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Abstract. Affymetrix High Density Oligonuclotide Arrays (HDONA)
simultaneously measure expression of thousands of genes using millions
of probes. We use correlations between measurements for the same gene
across 6685 human tissue samples from NCBI’s GEO database to in-
dicated the quality of individual HG-U133A probes. Low concordance
indicates a poor probe. Regular expressions can be data mined by a
Backus-Naur form (BNF) context-free grammar using strongly typed
genetic programming written in gawk and using egrep. The automati-
cally produced motif is better at predicting poor DNA sequences than an
existing human generated RE, suggesting runs of Cytosine and Guanine
and mixtures should all be avoided.

1 Introduction

Typically Affymetrix GeneChips (e.g. HG-U133A) measure gene expression at
at least eleven points along the gene. Individual measurements are given by short
(25 base) DNA sequences, known as probes. These are complementary to corre-
sponding locations in genes. Being complementary, the gene product (messenger
RNA) preferentially binds to the probe. Cf. left hand side of Figure 1. Half a
million probes are placed on a glass slide in a square grid pattern. A fluorescent
dye is used to measure how much mRNA is bound to each probe.

While nothing is simple in Biology, to a first approximation, the amount of
mRNA produced by a gene should be the same no matter which part of the
mRNA molecule is bound to a probe. Affymetrix groups probes into probe-
sets. Each probeset targets a gene. Therefore probe measurements for the same
probeset should be correlated. Figure 1 (right) shows the 110 correlations for
a probeset as a “heatmap” (yellow/lighter corresponds to greater consistency
between pairs of probes).

There are several biological reasons which might lead to probes on the same
gene giving consistently unrelated readings. (Alternative splicing, alternative
polyadenylation and 3’-5’ degradation, come to mind [11].) However these do
not explain all of the many cases of poor correlation. In [9] we found some tech-
nological reasons. In particular, [9] showed that probes containing a large ratio
of Guanine (G) to Adenosine (A) bases are likely to perform badly. Subsequently
we have found that runs of Gs (which will tend to have a high G/A ratio) also
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Fig. 1. Left:Schematic of an Affymetrix probe (vertical) bound with comple-
mentary target sequence (right). Right: Correlation coefficients (×10) between
11 probes for gene “S100 calcium binding protein A11” S100A11. Nine of the
probes are correlated but PM1 and PM2 (bottom 2 rows and 2 left) are not.

tend to indicate problem probes [25]. This has lead us to ask if there are other
sequences which might indicate dodgy probes.

The next section will briefly describes the research background, whilst Sec-
tion 3 will describe the preparation of datasets containing the correlation coeffi-
cients and probe sequences. Section 4 describes the evolutionary algorithm used
to create regular expressions for egrep. Section 5 describes how well genetic
programming does. Section 6 uses the evolved motif to suggest potential physi-
cal explanations for poor probes. Finally, in Section 7 we conclude that several
regular expressions, e.g. G(G|C){4}, in additions to GGGG, can be used together
to locate poor probes.

2 Grammars and Evolutionary Computation

Existing research on using grammars to constrain the evolution of programs can
be broadly divided in two: Grammatical evolution [21] based largely in Ireland
and work in the far east by Wigham [26; 27], Wong [28] and McKay [17].

There is quite a body of work on using evolution to induce formal grammars.
E.g. Nikolaev tackled the Tomita regular expression benchmarks [20]. GP has
also evolved context free grammars [14]. Cetinkaya used grammatical evolution
to create regular expression for processing HTML [6].

Ross induced stochastic regular expressions from a number of grammars to
classify proteins from their amino acid sequence [24]. Typically his grammars had
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eight alternatives. In Stockholm regular expressions have been evolved to search
for similarities between proteins, again based on their amino acid sequences [7].
Whilst Brameier in Denmark used amino acids sequences to predict the location
of proteins by applying a multi-classifier [16] linear GP based approach [4] (al-
though this can be done without a grammar [15]). A similar technique has also
been applied to study microRNAs [5].

The next section describes our single stage strongly typed tree based GP be-
ing applied to an important DNA problem: explaining why some DNA sequences
in wide spread commercial use make poor GeneChip probes.

3 Preparation of Training Data

Previously we had down loaded thousands of experiments from NCBI’s GEO [2],
normalised them, excluded spatial defects and calculated the correlation between
millions of pairs of probes [13; 9; 12]. To exclude genes which are never expressed,
we selected probesets where ten or more non-overlapping probe pairs had cor-
relations of 0.8 or more. For each probe we use the median value of all 10 of
its correlations with other members of its probeset (excluding those it overlaps).
This gave 4118 probesets, which were evenly split into three to provide indepen-
dent training, test and validation data.

