
Genetic Programming and Evolvable Machines (2023) 24:19
https://doi.org/10.1007/s10710-023-09467-x

Jaws 30

W. B. Langdon

21 April 2023

Abstract It is 30 years since John R. Koza published “Jaws”, the first book
on genetic programming [Genetic Programming: On the Programming of Com-
puters by Means of Natural Selection. MIT Press (1992)]. I recount and expand
the celebration at GECCO 2022, very briefly summarise some of what the rest
of us have done and make suggestions for the next thirty years of GP research.

Keywords: genetic programming, genetic improvement, modularity, scaling,
parallel computing

1 Introduction

An evening at the 2022 GECCO conference was devoted to celebrating the thir-
tieth anniversary of the publication of John Koza’s book “Genetic Program-
ming: On the programming of computers by means of natural selection” [1]1.
Indeed that is the purpose of this special issue of Genetic Programming and
Evolvable Machines. I hope to put my own spin on and fill out points raised in
that panel discussion (which was recorded and is available on line2). I should
stress this is not a survey of GP and that many valuable contributions are
omitted. Similarly many digressions are placed in footnotes and there are hy-
per links to online articles in Wikipedia etc.

University College, London, Gower Street, London, WC1E 6BT, UK

1 Named after Charles Darwin’s 1859 foundational book “On the Origin of Species by
Means of Natural Selection” [2] which contains huge volumes of evidence (for example gath-
ered on his five year voyage around the world [3]) in support of his scientific theory of
evolution, which after a struggle was eventually accepted as the explanation for biology.

2 A Conversation with John Koza, 30 years after the publication of Genetic
Programming Sunday, July 10, 18:00-20:00 2022 https://whova.com/portal/webapp/

gecco 202207/Agenda/2516377

https://doi.org/10.1007/s10710-023-09467-x
https://en.wikipedia.org/wiki/Genetic_and_Evolutionary_Computation_Conference
https://en.wikipedia.org/wiki/John_Koza
http://www.genetic-programming.com/johnkoza.html

2 W. B. Langdon

Fig. 1 Prof. Dr. Wolfgang Banzhaf holding his copy of “Genetic Programming: On the
programming of computers by means of natural selection” (Jaws) 834 pages [1] at the
GECCO 2022 celebration of 30 years after its publication (Wolfgang says he was told that
his copy was the first one sold by the bookshop in Boston.)

Fig. 2 At 834 pages, the first genetic programming book [1] weighs in at 4lb 2oz.

1.1 The Book

Dr. Amy Brand, Director of The MIT Press, was clearly delighted that John
Koza had chosen MIT Press to publish the first book on genetic program-
ming [1] (see Figures 1 and 2). She says it “was one of the seeds from which

http://www.cse.msu.edu/~banzhafw/
https://en.wikipedia.org/wiki/Amy_Brand
https://en.wikipedia.org/wiki/MIT_Press

Jaws 30 3

sprang a whole ecosystems of books and journals at the intersection of com-
puter and biological sciences for the MIT Press.” Adding it “is still available
and selling in print-on-demand. That’s quite solid for a specialized and ground-
breaking work in computer science from 1992.”3

John Koza said that the motivation for the book was his team in the pre-
ceding five years had published GP solutions to 81 diverse problems common
to artificial intelligence, machine learning and knowledge based systems. They
had shown that instead of, as had previously been done, using a solution tech-
nique devoted to each benchmark, a single evolutionary computing technique
(now named Genetic Programming4) could solve them all56. However the GP
solutions were published in widely disperse conference venues. The goal of the
book was to convince everyone that 1) a single technique could solve many
diverse problems and 2) they could all be recast as the problem of searching
for (and finding) a computer program. Whereas previous solutions had often
used (non-evolutionary) search but used a representation, e.g. graph, gram-
mar, network, often purpose built for each benchmark. The size of the book7

stems from the need to convince people that GP is a general solution. Whereas
everyone who first comes to programming knows that programming languages
are exceedingly picky about insisting they get everything, every comma, every
semicolon, in the right place: so how could random stand a hope? Hence a sub-
stantial book, backed by a video, would be necessary to convince a skeptical
public8.

3 John Koza’s publications have been at the top of the list of publications downloaded
via the genetic programming bibliography since 2006, when download statistics were first
gathered.

4 The name Genetic Programming was suggested by David E. Goldberg. John Koza said
he was originally reluctant to use the name but came to realise it was a brilliant choice.

5 John Koza has previously likened GP’s success with early machine learning benchmarks
with Sherman’s march through Georgia in 1864, which helped end the four year USA civil
war.

6 In the late 1990’s Peter Nordin reported similar success with his linear genetic program-
ming on the UCI machine learning benchmarks.

7 The first genetic programming book was colloquially known as “Jaws” after the 1975
Hollywood movie of the same name, were the shark appears to get progressively bigger
throughout the film. In a similar way Koza remarked that as each new GP experiment was
covered, the book got bigger, eventually exceeding 800 pages. The three successing GP books,
are similarly known as Jaws 2 [4], Jaws 3 [5] and Jaws 4 [6], all four are each accompanied by
an hour long video [7,8,9,10] (now available on YouTube and www.human-competitive.org).
In 2009, John Koza gave a seminar at Stanford summarising his GP work which was recorded
and is also available on YouTube [11].

8 There is a growing body of work, such as automatic bug fixing [12] and genetic improve-
ment [13], that shows ordinary programs are not fragile [14,15,16,17,18,19,20,21]. The mis-
placed semicolon problem refers to the source code syntax as understood by the language
compiler (another computer program). Since the syntax is formally defined, computer gen-
erated mutations can be automatically written to be syntactically correct. If mutated code
compiles, it often runs and produces an answer which can be fed into a fitness function.

http://gpbib.cs.ucl.ac.uk/top_users.html
https://en.wikipedia.org/wiki/David_E._Goldberg
https://en.wikipedia.org/wiki/Peter_Nordin
http://archive.ics.uci.edu/
https://en.wikipedia.org/wiki/Jaws_(film)
www.human-competitive.org

4 W. B. Langdon

1.2 The Man

John R. Koza was born 1944 and did both his undergraduate degree and
PhD at the University of Michigan in Ann Arbor, studying mathematics and,
the then newfangled, computer science. He reports great interest in playing
games including computer games, with students and faculty, for example,
John H. Holland. As with John Holland’s other students9, he was well versed
in John Holland’s genetic algorithms.

1.3 The Millionaire

John Koza graduated from the University of Michigan in December 1972, and
using his mathematical skills in combinatorics, probability and game playing
he joined a lottery company which printed games on paper which were sold at
petrol stations and supermarkets. In 1974 he and a colleague formed their own
company, Scientific Games Inc., to exploit John Koza’s invention of a secure
way of printing scratch off lottery tickets. They successfully lobbied various
USA states to allow them to run the state’s lottery10. By 1978 the technology
of printing had moved on and they jettisoned their own technique in favour of
more flexible computer based printing. In 1987, having made his fortune, he
returned to research.

1.4 The Researcher

From about 1987 until 2005, John Koza devoted himself to research, applying
genetic algorithms to the discovery of computer programs (GP). He published
some 208 items, predominately papers but also book chapters, technical re-
ports, proceedings, etc. and of course Jaws [1] and the three follow-up up
door stoppers [4,5,6] and the four accompanying videos [7,8,9,10]. Initially
the genetic programming systems were written in Lisp, although later imple-
mentations where in C, e.g. [22].

There were GP workshops associated with the International Conference on
Genetic Algorithms, ICGA-9311 and again in the summer of 1995 at ICGA-95
and ICML-95. In the fall, John R. Koza and Eric V. Siegel organised a GP
event with the 1995 Fall Symposium of the AAAI in MIT. In 1994 Kim Kinn-
ear had launched the “Advances in Genetic Programming” edited book series
published by MIT Press [23,24,25]. But, since ICGA was a biannual confer-
ence, there was no ICGA conference in 1996, and instead it was the right time

9 John Holland’s PhD students include: Stephanie Forrest, Tommaso F. Bersano-Begey,
Melanie Mitchell, Tom Westerdale, Lashon Booker, Ted Codd, Clare Congdon, Dave Gold-
berg, Annie Wu, Ken De Jong, Leeann Fu, Rick Riolo, Chris Langton, Robert Reynolds,
Bernie Zeigler and John Koza.
10 By 2009 the combined profits to the USA state governments which permitted lotteries

had reached $17.6 billion.
11 ICGA had strong links with John Holland’s students.

https://en.wikipedia.org/wiki/University_of_Michigan
https://en.wikipedia.org/wiki/John_Henry_Holland
https://www.mathgenealogy.org/id.php?id=5064
https://en.wikipedia.org/wiki/Scratchcard
http://gpbib.cs.ucl.ac.uk/gp-html/JohnKoza.html
https://en.wikipedia.org/wiki/Lisp_(programming_language)
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/International_Conference_on_Machine_Learning
http://gpbib.cs.ucl.ac.uk/gp-html/EricSiegel.html
https://en.wikipedia.org/wiki/Stephanie_Forrest
http://gpbib.cs.ucl.ac.uk/gp-html/TommasoFBersano-Begey.html
https://en.wikipedia.org/wiki/Melanie_Mitchell
https://www.mathgenealogy.org/id.php?id=104179
https://www.mathgenealogy.org/id.php?id=104146
https://en.wikipedia.org/wiki/Edgar_F._Codd
https://www.mathgenealogy.org/id.php?id=104150
https://en.wikipedia.org/wiki/David_E._Goldberg
https://en.wikipedia.org/wiki/David_E._Goldberg
https://www.mathgenealogy.org/id.php?id=104180
https://en.wikipedia.org/wiki/Kenneth_A_De_Jong
https://www.mathgenealogy.org/id.php?id=104156
https://www.mathgenealogy.org/id.php?id=75979
https://en.wikipedia.org/wiki/Christopher_Langton
http://gpbib.cs.ucl.ac.uk/gp-html/RobertGReynolds.html
https://d.lib.ncsu.edu/computer-simulation/videos/bernard-p-zeigler-interviewed-by-richard-e-nance-zeigler/
https://www.mathgenealogy.org/id.php?id=104164
https://en.wikipedia.org/wiki/Lotteries_in_the_United_States#State_revenues
https://dblp.org/db/conf/icga/index.html

Jaws 30 5

to launch the first GP conference [26]. One of the rules laid down at GP-96,
was the absolute need for independent peer review.

July 1997 saw the return of ICGA-97, carefully scheduled a few days after
the second GP conference, GP-97 [27], so attendance at both was encouraged.
Again there was no ICGA in 1998, instead at GP-98 [28] there were serious dis-
cussions about combining the growing number of evolutionary computing con-
ferences. John Koza in particular felt that the separate EC events were splitting
EC into separate communities, and that the balkanisation of EC, did not make
sense to people outside, particularly to funding bodies. And that this diver-
gence was hurting the field. So at GP-98 there were negotiations about unify-
ing, particularly: the Evolutionary Programming Society conference (EP), the
IEEE’s WCCI/ICEC, GP, ICGA, and the International Workshop on Learn-
ing Classifier Systems (IWLCS). These were only partially successful, lead-
ing in 1999 to the formation of the duopoly of CEC 1999 [29] and GECCO
1999 [30]. Of the european evolutionary computing conferences, only the IEE’s
Galesia elected to join CEC. PPSN12, ICANNGA and the newly established
EuroGP13 [31] continued as before14.

Again John Koza’s organisational skills came to the for, with him helping
to draft the byelaws for GECCO. These ensure it has a federal “big tent”
structure, whereby none of its constituent groups would feel left out or put
down by the others.

Having progressed genetic programming to the point were it could be de-
scribed as a routine invention machine [6,32,33], John Koza turned to public
service and electoral reform and in 2006 founded National Popular Vote.

1.5 The Public Benefactor

In 2004 John Koza started the annual “Humies” awards for human-competitive
results produced by genetic and evolutionary computation. He continues to
fund the cash prizes. The finals are held each year as part of the GECCO
conference.

Since 2016 he has endowed Michigan State University with the first chair
in genetic programming in the United States (held by Prof. Dr. Wolfgang
Banzhaf).

12 Parallel Problem Solving from Nature (PPSN) had started in Germany in 1990. It is a
also a biannual conference on evolutionary computing and, although based in Europe, it was
held on alternating years with ICGA. Like Genetic Programming, PPSN was also named
by Dave Goldberg.
13 The First European Workshop on Genetic Programming had been held in 1998 in Paris,

with the help of EvoNet, the EU Network of Excellence in Evolutionary Computing.
14 In 2003 John Koza listed 25 international conferences and workshops primarily devoted

to the various forms of evolutionary computation. Many are still held annual or biannually,
and some have combined. In most cases the proceedings are still available, often on line.

https://en.wikipedia.org/wiki/Balkanization
https://dblp.org/db/conf/cec/index.html
https://dblp.uni-trier.de/db/conf/gecco/index.html
https://en.wikipedia.org/wiki/Institution_of_Electrical_Engineers
https://dblp.org/db/conf/ppsn/index.html
https://dblp.uni-trier.de/db/conf/icannga/index.html
https://dblp.org/db/conf/eurogp/index.html
https://en.wikipedia.org/wiki/National_Popular_Vote_Inc.
https://www.human-competitive.org/
https://sig.sigevo.org/index.html/tiki-index.php?page=GECCOs
https://cordis.europa.eu/project/id/FP4_20996
http://www.genetic-programming.org/gpotherconfs.html

6 W. B. Langdon

1.6 Pre-History

At GECCO-2022 the question of research before genetic programming was
raised. John Koza pointed out that by 1987 the field of Genetic Algorithms
was already well established15. There had been early experiments on machine
learning in Columbia [34] and Manchester [35]16 universities. However John
Koza traced Evolutionary Computing back to Alan Turing. He said Turing’s
1948 paper on machine intelligence [36] suggested three routes to machine
intelligence: 1) knowledge based, 2) based on logic (as would be expected of
a mathematician), but John Koza highlighted the third: 3) in which machine
intelligence was based on evolution. Although he pointed out it did not use
crossover (which was added by John Holland).

1.7 Advice for the Future

Another question raised at GECCO-2022 was did John Koza have advice for
new researchers. His answer was researchers must keep current, i.e., keep up to
date with research, but not just in your area but with research in general. Take
an interdisciplinary approach. He stressed be open to ideas from elsewhere,
particularly from Biology.

John Koza’s heuristic (perhaps common to all John Holland’s students)
was to ask himself “What would John Holland do?” to which the answer
was often: John Holland would respond with his own question, “What does
Nature do?” John Koza’s particular example was: how did Nature evolve from
microscopic organisms (like bacteria) which have genes for creating may be
about 500 proteins to multicellural organisms (e.g. us) which have genes for
creating about 20 000 proteins. He reported asking this question around the
Stanford School of Medicine.

The example John Koza quoted was the evolution of Myoglobin and Hemo
globin, which is thought to have occurred via gene duplication and subse-
quent specialisation. The idea being: “accidental” copying of parts of DNA
sequences is common17. Once a species has two copies of a vital gene, it may
be free to tinker with one. Since the other gene remains functional, the chil-
dren with the duplicated gene remain viable and so some can survive long
enough to carry both the working gene and the tinkered copy to the grand
children. Over subsequent generations the two genes may diverge allowing
the species to find new proteins which may help it survive. Susumu Ohno in
his 1970 book [39] suggested that such gene duplication is a powerful mecha-
nism in natural evolution. Indeed John Koza used it as inspiration [40] for his

15 In addition to genetic algorithms, there is early work on evolutionsstrategie in Germany
by Ingo Rechenberg and Hans-Paul Schwefel, and in the USA on evolutionary programming
by Larry Fogel.
16 Kilburn, Grimsdale and Sumner ran their experiments in machine learning and thinking

on the world’s first digital stored program computer the Manchester Mark 1.
17 The evolution of repeating patterns in DNA due to crossover is common. Indeed

crossover in GP can readily produce huge volumes of repeated code in trees [37,38].

https://en.wikipedia.org/wiki/Alan_Turing
https://en.wikipedia.org/wiki/Hemoglobin#Evolution_of_vertebrate_hemoglobin
https://en.wikipedia.org/wiki/Hemoglobin#Evolution_of_vertebrate_hemoglobin
https://en.wikipedia.org/wiki/Susumu_Ohno
https://en.wikipedia.org/wiki/Evolution_strategy
https://evolution.sigevo.org/issues/HTML/sigevolution-14-4/home.html
https://en.wikipedia.org/wiki/Hans-Paul_Schwefel
https://en.wikipedia.org/wiki/Evolutionary_programming
https://en.wikipedia.org/wiki/Lawrence_J._Fogel
https://en.wikipedia.org/wiki/Tom_Kilburn
https://en.wikipedia.org/wiki/Richard_Grimsdale
http://curation.cs.manchester.ac.uk/computer50/www.computer50.org/mark1/index.html#golden

Jaws 30 7

architecture-altering operations. These GP operations allow, not just the code
within automatically defined functions (ADFs) [4] to evolve, but also their
structure (e.g. which ADF calls which ADF) evolves [41,5], [9, minute 10]. In
terms of traditional AI, this can be thought of as dividing the whole problem
into subcases and having an evolvable representation which facilitates not just
the solution of the sub-problems but also their subsequent combination into a
complete solution. Some form (or indeed many forms of) automatic problem
decomposition is essential if any AI technique is to scale.

John Koza felt that in the 1960s the University of Michigan had had a wide
ranging curriculum. He said computer scientists need to know about biology,
language processing, psychology, information theory, electronic circuits, etc.
However, this breadth has been lost from modern computer science curricula.
Instead people should seek ideas from many places. He cited successful start
ups in silicon valley, such as Adobe, which had come from co-working between
two people with experience of newspaper publishing and another with a com-
puter science background. Often in silicon valley success had come from part-
nerships of individuals with different experience. Alternatively, success may
arise when different experience or many odd ideas are held by one person.

I would like to add, be ambitious in the problems you tackle. John Koza’s
impact, the impact of his book [1], stems from showing something widely
viewed as impossible could be done. Before his work, the idea of automatically
evolving a computer program was clearly ludicrous. Similarly, the idea of a
computer fixing computer bugs was clearly impossible, until Stephanie Forrest
et al. showed GP could do it [42]. Readers may remember Lewis Carroll’s Alice
and the White Queen [43] (Figure 3), Alice reproaches the White Queen for
some nonsense, saying it is clearly impossible, to which the White Queen
responds that Alice should practice believing the impossible. My suggestion
would be to an ambitions researcher that she should do the impossible. Claire
Le Goues was a PhD student in 2009 [44,45]. Fortunately her adviser did not
tell her her idea was impossible. And so She and the team are famous, not
because they completely solved the problem, but because they took something
impossible and partially solved it. So that today the argument is not if it can be
done, but what is the best way [12] to solve the previously impossible problem
[46,47,48].

1.8 The Ones That Got Away: Missing Gaps

John Koza was asked to muse on his less successful experiments. Two came
to mind: FPGAs and GPUs.

1.8.1 Genetic Programming and Field Programmable Gate Arrays, FPGAs

John Koza had hope to create a field programmable gate array (FPGA), which
had all the likely to be useful program operations pre-loaded. An ultra fast

https://en.wikipedia.org/wiki/Silicon_Valley
https://en.wikipedia.org/wiki/Stephanie_Forrest
https://program-repair.org/
https://en.wikipedia.org/wiki/Field-programmable_gate_array
https://en.wikipedia.org/wiki/Graphics_processing_unit

8 W. B. Langdon

Fig. 3 When I was your age I could think of six impossible things before breakfast.

evolved GP program would then simply be an evolvable way of linking these
together.

In some ways this seams similar to Juille’s [49] way of running a GP in-
terpreter on the hugely parallel MasPar MP-2 computer. Although it had
thousands of processing units, they each did the same one thing at the same
time. Juille’s brainwave was to say: since computing is cheap, we will discard
most of it. (Simplifying), Juille built a tiny interpreter which ran on all pro-
cessing elements one of a handful of GP operations. The different members
of the GP population were spread across the processing elements. Each with
its own program counter. If the interpreter was currently executing a GP op
code that was not the one the GP individual wanted, it did nothing but wait.
However the interpreter cycled round all possible GP op codes. When it did
reach the desired op code, that processor executed it and moved that GP indi-
vidual’s programme counter on by one. (The right hand side of Figure 4 shows
the same idea in the context of GPUs.)

