therefore, to obtain the necessary probability
of using an operator, the relative frequency is divided by the
number of parents (which is the same as the number of off-
spring produced).

The asexual genetic operators return a single expression,
while the sexual one (crossover) returns a list of expressions.
One of the great strengths of Mathematica is its ability to be
customized on the fly. Thus we are able to recast Mutate and
Perturb to return lists of one clement, and define Reproduce
with the following snippet of code:

opers = opers /.
{Reproduce -> Identity,
Mutate -> ({Mutate[Sequence @@ #, funcs, terms]}&),
Perturb -> ({Perturb[Sequence €@ #]1}&)} ;

As each generation is completed, the standardized fitness
(stdFit) is computed and converted to the adjusted fitness
(adjFit). The heart of GeneticProgram is in the two nested While
loops, the outer one over generations and the inner one over
individual expressions. In the outer loop, the cummulative
sum of adjusted fitnesses (probExpr) is computed and an

empty next generation (newPop) is made. Then, in the inner
loop, a genetic operator (op) is selected at random, the parents
are selected, and finally the children are created and inserted
into the new generation. All these steps are done under the
control of the two lists of cummulative probabilities, probQper
for the genetic operators and probExpr for the parents. At the
end of the outer loop, pop is replaced by newPop and new fit-
nesses are computed.

Symbolic Regression

Let us return to our problem of finding an expression to gen-
erate a given sequence. We first start a new Mathematica
kernel and load our packages.

k= Needs["GeneticProgramming™"]

GeneticProgramming.m, version 2.1.

2= Needs["SymbolicRegression™"]
SymbolicRegression.m, version 1.0.

The data for the problem is a list of eight observations:

m3k=  seq = {5, 31, 121, 341, 781, 1555, 2801, 4681};

We choose a function set containing just the four arithmetic
functions (nothing in the data warrants the use of trigono-
metric functions or logarithms). The independent variable i
and small integers comprise the terminal set.

ma=  funcs = {{plus,2}, {subtract,2}, {times,2}, {divide,2}} ;
terms := {i, Random[Integer, {-3, 3}}

As standardized fitness is the same as raw fitness, we will
use SumSqr to calculate it. The success predicate will be a per-
fect fit.

mel=  successQrawfit_] := Or @@ Thread[Chop[rawfit] == 0]

We will use the default population size of 500, a typical
value. This number may seem rather high for such a simple
problem, but it is required to allow the population to main-
tain the necessary diversity. It is difficult, however, to predict
how the population size scales with the complexity of the
problem. Suffice it to say here that we have solved a three-
variable problem with the same population size.

7= result = GeneticProgram[seq, {i}, funcs, terms, GetData,
SumSqr, successQ, GeneticOperators ->
{{CrossOver, 2, .85}, {Reproduce, 1, .01},
{Mutate, 1, .01}, {Perturb, 1, .13}}] ;

ou7= g=0, run best = 480416., cpu = 0:02:26, mem = 2877 K
g=5, run best = 12056., cpu = 0:08:01, mem = 2824 K
g=10, run best = 12056., cpu = 0:12:41, mem = 2812 K
g=15, run best = 6056., cpu = 0:17:28, mem = 2816 K
g=20, run best = 8., cpu = 0:22:48, mem = 2886 K
g=25, run best = 4.09171, cpu = 0:29:33, mem = 2900 K
g=27, run best = 0, cpu = 0:32:22, mem = 2928 K
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Here is the best-fitting expression and its depth:

migk= b = BestOfRun /. result
ouge {0, times[divide[i, dividel[i,
divide[i, divide[i, times[i, 111111,
subtract[subtract[plus[i, -3, i,
subtract[subtract[plus[2, 2],
divide[times{-1, subtract[i,
divide[times[-1, i, il1],
times[i, 1111, timesf0, -1, il11, times[-1, ill,
times[subtract[2, i], il11}

mgl= Depth[Last[b]]
outfgl= 12

Here is the simplified form of the expression:
im0} Evalltastb]]
ou10l= PDivide[i, PDivide[i, PDivide[i, PDivide[i, 12]]]]
(1 +3i-(2-1i)1i- PDivide[-i + PDivide[-i, il, iz])