Previously we found the “mismatch” probes were often poorly correlated
with other measurements for the same gene [9]. Since this is known, we excluded
them from this study.

As Figure 2 (left) shows correlation coefficients cover a wide range. Since we
are using correlation only as an indication of how well a probe is working we
decided to exclude the middle values from training and instead use probe pairs
that were highly correlated (≥ 0.8) or were very poorly correlated (≤ 0.3). Of
the 15 092 available training examples, there are 7 832 probes highly correlated
with the rest of their probeset but only 583 poorly correlated. To avoid unbal-
anced training sets, every generation all 583 negative examples are used and 583
positive examples are randomly chosen from the 7 832 positive examples.

4 Evolving Regular Expression Motifs

4.1 BNF grammar of Regular Expression

The BNF grammar used (cf. Figure 3) is an extension of that given by Cameron
http://www.cs.sfu.ca/people/Faculty/cameron/Teaching/384/99-3/regexp-plg.html

In particular, matching the beginning of strings (^) and the {n,m} form of Kleen
closure, are also supported. The BNF has been customised for DNA strings.
(I.e. <char> need only be A C G and T). Since various combinations of the start
of string symbol, null strings and Kleen closure cause egrep to loop, care has
been taken to ensure that the new BNF does not permit null strings after ^.
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Fig. 2. Training data. Probes with intermediate values (0.3 . . . 0.8) are not used.

Right: Evolution of breeding population (best 200 of 1000) of regular expressions
to find poor GeneChip probes. Each generation the positive training cases are
replaced leading to fluctuations in the measured best fitness (*). However diver-
sity remains high and there are usually few individuals with the same highest
fitness (2). In this run the number of distinct phenotypes (×) (i.e. egrep search
strings) is almost identical to the number of distinct genotypes. Bloat is limited
(+), apparently by the tree depth limit (17). However the system slows down by
(≈ 1

2 ) as evolution proceeds.

Brameier and Wiuf suggests that the traditional * and + form of Kleen clo-
sure are not suitable for bioinformatic applications [5]. Instead they recommend
the {n,m} form which explicitly defines both lower (n) and upper (m) limits on
the number of times the preceeding symbol must occur. However both {n,m} and
traditional Kleen closures are used by evolved solutions. To avoid mutation.awk
seeing “Hamming cliffs”, the integer quantifiers used in the {n,m} are Gray
coded [1]. Similarly the syntax groups together the chemically more similar
Pyrimidines (T and C) and Purines (A and G).

Our system supports full positive integer values for minmaxquantifier, how-
ever even modest values can lead egrep to hang the computer. Therefore n and
m are limited to 1-9. Finally egrep rejects {n,m} if m<n. This is handled by a
semantic rule which removes ,m from the phenotype when m is less than n.

4.2 Simplifying the BNF for use by Evolutionary Algorithms
For simplicity, the BNF is written so that grammar rules are either simple
substitution rules (e.g. <minmaxquantifier>), rules with exactly two options
(e.g. <RE>) or terminals (e.g. "*" and T). In BNF terms, a terminal is a symbol
which cannot be substituted in the grammar. Therefore, unlike the BNF rules,
it becomes part of the egrep regular expression. The simple substitution rules
do not have any element of choice. They, like terminals, cannot be chosen as
crossover points or targets for mutation. Their principle use is to enable the
rules with options to be kept simple.

The binary choice rules are the active parts of the syntax. As they are always
binary, each sentence recognised by the BNF has an equivalent binary string.
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<start> ::= <RE>

<RE> ::= <union> | <simple-RE>

<union> ::= <RE> "|" <simple-RE>

<simple-RE> ::= <concatenation> | <basic-RE>

<concatenation> ::= <simple-RE> <basic-RE>

<basic-RE> ::= <RE-kleen> | <elementary-RE>

<RE-kleen>::= <minmaxquantifier> | <kleen>

<kleen>::= <star> | <plus>

<star> ::= <elementary-RE2> "*"

<plus> ::= <elementary-RE2> "+"

<minmaxquantifier> ::= <elementary-RE4> "{" <int> <optREint> "}"

<elementary-RE> ::= <group> | <elementary-RE1>

<elementary-RE1> ::= <xos> | <elementary-RE2>

<elementary-RE2> ::= <any> | <elementary-RE3>

<elementary-RE3>::= <set> | <char>

<elementary-RE4> ::= <group> | <elementary-RE2>

<group> ::= "(" <RE> ")"

<xos> ::= <sos> | "$"

<sos> ::= "^" <elementary-RE4>

<set> ::= <positive-set> | <negative-set>

<positive-set> ::= "[" <set-items> "]"

<negative-set> ::= "[^" <set-items> "]"

<set-items> ::= <set-item> | <set-items2>

<set-items2> ::= <set-item> <set-items>

<set-item> ::= <char>

<char> ::= <c00> | <c01>

<any> ::= "."