It sounds hideously inefficient, but bear in mind the GP is getting use-
ful works done, whereas mostly human programmers could not handle the
MasPar MP-2’s SIMD architecture efficiently at all. Secondly often in many
high performance computers (HPCs), most of the time the processing elements
are waiting for data to arrive and so spend most of their time spinning in idle
loops. This turns on its head our common conception of computers. In HPC
(and indeed GPUs, see Section 1.8.2), computing is often cheap compared to
moving data. Indeed sometimes it can be more efficient to compute a value a
second time, rather than store it and retrieve it later when it is needed18.

In many cases FPGAs form the bed rock of evolvable hardware (EHW) [50,
51]. As well as offering a cheap and flexible alternative to dedicated integrated
circuits (also known as application-specific integrated circuits, ASICs) they
can be cost effective, particularly when only a limited number of chips will be

18 A second recommendation to the novice computer scientist, do not assume that a very
old paper has no merit. Computer science is littered with examples of old ideas which
returned, e.g. virtual memory, virtual machines and Maurice Wilkes’ microcode.

https://en.wikipedia.org/wiki/MasPar
https://en.wikipedia.org/wiki/Single_instruction,_multiple_data
https://en.wikipedia.org/wiki/Evolvable_hardware
https://en.wikipedia.org/wiki/Application-specific_integrated_circuit
https://en.wikipedia.org/wiki/Integrated_circuit
https://en.wikipedia.org/wiki/Virtual_memory#/media/File:University_of_Manchester_Atlas,_January_1963.JPG
https://en.wikipedia.org/wiki/Virtual_machine
https://en.wikipedia.org/wiki/Maurice_Wilkes

Jaws 30 9

SP

SP

SP

SP

SP

SP

SP

SP

+
1 x

+
x−

3 z

+
y x

−
1 z

*
1+

3 x

x /
x

*

3.1

data

Training

SIMD

interpreter

Fitness values

+

x y
1 311

86

115

208

49

47

102

98

+
/

x z
y

+
No

Push onto individuals stacks

IF Addition
Pop+Pop, Push result

IF Subtraction
Pop−Pop, Push result

IF Multiply
Pop * Pop, Push result

IF Division
Pop/Pop, Push result

All programs finished? Yes

Result is on top of each stack

IF Leaf

Fig. 4 Left: Avoid compilation overhead by interpreting GP trees. Run single SIMD in-
terpreter on GPU’s stream processors (SP) on many trees. Right: Programs wait for the
interpreter to offer an instruction they need evaluating. For example an addition. When the
interpreter wants to do an addition, everyone in the whole population who is waiting for
addition is evaluated. The operation is ignored by everyone else. The interpreter moves on
to its next operation. The interpreter runs round its loop until the whole population has
been interpreted. Fitness values can also be calculated in parallel.

needed. There are several examples where FPGAs have been used to run GP,
e.g. [52,53,54].

1.8.2 Genetic Programming and Graphics Cards, GPUs

In the early 2000’s it was noticed that the graphics cards (GPUs) used to drive
computer screens were becoming increasingly powerful parallel computing de-
vices in their own right and so people started using them for other things.

Initially GPUs were designed just to rapidly render images on the com-
puter’s screen. To do this quickly (in real time) they comprised many parallel
components all doing the same thing but for different parts of the screen. As
the computer video games market took off, GPUs rapidly ramped up their
processing abilities and power. Each parallel component became a fully func-
tional processor, often with special support for operations common in graphics
applications (such as reciprocal square root [55]). This was so that more of the

10 W. B. Langdon

parallel aspects of generating, rather than simply displaying, real time video
could be devolved from the (serial) CPU to the (parallel) graphics card. As
GPUs were often somewhat independent of the end users’ computer mother
board, keen video gamers could easily upgrade their GPU. This promoted
rapid technological improvement, as rival GPU manufactures sought sales by
offering better and/or cheaper hardware than their rivals. However even to-
day, GPUs essentially (like the SIMD MasPar, page 8) require their parallel
processing elements, to do the same thing at the same time.

Initially GPUs were very hard to program and their support software was
only designed to be used by dedicated programmers employed by video game
companies. However the abundant and cheap parallel processing the GPUs of-
fered was taken up by scientific programming, leading to the field of General-
Purpose Computing on GPUs (GPGPU) [56]. As GPGPU became more popu-
lar, the GPU manufactures, particularly nVidia provided much better software
support.

At first in genetic programming GPUs were only used to speed up fitness
evaluation, e.g. work by Simon Harding [57]. and Darren Chitty [58]. Indeed it
was said that, due to the GPUs peculiar SIMD architecture, running the GP
interpreter on the GPU was impossible (cf. Figure 3). Of course this was not
true, and inspired by Juille’s work with the MasPar SIMD supercomputer [59]
(page 8), I built a SIMD interpreter for nVidia’s GPUs (see Figure 4) [60,61]19.
See also [63,64,65,66,67,68,69]20.

As the memory available on the GPU cards increased, it became possible
to work with huge populations of small GP trees. In [70] I used a cascade of
GP populations to winnow useful bioinformatic data from more than a million
GeneChip features. The top level GP populations contained more than five
million individuals trees. This GPU application could scale from a $50 GPU
to a top 500 super computer [71]. Figure 1 in [72] shows the dramatic im-
provement in nVidia GPU speed (2003 to 2012, which still continues), whilst
Table 3 in [73] shows some high performance parallel GP implementations,
almost all running on GPUs21.

1.8.3 Deep Learning and Accelerators: GPUs and TPUs

Due to the availability of internet scale data sets and GPGPU processing
power, since 2010 the field of deep learning has taken off [76]. It is generally
accepted that researchers need a GPU (possibly a whole cluster of GPUs) to

19 People also said that it was impossible to create random numbers on GPU. Again not
true [62]. These days pseudo random number generators PRNG, (e.g. CuRAND) are supplied
by nVidia with its CUDA software.
20 The metric “Genetic Programming Operations per Second” (GPops) permits easy com-

parison of performance, e.g. across different implementations and hardware.
21 Recent extremely high performance on Intel multi-core CPU SIMD hardware [74] has

been achieved, with unchanging fitness functions, in large trees, in converged popula-
tions [75], that do not have side effects (and so can be evaluated in any order). This is
because a lot of work can be omitted, if it can be proved that a child has the same fitness
as its parents.

https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/General-purpose_computing_on_graphics_processing_units
https://en.wikipedia.org/wiki/Nvidia
https://en.wikipedia.org/wiki/Bioinformatics
https://en.wikipedia.org/wiki/Affymetrix
https://en.wikipedia.org/wiki/TOP500
https://en.wikipedia.org/wiki/Deep_learning
https://en.wikipedia.org/wiki/Pseudorandom_number_generator
https://developer.nvidia.com/curand
https://en.wikipedia.org/wiki/CUDA

Jaws 30 11

do any form of competitive deep neural net learning. Even with the availability
of cloud computing, this may soon have the effect of “pricing out” individual
academic researchers from the future of deep learning [77].

Sometimes the whole notion of using a GPU to drive a computer’s screen
(also called the computer’s monitor) may be disregarded. Often called “head-
less” GPUs, to save space and power, some GPUs dispensed with the screen
interface altogether. An extreme examples of this is Google’s TPU, which is
totally specialised to Artificial Neural Network (ANN) processing.

As gaming and now AI have become more important, the notion of a GPU
as a cheap alternative to the computer’s CPU has also faded, and now a top
end GPU can cost more than a CPU.

1.9 Other Gaps: Memory, Theory, Bloat

John Koza mentioned that even though Jaws [1] did not include much
work on evolving memory, he regarded it as important because it provides
another route to allow re-use. Since a value stored in memory can be re-used,
potentially many times, without the code for it having to be evolved more
than once. He mentioned my book [78], although using indexed memory in
GP is due to Teller [79]. Surprisingly, there has been a steady stream of
research on evolving memory within GP [80,81,82,83,84,85,86,87,88,89,90,
91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,
111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,
129,130,131,132].

Genetic programming theory has a variety of forms [133]. Jaws [1] starts
with adapting the then current explanations of how linear bit string genetic
algorithms work, due to John Holland and Dave Goldberg. Such schema the-
ories were also analysed by Una-May O’Reilly [134], Justin Rosca [135] and
most notably by Riccardo Poli [136]. Another popular thread is to take ideas
from biology about how evolution works and use them to understand GP [137],
e.g. Price’s theorem [138] [139], population convergence [140,141,75] and neu-
tral networks (plateaus) [142] in fitness landscapes [143] [144,145,146,147].
Similarly biology has been an inspiration for other search operators, such as
homologous crossover [148]. In recent years there has been a flowering of formal
or rigorous run time analysis in evolutionary computing and some success ap-
plying mathematical techniques to GP problems [149,150,151,152,153,154].
Of course it is difficult to make such theorems widely applicable and when
using results we must remember the inevitable assumptions they require. For
example, SAT has been proved to be NP-complete. Nevertheless in the last
decade considerable progress has been made with practical SAT solvers and
they are now routinely applied, e.g. in software engineering. Similarly, the
No Free Lunch theorem [155] applies to GP (as with all optimisers) but fortu-
nately (as in other branches of AI) that has not inhibited development of the

https://en.wikipedia.org/wiki/Cloud_computing
https://en.wikipedia.org/wiki/Computer_monitor
https://en.wikipedia.org/wiki/Google
https://en.wikipedia.org/wiki/Tensor_Processing_Unit
https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Artificial_intelligence

12 W. B. Langdon

field. Although, as noted above, there are exceptions, but genetic program-
ming as a whole remains a deeply empirical endeavour with many new ideas
being reported. However it is difficult to persuade authors to carefully analyse
their evolving populations of programs so as to be able to explain why their
experiment succeeded (or even why it failed).

Although John Koza reports [1] bloat22 from the start of genetic program-
ming, the tendency, indeed the name, for programs to be bigger than necessary
is not unique to GP. Bloated human written programs are common. Indeed
people writing computer programs with unnecessary instructions goes back
to the very beginning of electronic digital computers, with bloat reported in
programs run on the first stored program digital computer, the Manchester
Mark I [35]. This human tendency is rampant, with some Internet code bases
having grown to over a billion lines of code in less than 20 years. Bloat contin-
ues to be a well studied topic in GP with 426 entries in the GP bibliography
mentioning it.

Although there are potential ways of mitigating bloat’s impact on run-
time [156] and reducing its memory requirements with DAGs [157] (indeed
bloated trees produced by crossover [158] should be highly compressible), in
practice bloated populations can quickly overwhelm the available computer
resources and so the common approach is to shut bloat down. For example, by
enforcing either depth or size limits on the evolving programs. However this
is not risk free [159] and more sophisticated approaches may be wanted. For
example, controls on selection, such as using multiple fitness objectives (e.g. a
size versus performance Pareto trade-off [160,161]) or tighter controls on off-
spring generation [162,163,164,165]. In many cases bloat appears to be an
unexpected aspect of early (even premature) convergence and so has some sim-
ilarity with overfitting sometimes seen with artificial neural networks (ANNs),
where prolonged search drives locally improved performance on the training
data. This gives a more convoluted mapping between the ANN’s inputs and
outputs but at the possible expense of the ANN’s ability to generalise to
unseen data. Where the goal is to explain or predict, such complexity or
overfitting is clearly unhelpful. In ANN anti-over fitting techniques are es-
sential. These include stopping training early (i.e. in GP terms using fewer
generations), regularization [166,167,168], changing the training data during
training [169,170] and even expression simplification [171], either during evo-
lution [172] or to increase comprehensibility and explainability, cf. XAI, after
GP has finished [173]. Whilst Dale Hopper [172] and other authors, ensure
their automatic rewrite of GP individuals gives a semantically equivalent but
smaller replacement, in many cases this is not wanted. When a 100% correct
program is not realistic, e.g. on many prediction tasks, it may be better to
accept (or allow evolution to find) a similar but much simpler program, rather
than spending a lot of effort creating an exactly equivalent program to what
is essentially only an approximation.

22 Bloat is the tendency for programs to grow in size without commensurate increase in
performance.

http://gpbib.cs.ucl.ac.uk/
https://en.wikipedia.org/wiki/Directed_acyclic_graph
https://en.wikipedia.org/wiki/Premature_convergence
https://en.wikipedia.org/wiki/Overfitting
https://en.wikipedia.org/wiki/Explainable_artificial_intelligence

Jaws 30 13

However, bear in mind that evolution is a hacker. It builds on what was
there before. In biology evolution overfits. Classic example include: 1) the
Giraffe’s left laryngeal nerve, which runs the whole length of its neck from its
head, round the aorta in its chest and then returns to its throat at the top of
its neck, because evolution did not find a shorter path, 2) the male peacock’s
heavy tail which helps secure a mate but impedes flight and 3) the human
brain which consumes 20% of our food [174] but made our ancestors more
appealing as mates to other members of their tribe [175].

2 A Brief Selection of Other Genetic Programming Work

In addition to continuing with evolving Lisp like trees, major branches of
genetic programming include: linear genetic programming [176] cartesian ge-
netic programming (CGP) [177] and grammatical evolution (GE) [178], all of
which use a linear chromosome. Following John Koza’s automatically defined
functions, ADFs, see page 7, there were several attempts to encourage the evo-
lution of modular programs using individuals with multiple trees or libraries
of subtrees [179,180,181,182]. However, these seem not to have taken hold.

As with evolutionary computation in general, the major computational
cost of GP is usually evaluating fitness [1, p783]. In tree GP this is usually the
cost of interpreting the trees. When members of the population are going to be
run many times23 it may be worth the cost of compiling the population and
then running the compiled programs24 rather than interpreting them [187].
However, as Ronald Crepeau showed [188], for GP, it is not essential to run
a full blown compiler, instead knowing the restricted set of primitives used
by GP, he constructed a dedicated fast compiler which converted the evolved
code into machine code and ran that directly.

Peter Nordin eliminated the compilation step entirely by using GP to evolve
firstly Sun 32 bit SPARC RISC architecture machine code [84] and later Intel
x86 binaries [189] (which in turn later became Discipulus [190]). He used tai-
lored mutation operations which respected the layout of the machine code.
Although perhaps first motivated by speed and simplicity, the idea of evolving
variable length linear programs has taken off [191,192].

Grammatical Evolution (GE) [193,194] shows the virtues of trying ideas
out. Michael O’Neill and Conor Ryan took the idea of a variable length lin-
ear chromosome, simplified it to become just an ordered list of byte sized
integers (0..255) and married it to another favourite of computer scientists:
the Backus-Naur form grammar (BNF). Pretty much anything which can be
run on a computer can be expressed in a BNF grammar. They disregarded

23 Considerable saving are sometimes possible by accepting fitness selection will be some-
what random and using a cheaper and approximate fitness function. After all, the goal of
a fitness function, is not to measure performance (that can be done after the run) but to
guide search. Why run thousands of fitness cases, when fitness will ultimately be reduced
to a single bit: does this individual get a child or not? Even then, we typically add noise to
this bit, e.g. via tournament selection, [183,184,185], see also [186, Sect. 10.1].
24 Lisp provides compilation as an alternative to interpreting programs [1, p785].

https://en.wikipedia.org/wiki/Recurrent_laryngeal_nerve
https://en.wikipedia.org/wiki/Aorta
https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form

14 W. B. Langdon

that BNF is essentially tree shaped and trusted in evolution to find a way of
putting them together. The linear stream of bytes is mapped using modulus to
say which branch to take next in the grammar. If there are not enough bytes,
we simply wrap round and start again from the first. If there are too many, we
ignore the excess. The resulting grammar is treated as the individual’s phe-
notype and in a problem dependent way converted into a trial solution with
a fitness value. The sloppiness of the mapping from genotype to phenotype
offended some and provoked wide discussion in a peer commentary issue of
“Genetic Programming and Evolvable Machines” [195]. But as Conor Ryan
says “GE works” [196]. Indeed the separation of genotype from BNF gram-
mar makes grammatical evolution flexible and has been widely used. (The GP
bibliography contains well over seven hundred entries relating to grammatical
evolution.)

With Cartesian Genetic Programming (CGP) [177,197,198,199,200], Ju-
lian Miller turned to a fixed representation, more a kin to traditional bit string
genetic algorithms (GAs). However the chromosome is a fixed sized two dimen-
sional rectangle, rather than a single string, where each cell contains a digital
computational unit, such as an XOR gate. Both the contents of the cells and
crucially the connections between them are evolvable25. Notice, like linear GP
(but unlike GE), evolution directly sets the contents and connections of each
cell (i.e. evolution acts directly on the phenotype). Also there is no explicit
left-right flow of control. In CGP the chromosome is treated as a circuit and
so its evaluation has to take note of where data enters and leaves. It is also
not necessary to evaluate cells which are not connected. Cartesian GP has
been widely used, including in the evolution of approximate computing [201,
202], where evolution can be well suited to finding good trade-offs between
conflicting objectives, such as fidelity, size, number of components, power con-
sumption and speed.

2.1 Inspired by Computer Science

In order for subtree crossover to freely mix subtrees from parents to create
children, John Koza required the components of his GP trees to have clo-
sure [1, Sect. 6.1.1]. Meaning 1) any leaf or function in the tree can be an
argument to any other function. Since components typically communicate via
function return values, this often means GP trees use a single type, often float.
2) To ensure each function can deal with any combination of inputs, many func-
tions have protected GP versions. Such as protected log RLOG [1, p83], which
returns a defined value (rather than raising an exception) even if its input is
zero or negative. Alternatives might be to allow evolution to deal with the ex-
ception, or simply assign poor fitness to individuals with illegal combinations.

25 Nowadays in cartesian genetic programming people often set the width of the FPGA
like rectangle of components to 1, making it effectively a string. Similarly it is common to
allow only feed forward connections, so preventing recurrent loops.

https://en.wikipedia.org/wiki/Modular_arithmetic
https://en.wikipedia.org/wiki/Exclusive_or

Jaws 30 15

However notice that ruling it out prevents GP exploring not only this tree but
all the trees that might have evolved from it.

Perhaps the most famous extensions to closure are Dave Montana’s strongly
typed GP [203] and Tina Yu’s polymorphic GP [204,205] which allow multi-
ple types but ensure evolution explores only type safe expressions. Another
approach is to use various types of grammar to try and keep evolution in the
most productive parts of the search space [206]. For example, using context
free grammars [207,208], using grammars to ensure the evolution of expres-
sions which are dimensionally consistent [209], using tree-adjunct grammars
to guide GP (TAG3) [210] and using GP with Lindenmayer Systems (often
abbreviated to L-Systems) [211,212,213,214].

Whereas Lisp and most GP systems implicitly use the system stack, pro-
grams which explicitly use a stack [215,216], e.g. to pass vectors and matri-
ces [217], are also possible. An explicit stack allows the evolution of Reverse
Polish Notation (RPN) [61] and even infix expressions [218]. In PushGP [219]
there are multiple stacks, one per type. These may include a code stack, so
allowing GP to manipulate code, thus permitting GP to evolve its own genetic
operators.

2.2 Non Genetic GP

John Koza’s GP [1] is clearly strongly influenced by his PhD supervisor, John
Holland, and GP [1] is essentially the application of John Holland’s genetic al-
gorithms to the evolution of Lisp s-expressions, i.e. tree shaped programs. But,
as we have seen, the programs need not be trees, and similarly the search algo-
rithm does not have to be a genetic algorithm. Other techniques include: local
search, Simulated Annealing [220,221], Differential Evolution [222], Bayesian
probability search [223], Estimation-of-Distribution Algorithms (EDAs) [224,
225] Ken Stanley’s Neat [226,227,228] and even deterministic search, e.g. Trent
McConaghy’s FFX [229]. Indeed search does not have to be guided only by
fitness but can “look inside” the program [230] and its execution [231]. SR-
bench [232] compares many GP and non-GP approaches to symbolic regres-
sion, including MRGP [233], M3GP [234], FEW [235] and Operon [236].