11}= bestFit = % /. PDivide —> Divide // Expand // Together

.2 3 4
o= 1 +i+i +1i +1

Now, let’s look at the runners up. Sometimes the numeri-
cally best solution does not make good physical, chemical, or
biological sense for the problem, so it is always a good idea
to examine plausible alternatives. In the real world, where
experimental error lurks, these second- and third-best
answers may well be better than the best-fit solution when
one also takes into account parsimony, the physical inter-
pretation of the resulting expressions, and test cases that
were not used in training,.

nnz= fp = Sort{Transpose[{FinalFit, FinalPop} /. result]] ;

Here are the fitnesses of the five best expressions.

m13= First /@ Take[fp, 5]
ou13= {0, 4.09171, 6.02694, 8., 8.}

Here is the second-best expression and its depth:

m1dp= sb = fp[[2]]
ounal= {4.09171, times[divide[i, dividel[i,
divide[i, divide[i, times[i, 111111,
subtract[subtract[plus[i, -3, i,
subtractsubtractplus[2, 2],
divide[times[-1, subtract[i,
divide[times[-1, i, times[i, i]]11,
times[i, il11,
times[0, -1, il11, times[-1, ill,
times[subtract[2, il, i]11}
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FIGURE 5. The best-fitting expression found by GeneticProgram.

5= DepthflLast[sb]]
outf15}= 12

Here is the simplified form of this expression, which differs
from the best expression by the additional term (1 —i)/i.

niet= Eval[Last[sb]]
2
outl16l= PDivide[i, PDivide[i, PDivide[i, PDivide[i, i 111]
2 2
(1+3i-(2-1)1i- PDivide[-i + PDivide[-i, i1, i 1)

m[171= secondBestFit = % /. PDivide->Divide // Expand //
Together

. 3 5
1+1i +1 +1 +1

Out[17]= -
1

Infigl=  secondBestFit - bestFit // Simplify

1
Out1gk -1 + -
1

Suppose now that we are given the next four entries in
the sequence to test our results: 7381, 11111, 16105, and
22621. (If one cannot obtain new data with which to vali-
date the results, one should hold back a portion of the data
from the fitting process for this purpose.) Let’s compare these
entries with the numbers generated by the best-fit expres-
sion.

nig=  (bestFit /. i -> #)& /@ Range[9, 12]
outgl= {7381, 11111, 16105, 22621}

Viola! Still a perfect fit. Here is a comparison of the two
best results:

In201= TableForm[
{#, (bestFit /. i > #),
N[secondBestFit /. i -> #]1}& /@ Range[12],
TableHeadings -> {None, {"i", "best", "second best"}},
TableSpacing -> {0, 3}]



Outf20}//TableForm=
1 best second best
1 5 5.
2 31 30.5
3 1 120.333
4 3 340.25
5 718 780.2
6 1555  1554.17
7 2801  2800.14
8 4681  4680.12
9 7381 7380.11
10 11111 11110.1
11 16105 16104.1
12 22621 22620.1

Closing Remarks

The functions described here, as well as several others
that should be useful, are collected in the packages
GeneticProgramming.m and SymbolicRegression.m. The options and
output have been expanded to include information we have
found helpful in deciding whether or not to continue a run or
to start over with a new population. We have attempted to
isolate the problem-specific functions and definitions in
SymbolicRegression.m and to keep GeneticProgramming.m as
generic as possible.

Currently, we exploring ways to evolve parsimonious
expressions, to employ smaller but more diverse populations,
and to incorporate analytic methods for determining the val-
ues of constants.

Genetic programming is field of active research, and there
are many issues and techniques we have not touched on here.
The reader is referred to [Koza 1992; 1994] for further read-
ing and references. The Internet news group comp.ai.genetic
and the mailing list genetic-programming@cs.stanford.edu are
devoted to evolutionary computing. These World Wide Web
sites may also be of interest: http://www-mitpress.mit.edu/
jrnls-catalog/evolution.html and http://gal4.ge.uiuc.edu/

illigal.home.html.
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