<c00> ::= T | C

<c01> ::= A | G

<optREint> ::= <2ndint> | $

<2ndint> ::= "," <int>

<int> ::= <d0>

#4 Bit Gray Code Encoder

<REdigit> ::= <d111> | <d0>

<d0> ::= <d00> | <d01>

<d00> ::= <d000> | <d001>

<d01> ::= <d010> | <d011>

<d000> ::= 1

<d001> ::= 3 | 2

<d010> ::= 7 | 6

<d011> ::= 4 | 5

<d111> ::= 8 | 9

Fig. 3. Grammar used to specify legal regular expressions for use as egrep
search strings for testing DNA sequences.
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(A BNF sentence means an egrep regular expression in our case.) Each bit
corresponds to a BNF rule with two options needed when parsing the sentence.
The bit indicates which option should be invoked. Note that the meaning of
each bit depends upon where we have reached in parsing the sentence (i.e. on
the earlier bits). In traditional GP terms, this list of choices is the evolving tree.
The BNF grammar acts to put labels on the choices, which constrain crossover,
but it is the choices (not the BNF grammar) which is the genetic material of the
evolving individual. Note, unlike grammatical evolution, strongly typed crossover
respects [23] the meaning of the BNF rules.

4.3 Creating Random BNF Sentences

The initial random population is created using ramped half-and-half [8]. It may
help to think of this as applying the usual genetic programming ramped half-
and-half algorithm to a binary tree (of choice nodes).

We start from <start> and recursively follow the BNF. However when we
reach a rule with options we need to choose one. As in ramped half-and-half we
keep track of how deep we are nested. If we have not reached the depth needed
to terminate the recursion, we randomly choose one of the options. This is the
equivalent of choosing a GP function. (As with other strongly typed GPs, if a
chosen route through the syntax has no further choices to be made, we may be
forced to terminate a recursive branch early.)

To terminate a recursion we choose the “simpler” option. Our BNF has been
written so that the simpler option is always on the right. (This is flagged by RE
in the rule name.) If there is no “simpler” choice, the choice is made randomly.
This mechanism is also used for mutating existing regular expressions.

Although this may seem complex, gawk (Unix’ free interpreted pattern scan-
ning and processing language) can handle populations of a million individuals.

4.4 Crossing over BNF Sentences

Creating a new sentence from two high fitness sentences is essentially subtree
crossover [22] applied to the binary choice tree (cf. Section 4.1) with the ad-
dition of strong type constraints [18]. This is implemented by scanning the
grammar used to create the first parent for all the rules with two options.
One of these is randomly chosen. For example, suppose the first parent starts
<start> <RE> <union> and suppose <union> is chosen as the crossover point.
For a grammatically correct child to be produced all that is necessary is that
the crossover point chosen in the second parent should also be <union>. (There
are complications to do with depth and size limits, which we shall ignore for
the time being.) Therefore the second parent is scanned to find all occurrences
of <union>. One of them is randomly chosen to be the second crossover point.
(If there are none, this crossover is aborted and another initial crossover point
is chosen. If we keep failing, eventually another pair of parents is chosen.)

Crossover is based on normal GP subtree crossover, cf. [22, Figure 2.5]. The
new child is created by copying the start of the first parent, excluding the subtree
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at the first parent’s crossover point. Then genetic material from the subtree at
the second parent’s crossover point is added. Finally the remainder of the first
parent is appended to the child. This is implemented by crossing over the binary
choice trees to create a binary choice tree for the new child. Apart from issues
of tree size and depth, we are guaranteed that the new binary choice tree will
represent a valid sentence in the BNF grammar.

The final step is to recursively trace through the BNF grammar, obeying
the binary choices. Each time an BNF terminal (except the null symbol) is
encountered it is appended to the new regular expression. In order to be able to
breed following generations, the new individual’s genotype must also be passed to
the next generation. For convenience, this is done by writing each BNF symbol,
as it is encountered, to the file holding the next generation.