2.3 Less Explored

2.3.1 Assembly Code, Byte Code

In human terms assembly code is usually viewed as intermediate between high
level languages and machine code. Offering the potential advantage of machine
code (speed and compactness), and ease of use and readability of high level
source code. There has been very little GP work on evolving assembly code.
Exceptions include microcontroller assembly [237], nVidia GPU PTX [238,239]
and the intermediate (IR) code used by LLVM [240], and again on GPUs [241].

https://en.wikipedia.org/wiki/Context-free_grammar
https://en.wikipedia.org/wiki/Context-free_grammar
https://en.wikipedia.org/wiki/Tree-adjoining_grammar
https://en.wikipedia.org/wiki/L-system
https://en.wikipedia.org/wiki/Reverse_Polish_notation
https://en.wikipedia.org/wiki/Reverse_Polish_notation
https://en.wikipedia.org/wiki/Infix_notation

16 W. B. Langdon

Java, and some other interpreted languages, compile the source code into
byte code which they then interpret. Eduard Lukschandl showed it is possible
to run GP at the level of Java byte code [242].

2.3.2 Modularity, Recursion, Loops

Some of the work on encouraging the evolution of modular code was mentioned
on page 13. In Jaws, John Koza described GP solving the Fibonacci problem
[1, pp473–477] as an example requiring the evolution of recursion and several
examples where GP evolved do-until loops and other forms of iteration, but
again there has been relatively little work on either by others. Again a few
exceptions. These include work by Peter Whigham [243,244] and Tom Castle
[245].

2.3.3 Coevolution

As with many topics, there are examples of co-evolution [246,247] in Jaws [1]
and many elsewhere in genetic programming [80], for example in agent learn-
ing [248]. However, it does feel like coevolution has not yet fulfilled its potential.
In deep artificial neural networks there is interest in antagonistic adversarial
learning and so perhaps this will stimulate renewed interest in coevolution in
genetic programming.

3 The Future

At GECCO 2022 Erik Goodman asked if there we any applications of GP that
had surprised John Koza. Amongst the many human competitive [6] results,
perhaps one of the most encouraging is quantum computing. As with quantum
physics, quantum computing has a deserved reputation for being difficult for
people. However, the rules about quantum computing gates can be coded for
GP to use without being an expert quantum physicist, and then GP can be
left to evolve novel quantum circuit designs incorporating them [249,250,251].
Riccardo Poli, Leonardo Vanneschi and others have previously reported on the
state of GP and in particular what remains to be done [252,253].

In genetic improvement [13] existing (human written) software is optimised
(typically by using GP). Notice genetic improvement does not start from pri-
mordial ooze [1]. Instead search automates the potentially labour intensive,
tedious and error prone task of find modifications. For example, to repair
bugs [42,46,12,254,48], including energy bugs [255], reducing memory con-
sumption [256], reduce run time [173,257,258,259,260,261,262,263,264] im-
prove existing functionality (e.g. to give better predictions [265]), porting to
new hardware [266] including improving GPU applications [261,262,263,264,
267,241] or even to incorporate existing functionality from outside the existing
code base [268].

https://www.human-competitive.org/
https://en.wikipedia.org/wiki/Genetic_improvement_(computer_science)

Jaws 30 17

The idea of mixing evolutionary computing (including GP) with other op-
timisation tools to give hyperheuristics [269] has a long history. In particular,
with the recent explosion of interest in deep artificial neural networks, combin-
ing evolutionary learning and artificial neural networks seems set to continue.
One particularly encouraging trend is AutoML tools such as TPOT [270,271]
which automatically tune existing machine learning pipelines.

In GP, as in most optimisation problems, most of the computation effort
is spent on evaluating how good the proposed solutions are. Various ideas for
speeding up fitness evaluation have been proposed, for example surrogate fit-
ness functions [272]. Colin Johnson’s Learned Guidance Functions [273] seem a
particularly elegant approach to making best used of previously gained knowl-
edge. It would be interesting to see Learned Guidance Functions applied to
genetic programming or when using genetic improvement to adapt existing
human written programs.

Since all digital computing progressively loses information, information
about crossover and mutation gets progressively washed out the further it has
to travel. In nested functions without side effects, deep genetic changes be-
come invisible to the fitness function. Thus to evolve complex programs, they
must remain shallow and so I propose that to evolve large complex programs,
they be composed of many shallow trees, within a strong low entropy-loss data
interconnect to and from the environment. This should ensure that the good
and bad effects of most genetic code changes are externally measurable [274].

At GECCO John Koza pointed out that in both biology and in human
design, modularity and reuse are ever present. Biology scales from a single cell
to individuals containing billions of cells. It does this, like human engineers,
not by solving many billions of individual problems but by reusing existing
designs. We need to revisit the scaling problem.

4 Conclusions

We have seen that in the thirty years since John Koza published his first GP
book, the field has blossomed. The genetic programming bibliography contains
some 16 367 entries by 16 342 authors26. Many of the genetic and evolutionary
computation papers judged to be the best human competitive work of each
year have used genetic programming. Clearly GP is doing well in its mission
to help the world.

As mentioned at the end of the last section, although GP continues to
flourish, perhaps we need to tackle the scaling problem. Are we evolving small
things? Do we need to be more ambitious? Following Stephanie Forrest’s recent
questions [275]: what could GP do with Google Deep AI scale resources?

As John Koza foresaw, 30 years of Moore’s law [276] (with component count
doubling every 18 months) means 20 lots of doubling (220 = 1 048 576). That is,

26 The GP bibliography was started by John Koza. Although in recent years it has un-
doubtedly missed some work, in the five years before the pandemic (i.e. 2015–19) there were
3340 new entries and 5177 authors published at least one GP paper.

https://www.human-competitive.org/
http://gpbib.cs.ucl.ac.uk/

18 W. B. Langdon

since the genetic programming field started, the computer power available to us
has increased a million fold. What of the next 30 years? Perhaps Moore’s Law
will end? Certainly the death of Moore’s Law has been confidently predicted
many times. What seems certain is we will not see dramatic increases in silicon
computing’s clock speeds. Instead we anticipate the future of computing will
be ever more parallel. But as John Koza says GP is embarrassingly parallel.
Indeed the use of distributed parallel GP populations, not only makes good
use of current and future compute resources but is in keeping with Sewall
Wright’s [277] model of natural evolution and as John Koza reports by keeping
population diversity, the distributed population demes of the island model,
improve GP results as well as speeding it up.

In 2052 will genetic programming researchers be using computers a million
times faster than they use today? Certainly GP seems well placed to exploit
them.

Acknowledgements

I would like to thank Sean Luke, and Andrew and Claire, and my anonymous
reviewers. No competing interests. Funded by the Meta (formerly Facebook)
Oops project (Award number 181551).

References

1. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of
Natural Selection. MIT Press, Cambridge, MA, USA (1992), http://mitpress.mit.
edu/books/genetic-programming

2. Darwin, C.: On the Origin of Species by Means of Natural Selection. John Murray,
penguin classics, 1985 edn. (1859)

3. Darwin, C.: Voyage of the Beagle. Henry Colburn, London, penguin classics, 1989 edn.
(1839)

4. Koza, J.R.: Genetic Programming II: Automatic Discovery of Reusable Programs. MIT
Press, Cambridge Massachusetts (May 1994), http://www.genetic-programming.org/
gpbook2toc.html

5. Koza, J.R., et al.: Genetic Programming III: Darwinian Invention and Problem Solving.
Morgan Kaufmann (Apr 1999), http://www.genetic-programming.org/gpbook3toc.
html

6. Koza, J.R., et al.: Genetic Programming IV: Routine Human-Competitive Ma-
chine Intelligence. Kluwer Academic Publishers (2003), http://dx.doi.org/10.1007/
0-387-26417-5_1

7. Koza, J.R., Rice, J.P.: Genetic Programming: The Movie. MIT Press, Cambridge, MA,
USA (1992), https://youtu.be/tTMpKrKkYXo

8. Koza, J.R.: Genetic Programming II Videotape: The next generation. MIT Press, 55
Hayward Street, Cambridge, MA, USA (1994), http://www.genetic-programming.

org/gpvideo2.html
9. Koza, J.R., et al.: Genetic Programming III Videotape: Human Competitive Machine

Intelligence. Morgan Kaufmann, 340 Pine Street - 6th Floor, San Francisco, CA 94104,
USA (1999), http://www.genetic-programming.org/gpvideo3.html

10. Koza, J.R., et al.: Genetic Programming IV Video: Human-Competitive Machine In-
telligence. Kluwer Academic Publishers (2003), https://youtu.be/ordtzUccs2s

11. Koza, J.: Automated design using Darwinian evolution and genetic programming.
Stanford University, EE380: Computer Systems Colloquium (18 Feb 2009), https:

//www.youtube.com/watch?v=xIoytwJWJP8

https://en.wikipedia.org/wiki/Embarrassingly_parallel
http://mitpress.mit.edu/books/genetic-programming
http://mitpress.mit.edu/books/genetic-programming
http://www.genetic-programming.org/gpbook2toc.html
http://www.genetic-programming.org/gpbook2toc.html
http://www.genetic-programming.org/gpbook3toc.html
http://www.genetic-programming.org/gpbook3toc.html
http://dx.doi.org/10.1007/0-387-26417-5_1
http://dx.doi.org/10.1007/0-387-26417-5_1
https://youtu.be/tTMpKrKkYXo
http://www.genetic-programming.org/gpvideo2.html
http://www.genetic-programming.org/gpvideo2.html
http://www.genetic-programming.org/gpvideo3.html
https://youtu.be/ordtzUccs2s
https://www.youtube.com/watch?v=xIoytwJWJP8
https://www.youtube.com/watch?v=xIoytwJWJP8

Jaws 30 19

12. Le Goues, C., et al.: Automated program repair. Communications of the ACM 62(12),
56–65 (Dec 2019), http://dx.doi.org/10.1145/3318162

13. Petke, J., et al.: Genetic improvement of software: a comprehensive survey. IEEE Trans-
actions on Evolutionary Computation 22(3), 415–432 (Jun 2018), http://dx.doi.org/
doi:10.1109/TEVC.2017.2693219

14. Langdon, W.B., Petke, J.: Software is not fragile. In: Parrend, P., et al. (eds.)
Complex Systems Digital Campus E-conference, CS-DC’15. pp. 203–211. Proceed-
ings in Complexity, Springer (Sep 30-Oct 1 2015), http://dx.doi.org/10.1007/

978-3-319-45901-1_24, invited talk
15. Langdon, W.B., et al.: Efficient multi-objective higher order mutation testing with

genetic programming. Journal of Systems and Software 83(12), 2416–2430 (Dec 2010),
http://dx.doi.org/10.1016/j.jss.2010.07.027

16. Harrand, N., et al.: A journey among Java neutral program variants. Genetic Pro-
gramming and Evolvable Machines 20(4), 531–580 (Dec 2019), http://dx.doi.org/

10.1007/s10710-019-09355-3

17. Schulte, E., et al.: Software mutational robustness. Genetic Programming and
Evolvable Machines 15(3), 281–312 (Sep 2014), http://dx.doi.org/10.1007/

s10710-013-9195-8

18. Abou Assi, R., et al.: Coincidental correctness in the Defects4J benchmark. Software
Testing, Verification and Reliability 29(3), e1696 (2019), http://dx.doi.org/10.1002/
stvr.1696

19. Danglot, B., et al.: Correctness attraction: a study of stability of software behavior
under runtime perturbation. Empirical Software Engineering 23(4), 2086–2119 (1 Aug
2018), http://dx.doi.org/10.1007/s10664-017-9571-8

20. Monperrus, M.: Principles of antifragile software. In: Companion to the First Interna-
tional Conference on the Art, Science and Engineering of Programming. pp. 32:1–32:4.
Programming ’17, ACM, New York, NY, USA (2017), http://dx.doi.org/10.1145/
3079368.3079412

21. Petke, J., et al.: Software robustness: A survey, a theory, and some prospects. In:
Avgeriou, P., Zhang, D. (eds.) ESEC/FSE 2021, Ideas, Visions and Reflections. pp.
1475–1478. ACM, Athens, Greece (23-28 Aug 2021), http://dx.doi.org/10.1145/

3468264.3473133

22. Andre, D., Koza, J.R.: Parallel genetic programming on a network of transputers. In:
Rosca, J.P. (ed.) Proceedings of the Workshop on Genetic Programming: From Theory
to Real-World Applications. pp. 111–120. Tahoe City, California, USA (9 Jul 1995),
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/andre_1995_parallel.pdf

23. Kinnear, Jr., K.E. (ed.): Advances in Genetic Programming.
MIT Press, Cambridge, MA (1994), http://www.amazon.co.uk/

Advances-Genetic-Programming-Complex-Adaptive/dp/0262111888

24. Angeline, P.J., Kinnear, Jr., K.E. (eds.): Advances in Genetic Programming 2. MIT
Press, Cambridge, MA, USA (1996), http://dx.doi.org/10.7551/mitpress/1109.

001.0001

25. Spector, L., et al.: Quantum computing applications of genetic programming. In:
Spector, L., et al. (eds.) Advances in Genetic Programming 3, chap. 7, pp. 135–160.
MIT Press, Cambridge, MA, USA (Jun 1999), http://dx.doi.org/10.7551/mitpress/
1110.003.0010

26. Koza, J.R., et al. (eds.): Genetic Programming 1996: Proceedings of the First Annual
Conference. MIT Press, Stanford University, CA, USA (28–31 Jul 1996), http://www.
genetic-programming.org/gp96proceedings.html

27. Koza, J.R., et al. (eds.): Genetic Programming 1997: Proceedings of the Second Annual
Conference. Morgan Kaufmann, Stanford University, CA, USA (13-16 Jul 1997), http:
//www.amazon.com/Genetic-Programming-2nd-Conference-Author/dp/1558604839

28. Koza, J.R., et al. (eds.): Genetic Programming 1998: Proceedings of the Third Annual
Conference. Morgan Kaufmann, University of Wisconsin, Madison, WI, USA (22-25
Jul 1998)

29. Angeline, P.J., et al. (eds.): Proceedings of the 1999 Congress on Evolutionary Com-
putation, CEC 1999. IEEE Press, Washington, DC, USA (July 6-9 1999), https:

//dblp.org/rec/conf/cec/1999.bib

http://dx.doi.org/10.1145/3318162
http://dx.doi.org/doi:10.1109/TEVC.2017.2693219
http://dx.doi.org/doi:10.1109/TEVC.2017.2693219
http://dx.doi.org/10.1007/978-3-319-45901-1_24
http://dx.doi.org/10.1007/978-3-319-45901-1_24
http://dx.doi.org/10.1016/j.jss.2010.07.027
http://dx.doi.org/10.1007/s10710-019-09355-3
http://dx.doi.org/10.1007/s10710-019-09355-3
http://dx.doi.org/10.1007/s10710-013-9195-8
http://dx.doi.org/10.1007/s10710-013-9195-8
http://dx.doi.org/10.1002/stvr.1696
http://dx.doi.org/10.1002/stvr.1696
http://dx.doi.org/10.1007/s10664-017-9571-8
http://dx.doi.org/10.1145/3079368.3079412
http://dx.doi.org/10.1145/3079368.3079412
http://dx.doi.org/10.1145/3468264.3473133
http://dx.doi.org/10.1145/3468264.3473133
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/andre_1995_parallel.pdf
http://www.amazon.co.uk/Advances-Genetic-Programming-Complex-Adaptive/dp/0262111888
http://www.amazon.co.uk/Advances-Genetic-Programming-Complex-Adaptive/dp/0262111888
http://dx.doi.org/10.7551/mitpress/1109.001.0001
http://dx.doi.org/10.7551/mitpress/1109.001.0001
http://dx.doi.org/10.7551/mitpress/1110.003.0010
http://dx.doi.org/10.7551/mitpress/1110.003.0010
http://www.genetic-programming.org/gp96proceedings.html
http://www.genetic-programming.org/gp96proceedings.html
http://www.amazon.com/Genetic-Programming-2nd-Conference-Author/dp/1558604839
http://www.amazon.com/Genetic-Programming-2nd-Conference-Author/dp/1558604839
https://dblp.org/rec/conf/cec/1999.bib
https://dblp.org/rec/conf/cec/1999.bib

20 W. B. Langdon

30. Banzhaf, W., et al. (eds.): GECCO-99: Proceedings of the Genetic and
Evolutionary Computation Conference. Morgan Kaufmann, Orlando, Florida,
USA (13-17 Jul 1999), http://www.amazon.com/exec/obidos/ASIN/1558606114/qid%
3D977054373/105-7666192-3217523

31. Banzhaf, W., et al. (eds.): Genetic Programming, LNCS, vol. 1391. Springer-Verlag,
Paris (14-15 Apr 1998), http://dx.doi.org/10.1007/BFb0055923

32. Koza, J.R., et al.: Evolving inventions. Scientific American 288(2),
52–59 (Feb 2003), http://www.sciam.com/article.cfm?articleID=

00073FCE-F36F-1E19-8B3B809EC588EEDF

33. Koza, J.R.: Human-competitive results produced by genetic programming. Genetic
Programming and Evolvable Machines 11(3/4), 251–284 (Sep 2010), http://dx.doi.
org/10.1007/s10710-010-9112-3, tenth Anniversary Issue: Progress in Genetic Pro-
gramming and Evolvable Machines

34. Friedberg, R.M.: A learning machine: I. IBM Journal of Research and Development
2(1), 2–13 (Jan 1958), http://www.ams.org/mathscinet-getitem?mr=19%2c1085c

35. Kilburn, T., et al.: Experiments in machine learning and thinking. In: Information
Processing, Proceedings of the 1st International Conference on Information Processing.
pp. 303–308. UNESCO, Paris (15-20 Jun 1959), https://dblp.org/rec/conf/ifip/

KilburnGS59.bib

36. Turing, A.M.: Intelligent machinery (1948), https://www.npl.co.uk/getattachment/
about-us/History/Famous-faces/Alan-Turing/80916595-Intelligent-Machinery.

pdf, report for National Physical Laboratory. Reprinted in Ince, D. C. (editor).
1992. Mechanical Intelligence: Collected Works of A. M. Turing. Amsterdam: North
Holland. Pages 107127. Also reprinted in Meltzer, B. and Michie, D. (editors). 1969.
Machine Intelligence 5. Edinburgh: Edinburgh University Press [278].

