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Abstract It is 30 years since John R. Koza published “Jaws”, the first book
on genetic programming [Genetic Programming: On the Programming of Com-
puters by Means of Natural Selection. MIT Press (1992)]. I recount and expand
the celebration at GECCO 2022, very briefly summarise some of what the rest
of us have done and make suggestions for the next thirty years of GP research.
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1 Introduction

An evening at the 2022 GECCO conference was devoted to celebrating the thir-
tieth anniversary of the publication of John Koza’s book “Genetic Program-
ming: On the programming of computers by means of natural selection” [1]1.
Indeed that is the purpose of this special issue of Genetic Programming and
Evolvable Machines. I hope to put my own spin on and fill out points raised in
that panel discussion (which was recorded and is available on line2). I should
stress this is not a survey of GP and that many valuable contributions are
omitted. Similarly many digressions are placed in footnotes and there are hy-
per links to online articles in Wikipedia etc.

University College, London, Gower Street, London, WC1E 6BT, UK

1 Named after Charles Darwin’s 1859 foundational book “On the Origin of Species by
Means of Natural Selection” [2] which contains huge volumes of evidence (for example gath-
ered on his five year voyage around the world [3]) in support of his scientific theory of
evolution, which after a struggle was eventually accepted as the explanation for biology.

2 A Conversation with John Koza, 30 years after the publication of Genetic
Programming Sunday, July 10, 18:00-20:00 2022 https://whova.com/portal/webapp/

gecco 202207/Agenda/2516377

https://doi.org/10.1007/s10710-023-09467-x
https://en.wikipedia.org/wiki/Genetic_and_Evolutionary_Computation_Conference
https://en.wikipedia.org/wiki/John_Koza
http://www.genetic-programming.com/johnkoza.html
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Fig. 1 Prof. Dr. Wolfgang Banzhaf holding his copy of “Genetic Programming: On the
programming of computers by means of natural selection” (Jaws) 834 pages [1] at the
GECCO 2022 celebration of 30 years after its publication (Wolfgang says he was told that
his copy was the first one sold by the bookshop in Boston.)

Fig. 2 At 834 pages, the first genetic programming book [1] weighs in at 4lb 2oz.

1.1 The Book

Dr. Amy Brand, Director of The MIT Press, was clearly delighted that John
Koza had chosen MIT Press to publish the first book on genetic program-
ming [1] (see Figures 1 and 2). She says it “was one of the seeds from which

http://www.cse.msu.edu/~banzhafw/
https://en.wikipedia.org/wiki/Amy_Brand
https://en.wikipedia.org/wiki/MIT_Press
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sprang a whole ecosystems of books and journals at the intersection of com-
puter and biological sciences for the MIT Press.” Adding it “is still available
and selling in print-on-demand. That’s quite solid for a specialized and ground-
breaking work in computer science from 1992.”3

John Koza said that the motivation for the book was his team in the pre-
ceding five years had published GP solutions to 81 diverse problems common
to artificial intelligence, machine learning and knowledge based systems. They
had shown that instead of, as had previously been done, using a solution tech-
nique devoted to each benchmark, a single evolutionary computing technique
(now named Genetic Programming4) could solve them all56. However the GP
solutions were published in widely disperse conference venues. The goal of the
book was to convince everyone that 1) a single technique could solve many
diverse problems and 2) they could all be recast as the problem of searching
for (and finding) a computer program. Whereas previous solutions had often
used (non-evolutionary) search but used a representation, e.g. graph, gram-
mar, network, often purpose built for each benchmark. The size of the book7

stems from the need to convince people that GP is a general solution. Whereas
everyone who first comes to programming knows that programming languages
are exceedingly picky about insisting they get everything, every comma, every
semicolon, in the right place: so how could random stand a hope? Hence a sub-
stantial book, backed by a video, would be necessary to convince a skeptical
public8.

3 John Koza’s publications have been at the top of the list of publications downloaded
via the genetic programming bibliography since 2006, when download statistics were first
gathered.

4 The name Genetic Programming was suggested by David E. Goldberg. John Koza said
he was originally reluctant to use the name but came to realise it was a brilliant choice.

5 John Koza has previously likened GP’s success with early machine learning benchmarks
with Sherman’s march through Georgia in 1864, which helped end the four year USA civil
war.

6 In the late 1990’s Peter Nordin reported similar success with his linear genetic program-
ming on the UCI machine learning benchmarks.