4.5 Evaluating the Fitness of BNF Sentences

Each generation, a command file is generated which contains a egrep -c -v ’RE’
command for each individual in the population. (RE is the individual’s regular
expression.) The command is run on a file holding the DNA sequences of the 583
probes poorly correlated with the rest of their probeset. The same command is
also run on a file holding the 583 positive probes selected for use in this gener-
ation. The fitness of the regular expression is based on the difference between
the number of lines in the two files which match RE. Expressions which either
match all probes or fail to match any are penalised by subtracting 583 from their
score. See also Table 1. Implementation details can be found in [12].

5 Results

By the end of the first run, with a population of 1000 (cf. Table 1 and Figure 2,
right) GP had evolved a probe performance predictor (see Figure 4) equivalent
to GGGG|CGCC|G(G|C){4}|CCC. It is obvious that it includes the previous rule
(GGGG, [25]) but includes other possibilities. Therefore it finds more poor probes.
Inevitably it will also incorrectly predict more high correlation probes are poor
but the increase is more than offset by its better performance on the poor probes.
See Figure 5. It has a fitness of 856. (GGGG has a fitness of 776.)

The confusion matrix for the evolved regular expression on the whole of the
training set (including the 6677 positive middling values which GP never saw)

is
410 4448
173 10061 and on the verification data:

448 4436
174 10045 . (The corresponding ma-

trices for GGGG are
195 479
388 14030 and

209 434
413 14047 .) Unlike in many machine learning

applications, there is no evidence of over fitting. Indeed the corresponding re-
sults for the test set (second matrix of each pair) are not significantly different
(χ2, 3 dof) from those on the whole training set. The evolved regular expression
picks up significantly more (χ2, 3 dof) (448 v. 209) poorly performing probes on
the validation set than the human produced regular expression. Figure 6 shows
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Table 1. Strongly Typed Grammar GP for GeneChip Correlation Prediction

Primitives: The function and terminal sets are defined by the BNF grammar (cf. Fig-
ure 3). BNF rules with two options correspond to binary GP functions.
The rest of the BNF grammar correspond to GP terminals.

Fitness: true positives+true negatives. (I.e. proportional to the area under the
ROC curve or Wilcox statistic [10].) Less large penalty if egrep fails or
it matches all probes or none.

Selection: (200,1000)
Initial pop: Ramped half-and-half 3:7
Parameters: 100% subtree crossover. Max tree depth 17 (no tree size limit)
Termination: 50 generations

<start>

<RE>

<union>

<RE> | <simple-RE>

<union> <basic-RE>

<RE> | <simple-RE>

<union> <concatenation>

<RE> | <simple-RE>

<union> <concatenation>

<RE> | <simple-RE>

<union> <concatenation>

<RE> | <simple-RE>

<union> <concatenation>

<RE> | <simple-RE>

<union> <basic-RE>

<RE> | <simple-RE>

<simple-RE> <basic-RE>

<concatenation>

<simple-RE> <basic-RE>

<basic-RE> <RE-kleen>

<elementary-RE>

<elementary-RE1>

<elementary-RE2>

<elementary-RE3>

<char>

<c01>

G

<minmaxquantifier>

<elementary-RE4> { <int> <optREint> }

<elementary-RE2> <d0>

<elementary-RE3>

<char>

<c00>

C

<d00>

<d001>

3

<RE-kleen>

<minmaxquantifier>

<elementary-RE4> { <int> <optREint> }

<elementary-RE2> <d0>

<elementary-RE3>

<char>

<c01>

G

<d01>

<d011>

4

<RE-kleen>

<minmaxquantifier>

<elementary-RE4> { <int> <optREint> }

<elementary-RE2> <d0>

<elementary-RE3>

<char>

<c00>

C

<d01>

<d011>

4

<simple-RE> <basic-RE>

<concatenation> <RE-kleen>

<simple-RE> <basic-RE>

<basic-RE> <RE-kleen>

<elementary-RE>

<elementary-RE1>

<elementary-RE2>

<elementary-RE3>

<char>

<c00>

C

<minmaxquantifier>

<elementary-RE4> { <int> <optREint> }

<elementary-RE2> <d0>

<elementary-RE3>

<char>

<c01>

G

<d00>

<d000>

1

<minmaxquantifier>

<elementary-RE4> { <int> <optREint> }

<elementary-RE2> <d0>

<elementary-RE3>

<char>

<c00>

C

<d00>

<d001>

2

<simple-RE> <basic-RE>

<concatenation> <RE-kleen>

<simple-RE> <basic-RE>

<basic-RE> <RE-kleen>

<elementary-RE>

<elementary-RE1>

<elementary-RE2>

<elementary-RE3>

<char>

<c01>

G

<minmaxquantifier>

<elementary-RE4> { <int> <optREint> }

<elementary-RE2> <d0>

<elementary-RE3>

<char>

<c01>

G

<d01>

<d011>

4

<kleen>

<plus>

<elementary-RE2> +

<elementary-RE3>

<char>

<c00>

C

<simple-RE> <basic-RE>

<basic-RE> <RE-kleen>

<elementary-RE>

<elementary-RE1>

<elementary-RE2>

<elementary-RE3>

<char>

<c01>

G

<minmaxquantifier>

<elementary-RE4> { <int> <optREint> }

<group> <d0>

( <RE> )