37. Langdon, W.B., Banzhaf, W.: Repeated patterns in tree genetic programming. In: Kei-
jzer, M., et al. (eds.) Proceedings of the 8th European Conference on Genetic Program-
ming. Lecture Notes in Computer Science, vol. 3447, pp. 190–202. Springer, Lausanne,
Switzerland (30 Mar - 1 Apr 2005), http://dx.doi.org/10.1007/978-3-540-31989-4_
17

38. Langdon, W.B., Banzhaf, W.: Repeated patterns in genetic programming.
Natural Computing 7(4), 589–613 (Dec 2008), http://dx.doi.org/10.1007/

s11047-007-9038-8

39. Ohno, S.: Evolution by Gene Duplication. Springer (1970), https://link.springer.
com/book/10.1007/978-3-642-86659-3

40. Koza, J.R., Andre, D.: A case study where biology inspired a solution to a computer
science problem. In: Hunter, L., Klein, T.E. (eds.) Pacific Symposium on Biocomputing
’96. pp. 500–511. World Scientific (1996), http://citeseerx.ist.psu.edu/viewdoc/

summary?doi=10.1.1.368.6585

41. Koza, J.R.: Architecture-altering operations for evolving the architecture of a multi-
part program in genetic programming. Technical Report STAN-CS-94-1528, Dept. of
Computer Science, Stanford University, Stanford, California 94305, USA (Oct 1994),
http://www.genetic-programming.com/jkpdf/tr1528.pdf

42. Forrest, S., et al.: A genetic programming approach to automated software repair. In:
Raidl, G., et al. (eds.) GECCO ’09: Proceedings of the 11th Annual conference on
Genetic and evolutionary computation. pp. 947–954. ACM, Montreal (8-12 Jul 2009),
http://dx.doi.org/10.1145/1569901.1570031, gECCO 2019 10-Year Most Influential
Paper Award, Best paper

43. Carroll, L.: Through the Looking-Glass, and What Alice Found There. Macmillan
(1871)

44. Weimer, W., et al.: Automatically finding patches using genetic programming. In:
Fickas, S. (ed.) International Conference on Software Engineering (ICSE) 2009.
pp. 364–374. Vancouver (May 16-24 2009), http://dx.doi.org/10.1109/ICSE.2009.
5070536

45. Le Goues, C.: Automatic Program Repair Using Genetic Programming. Ph.D. thesis,
Faculty of the School of Engineering and Applied Science, University of Virginia, USA
(May 2013), http://www.cs.virginia.edu/~weimer/students/claire-phd.pdf

http://www.amazon.com/exec/obidos/ASIN/1558606114/qid%3D977054373/105-7666192-3217523
http://www.amazon.com/exec/obidos/ASIN/1558606114/qid%3D977054373/105-7666192-3217523
http://dx.doi.org/10.1007/BFb0055923
http://www.sciam.com/article.cfm?articleID=00073FCE-F36F-1E19-8B3B809EC588EEDF
http://www.sciam.com/article.cfm?articleID=00073FCE-F36F-1E19-8B3B809EC588EEDF
http://dx.doi.org/10.1007/s10710-010-9112-3
http://dx.doi.org/10.1007/s10710-010-9112-3
http://www.ams.org/mathscinet-getitem?mr=19%2c1085c
https://dblp.org/rec/conf/ifip/KilburnGS59.bib
https://dblp.org/rec/conf/ifip/KilburnGS59.bib
https://www.npl.co.uk/getattachment/about-us/History/Famous-faces/Alan-Turing/80916595-Intelligent-Machinery.pdf
https://www.npl.co.uk/getattachment/about-us/History/Famous-faces/Alan-Turing/80916595-Intelligent-Machinery.pdf
https://www.npl.co.uk/getattachment/about-us/History/Famous-faces/Alan-Turing/80916595-Intelligent-Machinery.pdf
http://dx.doi.org/10.1007/978-3-540-31989-4_17
http://dx.doi.org/10.1007/978-3-540-31989-4_17
http://dx.doi.org/10.1007/s11047-007-9038-8
http://dx.doi.org/10.1007/s11047-007-9038-8
https://link.springer.com/book/10.1007/978-3-642-86659-3
https://link.springer.com/book/10.1007/978-3-642-86659-3
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.368.6585
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.368.6585
http://www.genetic-programming.com/jkpdf/tr1528.pdf
http://dx.doi.org/10.1145/1569901.1570031
http://dx.doi.org/10.1109/ICSE.2009.5070536
http://dx.doi.org/10.1109/ICSE.2009.5070536
http://www.cs.virginia.edu/~weimer/students/claire-phd.pdf

Jaws 30 21

46. Haraldsson, S.O., et al.: Fixing bugs in your sleep: How genetic improvement became
an overnight success. In: Petke, J., et al. (eds.) GI-2017. pp. 1513–1520. ACM, Berlin
(15-19 Jul 2017), http://dx.doi.org/10.1145/3067695.3082517, best paper

47. Alshahwan, N.: Industrial experience of genetic improvement in Facebook. In: Petke,
J., et al. (eds.) GI-2019, ICSE workshops proceedings. p. 1. IEEE, Montreal (28 May
2019), http://dx.doi.org/10.1109/GI.2019.00010, invited Keynote

48. Kirbas, S., et al.: On the introduction of automatic program repair in Bloomberg. IEEE
Software 38(4), 43–51 (Jul-Aug 2021), http://dx.doi.org/10.1109/MS.2021.3071086

49. Juille, H., Pollack, J.B.: Massively parallel genetic programming. In: Angeline, P.J.,
Kinnear, Jr., K.E. (eds.) Advances in Genetic Programming 2, chap. 17, pp. 339–357.
MIT Press, Cambridge, MA, USA (1996), http://dx.doi.org/10.7551/mitpress/

1109.003.0023

50. Thompson, A.: Hardware Evolution Automatic Design of Electronic Circuits in Re-
configurable Hardware by Artificial Evolution. DISTDISS, Springer (1998), http:

//dx.doi.org/10.1007/978-1-4471-3414-5, winner 1997 BCS distinguished disser-
tation

51. Gordon, T.G.W.: Exploiting Development to Enhance the Scalability of Hardware Evo-
lution. Ph.D. thesis, University College, London, UK (Jul 2005), https://discovery.
ucl.ac.uk/id/eprint/1444775/

52. Martin, P.N.: Genetic Programming in Hardware. Ph.D. thesis, University of Es-
sex, University of Essex, Wivenhoe Park, Colchester, UK (Mar 2003), http://www.

naiadhome.com/HardwareGeneticProgramming.pdf

53. Sekanina, L., Vasicek, Z.: Cgp acceleration using field-programmable gate arrays. In:
Miller, J.F. (ed.) Cartesian Genetic Programming, chap. 7, pp. 217–230. Natural Com-
puting Series, Springer (2011), http://dx.doi.org/10.1007/978-3-642-17310-3_7

54. Goribar-Jimenez, C., et al.: Towards the development of a complete gp system on an
fpga using geometric semantic operators. In: Lozano, J.A. (ed.) 2017 IEEE Congress
on Evolutionary Computation (CEC). pp. 1932–1939. IEEE, Donostia, San Sebastian,
Spain (5-8 Jun 2017), http://dx.doi.org/10.1109/CEC.2017.7969537

55. Langdon, W.B., Krauss, O.: Genetic improvement of data for maths functions. ACM
Transactions on Evolutionary Learning and Optimization 1(2), Article No.: 7 (Jul
2021), http://dx.doi.org/10.1145/3461016

56. Owens, J.D., et al.: A survey of general-purpose computation on graphics hardware.
Computer Graphics Forum 26(1), 80–113 (March 2007), http://dx.doi.org/10.1111/
j.1467-8659.2007.01012.x

57. Harding, S., Banzhaf, W.: Fast genetic programming on GPUs. In: Ebner, M., et al.
(eds.) Proceedings of the 10th European Conference on Genetic Programming. Lecture
Notes in Computer Science, vol. 4445, pp. 90–101. Springer, Valencia, Spain (11-13 Apr
2007), http://dx.doi.org/10.1007/978-3-540-71605-1_9

58. Chitty, D.M.: A data parallel approach to genetic programming using programmable
graphics hardware. In: Thierens, D., et al. (eds.) GECCO ’07: Proceedings of the 9th
annual conference on Genetic and evolutionary computation. vol. 2, pp. 1566–1573.
ACM Press, London (7-11 Jul 2007), http://dx.doi.org/10.1145/1276958.1277274

59. Juille, H., Pollack, J.B.: Parallel genetic programming and fine-grained simd architec-
ture. In: Siegel, E.V., Koza, J.R. (eds.) Working Notes for the AAAI Symposium on Ge-
netic Programming. pp. 31–37. AAAI, MIT, Cambridge, MA, USA (10–12 Nov 1995),
http://www.aaai.org/Papers/Symposia/Fall/1995/FS-95-01/FS95-01-005.pdf

60. Langdon, W.B.: A SIMD interpreter for genetic programming on GPU graphics cards.
Tech. Rep. CSM-470, Department of Computer Science, University of Essex, Colch-
ester, UK (3 Jul 2007), http://cswww.essex.ac.uk/technical-reports/2007/csm_

470.pdf

61. Langdon, W.B., Banzhaf, W.: A SIMD interpreter for genetic programming on GPU
graphics cards. In: O’Neill, M., et al. (eds.) Proceedings of the 11th European Con-
ference on Genetic Programming, EuroGP 2008. Lecture Notes in Computer Science,
vol. 4971, pp. 73–85. Springer, Naples (26-28 Mar 2008), http://dx.doi.org/10.1007/
978-3-540-78671-9_7

62. Langdon, W.B.: A fast high quality pseudo random number generator for graphics
processing units. In: Wang, J. (ed.) 2008 IEEE World Congress on Computational

http://dx.doi.org/10.1145/3067695.3082517
http://dx.doi.org/10.1109/GI.2019.00010
http://dx.doi.org/10.1109/MS.2021.3071086
http://dx.doi.org/10.7551/mitpress/1109.003.0023
http://dx.doi.org/10.7551/mitpress/1109.003.0023
http://dx.doi.org/10.1007/978-1-4471-3414-5
http://dx.doi.org/10.1007/978-1-4471-3414-5
https://discovery.ucl.ac.uk/id/eprint/1444775/
https://discovery.ucl.ac.uk/id/eprint/1444775/
http://www.naiadhome.com/HardwareGeneticProgramming.pdf
http://www.naiadhome.com/HardwareGeneticProgramming.pdf
http://dx.doi.org/10.1007/978-3-642-17310-3_7
http://dx.doi.org/10.1109/CEC.2017.7969537
http://dx.doi.org/10.1145/3461016
http://dx.doi.org/10.1111/j.1467-8659.2007.01012.x
http://dx.doi.org/10.1111/j.1467-8659.2007.01012.x
http://dx.doi.org/10.1007/978-3-540-71605-1_9
http://dx.doi.org/10.1145/1276958.1277274
http://www.aaai.org/Papers/Symposia/Fall/1995/FS-95-01/FS95-01-005.pdf
http://cswww.essex.ac.uk/technical-reports/2007/csm_470.pdf
http://cswww.essex.ac.uk/technical-reports/2007/csm_470.pdf
http://dx.doi.org/10.1007/978-3-540-78671-9_7
http://dx.doi.org/10.1007/978-3-540-78671-9_7

22 W. B. Langdon

Intelligence. pp. 459–465. IEEE, Hong Kong (1-6 Jun 2008), http://dx.doi.org/10.
1109/CEC.2008.4630838

63. Robilliard, D., et al.: Genetic programming on graphics processing units. Genetic Pro-
gramming and Evolvable Machines 10(4), 447–471 (Dec 2009), http://dx.doi.org/

10.1007/s10710-009-9092-3, special issue on parallel and distributed evolutionary
algorithms, part I

64. Baumes, L.A., et al.: EASEA: a generic optimization tool for GPU machines in asyn-
chronous island model. Computer Methods in Materials Science 11(3), 489–499 (2011),
http://icube-publis.unistra.fr/docs/7407/baumes.pdf

65. Vitola, J., et al.: Parallel algorithm for evolvable-based boolean synthesis on gpus. In:
Third IEEE Latin American Symposium on Circuits and Systems (LASCAS 2012) (29
Feb-2 Mar 2012), http://dx.doi.org/10.1109/LASCAS.2012.6180339

66. Maghazeh, A., et al.: General purpose computing on low-power embedded GPUs: Has
it come of age? In: Jeschke, H. (ed.) 2013 International Conference on Embedded
Computer Systems: Architectures, Modeling, and Simulation (SAMOS XIII). IEEE,
Samos, Greece (15-18 Jul 2013), http://dx.doi.org/10.1109/SAMOS.2013.6621099

67. Chitty, D.M.: Faster GPU-based genetic programming using a two-dimensional
stack. Soft Computing 21(14), 3859–3878 (Jul 2017), http://dx.doi.org/10.1007/

s00500-016-2034-0

68. Ono, K., Hanada, Y.: Self-organized subpopulation based on multiple features in ge-
netic programming on GPU. Journal of Advanced Computational Intelligence and
Intelligent Informatics 25(2), 177–186 (Mar 2021), http://dx.doi.org/10.20965/

jaciii.2021.p0177

69. Trujillo, L., et al.: GSGP-CUDA - a CUDA framework for geometric semantic ge-
netic programming. SoftwareX 18, 101085 (Jun 2022), http://dx.doi.org/10.1016/
j.softx.2022.101085

70. Langdon, W.B., Harrison, A.P.: GP on SPMD parallel graphics hardware for mega
bioinformatics data mining. Soft Computing 12(12), 1169–1183 (Oct 2008), http:

//dx.doi.org/10.1007/s00500-008-0296-x, special Issue on Distributed Bioinspired
Algorithms

71. Langdon, W.B.: Distilling GeneChips with genetic programming on the Emerald GPU
supercomputer. SIGEVOlution newsletter of the ACM Special Interest Group on Ge-
netic and Evolutionary Computation 6(1), 15–21 (25 Jul 2012), http://dx.doi.org/
10.1145/2384697.2384699

72. Langdon, W.B.: Large scale bioinformatics data mining with parallel genetic program-
ming on graphics processing units. In: Tsutsui, S., Collet, P. (eds.) Massively Parallel
Evolutionary Computation on GPGPUs, chap. 15, pp. 311–347. Natural Computing
Series, Springer (2013), http://dx.doi.org/10.1007/978-3-642-37959-8_15

73. Langdon, W.B.: Large scale bioinformatics data mining with parallel genetic program-
ming on graphics processing units. In: Fernandez de Vega, F., Cantu-Paz, E. (eds.)
Parallel and Distributed Computational Intelligence, Studies in Computational Intel-
ligence, vol. 269, chap. 5, pp. 113–141. Springer (Jan 2010), http://dx.doi.org/10.
1007/978-3-642-10675-0_6

74. Langdon, W.B., Banzhaf, W.: Long-term evolution experiment with genetic program-
ming. Artificial Life 28(2), 173–204 (Summer 2022), http://dx.doi.org/10.1162/

artl_a_00360, invited submission to Artificial Life Journal special issue of the AL-
IFE’19 conference

75. Langdon, W.B.: Genetic programming convergence. Genetic Programming and
Evolvable Machines 23(1), 71–104 (Mar 2022), http://dx.doi.org/10.1007/

s10710-021-09405-9

76. Goodfellow, I., et al.: Deep Learning. MIT Press (2016), https://mitpress.mit.edu/
9780262035613/

77. Weimer, W.: From deep learning to human judgments: Lessons for genetic improve-
ment. GI @ GECCO 2022 (9 Jul 2022), http://geneticimprovementofsoftware.com/
slides/gi2022gecco/weimer-keynote-gi-gecco-22.pdf, invited keynote

78. Langdon, W.B.: Genetic Programming and Data Structures: Genetic Programming +
Data Structures = Automatic Programming!, Genetic Programming, vol. 1. Kluwer,
Boston (1998), http://dx.doi.org/10.1007/978-1-4615-5731-9

http://dx.doi.org/10.1109/CEC.2008.4630838
http://dx.doi.org/10.1109/CEC.2008.4630838
http://dx.doi.org/10.1007/s10710-009-9092-3
http://dx.doi.org/10.1007/s10710-009-9092-3
http://icube-publis.unistra.fr/docs/7407/baumes.pdf
http://dx.doi.org/10.1109/LASCAS.2012.6180339
http://dx.doi.org/10.1109/SAMOS.2013.6621099
http://dx.doi.org/10.1007/s00500-016-2034-0
http://dx.doi.org/10.1007/s00500-016-2034-0
http://dx.doi.org/10.20965/jaciii.2021.p0177
http://dx.doi.org/10.20965/jaciii.2021.p0177
http://dx.doi.org/10.1016/j.softx.2022.101085
http://dx.doi.org/10.1016/j.softx.2022.101085
http://dx.doi.org/10.1007/s00500-008-0296-x
http://dx.doi.org/10.1007/s00500-008-0296-x
http://dx.doi.org/10.1145/2384697.2384699
http://dx.doi.org/10.1145/2384697.2384699
http://dx.doi.org/10.1007/978-3-642-37959-8_15
http://dx.doi.org/10.1007/978-3-642-10675-0_6
http://dx.doi.org/10.1007/978-3-642-10675-0_6
http://dx.doi.org/10.1162/artl_a_00360
http://dx.doi.org/10.1162/artl_a_00360
http://dx.doi.org/10.1007/s10710-021-09405-9
http://dx.doi.org/10.1007/s10710-021-09405-9
https://mitpress.mit.edu/9780262035613/
https://mitpress.mit.edu/9780262035613/
http://geneticimprovementofsoftware.com/slides/gi2022gecco/weimer-keynote-gi-gecco-22.pdf
http://geneticimprovementofsoftware.com/slides/gi2022gecco/weimer-keynote-gi-gecco-22.pdf
http://dx.doi.org/10.1007/978-1-4615-5731-9

Jaws 30 23

79. Teller, A.: The evolution of mental models. In: Kinnear, Jr., K.E. (ed.) Advances in
Genetic Programming, chap. 9, pp. 199–219. MIT Press (1994), http://www.cs.cmu.
edu/afs/cs/usr/astro/public/papers/MentalModels.ps

80. Jannink, J.: Cracking and co-evolving randomizers. In: Kinnear, Jr., K.E. (ed.) Ad-
vances in Genetic Programming, chap. 20, pp. 425–443. MIT Press (1994), http:

//infolab.stanford.edu/pub/jannink/gp.ps

81. Andre, D.: Evolution of mapmaking ability: Strategies for the evolution of learn-
ing, planning, and memory using genetic programming. In: Proceedings of the 1994
IEEE World Congress on Computational Intelligence. vol. 1, pp. 250–255. IEEE Press,
Orlando, Florida, USA (27-29 Jun 1994), http://dx.doi.org/10.1109/ICEC.1994.