7 The first genetic programming book was colloquially known as “Jaws” after the 1975
Hollywood movie of the same name, were the shark appears to get progressively bigger
throughout the film. In a similar way Koza remarked that as each new GP experiment was
covered, the book got bigger, eventually exceeding 800 pages. The three successing GP books,
are similarly known as Jaws 2 [4], Jaws 3 [5] and Jaws 4 [6], all four are each accompanied by
an hour long video [7,8,9,10] (now available on YouTube and www.human-competitive.org).
In 2009, John Koza gave a seminar at Stanford summarising his GP work which was recorded
and is also available on YouTube [11].

8 There is a growing body of work, such as automatic bug fixing [12] and genetic improve-
ment [13], that shows ordinary programs are not fragile [14,15,16,17,18,19,20,21]. The mis-
placed semicolon problem refers to the source code syntax as understood by the language
compiler (another computer program). Since the syntax is formally defined, computer gen-
erated mutations can be automatically written to be syntactically correct. If mutated code
compiles, it often runs and produces an answer which can be fed into a fitness function.

http://gpbib.cs.ucl.ac.uk/top_users.html
https://en.wikipedia.org/wiki/David_E._Goldberg
https://en.wikipedia.org/wiki/Peter_Nordin
http://archive.ics.uci.edu/
https://en.wikipedia.org/wiki/Jaws_(film)
www.human-competitive.org
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1.2 The Man

John R. Koza was born 1944 and did both his undergraduate degree and
PhD at the University of Michigan in Ann Arbor, studying mathematics and,
the then newfangled, computer science. He reports great interest in playing
games including computer games, with students and faculty, for example,
John H. Holland. As with John Holland’s other students9, he was well versed
in John Holland’s genetic algorithms.

1.3 The Millionaire

John Koza graduated from the University of Michigan in December 1972, and
using his mathematical skills in combinatorics, probability and game playing
he joined a lottery company which printed games on paper which were sold at
petrol stations and supermarkets. In 1974 he and a colleague formed their own
company, Scientific Games Inc., to exploit John Koza’s invention of a secure
way of printing scratch off lottery tickets. They successfully lobbied various
USA states to allow them to run the state’s lottery10. By 1978 the technology
of printing had moved on and they jettisoned their own technique in favour of
more flexible computer based printing. In 1987, having made his fortune, he
returned to research.

1.4 The Researcher

From about 1987 until 2005, John Koza devoted himself to research, applying
genetic algorithms to the discovery of computer programs (GP). He published
some 208 items, predominately papers but also book chapters, technical re-
ports, proceedings, etc. and of course Jaws [1] and the three follow-up up
door stoppers [4,5,6] and the four accompanying videos [7,8,9,10]. Initially
the genetic programming systems were written in Lisp, although later imple-
mentations where in C, e.g. [22].

There were GP workshops associated with the International Conference on
Genetic Algorithms, ICGA-9311 and again in the summer of 1995 at ICGA-95
and ICML-95. In the fall, John R. Koza and Eric V. Siegel organised a GP
event with the 1995 Fall Symposium of the AAAI in MIT. In 1994 Kim Kinn-
ear had launched the “Advances in Genetic Programming” edited book series
published by MIT Press [23,24,25]. But, since ICGA was a biannual confer-
ence, there was no ICGA conference in 1996, and instead it was the right time

9 John Holland’s PhD students include: Stephanie Forrest, Tommaso F. Bersano-Begey,
Melanie Mitchell, Tom Westerdale, Lashon Booker, Ted Codd, Clare Congdon, Dave Gold-
berg, Annie Wu, Ken De Jong, Leeann Fu, Rick Riolo, Chris Langton, Robert Reynolds,
Bernie Zeigler and John Koza.
10 By 2009 the combined profits to the USA state governments which permitted lotteries

had reached $17.6 billion.
11 ICGA had strong links with John Holland’s students.