<union>

<RE> | <simple-RE>

<simple-RE> <basic-RE>

<basic-RE>

<elementary-RE>

<elementary-RE1>

<elementary-RE2>

<elementary-RE3>

<char>

<c01>

G

<elementary-RE>

<elementary-RE1>

<elementary-RE2>

<elementary-RE3>

<char>

<c00>

C

<d01>

<d011>

4

<simple-RE> <basic-RE>

<basic-RE> <RE-kleen>

<elementary-RE>

<elementary-RE1>

<elementary-RE2>

<elementary-RE3>

<char>

<c01>

G

<minmaxquantifier>

<elementary-RE4> { <int> <optREint> }

<group> <d0>

( <RE> )

<union>

<RE> | <simple-RE>

<simple-RE> <basic-RE>

<basic-RE>

<elementary-RE>

<elementary-RE1>

<elementary-RE2>

<elementary-RE3>

<char>

<c01>

G

<elementary-RE>

<elementary-RE1>

<elementary-RE2>

<elementary-RE3>

<char>

<c00>

C

<d01>

<d011>

4

<RE-kleen>

<minmaxquantifier>

<elementary-RE4> { <int> <optREint> }

<elementary-RE2> <d0>

<elementary-RE3>

<char>

<c00>

C

<d00>

<d001>

3

Fig. 4. Geneotype of best program in generation 50. Active choice nodes in the
BNF (cf. Figure 3) are emphasised by placing them in ovals. The resulting phe-
notype is simply the 58 leaf nodes (excluding $), read in left to right order:
GC{3}|G{4}|C{4}|CG{1}C{2}|GG{4}C+|G(G|C){4}|G(G|C)4|C{3}. It is equiva-
lent to GGGG|CGCC|G(G|C){4}|CCC.
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the number of DNA probes matching the evolved motif against their average
correlation with the rest of their probeset.

As is common in optimisation [3], almost all the time is taken by the fit-
ness evaluation. In our case, elapse time is dominated by the command script
which runs egrep -c. Typically this takes 8.5mS per individual. The time taken
by gawk to process the BNF grammar, perform crossover, generate the regular
expressions, etc., is negligible.

6 Discussion

Theoretical and empirical studies of GeneChips confirm that the behaviour of
DNA probes tethered to a glass surface can be quite different from DNA be-
haviour in bulk solution. This is a new and difficult area and there are not deep
pure Physics experimental results. Therefore experimental studies have concen-
trated on data gathered during normal operation of the chips.

Our automatically generated motif, suggests that in addition to Gs, Cs are
important. Indeed the fact that only three consecutive Cs is predictive (whereas
four Gs are needed) suggests that Cs are more important than Gs. It is known
in GeneChips DNA C–G RNA binds more strongly than DNA G–C RNA [19].
(Both C and G bind more strongly than A and T.) We are tempted to suggest
that a CCC sequence on a DNA probe can act as a nucleation site encouraging
the probe to bind to GGG on RNA. Indeed the evolved motif suggests that four
Gs and mixtures of five Cs and Gs might also form nucleation sites.

The sequence CCC is too short to be specific to a particular gene. GeneChips
are designed on the assumption that only RNA sequences which are complemen-
tary to the full length of the probe will be stable. However studies have shown
that nonspecific targets can be bound to GeneChip probes for several hours even
if held only by the nucleation site. This may be why probes with quite short runs
of either Cs or Gs can be poorly correlated with others designed to measure the
same gene.

7 Conclusions

Access to the raw results of thousands of GeneChips (each of which costs several
hundreds of pounds) makes new forms of bioinformatic data mining possible.

Millions of correlations between probes in the same probeset, which should be
measuring the same gene, show wide variation. Evolution of regular expressions
confirms previous work [9; 25] that the DNA sequences from which the probes
themselves are formed can indicate poor probe performance. Indeed several new
motifs (e.g. CCC) which predict probe quality have been automatically found.

Linux code is available via FTP ftp://cs.ucl.ac.uk/genetic/gp-code/
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