350007

82. Iba, H., et al.: Temporal data processing using genetic programming. In: Eshelman,
L.J. (ed.) Genetic Algorithms: Proceedings of the Sixth International Conference
(ICGA95). pp. 279–286. Morgan Kaufmann, Pittsburgh, PA, USA (15-19 Jul 1995),
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/iba_1995_tdpgp.pdf

83. Haynes, T.D., Wainwright, R.L.: A simulation of adaptive agents in hostile envi-
ronment. In: George, K.M., et al. (eds.) Proceedings of the 1995 ACM Symposium
on Applied Computing. pp. 318–323. ACM Press, Nashville, USA (1995), http:

//dx.doi.org/10.1145/315891.316007

84. Nordin, P., Banzhaf, W.: Evolving Turing-complete programs for a register machine
with self-modifying code. In: Eshelman, L.J. (ed.) Genetic Algorithms: Proceedings
of the Sixth International Conference (ICGA95). pp. 318–325. Morgan Kaufmann,
Pittsburgh, PA, USA (15-19 Jul 1995), http://www.cs.mun.ca/~banzhaf/papers/

icga95-2.pdf

85. Brave, S.: Evolving recursive programs for tree search. In: Angeline, P.J., Kinnear, Jr.,
K.E. (eds.) Advances in Genetic Programming 2, chap. 10, pp. 203–220. MIT Press,
Cambridge, MA, USA (1996), http://dx.doi.org/10.7551/mitpress/1109.003.0015

86. Esparcia Alcazar, A.I., Sharman, K.C.: Some applications of genetic programming in
digital signal processing. In: Koza, J.R. (ed.) Late Breaking Papers at the Genetic Pro-
gramming 1996 Conference Stanford University July 28-31, 1996. pp. 24–31. Stanford
Bookstore, Stanford University, CA, USA (28–31 Jul 1996), http://www.iti.upv.es/

~anna/papers/someappsgp96.ps

87. Bruce, W.S.: The Application of Genetic Programming to the Automatic Generation
of Object-Oriented Programs. Ph.D. thesis, School of Computer and Information Sci-
ences, Nova Southeastern University, 3100 SW 9th Avenue, Fort Lauderdale, Florida
33315, USA (Dec 1995), https://nsuworks.nova.edu/gscis_etd/430/

88. Ronge, A., Nordahl, M.G.: Genetic programs and co-evolution developing robust gen-
eral purpose controllers using local mating in two dimensional populations. In: Voigt,
H.M., et al. (eds.) Parallel Problem Solving from Nature IV, Proceedings of the In-
ternational Conference on Evolutionary Computation. LNCS, vol. 1141, pp. 81–90.
Springer Verlag, Berlin, Germany (22-26 Sep 1996), http://dx.doi.org/10.1007/

3-540-61723-X_972

89. Spector, L., Luke, S.: Cultural transmission of information in genetic programming. In:
Koza, J.R., et al. (eds.) Genetic Programming 1996: Proceedings of the First Annual
Conference. pp. 209–214. MIT Press, Stanford University, CA, USA (28–31 Jul 1996),
http://www.cs.gmu.edu/~sean/papers/culture-gp96.pdf

90. Raik, S.E., Browne, D.G.: Evolving state and memory in genetic programming. In:
Simulated Evolution and Learning. Springer (1997), http://dx.doi.org/10.1007/

BFb0028523

91. Edmonds, B., Moss, S.: Modelling of boundedly rational agents using evolutionary
programming techniques. In: Corne, D., Shapiro, J.L. (eds.) Evolutionary Computing,
LNCS, vol. 1305, pp. 31–42. Springer-Verlag, University of Manchester, UK (7-8 Apr
1997), http://dx.doi.org/10.1007/BFb0027164

92. Bennett III, F.H.: A multi-skilled robot that recognizes and responds to different prob-
lem environments. In: Koza, J.R., et al. (eds.) Genetic Programming 1997: Proceedings
of the Second Annual Conference. pp. 44–51. Morgan Kaufmann, Stanford University,
CA, USA (13-16 Jul 1997), http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/
gp1997/bennet_1997_msrrrdpe.pdf

http://www.cs.cmu.edu/afs/cs/usr/astro/public/papers/MentalModels.ps
http://www.cs.cmu.edu/afs/cs/usr/astro/public/papers/MentalModels.ps
http://infolab.stanford.edu/pub/jannink/gp.ps
http://infolab.stanford.edu/pub/jannink/gp.ps
http://dx.doi.org/10.1109/ICEC.1994.350007
http://dx.doi.org/10.1109/ICEC.1994.350007
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/iba_1995_tdpgp.pdf
http://dx.doi.org/10.1145/315891.316007
http://dx.doi.org/10.1145/315891.316007
http://www.cs.mun.ca/~banzhaf/papers/icga95-2.pdf
http://www.cs.mun.ca/~banzhaf/papers/icga95-2.pdf
http://dx.doi.org/10.7551/mitpress/1109.003.0015
http://www.iti.upv.es/~anna/papers/someappsgp96.ps
http://www.iti.upv.es/~anna/papers/someappsgp96.ps
https://nsuworks.nova.edu/gscis_etd/430/
http://dx.doi.org/10.1007/3-540-61723-X_972
http://dx.doi.org/10.1007/3-540-61723-X_972
http://www.cs.gmu.edu/~sean/papers/culture-gp96.pdf
http://dx.doi.org/10.1007/BFb0028523
http://dx.doi.org/10.1007/BFb0028523
http://dx.doi.org/10.1007/BFb0027164
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/gp1997/bennet_1997_msrrrdpe.pdf
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/gp1997/bennet_1997_msrrrdpe.pdf

24 W. B. Langdon

93. Angeline, P.J.: An alternative to indexed memory for evolving programs with explicit
state representations. In: Koza, J.R., et al. (eds.) Genetic Programming 1997: Pro-
ceedings of the Second Annual Conference. pp. 423–430. Morgan Kaufmann, Stanford
University, CA, USA (13-16 Jul 1997)

94. Lim, I.S., Thalmann, D.: Indexed memory as a generic protocol for handling vectors of
data in genetic programming. In: Eiben, A.E., et al. (eds.) Fifth International Confer-
ence on Parallel Problem Solving from Nature. LNCS, vol. 1498, pp. 325–334. Springer-
Verlag, Amsterdam (27-30 Sep 1998), http://dx.doi.org/10.1007/BFb0056875

95. Trenaman, A.: The Evolution of Autonomous Agents Using Concurrent Genetic Pro-
gramming. Ph.D. thesis, Department of Computer Science, National University of
Ireland, Maynooth, Ireland (Oct 1999), http://www.cs.ucl.ac.uk/staff/W.Langdon/
ftp/papers/trenaman/at_thesis1.ps.gz

96. Silva, A., et al.: Evolving controllers for autonomous agents using genetically pro-
grammed networks. In: Poli, R., et al. (eds.) Genetic Programming, Proceedings of
EuroGP’99. LNCS, vol. 1598, pp. 255–269. Springer-Verlag, Goteborg, Sweden (26-27
May 1999), http://dx.doi.org/10.1007/3-540-48885-5_22

97. Andersson, B., et al.: Reactive and memory-based genetic programming for robot
control. In: Poli, R., et al. (eds.) Genetic Programming, Proceedings of EuroGP’99.
LNCS, vol. 1598, pp. 161–172. Springer-Verlag, Goteborg, Sweden (26-27 May 1999),
http://dx.doi.org/10.1007/3-540-48885-5_13

98. Martin, P.: Genetic programming for service creation in intelligent networks. In: Poli,
R., et al. (eds.) Genetic Programming, Proceedings of EuroGP’2000. LNCS, vol. 1802,
pp. 106–120. Springer-Verlag, Edinburgh (15-16 Apr 2000), http://dx.doi.org/10.

1007/978-3-540-46239-2_8
99. Bearpark, K.: Learning and memory in genetic programming. Ph.D. thesis, School of

Engineering Sciences, University of Southampton, UK (2000), http://eprints.soton.
ac.uk/45930/

100. Karlsson, R., et al.: Sound localization for a humanoid robot using genetic pro-
gramming. In: Cagnoni, S., et al. (eds.) Real-World Applications of Evolutionary
Computing. LNCS, vol. 1803, pp. 65–76. Springer-Verlag, Edinburgh (17 Apr 2000),
http://dx.doi.org/10.1007/3-540-45561-2_7

101. Martin, M.C.: Visual obstacle avoidance using genetic programming: First results.
In: Spector, L., et al. (eds.) Proceedings of the Genetic and Evolutionary Computa-
tion Conference (GECCO-2001). pp. 1107–1113. Morgan Kaufmann, San Francisco,
California, USA (7-11 Jul 2001), http://www.martincmartin.com/Dissertation/

VisualObstacleAvoidanceGP.pdf
102. Brumby, S.P., et al.: Evolving forest fire burn severity classification algorithms for

multi-spectral imagery. In: Shen, S.S., Descour, M.R. (eds.) In Algorithms for Mul-
tispectral, Hyperspectral, and Ultraspectral Imagery VII, Proceedings of SPIE. vol.
4381, pp. 236–245 (2001), http://dx.doi.org/10.1117/12.437013

103. Howard, D., et al.: The boru data crawler for object detection tasks in machine vision.
In: Cagnoni, S., et al. (eds.) Applications of Evolutionary Computing, Proceedings of
EvoWorkshops2002: EvoCOP, EvoIASP, EvoSTim/EvoPLAN. LNCS, vol. 2279, pp.
222–232. Springer-Verlag, Kinsale, Ireland (3-4 Apr 2002), http://dx.doi.org/10.

1007/3-540-46004-7_23
104. Imamura, K., et al.: N -version genetic programming via fault masking. In: Foster,

J.A., et al. (eds.) Genetic Programming, Proceedings of the 5th European Conference,
EuroGP 2002. LNCS, vol. 2278, pp. 172–181. Springer-Verlag, Kinsale, Ireland (3-5
Apr 2002), http://dx.doi.org/10.1007/3-540-45984-7_17

105. Johnson, M.: Sequence generation using machine language evolved by genetic
programming. In: Wang, L., et al. (eds.) Procceedings of the 4th Asia-Pacific
Conference on Simulated Evolution And Learning (SEAL’02). p. #1251. Or-
chid Country Club, Singapore (18-22 Nov 2002), http://www.worldcat.org/title/

seal02-proceedings-of-the-4th-asia-pacific-conference-on-simulated-evolution-and-learning-november-18-22-2002-orchid-country-club-singapore/

oclc/51951214
106. O’Neill, M., Ryan, C.: Investigations into memory in grammatical evolution. In: Barry,

A.M. (ed.) GECCO 2002: Proceedings of the Bird of a Feather Workshops, Genetic and
Evolutionary Computation Conference. pp. 141–144. AAAI, New York (8 Jul 2002),
http://www.grammatical-evolution.org/gews2002/oneill.ps

http://dx.doi.org/10.1007/BFb0056875
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/trenaman/at_thesis1.ps.gz
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/trenaman/at_thesis1.ps.gz
http://dx.doi.org/10.1007/3-540-48885-5_22
http://dx.doi.org/10.1007/3-540-48885-5_13
http://dx.doi.org/10.1007/978-3-540-46239-2_8
http://dx.doi.org/10.1007/978-3-540-46239-2_8
http://eprints.soton.ac.uk/45930/
http://eprints.soton.ac.uk/45930/
http://dx.doi.org/10.1007/3-540-45561-2_7
http://www.martincmartin.com/Dissertation/VisualObstacleAvoidanceGP.pdf
http://www.martincmartin.com/Dissertation/VisualObstacleAvoidanceGP.pdf
http://dx.doi.org/10.1117/12.437013
http://dx.doi.org/10.1007/3-540-46004-7_23
http://dx.doi.org/10.1007/3-540-46004-7_23
http://dx.doi.org/10.1007/3-540-45984-7_17
http://www.worldcat.org/title/seal02-proceedings-of-the-4th-asia-pacific-conference-on-simulated-evolution-and-learning-november-18-22-2002-orchid-country-club-singapore/oclc/51951214
http://www.worldcat.org/title/seal02-proceedings-of-the-4th-asia-pacific-conference-on-simulated-evolution-and-learning-november-18-22-2002-orchid-country-club-singapore/oclc/51951214
http://www.worldcat.org/title/seal02-proceedings-of-the-4th-asia-pacific-conference-on-simulated-evolution-and-learning-november-18-22-2002-orchid-country-club-singapore/oclc/51951214
http://www.grammatical-evolution.org/gews2002/oneill.ps

Jaws 30 25

107. Pillay, N.: Using genetic programming for the induction of novice procedural pro-
gramming solution algorithms. In: SAC ’02: Proceedings of the 2002 ACM sympo-
sium on Applied computing. pp. 578–583. ACM Press, Madrid, Spain (Mar 2002),
http://dx.doi.org/10.1145/508791.508903

108. Quintana, M.I., et al.: Morphological algorithm design for binary images using genetic
programming. Genetic Programming and Evolvable Machines 7(1), 81–102 (Mar 2006),
http://dx.doi.org/10.1007/s10710-006-7012-3

109. Segond, M., et al.: Iterative filter generation using genetic programming. In: Collet,
P., et al. (eds.) Proceedings of the 9th European Conference on Genetic Program-
ming. Lecture Notes in Computer Science, vol. 3905, pp. 145–153. Springer, Budapest,
Hungary (10 - 12 Apr 2006), http://dx.doi.org/10.1007/11729976_13

110. Kim, D.: A quantitative analysis of memory usage for agent tasks. In: Iba, H. (ed.)
Frontiers in Evolutionary Robotics, chap. 14, pp. 247–274. IntechOpen, Rijeka (2008),
http://dx.doi.org/10.5772/5458

111. Frias-Martinez, E., Gobet, F.: Automatic generation of cognitive theories using genetic
programming. Minds and Machines 17(3), 287–309 (Oct 2007), http://dx.doi.org/
10.1007/s11023-007-9070-6

112. McPhee, N.F., Poli, R.: Memory with memory: Soft assignment in genetic program-
ming. In: Keijzer, M., et al. (eds.) GECCO ’08: Proceedings of the 10th annual con-
ference on Genetic and evolutionary computation. pp. 1235–1242. ACM, Atlanta, GA,
USA (12-16 Jul 2008), http://dx.doi.org/10.1145/1389095.1389336

113. Katz, G., Peled, D.: Genetic programming and model checking: Synthesizing new
mutual exclusion algorithms. In: Automated Technology for Verification and Anal-
ysis. Lecture Notes in Computer Science, vol. 5311, pp. 33–47. Springer (2008),
http://dx.doi.org/10.1007/978-3-540-88387-6_5

114. Withall, M.S., et al.: An improved representation for evolving programs. Genetic Pro-
gramming and Evolvable Machines 10(1), 37–70 (Mar 2009), http://dx.doi.org/10.
1007/s10710-008-9069-7

115. Wilson, G.C., Banzhaf, W.: Soft memory for stock market analysis using linear and de-
velopmental genetic programming. In: Raidl, G., et al. (eds.) GECCO ’09: Proceedings
of the 11th Annual conference on Genetic and evolutionary computation. pp. 1633–
1640. ACM, Montreal (8-12 Jul 2009), http://dx.doi.org/10.1145/1569901.1570119

116. Wolfson, K., Sipper, M.: Efficient list search algorithms. In: Collet, P., et al. (eds.) 9th
International Conference, Evolution Artificielle, EA 2009. Lecture Notes in Computer
Science, vol. 5975, pp. 158–169. Springer, Strasbourg, France (Oct 26-28 2009), http:
//dx.doi.org/10.1007/978-3-642-14156-0_14, revised Selected Papers

117. Hyde, M.: A genetic programming hyper-heuristic approach to automated packing.
Ph.D. thesis, School of Computer Science, University of Nottingham, UK (Mar 2010),
http://etheses.nottingham.ac.uk/1625/1/mvh_corrected_thesis.pdf

118. Suchorzewski, M.: Extending genetic programming to evolve perceptron-like learn-
ing programs. In: Rutkowski, L., et al. (eds.) 10th International Conference Artifi-
cial Intelligence and Soft Computing, ICAISC 2010, Part II. Lecture Notes in Com-
puter Science, vol. 6114, pp. 221–228. Springer, Zakopane, Poland (Jun 13-17 2010),
http://dx.doi.org/10.1007/978-3-642-13232-2

119. Agapitos, A., et al.: Learning environment models in car racing using stateful genetic
programming. In: Proceedings of the 2011 IEEE Conference on Computational Intel-
ligence and Games. pp. 219–226. IEEE, Seoul, South Korea (31 Aug - 3 Sep 2011),
http://dx.doi.org/10.1109/CIG.2011.6032010

120. Weise, T., Tang, K.: Evolving distributed algorithms with genetic programming. IEEE
Transactions on Evolutionary Computation 16(2), 242–265 (Apr 2012), http://dx.

doi.org/10.1109/TEVC.2011.2112666

121. Kala, R.: Multi-robot path planning using co-evolutionary genetic programming. Ex-
pert Systems with Applications 39(3), 3817–3831 (2012), http://dx.doi.org/10.

1016/j.eswa.2011.09.090

122. Yim, H., Kim, D.: Evolving internal memory strategies for the woods problems.
In: 12th International Conference on Control, Automation and Systems (ICCAS
2012). pp. 366–369 (2012), http://ieeexplore.ieee.org/xpl/articleDetails.jsp?

tp=&arnumber=6393463

http://dx.doi.org/10.1145/508791.508903
http://dx.doi.org/10.1007/s10710-006-7012-3
http://dx.doi.org/10.1007/11729976_13
http://dx.doi.org/10.5772/5458
http://dx.doi.org/10.1007/s11023-007-9070-6
http://dx.doi.org/10.1007/s11023-007-9070-6
http://dx.doi.org/10.1145/1389095.1389336
http://dx.doi.org/10.1007/978-3-540-88387-6_5
http://dx.doi.org/10.1007/s10710-008-9069-7
http://dx.doi.org/10.1007/s10710-008-9069-7
http://dx.doi.org/10.1145/1569901.1570119
http://dx.doi.org/10.1007/978-3-642-14156-0_14
http://dx.doi.org/10.1007/978-3-642-14156-0_14
http://etheses.nottingham.ac.uk/1625/1/mvh_corrected_thesis.pdf
http://dx.doi.org/10.1007/978-3-642-13232-2
http://dx.doi.org/10.1109/CIG.2011.6032010
http://dx.doi.org/10.1109/TEVC.2011.2112666
http://dx.doi.org/10.1109/TEVC.2011.2112666
http://dx.doi.org/10.1016/j.eswa.2011.09.090
http://dx.doi.org/10.1016/j.eswa.2011.09.090
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6393463
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6393463

26 W. B. Langdon

123. Igwe, K., Pillay, N.: Automatic programming using genetic programming. In: Ngo,
L.T., et al. (eds.) Proceedings of the 2013 Third World Congress on Information and
Communication Technologies (WICT 2013). pp. 337–342. IEEE, Hanoi, Vietnam (15-
18 Dec 2013), http://dx.doi.org/10.1109/WICT.2013.7113158

124. Qadir, O., et al.: Hardware architecture of the protein processing associative mem-
ory and the effects of dimensionality and quantisation on performance. Genetic Pro-
gramming and Evolvable Machines 15(3), 245–275 (Sep 2014), http://dx.doi.org/

10.1007/s10710-014-9217-1

125. Szczuko, P.: Genetic programming extension to APF-based monocular human body
pose estimation. Multimedia Tools and Applications 68(1), 177–192 (2014), http://
dx.doi.org/10.1007/s11042-012-1147-4

126. Yuan, X., et al.: Making lock-free data structures verifiable with artificial transac-
tions. In: Proceedings of the 8th Workshop on Programming Languages and Operat-
ing Systems, PLOS 2015. pp. 39–45. ACM, Monterey, California, USA (4-7 Oct 2015),
http://dx.doi.org/10.1145/2818302.2818309

127. Chaumont, N., Adami, C.: Evolution of sustained foraging in three-dimensional envi-
ronments with physics. Genetic Programming and Evolvable Machines 17(4), 359–390
(Dec 2016), http://dx.doi.org/10.1007/s10710-016-9270-z

128. Smith, R., Heywood, M.: A model of external memory for navigation in partially
observative visual reinforcement learning tasks. In: Sekanina, L., et al. (eds.) EuroGP
2019: Proceedings of the 22nd European Conference on Genetic Programming. LNCS,
vol. 11451, pp. 162–177. Springer Verlag, Leipzig, Germany (24-26 Apr 2019), http:
//dx.doi.org/10.1007/978-3-030-16670-0_11

129. Kelly, S., et al.: Emergent tangled program graphs in partially observable recursive fore-
casting and ViZDoom navigation tasks. ACM Transactions on Evolutionary Learning
and Optimization 1(3) (Sep 2021), http://dx.doi.org/10.1145/3468857

130. Real, E., et al.: AutoML-zero: Evolving machine learning algorithms from scratch. In:
Daume, III, H., Singh, A. (eds.) Proceedings of the 37th International Conference on
Machine Learning. Proceedings of Machine Learning Research, vol. 119, pp. 8007–
8019. PMLR (13–18 Jul 2020), http://www.human-competitive.org/sites/default/
files/automl_zero_humies_competition_entry.txt, winner 2021 HUMIES

131. Sulyok, C., et al.: Evolving the process of a virtual composer. Natural Computing
18(1), 47–60 (Mar 2019), http://dx.doi.org/10.1007/s11047-016-9561-6

132. Al Masalma, M., Heywood, M.: Genetic programming with external memory in se-
quence recall tasks. In: Trautmann, H., et al. (eds.) Proceedings of the 2022 Ge-
netic and Evolutionary Computation Conference Companion. pp. 518–521. GECCO
’22, Association for Computing Machinery, Boston, USA (9-13 Jul 2022), http:

//dx.doi.org/10.1145/3520304.3528883

133. Langdon, W.B., Poli, R.: Foundations of Genetic Programming. Springer-Verlag
(2002), http://dx.doi.org/10.1007/978-3-662-04726-2

134. O’Reilly, U.M., Oppacher, F.: The troubling aspects of a building block hypothesis
for genetic programming. In: Whitley, L.D., Vose, M.D. (eds.) Foundations of Genetic
Algorithms 3. pp. 73–88. Morgan Kaufmann, Estes Park, Colorado, USA (31 Jul–2 Aug
1994), http://dx.doi.org/10.1016/B978-1-55860-356-1.50008-X, published 1995

135. Rosca, J.P., Ballard, D.H.: Rooted-tree schemata in genetic programming. In: Spector,
L., et al. (eds.) Advances in Genetic Programming 3, chap. 11, pp. 243–271. MIT Press,
Cambridge, MA, USA (Jun 1999), http://dx.doi.org/10.7551/mitpress/1110.003.
0015