https://en.wikipedia.org/wiki/University_of_Michigan
https://en.wikipedia.org/wiki/John_Henry_Holland
https://www.mathgenealogy.org/id.php?id=5064
https://en.wikipedia.org/wiki/Scratchcard
http://gpbib.cs.ucl.ac.uk/gp-html/JohnKoza.html
https://en.wikipedia.org/wiki/Lisp_(programming_language)
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/International_Conference_on_Machine_Learning
http://gpbib.cs.ucl.ac.uk/gp-html/EricSiegel.html
https://en.wikipedia.org/wiki/Stephanie_Forrest
http://gpbib.cs.ucl.ac.uk/gp-html/TommasoFBersano-Begey.html
https://en.wikipedia.org/wiki/Melanie_Mitchell
https://www.mathgenealogy.org/id.php?id=104179
https://www.mathgenealogy.org/id.php?id=104146
https://en.wikipedia.org/wiki/Edgar_F._Codd
https://www.mathgenealogy.org/id.php?id=104150
https://en.wikipedia.org/wiki/David_E._Goldberg
https://en.wikipedia.org/wiki/David_E._Goldberg
https://www.mathgenealogy.org/id.php?id=104180
https://en.wikipedia.org/wiki/Kenneth_A_De_Jong
https://www.mathgenealogy.org/id.php?id=104156
https://www.mathgenealogy.org/id.php?id=75979
https://en.wikipedia.org/wiki/Christopher_Langton
http://gpbib.cs.ucl.ac.uk/gp-html/RobertGReynolds.html
https://d.lib.ncsu.edu/computer-simulation/videos/bernard-p-zeigler-interviewed-by-richard-e-nance-zeigler/
https://www.mathgenealogy.org/id.php?id=104164
https://en.wikipedia.org/wiki/Lotteries_in_the_United_States#State_revenues
https://dblp.org/db/conf/icga/index.html
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to launch the first GP conference [26]. One of the rules laid down at GP-96,
was the absolute need for independent peer review.

July 1997 saw the return of ICGA-97, carefully scheduled a few days after
the second GP conference, GP-97 [27], so attendance at both was encouraged.
Again there was no ICGA in 1998, instead at GP-98 [28] there were serious dis-
cussions about combining the growing number of evolutionary computing con-
ferences. John Koza in particular felt that the separate EC events were splitting
EC into separate communities, and that the balkanisation of EC, did not make
sense to people outside, particularly to funding bodies. And that this diver-
gence was hurting the field. So at GP-98 there were negotiations about unify-
ing, particularly: the Evolutionary Programming Society conference (EP), the
IEEE’s WCCI/ICEC, GP, ICGA, and the International Workshop on Learn-
ing Classifier Systems (IWLCS). These were only partially successful, lead-
ing in 1999 to the formation of the duopoly of CEC 1999 [29] and GECCO
1999 [30]. Of the european evolutionary computing conferences, only the IEE’s
Galesia elected to join CEC. PPSN12, ICANNGA and the newly established
EuroGP13 [31] continued as before14.

Again John Koza’s organisational skills came to the for, with him helping
to draft the byelaws for GECCO. These ensure it has a federal “big tent”
structure, whereby none of its constituent groups would feel left out or put
down by the others.

Having progressed genetic programming to the point were it could be de-
scribed as a routine invention machine [6,32,33], John Koza turned to public
service and electoral reform and in 2006 founded National Popular Vote.

1.5 The Public Benefactor

In 2004 John Koza started the annual “Humies” awards for human-competitive
results produced by genetic and evolutionary computation. He continues to
fund the cash prizes. The finals are held each year as part of the GECCO
conference.

Since 2016 he has endowed Michigan State University with the first chair
in genetic programming in the United States (held by Prof. Dr. Wolfgang
Banzhaf).

12 Parallel Problem Solving from Nature (PPSN) had started in Germany in 1990. It is a
also a biannual conference on evolutionary computing and, although based in Europe, it was
held on alternating years with ICGA. Like Genetic Programming, PPSN was also named
by Dave Goldberg.
13 The First European Workshop on Genetic Programming had been held in 1998 in Paris,

with the help of EvoNet, the EU Network of Excellence in Evolutionary Computing.
14 In 2003 John Koza listed 25 international conferences and workshops primarily devoted

to the various forms of evolutionary computation. Many are still held annual or biannually,
and some have combined. In most cases the proceedings are still available, often on line.

https://en.wikipedia.org/wiki/Balkanization
https://dblp.org/db/conf/cec/index.html
https://dblp.uni-trier.de/db/conf/gecco/index.html
https://en.wikipedia.org/wiki/Institution_of_Electrical_Engineers
https://dblp.org/db/conf/ppsn/index.html
https://dblp.uni-trier.de/db/conf/icannga/index.html
https://dblp.org/db/conf/eurogp/index.html
https://en.wikipedia.org/wiki/National_Popular_Vote_Inc.
https://www.human-competitive.org/
https://sig.sigevo.org/index.html/tiki-index.php?page=GECCOs
https://cordis.europa.eu/project/id/FP4_20996
http://www.genetic-programming.org/gpotherconfs.html
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1.6 Pre-History