136. Poli, R.: Exact schema theory for genetic programming and variable-length genetic
algorithms with one-point crossover. Genetic Programming and Evolvable Machines
2(2), 123–163 (Jun 2001), http://dx.doi.org/10.1023/A:1011552313821

137. Stephens, C.R., Poli, R.: EC theory – “in theory”: Towards a unification of evo-
lutionary computation theory. In: Menon, A. (ed.) Frontiers of Evolutionary Com-
putation, vol. 11, chap. 7, pp. 129–155. Kluwer, Boston, MA, USA (2004), http:

//dx.doi.org/10.1007/1-4020-7782-3_7

138. Price, G.R.: Selection and covariance. Nature 227, August 1, 520–521 (1970), http:
//dx.doi.org/10.1038/227520a0

http://dx.doi.org/10.1109/WICT.2013.7113158
http://dx.doi.org/10.1007/s10710-014-9217-1
http://dx.doi.org/10.1007/s10710-014-9217-1
http://dx.doi.org/10.1007/s11042-012-1147-4
http://dx.doi.org/10.1007/s11042-012-1147-4
http://dx.doi.org/10.1145/2818302.2818309
http://dx.doi.org/10.1007/s10710-016-9270-z
http://dx.doi.org/10.1007/978-3-030-16670-0_11
http://dx.doi.org/10.1007/978-3-030-16670-0_11
http://dx.doi.org/10.1145/3468857
http://www.human-competitive.org/sites/default/files/automl_zero_humies_competition_entry.txt
http://www.human-competitive.org/sites/default/files/automl_zero_humies_competition_entry.txt
http://dx.doi.org/10.1007/s11047-016-9561-6
http://dx.doi.org/10.1145/3520304.3528883
http://dx.doi.org/10.1145/3520304.3528883
http://dx.doi.org/10.1007/978-3-662-04726-2
http://dx.doi.org/10.1016/B978-1-55860-356-1.50008-X
http://dx.doi.org/10.7551/mitpress/1110.003.0015
http://dx.doi.org/10.7551/mitpress/1110.003.0015
http://dx.doi.org/10.1023/A:1011552313821
http://dx.doi.org/10.1007/1-4020-7782-3_7
http://dx.doi.org/10.1007/1-4020-7782-3_7
http://dx.doi.org/10.1038/227520a0
http://dx.doi.org/10.1038/227520a0

Jaws 30 27

139. Altenberg, L.: The evolution of evolvability in genetic programming. In: Kinnear, Jr.,
K.E. (ed.) Advances in Genetic Programming, chap. 3, pp. 47–74. MIT Press (1994),
http://dynamics.org/~altenber/PAPERS/EEGP/

140. Ryan, C., et al.: A competitive building block hypothesis. In: Deb, K., et al. (eds.)
Genetic and Evolutionary Computation – GECCO-2004, Part II. Lecture Notes in
Computer Science, vol. 3103, pp. 654–665. Springer-Verlag, Seattle, WA, USA (26-30
Jun 2004), http://dx.doi.org/10.1007/978-3-540-24855-2_73

141. White, D.R., et al.: Modelling genetic programming as a simple sampling algorithm.
In: Banzhaf, W., et al. (eds.) Genetic Programming Theory and Practice XVII. pp.
367–381. Springer, East Lansing, MI, USA (16-19 May 2019), http://dx.doi.org/10.
1007/978-3-030-39958-0_18

142. Miller, J.: What bloat? cartesian genetic programming on Boolean problems. In:
Goodman, E.D. (ed.) 2001 Genetic and Evolutionary Computation Conference Late
Breaking Papers. pp. 295–302. San Francisco, California, USA (9-11 Jul 2001), http:
//www.elec.york.ac.uk/intsys/users/jfm7/gecco2001Late.pdf

143. Jones, T.: One operator, one landscape. Tech. Rep. SFI TR 95-02-025, Santa Fe Insti-
tute (January 1995), http://www.santafe.edu/sfi/publications/Working-Papers/

95-02-025.ps
144. O’Reilly, U.M.: Using a distance metric on genetic programs to understand genetic op-

erators. In: IEEE International Conference on Systems, Man, and Cybernetics, Com-
putational Cybernetics and Simulation. vol. 5, pp. 4092–4097. Orlando, Florida, USA
(12-15 Oct 1997), http://dx.doi.org/10.1109/ICSMC.1997.637337

145. Vassilev, V.K., et al.: Smoothness, ruggedness and neutrality of fitness landscapes:
from theory to application. In: Ghosh, A., Tsutsui, S. (eds.) Advances in evolutionary
computing: theory and applications, pp. 3–44. Springer-Verlag New York, Inc. (2003),
http://dx.doi.org/10.1007/978-3-642-18965-4_1

146. Langdon, W.B., Harman, M.: Fitness landscape of the Triangle program. In: Veerapen,
N., Ochoa, G. (eds.) PPSN-2016 Workshop on Landscape-Aware Heuristic Search.
Edinburgh (17 Sep 2016), http://www.cs.ucl.ac.uk/fileadmin/UCL-CS/research/

Research_Notes/rn1605.pdf, also available as UCL RN/16/05
147. Langdon, W.B., et al.: Dissipative polynomials. In: Veerapen, N., et al. (eds.) 5th Work-

shop on Landscape-Aware Heuristic Search. pp. 1683–1691. GECCO 2021 Companion,
ACM, Internet (10-14 Jul 2021), http://dx.doi.org/10.1145/3449726.3463147

148. Francone, F.D., et al.: Homologous crossover in genetic programming. In: Banzhaf, W.,
et al. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference.
vol. 2, pp. 1021–1026. Morgan Kaufmann, Orlando, Florida, USA (13-17 Jul 1999),
http://gpbib.cs.ucl.ac.uk/gecco1999/GP-463.pdf

149. Durrett, G., et al.: Computational complexity analysis of simple genetic programming
on two problems modeling isolated program semantics. In: Beyer, H.G., Langdon, W.B.
(eds.) Foundations of Genetic Algorithms. pp. 69–80. ACM, Schwarzenberg, Austria
(5-9 Jan 2011), http://dx.doi.org/10.1145/1967654.1967661

150. Koetzing, T., et al.: The Max problem revisited: The importance of mutation in genetic
programming. Theoretical Computer Science 545, 94–107 (2014), http://dx.doi.org/
10.1016/j.tcs.2013.06.014

151. Nguyen, A., et al.: Single- and multi-objective genetic programming: New bounds for
weighted order and majority. In: Neumann, F., De Jong, K. (eds.) Foundations of
Genetic Algorithms. pp. 161–172. ACM, Adelaide, Australia (16-20 Jan 2013), http:
//dx.doi.org/10.1145/2460239.2460254

152. Lissovoi, A., Oliveto, P.S.: On the time and space complexity of genetic programming
for evolving boolean conjunctions. Journal of Artificial Intelligence Research 66, 655–
689 (2019), http://dx.doi.org/10.1613/jair.1.11821

153. Doerr, B., et al.: The impact of lexicographic parsimony pressure for OR-
DER/MAJORITY on the run time. Theoretical Computer Science 816, 144–168 (6
May 2020), http://dx.doi.org/10.1016/j.tcs.2020.01.011

154. Koetzing, T., et al.: Destructiveness of lexicographic parsimony pressure and alleviation
by a concatenation crossover in genetic programming. Theoretical Computer Science
816, 96–113 (6 May 2020), http://dx.doi.org/10.1016/j.tcs.2019.11.036

155. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans-
actions on Evolutionary Computation 1(1), 67–82 (April 1997)

http://dynamics.org/~altenber/PAPERS/EEGP/
http://dx.doi.org/10.1007/978-3-540-24855-2_73
http://dx.doi.org/10.1007/978-3-030-39958-0_18
http://dx.doi.org/10.1007/978-3-030-39958-0_18
http://www.elec.york.ac.uk/intsys/users/jfm7/gecco2001Late.pdf
http://www.elec.york.ac.uk/intsys/users/jfm7/gecco2001Late.pdf
http://www.santafe.edu/sfi/publications/Working-Papers/95-02-025.ps
http://www.santafe.edu/sfi/publications/Working-Papers/95-02-025.ps
http://dx.doi.org/10.1109/ICSMC.1997.637337
http://dx.doi.org/10.1007/978-3-642-18965-4_1
http://www.cs.ucl.ac.uk/fileadmin/UCL-CS/research/Research_Notes/rn1605.pdf
http://www.cs.ucl.ac.uk/fileadmin/UCL-CS/research/Research_Notes/rn1605.pdf
http://dx.doi.org/10.1145/3449726.3463147
http://gpbib.cs.ucl.ac.uk/gecco1999/GP-463.pdf
http://dx.doi.org/10.1145/1967654.1967661
http://dx.doi.org/10.1016/j.tcs.2013.06.014
http://dx.doi.org/10.1016/j.tcs.2013.06.014
http://dx.doi.org/10.1145/2460239.2460254
http://dx.doi.org/10.1145/2460239.2460254
http://dx.doi.org/10.1613/jair.1.11821
http://dx.doi.org/10.1016/j.tcs.2020.01.011
http://dx.doi.org/10.1016/j.tcs.2019.11.036

28 W. B. Langdon

156. Langdon, W.B.: Incremental evaluation in genetic programming. In: Hu, T., et al. (eds.)
EuroGP 2021: Proceedings of the 24th European Conference on Genetic Programming.
LNCS, vol. 12691, pp. 229–246. Springer Verlag, Virtual Event (7-9 Apr 2021), http:
//dx.doi.org/10.1007/978-3-030-72812-0_15

157. Handley, S.: On the use of a directed acyclic graph to represent a population of com-
puter programs. In: Proceedings of the 1994 IEEE World Congress on Computational
Intelligence. vol. 1, pp. 154–159. IEEE Press, Orlando, Florida, USA (27-29 Jun 1994),
http://dx.doi.org/10.1109/ICEC.1994.350024

158. Langdon, W.B., Banzhaf, W.: Repeated sequences in linear genetic programming
genomes. Complex Systems 15(4), 285–306 (2005), http://www.cs.ucl.ac.uk/staff/
W.Langdon/ftp/papers/wbl_repeat_linear.pdf

159. Soule, T., Foster, J.A.: Effects of code growth and parsimony pressure on populations in
genetic programming. Evolutionary Computation 6(4), 293–309 (Winter 1998), http:
//dx.doi.org/10.1162/evco.1998.6.4.293

160. de Jong, E.D., Pollack, J.B.: Multi-objective methods for tree size control. Genetic
Programming and Evolvable Machines 4(3), 211–233 (Sep 2003), http://dx.doi.org/
10.1023/A:1025122906870

161. Bleuler, S., et al.: Multiobjective genetic programming: Reducing bloat using spea2.
In: Proceedings of the 2001 Congress on Evolutionary Computation CEC2001. pp.
536–543. IEEE Press, COEX, World Trade Center, 159 Samseong-dong, Gangnam-gu,
Seoul, Korea (27-30 May 2001), http://dx.doi.org/10.1109/CEC.2001.934438

162. Panait, L., Luke, S.: Alternative bloat control methods. In: Deb, K., et al. (eds.) Genetic
and Evolutionary Computation – GECCO-2004, Part II. Lecture Notes in Computer
Science, vol. 3103, pp. 630–641. Springer-Verlag, Seattle, WA, USA (26-30 Jun 2004),
http://dx.doi.org/10.1007/b98645

163. Poli, R.: A simple but theoretically-motivated method to control bloat in genetic
programming. In: Ryan, C., et al. (eds.) Genetic Programming, Proceedings of Eu-
roGP’2003. LNCS, vol. 2610, pp. 204–217. Springer-Verlag, Essex (14-16 Apr 2003),
http://dx.doi.org/10.1007/3-540-36599-0_19

164. Silva, S.: Controlling Bloat: Individual and Population Based Approaches in Genetic
Programming. Ph.D. thesis, Coimbra University, Portugal (Apr 2008), http://hdl.

handle.net/10316/8542, full author name is Sara Guilherme Oliveira da Silva
165. Dignum, S., Poli, R.: Operator equalisation and bloat free GP. In: O’Neill, M., et al.

(eds.) Proceedings of the 11th European Conference on Genetic Programming, EuroGP
2008. Lecture Notes in Computer Science, vol. 4971, pp. 110–121. Springer, Naples (26-
28 Mar 2008), http://dx.doi.org/10.1007/978-3-540-78671-9_10

166. Nikolaev, N.I., Iba, H.: Accelerated genetic programming of polynomials. Genetic Pro-
gramming and Evolvable Machines 2(3), 231–257 (Sep 2001), http://dx.doi.org/10.
1023/A:1011949326249

167. Kushchu, I.: Genetic programming and evolutionary generalization. IEEE Transactions
on Evolutionary Computation 6(5), 431–442 (Oct 2002), http://dx.doi.org/10.1109/
TEVC.2002.805038

168. Kowaliw, T., Doursat, R.: Bias-variance decomposition in genetic programming. Open
Mathematics 14(1), 62–80 (Feb 2016), http://dx.doi.org/10.1515/math-2016-0005

169. Gathercole, C., Ross, P.: Dynamic training subset selection for supervised learning
in genetic programming. In: Davidor, Y., et al. (eds.) Parallel Problem Solving from
Nature III. LNCS, vol. 866, pp. 312–321. Springer-Verlag, Jerusalem (9-14 Oct 1994),
http://dx.doi.org/10.1007/3-540-58484-6_275

170. Spector, L., et al.: Relaxations of lexicase parent selection. In: Banzhaf, W., et al. (eds.)
Genetic Programming Theory and Practice XV. pp. 105–120. Genetic and Evolutionary
Computation, Springer, University of Michigan in Ann Arbor, USA (May 18–20 2017),
http://dx.doi.org/10.1007/978-3-319-90512-9_7

171. Javed, N., et al.: Simplification of genetic programs: a literature survey. Data Mining
and Knowledge Discovery 36(4), 1279–1300 (Jul 2022), http://dx.doi.org/10.1007/
s10618-022-00830-7, special Issue on Explainable and Interpretable Machine Learning
and Data Mining

172. Hooper, D., Flann, N.S.: Improving the accuracy and robustness of genetic program-
ming through expression simplification. In: Koza, J.R., et al. (eds.) Genetic Program-

http://dx.doi.org/10.1007/978-3-030-72812-0_15
http://dx.doi.org/10.1007/978-3-030-72812-0_15
http://dx.doi.org/10.1109/ICEC.1994.350024
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/wbl_repeat_linear.pdf
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/wbl_repeat_linear.pdf
http://dx.doi.org/10.1162/evco.1998.6.4.293
http://dx.doi.org/10.1162/evco.1998.6.4.293
http://dx.doi.org/10.1023/A:1025122906870
http://dx.doi.org/10.1023/A:1025122906870
http://dx.doi.org/10.1109/CEC.2001.934438
http://dx.doi.org/10.1007/b98645
http://dx.doi.org/10.1007/3-540-36599-0_19
http://hdl.handle.net/10316/8542
http://hdl.handle.net/10316/8542
http://dx.doi.org/10.1007/978-3-540-78671-9_10
http://dx.doi.org/10.1023/A:1011949326249
http://dx.doi.org/10.1023/A:1011949326249
http://dx.doi.org/10.1109/TEVC.2002.805038
http://dx.doi.org/10.1109/TEVC.2002.805038
http://dx.doi.org/10.1515/math-2016-0005
http://dx.doi.org/10.1007/3-540-58484-6_275
http://dx.doi.org/10.1007/978-3-319-90512-9_7
http://dx.doi.org/10.1007/s10618-022-00830-7
http://dx.doi.org/10.1007/s10618-022-00830-7

Jaws 30 29

ming 1996: Proceedings of the First Annual Conference. p. 428. MIT Press, Stanford
University, CA, USA (28–31 Jul 1996), http://digital.cs.usu.edu/~flann/gp.pdf

173. Langdon, W.B., Harman, M.: Optimising existing software with genetic programming.
IEEE Transactions on Evolutionary Computation 19(1), 118–135 (Feb 2015), http:

//dx.doi.org/10.1109/TEVC.2013.2281544
174. Raichle, M.E., Gusnard, D.A.: Appraising the brain’s energy budget. Proceedings of

the National Academy of Sciences 99(16), 10237–10239 (6 aug 2002), http://dx.doi.
org/10.1073/pnas.172399499

175. Ridley, M.: The Red Queen, Sex and the Evolution of Human Nature. Penquin (1993),
http://www.penguin.co.uk/Penguin/Books/0140167722.html

176. Nordin, P.: A compiling genetic programming system that directly manipu-
lates the machine code. In: Kinnear, Jr., K.E. (ed.) Advances in Genetic Pro-
gramming, chap. 14, pp. 311–331. MIT Press (1994), http://www.amazon.co.uk/

Advances-Genetic-Programming-Complex-Adaptive/dp/0262111888
177. Miller, J.F.: An empirical study of the efficiency of learning Boolean functions using a

cartesian genetic programming approach. In: Banzhaf, W., et al. (eds.) Proceedings of
the Genetic and Evolutionary Computation Conference. vol. 2, pp. 1135–1142. Morgan
Kaufmann, Orlando, Florida, USA (13-17 Jul 1999), http://citeseer.ist.psu.edu/
153431.html

178. Ryan, C., et al.: Grammatical evolution: Evolving programs for an arbitrary language.
In: Banzhaf, W., et al. (eds.) Proceedings of the First European Workshop on Genetic
Programming. LNCS, vol. 1391, pp. 83–96. Springer-Verlag, Paris (14-15 Apr 1998),
http://dx.doi.org/10.1007/BFb0055930

179. Angeline, P.J., Pollack, J.B.: The evolutionary induction of subroutines. In: Proceed-
ings of the Fourteenth Annual Conference of the Cognitive Science Society. pp. 236–
241. Lawrence Erlbaum, Bloomington, Indiana, USA (1992), http://www.demo.cs.

brandeis.edu/papers/glib92.pdf
180. Rosca, J.: Towards automatic discovery of building blocks in genetic programming. In:

Siegel, E.V., Koza, J.R. (eds.) Working Notes for the AAAI Symposium on Genetic
Programming. pp. 78–85. AAAI, MIT, Cambridge, MA, USA (10–12 Nov 1995), http:
//www.aaai.org/Papers/Symposia/Fall/1995/FS-95-01/FS95-01-011.pdf

181. Spector, L.: Simultaneous evolution of programs and their control structures. In: An-
geline, P.J., Kinnear, Jr., K.E. (eds.) Advances in Genetic Programming 2, chap. 7,
pp. 137–154. MIT Press, Cambridge, MA, USA (1996), http://dx.doi.org/10.7551/
mitpress/1109.003.0012

182. Murphy, G., Ryan, C.: Seeding methods for run transferable libraries. In: Thierens,
D., et al. (eds.) GECCO ’07: Proceedings of the 9th annual conference on Genetic and
evolutionary computation. vol. 2, pp. 1755–1755. ACM Press, London (7-11 Jul 2007),
http://dx.doi.org/10.1145/1276958.1277305

183. Langdon, W.B.: Data Structures and Genetic Programming. Ph.D. thesis, Univer-
sity College, London, UK (27 Sep 1996), http://www.cs.ucl.ac.uk/staff/W.Langdon/
ftp/papers/langdon.ps.gz

184. Teller, A., Andre, D.: Automatically choosing the number of fitness cases: The rational
allocation of trials. In: Koza, J.R., et al. (eds.) Genetic Programming 1997: Proceedings
of the Second Annual Conference. pp. 321–328. Morgan Kaufmann, Stanford Univer-
sity, CA, USA (13-16 Jul 1997), http://www.cs.cmu.edu/afs/cs/usr/astro/public/
papers/GR.ps

185. Spector, L.: Assessment of problem modality by differential performance of lexicase
selection in genetic programming: A preliminary report. In: McClymont, K., Keed-
well, E. (eds.) 1st workshop on Understanding Problems (GECCO-UP). pp. 401–408.
ACM, Philadelphia, Pennsylvania, USA (7-11 Jul 2012), http://dx.doi.org/10.1145/
2330784.2330846

186. Poli, R., et al.: A field guide to genetic programming. Published via http://lulu.com

and freely available at http://www.gp-field-guide.org.uk (2008), http://www.

gp-field-guide.org.uk, (With contributions by J. R. Koza)
187. Harding, S.L., Banzhaf, W.: Distributed genetic programming on GPUs using CUDA.

In: Hidalgo, I., et al. (eds.) Workshop on Parallel Architectures and Bioinspired Al-
gorithms. pp. 1–10. Universidad Complutense de Madrid, Raleigh, NC, USA (13 Sep
2009), http://www.evolutioninmaterio.com/preprints/CudaParallelCompilePP.pdf

http://digital.cs.usu.edu/~flann/gp.pdf
http://dx.doi.org/10.1109/TEVC.2013.2281544
http://dx.doi.org/10.1109/TEVC.2013.2281544
http://dx.doi.org/10.1073/pnas.172399499
http://dx.doi.org/10.1073/pnas.172399499
http://www.penguin.co.uk/Penguin/Books/0140167722.html
http://www.amazon.co.uk/Advances-Genetic-Programming-Complex-Adaptive/dp/0262111888
http://www.amazon.co.uk/Advances-Genetic-Programming-Complex-Adaptive/dp/0262111888
http://citeseer.ist.psu.edu/153431.html
http://citeseer.ist.psu.edu/153431.html
http://dx.doi.org/10.1007/BFb0055930
http://www.demo.cs.brandeis.edu/papers/glib92.pdf
http://www.demo.cs.brandeis.edu/papers/glib92.pdf
http://www.aaai.org/Papers/Symposia/Fall/1995/FS-95-01/FS95-01-011.pdf
http://www.aaai.org/Papers/Symposia/Fall/1995/FS-95-01/FS95-01-011.pdf
http://dx.doi.org/10.7551/mitpress/1109.003.0012
http://dx.doi.org/10.7551/mitpress/1109.003.0012
http://dx.doi.org/10.1145/1276958.1277305
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/langdon.ps.gz
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/langdon.ps.gz
http://www.cs.cmu.edu/afs/cs/usr/astro/public/papers/GR.ps
http://www.cs.cmu.edu/afs/cs/usr/astro/public/papers/GR.ps
http://dx.doi.org/10.1145/2330784.2330846
http://dx.doi.org/10.1145/2330784.2330846
http://www.gp-field-guide.org.uk
http://www.gp-field-guide.org.uk
http://www.evolutioninmaterio.com/preprints/CudaParallelCompilePP.pdf

30 W. B. Langdon

188. Crepeau, R.L.: Genetic evolution of machine language software. In: Rosca, J.P. (ed.)
Proceedings of the Workshop on Genetic Programming: From Theory to Real-World
Applications. pp. 121–134. Tahoe City, California, USA (9 Jul 1995), http://www.cs.
ucl.ac.uk/staff/W.Langdon/ftp/papers/GEMS_Article.pdf

189. Nordin, P., et al.: Efficient evolution of machine code for CISC architectures using
instruction blocks and homologous crossover. In: Spector, L., et al. (eds.) Advances
in Genetic Programming 3, chap. 12, pp. 275–299. MIT Press, Cambridge, MA, USA
(Jun 1999), http://dx.doi.org/10.7551/mitpress/1110.003.0017

190. Francone, F.D.: Discipulus Owner’s Manual. 11757 W. Ken Caryl Avenue F, PBM 512,
Littleton, Colorado, 80127-3719, USA, version 3.0 draft edn. (2001), http://gpbib.
cs.ucl.ac.uk/gp-html/francone_manual.html

191. Banzhaf, W., et al.: Genetic Programming – An Introduction; On the
Automatic Evolution of Computer Programs and its Applications. Morgan
Kaufmann, San Francisco, CA, USA (Jan 1998), https://www.amazon.co.uk/

Genetic-Programming-Introduction-Artificial-Intelligence/dp/155860510X

192. Brameier, M., Banzhaf, W.: Linear Genetic Programming. No. XVI in Ge-
netic and Evolutionary Computation, Springer (2007), http://dx.doi.org/10.1007/
978-0-387-31030-5

193. O’Neill, M., Ryan, C.: Grammatical evolution. IEEE Transactions on Evolutionary
Computation 5(4), 349–358 (Aug 2001), http://dx.doi.org/10.1109/4235.942529

194. O’Neill, M., Ryan, C.: Grammatical Evolution: Evolutionary Automatic Programming
in a Arbitrary Language, Genetic programming, vol. 4. Kluwer Academic Publishers
(2003), http://dx.doi.org/10.1007/978-1-4615-0447-4

195. Spector, L.: Introduction to the peer commentary special section on “on the mapping
of genotype to phenotype in evolutionary algorithms” by Peter A. Whigham, Grant
Dick, and James Maclaurin. Genetic Programming and Evolvable Machines 18(3),
351–352 (Sep 2017), http://dx.doi.org/10.1007/s10710-017-9287-y, special Peer
Commentary on Mapping of Genotype to Phenotype in Evolutionary Algorithms

196. Ryan, C.: A rebuttal to whigham, dick, and maclaurin by one of the inventors of
grammatical evolution: Commentary on “on the mapping of genotype to phenotype in
evolutionary algorithms” by Peter A. Whigham, Grant Dick, and James Maclaurin.
Genetic Programming and Evolvable Machines 18(3), 385–389 (Sep 2017), http://

dx.doi.org/10.1007/s10710-017-9294-z, special Peer Commentary on Mapping of
Genotype to Phenotype in Evolutionary Algorithms

197. Miller, J.F., et al.: Principles in the evolutionary design of digital circuits-part I. Ge-
netic Programming and Evolvable Machines 1(1/2), 7–35 (Apr 2000), http://dx.doi.
org/10.1023/A:1010016313373

198. Miller, J.F., et al.: Principles in the evolutionary design of digital circuits-part II.
Genetic Programming and Evolvable Machines 1(3), 259–288 (Jul 2000), http://dx.
doi.org/10.1023/A:1010066330916

199. Miller, J.F. (ed.): Cartesian Genetic Programming. Natural Computing Series, Springer
(2011), http://dx.doi.org/10.1007/978-3-642-17310-3

200. Miller, J.F.: Cartesian Genetic Programming: its status and future. Genetic Program-
ming and Evolvable Machines 21(1-2), 129–168 (Jun 2020), http://dx.doi.org/10.
1007/s10710-019-09360-6, twentieth Anniversary Issue

201. Sekanina, L., Vasicek, Z.: Approximate circuit design by means of evolvable hardware.
In: IEEE International Conference on Evolvable Systems (ICES 2013). pp. 21–28 (Apr
2013), http://dx.doi.org/10.1109/ICES.2013.6613278

202. Sekanina, L., et al.: Approximate circuits in low-power image and video processing:
The approximate median filter. Radioengineering 26(3), 623–632 (Sep 2017), http:

//dx.doi.org/10.13164/re.2017.0623

203. Montana, D.J.: Strongly typed genetic programming. Evolutionary Computation 3(2),
199–230 (Summer 1995), http://dx.doi.org/10.1162/evco.1995.3.2.199

204. Yu, T.: Structure abstraction and genetic programming. In: Angeline, P.J., et al. (eds.)
Proceedings of the Congress on Evolutionary Computation. vol. 1, pp. 652–659. IEEE
Press, Mayflower Hotel, Washington D.C., USA (6-9 Jul 1999), http://dx.doi.org/
10.1109/CEC.1999.781995

http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/GEMS_Article.pdf
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/GEMS_Article.pdf
http://dx.doi.org/10.7551/mitpress/1110.003.0017
http://gpbib.cs.ucl.ac.uk/gp-html/francone_manual.html
http://gpbib.cs.ucl.ac.uk/gp-html/francone_manual.html
https://www.amazon.co.uk/Genetic-Programming-Introduction-Artificial-Intelligence/dp/155860510X
https://www.amazon.co.uk/Genetic-Programming-Introduction-Artificial-Intelligence/dp/155860510X
http://dx.doi.org/10.1007/978-0-387-31030-5
http://dx.doi.org/10.1007/978-0-387-31030-5
http://dx.doi.org/10.1109/4235.942529
http://dx.doi.org/10.1007/978-1-4615-0447-4
http://dx.doi.org/10.1007/s10710-017-9287-y
http://dx.doi.org/10.1007/s10710-017-9294-z
http://dx.doi.org/10.1007/s10710-017-9294-z
http://dx.doi.org/10.1023/A:1010016313373
http://dx.doi.org/10.1023/A:1010016313373
http://dx.doi.org/10.1023/A:1010066330916
http://dx.doi.org/10.1023/A:1010066330916
http://dx.doi.org/10.1007/978-3-642-17310-3
http://dx.doi.org/10.1007/s10710-019-09360-6
http://dx.doi.org/10.1007/s10710-019-09360-6
http://dx.doi.org/10.1109/ICES.2013.6613278
http://dx.doi.org/10.13164/re.2017.0623
http://dx.doi.org/10.13164/re.2017.0623
http://dx.doi.org/10.1162/evco.1995.3.2.199
http://dx.doi.org/10.1109/CEC.1999.781995
http://dx.doi.org/10.1109/CEC.1999.781995

Jaws 30 31

205. Yu, T.: Hierachical processing for evolving recursive and modular programs using
higher order functions and lambda abstractions. Genetic Programming and Evolvable
Machines 2(4), 345–380 (Dec 2001), http://dx.doi.org/10.1023/A:1012926821302

206. McKay, R.I., et al.: Grammar-based genetic programming: a survey. Genetic Program-
ming and Evolvable Machines 11(3/4), 365–396 (Sep 2010), http://dx.doi.org/10.
1007/s10710-010-9109-y, tenth Anniversary Issue: Progress in Genetic Programming
and Evolvable Machines

207. Whigham, P.A.: Grammatically-based genetic programming. In: Rosca, J.P. (ed.) Pro-
ceedings of the Workshop on Genetic Programming: From Theory to Real-World Ap-
plications. pp. 33–41. Tahoe City, California, USA (9 Jul 1995), http://divcom.otago.
ac.nz/sirc/Peterw/Publications/ml95.zip

208. Whigham, P.A., et al.: On the mapping of genotype to phenotype in evolutionary al-
gorithms. Genetic Programming and Evolvable Machines 18(3), 353–361 (Sep 2017),
http://dx.doi.org/10.1007/s10710-017-9288-x, special Peer Commentary on Map-
ping of Genotype to Phenotype in Evolutionary Algorithms

209. Ratle, A., Sebag, M.: A novel approach to machine discovery: Genetic programming
and stochastic grammars. In: Matwin, S., Sammut, C. (eds.) Proceedings of Twelfth
International Conference on Inductive Logic Programming. LNCS, vol. 2583, pp. 207–
222. Springer Verlag, Sydney, Australia (Jul 9-11 2002), http://dx.doi.org/10.1007/
3-540-36468-4_14, revised Papers

210. Nguyen, X.H., et al.: Solving the symbolic regression problem with tree-adjunct gram-
mar guided genetic programming: The comparative results. The Australian Journal
of Intelligent Information Processing Systems 7(3/4), 114–121 (2001), http://sc.snu.
ac.kr/PAPERS/xuanetal.pdf

211. Jacob, C.: Computer physics communications. Evolution and coevolution of devel-
opmental programs 121-122, 46–50 (Sep-Oct 1999), http://dx.doi.org/10.1016/

S0010-4655(99)00277-5

212. Jacob, C.: Illustrating Evolutionary Computation with Mathematica. Morgan Kauf-
mann (2001), http://dx.doi.org/10.1016/B978-155860637-1/50020-5

213. Hornby, G.S., Pollack, J.B.: Evolving L-systems to generate virtual creatures. Com-
puters and Graphics 25(6), 1041–1048 (Dec 2001), http://dx.doi.org/10.1016/

S0097-8493(01)00157-1, artificial Life
214. Hemberg, M., et al.: Genr8: Architects’ experience with an emergent design tool. In:

Romero, J., Machado, P. (eds.) The Art of Artificial Evolution: A Handbook on Evo-
lutionary Art and Music, chap. 8, pp. 167–188. Springer (2008), http://dx.doi.org/
10.1007/978-3-540-72877-1_8

215. Perkis, T.: Stack-based genetic programming. In: Proceedings of the 1994 IEEE World
Congress on Computational Intelligence. vol. 1, pp. 148–153. IEEE Press, Orlando,
Florida, USA (27-29 Jun 1994), http://dx.doi.org/10.1109/ICEC.1994.350025

216. Openshaw, S., Turton, I.: Building new spatial interaction models using genetic pro-
gramming. In: Fogarty, T.C. (ed.) Evolutionary Computing, AISB workshop. Leeds,
UK (11-13 Apr 1994), http://dx.doi.org/10.1007/3-540-58483-8, unpublished

217. Holladay, K., et al.: Fifth: A stack based gp language for vector processing. In: Ebner,
M., et al. (eds.) Proceedings of the 10th European Conference on Genetic Program-
ming. Lecture Notes in Computer Science, vol. 4445, pp. 102–113. Springer, Valencia,
Spain (11-13 Apr 2007), http://dx.doi.org/10.1007/978-3-540-71605-1_10

218. Oltean, M., Grosan, C.: Solving classification problems using infix form genetic pro-
gramming. In: Berthold, M.R., et al. (eds.) Advances in Intelligent Data Analysis V.
Lecture Notes in Computer Science, vol. 2810, pp. 242–253. Springer, Berlin, Germany
(Aug 28-30 2003), http://dx.doi.org/10.1007/978-3-540-45231-7_23

219. Spector, L., Robinson, A.: Genetic programming and autoconstructive evolution with
the push programming language. Genetic Programming and Evolvable Machines 3(1),
7–40 (Mar 2002), http://dx.doi.org/10.1023/A:1014538503543

220. O’Reilly, U.M., Oppacher, F.: Program search with a hierarchical variable length rep-
resentation: Genetic programming, simulated annealing and hill climbing. In: Davidor,
Y., et al. (eds.) Parallel Problem Solving from Nature – PPSN III. pp. 397–406. No.
866 in Lecture Notes in Computer Science, Springer-Verlag, Jerusalem (9-14 Oct 1994),
http://dx.doi.org/10.1007/3-540-58484-6_283

http://dx.doi.org/10.1023/A:1012926821302
http://dx.doi.org/10.1007/s10710-010-9109-y
http://dx.doi.org/10.1007/s10710-010-9109-y
http://divcom.otago.ac.nz/sirc/Peterw/Publications/ml95.zip
http://divcom.otago.ac.nz/sirc/Peterw/Publications/ml95.zip
http://dx.doi.org/10.1007/s10710-017-9288-x
http://dx.doi.org/10.1007/3-540-36468-4_14
http://dx.doi.org/10.1007/3-540-36468-4_14
http://sc.snu.ac.kr/PAPERS/xuanetal.pdf
http://sc.snu.ac.kr/PAPERS/xuanetal.pdf
http://dx.doi.org/10.1016/S0010-4655(99)00277-5
http://dx.doi.org/10.1016/S0010-4655(99)00277-5
http://dx.doi.org/10.1016/B978-155860637-1/50020-5
http://dx.doi.org/10.1016/S0097-8493(01)00157-1
http://dx.doi.org/10.1016/S0097-8493(01)00157-1
http://dx.doi.org/10.1007/978-3-540-72877-1_8
http://dx.doi.org/10.1007/978-3-540-72877-1_8
http://dx.doi.org/10.1109/ICEC.1994.350025
http://dx.doi.org/10.1007/3-540-58483-8
http://dx.doi.org/10.1007/978-3-540-71605-1_10
http://dx.doi.org/10.1007/978-3-540-45231-7_23
http://dx.doi.org/10.1023/A:1014538503543
http://dx.doi.org/10.1007/3-540-58484-6_283

32 W. B. Langdon

221. Esparcia-Alcazar, A.I., Sharman, K.C.: Genetic programming techniques that evolve
recurrent neural networks architectures for signal processing. In: IEEE Workshop on
Neural Networks for Signal Processing. pp. 139–148. IEEE, Seiko, Kyoto, Japan (4-6
Sep 1996), http://dx.doi.org/10.1109/NNSP.1996.548344

222. Moraglio, A., Silva, S.: Geometric differential evolution on the space of genetic pro-
grams. In: Esparcia-Alcazar, A.I., et al. (eds.) Proceedings of the 13th European
Conference on Genetic Programming, EuroGP 2010. LNCS, vol. 6021, pp. 171–183.
Springer, Istanbul (7-9 Apr 2010), http://dx.doi.org/10.1007/978-3-642-12148-7_
15, best paper

223. Zhang, B.T.: Bayesian methods for efficient genetic programming. Genetic Program-
ming and Evolvable Machines 1(3), 217–242 (Jul 2000), http://dx.doi.org/10.1023/
A:1010010230007

224. Yanai, K., Iba, H.: Estimation of distribution programming based on Bayesian net-
work. In: Sarker, R., et al. (eds.) Proceedings of the 2003 Congress on Evolution-
ary Computation CEC2003. pp. 1618–1625. IEEE Press, Canberra (8-12 Dec 2003),
http://dx.doi.org/10.1109/CEC.2003.1299866

225. Bosman, P.A.N., de Jong, E.D.: Learning probabilistic tree grammars for genetic pro-
gramming. In: Yao, X., et al. (eds.) Parallel Problem Solving from Nature - PPSN
VIII. LNCS, vol. 3242, pp. 192–201. Springer-Verlag, Birmingham, UK (18-22 Sep
2004), http://dx.doi.org/10.1007/b100601

226. Rodriguez, A.: A Neat Approach To Genetic Programming. Master’s thesis, School of
School of Electrical Engineering and Computer Science, University of Central Florida,
Orlando, Florida, USA (2007), https://stars.library.ucf.edu/etd/3323.pdf

227. Buk, Z., et al.: NEAT in HyperNEAT substituted with genetic programming. In:
Kolehmainen, M., et al. (eds.) 9th International Conference on Adaptive and Nat-
ural Computing Algorithms, ICANNGA 2009. Lecture Notes in Computer Science,
vol. 5495, pp. 243–252. Springer, Kuopio, Finland (23-25 Apr 2009), http://dx.doi.
org/10.1007/978-3-642-04921-7_25, revised selected papers

228. Trujillo, L., et al.: neat genetic programming: Controlling bloat naturally. Information
Sciences 333, 21–43 (10 Mar 2016), http://dx.doi.org/10.1016/j.ins.2015.11.010

229. McConaghy, T.: FFX: Fast, scalable, deterministic symbolic regression technology. In:
Riolo, R., et al. (eds.) Genetic Programming Theory and Practice IX, chap. 13, pp.
235–260. Genetic and Evolutionary Computation, Springer, Ann Arbor, USA (12-14
May 2011), http://dx.doi.org/10.1007/978-1-4614-1770-5_13

230. Moraglio, A., et al.: Geometric semantic genetic programming. In: Coello Coello, C.A.,
et al. (eds.) Parallel Problem Solving from Nature, PPSN XII (part 1). Lecture Notes
in Computer Science, vol. 7491, pp. 21–31. Springer, Taormina, Italy (Sep 1-5 2012),
http://dx.doi.org/10.1007/978-3-642-32937-1_3

231. Langdon, W.B.: Directed crossover within genetic programming. Research Note
RN/95/71, University College London, Gower Street, London WC1E 6BT,
UK (Sep 1995), http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/directed_

crossover.pdf
232. Orzechowski, P., et al.: Where are we now?: a large benchmark study of recent sym-

bolic regression methods. In: Aguirre, H., et al. (eds.) GECCO ’18: Proceedings of
the Genetic and Evolutionary Computation Conference. pp. 1183–1190. ACM, Kyoto,
Japan (15-19 Jul 2018), http://dx.doi.org/10.1145/3205455.3205539

233. Arnaldo, I., et al.: Multiple regression genetic programming. In: Igel, C., et al.
(eds.) GECCO ’14: Proceedings of the 2014 conference on Genetic and evolution-
ary computation. pp. 879–886. ACM, Vancouver, BC, Canada (12-16 Jul 2014),
http://dx.doi.org/10.1145/2576768.2598291