At GECCO-2022 the question of research before genetic programming was
raised. John Koza pointed out that by 1987 the field of Genetic Algorithms
was already well established15. There had been early experiments on machine
learning in Columbia [34] and Manchester [35]16 universities. However John
Koza traced Evolutionary Computing back to Alan Turing. He said Turing’s
1948 paper on machine intelligence [36] suggested three routes to machine
intelligence: 1) knowledge based, 2) based on logic (as would be expected of
a mathematician), but John Koza highlighted the third: 3) in which machine
intelligence was based on evolution. Although he pointed out it did not use
crossover (which was added by John Holland).

1.7 Advice for the Future

Another question raised at GECCO-2022 was did John Koza have advice for
new researchers. His answer was researchers must keep current, i.e., keep up to
date with research, but not just in your area but with research in general. Take
an interdisciplinary approach. He stressed be open to ideas from elsewhere,
particularly from Biology.

John Koza’s heuristic (perhaps common to all John Holland’s students)
was to ask himself “What would John Holland do?” to which the answer
was often: John Holland would respond with his own question, “What does
Nature do?” John Koza’s particular example was: how did Nature evolve from
microscopic organisms (like bacteria) which have genes for creating may be
about 500 proteins to multicellural organisms (e.g. us) which have genes for
creating about 20 000 proteins. He reported asking this question around the
Stanford School of Medicine.

The example John Koza quoted was the evolution of Myoglobin and Hemo
globin, which is thought to have occurred via gene duplication and subse-
quent specialisation. The idea being: “accidental” copying of parts of DNA
sequences is common17. Once a species has two copies of a vital gene, it may
be free to tinker with one. Since the other gene remains functional, the chil-
dren with the duplicated gene remain viable and so some can survive long
enough to carry both the working gene and the tinkered copy to the grand
children. Over subsequent generations the two genes may diverge allowing
the species to find new proteins which may help it survive. Susumu Ohno in
his 1970 book [39] suggested that such gene duplication is a powerful mecha-
nism in natural evolution. Indeed John Koza used it as inspiration [40] for his

15 In addition to genetic algorithms, there is early work on evolutionsstrategie in Germany
by Ingo Rechenberg and Hans-Paul Schwefel, and in the USA on evolutionary programming
by Larry Fogel.
16 Kilburn, Grimsdale and Sumner ran their experiments in machine learning and thinking

on the world’s first digital stored program computer the Manchester Mark 1.
17 The evolution of repeating patterns in DNA due to crossover is common. Indeed

crossover in GP can readily produce huge volumes of repeated code in trees [37,38].

https://en.wikipedia.org/wiki/Alan_Turing
https://en.wikipedia.org/wiki/Hemoglobin#Evolution_of_vertebrate_hemoglobin
https://en.wikipedia.org/wiki/Hemoglobin#Evolution_of_vertebrate_hemoglobin
https://en.wikipedia.org/wiki/Susumu_Ohno
https://en.wikipedia.org/wiki/Evolution_strategy
https://evolution.sigevo.org/issues/HTML/sigevolution-14-4/home.html
https://en.wikipedia.org/wiki/Hans-Paul_Schwefel
https://en.wikipedia.org/wiki/Evolutionary_programming
https://en.wikipedia.org/wiki/Lawrence_J._Fogel
https://en.wikipedia.org/wiki/Tom_Kilburn
https://en.wikipedia.org/wiki/Richard_Grimsdale
http://curation.cs.manchester.ac.uk/computer50/www.computer50.org/mark1/index.html#golden
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architecture-altering operations. These GP operations allow, not just the code
within automatically defined functions (ADFs) [4] to evolve, but also their
structure (e.g. which ADF calls which ADF) evolves [41,5], [9, minute 10]. In
terms of traditional AI, this can be thought of as dividing the whole problem
into subcases and having an evolvable representation which facilitates not just
the solution of the sub-problems but also their subsequent combination into a
complete solution. Some form (or indeed many forms of) automatic problem
decomposition is essential if any AI technique is to scale.

John Koza felt that in the 1960s the University of Michigan had had a wide
ranging curriculum. He said computer scientists need to know about biology,
language processing, psychology, information theory, electronic circuits, etc.
However, this breadth has been lost from modern computer science curricula.
Instead people should seek ideas from many places. He cited successful start
ups in silicon valley, such as Adobe, which had come from co-working between
two people with experience of newspaper publishing and another with a com-
puter science background. Often in silicon valley success had come from part-
nerships of individuals with different experience. Alternatively, success may
arise when different experience or many odd ideas are held by one person.