234. Munoz, L., et al.: M3GP: multiclass classification with GP. In: Machado, P.,
et al. (eds.) 18th European Conference on Genetic Programming. LNCS, vol. 9025,
pp. 78–91. Springer, Copenhagen (8-10 Apr 2015), http://dx.doi.org/10.1007/

978-3-319-16501-1_7
235. La Cava, W., Moore, J.: A general feature engineering wrapper for machine learning

using epsilon-lexicase survival. In: Castelli, M., et al. (eds.) EuroGP 2017: Proceedings
of the 20th European Conference on Genetic Programming. LNCS, vol. 10196, pp.
80–95. Springer Verlag, Amsterdam (19-21 Apr 2017), http://dx.doi.org/10.1007/
978-3-319-55696-3_6

http://dx.doi.org/10.1109/NNSP.1996.548344
http://dx.doi.org/10.1007/978-3-642-12148-7_15
http://dx.doi.org/10.1007/978-3-642-12148-7_15
http://dx.doi.org/10.1023/A:1010010230007
http://dx.doi.org/10.1023/A:1010010230007
http://dx.doi.org/10.1109/CEC.2003.1299866
http://dx.doi.org/10.1007/b100601
https://stars.library.ucf.edu/etd/3323.pdf
http://dx.doi.org/10.1007/978-3-642-04921-7_25
http://dx.doi.org/10.1007/978-3-642-04921-7_25
http://dx.doi.org/10.1016/j.ins.2015.11.010
http://dx.doi.org/10.1007/978-1-4614-1770-5_13
http://dx.doi.org/10.1007/978-3-642-32937-1_3
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/directed_crossover.pdf
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/directed_crossover.pdf
http://dx.doi.org/10.1145/3205455.3205539
http://dx.doi.org/10.1145/2576768.2598291
http://dx.doi.org/10.1007/978-3-319-16501-1_7
http://dx.doi.org/10.1007/978-3-319-16501-1_7
http://dx.doi.org/10.1007/978-3-319-55696-3_6
http://dx.doi.org/10.1007/978-3-319-55696-3_6

Jaws 30 33

236. Burlacu, B., et al.: Operon C++: An efficient genetic programming framework for
symbolic regression. In: Allmendinger, R., et al. (eds.) Proceedings of the 2020 Genetic
and Evolutionary Computation Conference Companion. pp. 1562–1570. GECCO ’20,
Association for Computing Machinery, internet (Jul 8-12 2020), http://dx.doi.org/
10.1145/3377929.3398099

237. Mota Dias, D., et al.: Automatic synthesis of microcontroller assembly code through
linear genetic programming. In: Nedjah, N., et al. (eds.) Genetic Systems Program-
ming: Theory and Experiences, Studies in Computational Intelligence, vol. 13, pp.
193–227. Springer, Germany (2006), http://dx.doi.org/10.1007/3-540-32498-4_9

238. Lewis, T.E., Magoulas, G.D.: TMBL kernels for CUDA GPUs compile faster using
PTX. In: Harding, S., et al. (eds.) GECCO 2011 Computational intelligence on con-
sumer games and graphics hardware (CIGPU). pp. 455–462. ACM, Dublin, Ireland
(12-16 Jul 2011), http://dx.doi.org/10.1145/2001858.2002033

239. Cupertino, L.F., et al.: Evolving CUDA PTX programs by quantum inspired linear
genetic programming. In: Harding, S., et al. (eds.) GECCO 2011 Computational in-
telligence on consumer games and graphics hardware (CIGPU). pp. 399–406. ACM,
Dublin, Ireland (12-16 Jul 2011), http://dx.doi.org/10.1145/2001858.2002026

240. Gregor, M., Spalek, J.: Using LLVM-based JIT compilation in genetic programming.
In: 2016 ELEKTRO. pp. 406–411. IEEE, Strbske Pleso, Slovakia (16-18 May 2016),
http://dx.doi.org/10.1109/ELEKTRO.2016.7512108

241. Liou, J.Y., et al.: GEVO: GPU code optimization using evolutionary computation.
ACM Transactions on Architecture and Code Optimization 17(4), Article 33 (Dec
2020), http://dx.doi.org/10.1145/3418055

242. Lukschandl, E., et al.: Distributed java bytecode genetic programming. In: Poli, R.,
et al. (eds.) Genetic Programming, Proceedings of EuroGP’2000. LNCS, vol. 1802, pp.
316–325. Springer-Verlag, Edinburgh (15-16 Apr 2000), http://dx.doi.org/10.1007/
978-3-540-46239-2_24

243. Whigham, P.A., McKay, R.I.: Genetic approaches to learning recursive relations. In:
Yao, X. (ed.) Progress in Evolutionary Computation, Lecture Notes in Artificial In-
telligence, vol. 956, pp. 17–27. Springer-Verlag (1995), http://dx.doi.org/10.1007/
3-540-60154-6_44

244. Whigham, P.A.: A schema theorem for context-free grammars. In: 1995 IEEE Confer-
ence on Evolutionary Computation. vol. 1, pp. 178–181. IEEE Press, Perth, Australia
(29 Nov - 1 Dec 1995), http://dx.doi.org/10.1109/ICEC.1995.489140

245. Castle, T., Johnson, C.G.: Evolving high-level imperative program trees with strongly
formed genetic programming. In: Moraglio, A., et al. (eds.) Proceedings of the 15th
European Conference on Genetic Programming, EuroGP 2012. LNCS, vol. 7244, pp.
1–12. Springer Verlag, Malaga, Spain (11-13 Apr 2012), http://dx.doi.org/10.1007/
978-3-642-29139-5_1

246. Hillis, W.D.: Co-evolving parasites improve simulated evolution as an optimization
procedure. In: Langton, C.G., et al. (eds.) Artificial Life II, Santa Fe Institute Studies
in the Sciences of Complexity, vol. X, pp. 313–324. Addison-Wesley, Santa Fe Institute,
New Mexico, USA (Feb 1990 1992)

247. Popovici, E., et al.: Coevolutionary principles. In: Rozenberg, G., et al. (eds.) Hand-
book of Natural Computing, chap. 31, pp. 987–1033. Springer (19 August 2012),
http://dx.doi.org/10.1007/978-3-540-92910-9_31

248. Zhang, B.T., Cho, D.Y.: Coevolutionary fitness switching: Learning complex collective
behaviors using genetic programming. In: Spector, L., et al. (eds.) Advances in Genetic
Programming 3, chap. 18, pp. 425–445. MIT Press, Cambridge, MA, USA (Jun 1999),
http://dx.doi.org/10.7551/mitpress/1110.003.0023

249. Leier, A., Banzhaf, W.: Exploring the search space of quantum programs. In: Sarker, R.,
et al. (eds.) Proceedings of the 2003 Congress on Evolutionary Computation CEC2003.
vol. 1, pp. 170–177. IEEE Press, Canberra (8-12 Dec 2003), http://dx.doi.org/10.
1109/CEC.2003.1299571

250. Spector, L.: Automatic Quantum Computer Programming: A Genetic Pro-
gramming Approach, Genetic Programming, vol. 7. Kluwer Academic Publish-
ers, Boston/Dordrecht/New York/London (Jun 2004), http://dx.doi.org/10.1007/
978-0-387-36791-0

http://dx.doi.org/10.1145/3377929.3398099
http://dx.doi.org/10.1145/3377929.3398099
http://dx.doi.org/10.1007/3-540-32498-4_9
http://dx.doi.org/10.1145/2001858.2002033
http://dx.doi.org/10.1145/2001858.2002026
http://dx.doi.org/10.1109/ELEKTRO.2016.7512108
http://dx.doi.org/10.1145/3418055
http://dx.doi.org/10.1007/978-3-540-46239-2_24
http://dx.doi.org/10.1007/978-3-540-46239-2_24
http://dx.doi.org/10.1007/3-540-60154-6_44
http://dx.doi.org/10.1007/3-540-60154-6_44
http://dx.doi.org/10.1109/ICEC.1995.489140
http://dx.doi.org/10.1007/978-3-642-29139-5_1
http://dx.doi.org/10.1007/978-3-642-29139-5_1
http://dx.doi.org/10.1007/978-3-540-92910-9_31
http://dx.doi.org/10.7551/mitpress/1110.003.0023
http://dx.doi.org/10.1109/CEC.2003.1299571
http://dx.doi.org/10.1109/CEC.2003.1299571
http://dx.doi.org/10.1007/978-0-387-36791-0
http://dx.doi.org/10.1007/978-0-387-36791-0

34 W. B. Langdon

251. O’Brien, G., Clark, J.: Using genetic improvement to retarget quantum software on
differing hardware. In: Petke, J., et al. (eds.) GI @ ICSE 2021. pp. 31–38. IEEE, in-
ternet (30 May 2021), http://dx.doi.org/10.1109/GI52543.2021.00015, winner Best
Presentation

252. Poli, R., et al.: Theoretical results in genetic programming: The next ten years?
Genetic Programming and Evolvable Machines 11(3/4), 285–320 (Sep 2010), http:

//dx.doi.org/10.1007/s10710-010-9110-5, tenth Anniversary Issue: Progress in Ge-
netic Programming and Evolvable Machines

253. Vanneschi, L., Poli, R.: Genetic programming: Introduction, applications, theory
and open issues. In: Rozenberg, G., et al. (eds.) Handbook of Natural Computing,
vol. 2, chap. 24, pp. 709–739. Springer (19 Aug 2012), http://dx.doi.org/10.1007/
978-3-540-92910-9_24

254. Marginean, A., et al.: SapFix: Automated end-to-end repair at scale. In: Atlee, J.M.,
Bultan, T. (eds.) 41st International Conference on Software Engineering. pp. 269–278.
ACM, Montreal (25-31 May 2019), http://dx.doi.org/10.1109/ICSE-SEIP.2019.

00039

255. Bruce, B.R., et al.: Approximate oracles and synergy in software energy search spaces.
IEEE Transactions on Software Engineering 45(11), 1150–1169 (Nov 2019), http://
dx.doi.org/10.1109/TSE.2018.2827066

256. Wu, F., et al.: Deep parameter optimisation. In: Silva, S., et al. (eds.) GECCO ’15:
Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation.
pp. 1375–1382. ACM, Madrid (11-15 Jul 2015), http://dx.doi.org/10.1145/2739480.
2754648

257. Langdon, W.B., Harman, M.: Genetically improved CUDA C++ software. In: Nicolau,
M., et al. (eds.) 17th European Conference on Genetic Programming. LNCS, vol. 8599,
pp. 87–99. Springer, Granada, Spain (23-25 Apr 2014), http://dx.doi.org/10.1007/
978-3-662-44303-3_8

258. Langdon, W.B., et al.: Improving 3D medical image registration CUDA software with
genetic programming. In: Igel, C., et al. (eds.) GECCO ’14: Proceeding of the six-
teenth annual conference on genetic and evolutionary computation conference. pp.
951–958. ACM, Vancouver, BC, Canada (12-15 Jul 2014), http://dx.doi.org/10.

1145/2576768.2598244

259. Langdon, W.B., Harman, M.: Grow and graft a better CUDA pknotsRG for RNA
pseudoknot free energy calculation. In: Langdon, W.B., et al. (eds.) Genetic Im-
provement 2015 Workshop. pp. 805–810. ACM, Madrid (11-15 Jul 2015), http:

//dx.doi.org/10.1145/2739482.2768418

260. Yeboah-Antwi, K., Baudry, B.: Embedding adaptivity in software systems using the
ECSELR framework. In: Langdon, W.B., et al. (eds.) Genetic Improvement 2015
Workshop. pp. 839–844. ACM, Madrid (11-15 Jul 2015), http://dx.doi.org/10.1145/
2739482.2768425

261. Langdon, W.B., et al.: Improving CUDA DNA analysis software with genetic pro-
gramming. In: Silva, S., et al. (eds.) GECCO ’15: Proceedings of the 2015 Annual
Conference on Genetic and Evolutionary Computation. pp. 1063–1070. ACM, Madrid
(11-15 Jul 2015), http://dx.doi.org/10.1145/2739480.2754652

262. Langdon, W.B., et al.: Genetic improvement of GPU software. Genetic Program-
ming and Evolvable Machines 18(1), 5–44 (Mar 2017), http://dx.doi.org/10.1007/
s10710-016-9273-9

263. Langdon, W.B.: Genetically improved software. In: Gandomi, A.H., et al. (eds.) Hand-
book of Genetic Programming Applications, chap. 8, pp. 181–220. Springer (2015),
http://dx.doi.org/10.1007/978-3-319-20883-1_8

264. Langdon, W.B., Lam, B.Y.H.: Genetically improved BarraCUDA. BioData Mining
20(28) (2 Aug 2017), http://dx.doi.org/10.1186/s13040-017-0149-1

265. Langdon, W.B., et al.: Evolving better RNAfold structure prediction. In: Castelli, M.,
et al. (eds.) EuroGP 2018: Proceedings of the 21st European Conference on Genetic
Programming. LNCS, vol. 10781, pp. 220–236. Springer Verlag, Parma, Italy (4-6 Apr
2018), http://dx.doi.org/10.1007/978-3-319-77553-1_14

266. Langdon, W.B., Harman, M.: Evolving a CUDA kernel from an nVidia template.
In: Sobrevilla, P. (ed.) 2010 IEEE World Congress on Computational Intelligence. pp.

http://dx.doi.org/10.1109/GI52543.2021.00015
http://dx.doi.org/10.1007/s10710-010-9110-5
http://dx.doi.org/10.1007/s10710-010-9110-5
http://dx.doi.org/10.1007/978-3-540-92910-9_24
http://dx.doi.org/10.1007/978-3-540-92910-9_24
http://dx.doi.org/10.1109/ICSE-SEIP.2019.00039
http://dx.doi.org/10.1109/ICSE-SEIP.2019.00039
http://dx.doi.org/10.1109/TSE.2018.2827066
http://dx.doi.org/10.1109/TSE.2018.2827066
http://dx.doi.org/10.1145/2739480.2754648
http://dx.doi.org/10.1145/2739480.2754648
http://dx.doi.org/10.1007/978-3-662-44303-3_8
http://dx.doi.org/10.1007/978-3-662-44303-3_8
http://dx.doi.org/10.1145/2576768.2598244
http://dx.doi.org/10.1145/2576768.2598244
http://dx.doi.org/10.1145/2739482.2768418
http://dx.doi.org/10.1145/2739482.2768418
http://dx.doi.org/10.1145/2739482.2768425
http://dx.doi.org/10.1145/2739482.2768425
http://dx.doi.org/10.1145/2739480.2754652
http://dx.doi.org/10.1007/s10710-016-9273-9
http://dx.doi.org/10.1007/s10710-016-9273-9
http://dx.doi.org/10.1007/978-3-319-20883-1_8
http://dx.doi.org/10.1186/s13040-017-0149-1
http://dx.doi.org/10.1007/978-3-319-77553-1_14

Jaws 30 35

2376–2383. IEEE, Barcelona (18-23 Jul 2010), http://dx.doi.org/10.1109/CEC.2010.
5585922

267. Liou, J.Y., et al.: Genetic improvement of GPU code. In: Petke, J., et al. (eds.) GI-
2019, ICSE workshops proceedings. pp. 20–27. IEEE, Montreal (28 May 2019), http:
//dx.doi.org/10.1109/GI.2019.00014, best Paper

268. Barr, E.T., et al.: Automated software transplantation. In: Xie, T., Young, M. (eds.)
International Symposium on Software Testing and Analysis, ISSTA 2015. pp. 257–
269. ACM, Baltimore, Maryland, USA (14-17 Jul 2015), http://dx.doi.org/10.1145/
2771783.2771796, ACM SIGSOFT Distinguished Paper Award

269. Burke, E.K., et al.: Exploring hyper-heuristic methodologies with genetic program-
ming. In: Mumford, C.L., Jain, L.C. (eds.) Computational Intelligence, Intelligent
Systems Reference Library, vol. 1, chap. 6, pp. 177–201. Springer (2009), http:

//dx.doi.org/10.1007/978-3-642-01799-5_6

270. Olson, R.S., Moore, J.H.: TPOT: A tree-based pipeline optimization tool for
automating data science. In: Hutter, F., et al. (eds.) AutoML 2016 workshop.
New York City, USA (Jun 24 2016), https://docs.google.com/viewer?a=v&pid=

sites&srcid=ZGVmYXVsdGRvbWFpbnxhdXRvbWwyMDE2fGd4OmFmYjMyNWU2NWI1YTBmZg, col-
located with ICML

271. Radecic, D.: Machine Learning Automation with TPOT. Packt Publishing (2021),
https://www.amazon.com/Machine-Learning-Automation-TPOT-automated/dp/

180056788X?asin=180056788X&revisionId=&format=4&depth=1

272. Krawiec, K., Liskowski, P.: Adaptive test selection for factorization-based surrogate
fitness in genetic programming. Foundations of Computing and Decision Sciences 42(4),
339–358 (Dec 2017), http://dx.doi.org/10.1515/fcds-2017-0017

273. Johnson, C.G.: Solving the Rubik’s cube with stepwise deep learning. Expert Systems:
The Journal of Knowledge Engineering 38(3) (May 2021), http://dx.doi.org/10.

1111/exsy.12665

274. Langdon, W.B.: Evolving open complexity. SIGEVOlution newsletter of the ACM
Special Interest Group on Genetic and Evolutionary Computation 15(1) (Mar 2022),
http://dx.doi.org/10.1145/3532942.3532945

275. Forrest, S.: Engineering and evolving software (30 May 2021), http://dx.doi.org/10.
1109/GI52543.2021.00008, invited keynote

276. Moore, G.E.: Cramming more components onto integrated circuits. Electronics 38(8),
114–117 (April 19 1965)

277. Wright, S.: The roles of mutation, inbreeding, crossbreeding and selection in evolution.
In: Proceedings of the Sixth Annual Congress of Genetics. pp. 356–366 (1932), http:
//www.blackwellpublishing.com/ridley/classictexts/wright.pdf

278. Turing, A.M.: Intelligent machinery. In: Meltzer, B., Michie, D. (eds.) Ma-
chine Intelligence, vol. 5, chap. 1, pp. 3–23. Edinburgh University Press,
Edinburgh, UK (1969), https://hashingit.com/elements/research-resources/

1948-intelligent-machinery.pdf

http://dx.doi.org/10.1109/CEC.2010.5585922
http://dx.doi.org/10.1109/CEC.2010.5585922
http://dx.doi.org/10.1109/GI.2019.00014
http://dx.doi.org/10.1109/GI.2019.00014
http://dx.doi.org/10.1145/2771783.2771796
http://dx.doi.org/10.1145/2771783.2771796
http://dx.doi.org/10.1007/978-3-642-01799-5_6
http://dx.doi.org/10.1007/978-3-642-01799-5_6
https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnxhdXRvbWwyMDE2fGd4OmFmYjMyNWU2NWI1YTBmZg
https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnxhdXRvbWwyMDE2fGd4OmFmYjMyNWU2NWI1YTBmZg
https://www.amazon.com/Machine-Learning-Automation-TPOT-automated/dp/180056788X?asin=180056788X&revisionId=&format=4&depth=1
https://www.amazon.com/Machine-Learning-Automation-TPOT-automated/dp/180056788X?asin=180056788X&revisionId=&format=4&depth=1
http://dx.doi.org/10.1515/fcds-2017-0017
http://dx.doi.org/10.1111/exsy.12665
http://dx.doi.org/10.1111/exsy.12665
http://dx.doi.org/10.1145/3532942.3532945
http://dx.doi.org/10.1109/GI52543.2021.00008
http://dx.doi.org/10.1109/GI52543.2021.00008
http://www.blackwellpublishing.com/ridley/classictexts/wright.pdf
http://www.blackwellpublishing.com/ridley/classictexts/wright.pdf
https://hashingit.com/elements/research-resources/1948-intelligent-machinery.pdf
https://hashingit.com/elements/research-resources/1948-intelligent-machinery.pdf

	Introduction
	A Brief Selection of Other Genetic Programming Work
	The Future
	Conclusions