I would like to add, be ambitious in the problems you tackle. John Koza’s
impact, the impact of his book [1], stems from showing something widely
viewed as impossible could be done. Before his work, the idea of automatically
evolving a computer program was clearly ludicrous. Similarly, the idea of a
computer fixing computer bugs was clearly impossible, until Stephanie Forrest
et al. showed GP could do it [42]. Readers may remember Lewis Carroll’s Alice
and the White Queen [43] (Figure 3), Alice reproaches the White Queen for
some nonsense, saying it is clearly impossible, to which the White Queen
responds that Alice should practice believing the impossible. My suggestion
would be to an ambitions researcher that she should do the impossible. Claire
Le Goues was a PhD student in 2009 [44,45]. Fortunately her adviser did not
tell her her idea was impossible. And so She and the team are famous, not
because they completely solved the problem, but because they took something
impossible and partially solved it. So that today the argument is not if it can be
done, but what is the best way [12] to solve the previously impossible problem
[46,47,48].

1.8 The Ones That Got Away: Missing Gaps

John Koza was asked to muse on his less successful experiments. Two came
to mind: FPGAs and GPUs.

1.8.1 Genetic Programming and Field Programmable Gate Arrays, FPGAs

John Koza had hope to create a field programmable gate array (FPGA), which
had all the likely to be useful program operations pre-loaded. An ultra fast

https://en.wikipedia.org/wiki/Silicon_Valley
https://en.wikipedia.org/wiki/Stephanie_Forrest
https://program-repair.org/
https://en.wikipedia.org/wiki/Field-programmable_gate_array
https://en.wikipedia.org/wiki/Graphics_processing_unit
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Fig. 3 When I was your age I could think of six impossible things before breakfast.

evolved GP program would then simply be an evolvable way of linking these
together.

In some ways this seams similar to Juille’s [49] way of running a GP in-
terpreter on the hugely parallel MasPar MP-2 computer. Although it had
thousands of processing units, they each did the same one thing at the same
time. Juille’s brainwave was to say: since computing is cheap, we will discard
most of it. (Simplifying), Juille built a tiny interpreter which ran on all pro-
cessing elements one of a handful of GP operations. The different members
of the GP population were spread across the processing elements. Each with
its own program counter. If the interpreter was currently executing a GP op
code that was not the one the GP individual wanted, it did nothing but wait.
However the interpreter cycled round all possible GP op codes. When it did
reach the desired op code, that processor executed it and moved that GP indi-
vidual’s programme counter on by one. (The right hand side of Figure 4 shows
the same idea in the context of GPUs.)

It sounds hideously inefficient, but bear in mind the GP is getting use-
ful works done, whereas mostly human programmers could not handle the
MasPar MP-2’s SIMD architecture efficiently at all. Secondly often in many
high performance computers (HPCs), most of the time the processing elements
are waiting for data to arrive and so spend most of their time spinning in idle
loops. This turns on its head our common conception of computers. In HPC
(and indeed GPUs, see Section 1.8.2), computing is often cheap compared to
moving data. Indeed sometimes it can be more efficient to compute a value a
second time, rather than store it and retrieve it later when it is needed18.

In many cases FPGAs form the bed rock of evolvable hardware (EHW) [50,
51]. As well as offering a cheap and flexible alternative to dedicated integrated
circuits (also known as application-specific integrated circuits, ASICs) they
can be cost effective, particularly when only a limited number of chips will be

18 A second recommendation to the novice computer scientist, do not assume that a very
old paper has no merit. Computer science is littered with examples of old ideas which
returned, e.g. virtual memory, virtual machines and Maurice Wilkes’ microcode.

https://en.wikipedia.org/wiki/MasPar
https://en.wikipedia.org/wiki/Single_instruction,_multiple_data
https://en.wikipedia.org/wiki/Evolvable_hardware
https://en.wikipedia.org/wiki/Application-specific_integrated_circuit
https://en.wikipedia.org/wiki/Integrated_circuit
https://en.wikipedia.org/wiki/Virtual_memory#/media/File:University_of_Manchester_Atlas,_January_1963.JPG
https://en.wikipedia.org/wiki/Virtual_machine
https://en.wikipedia.org/wiki/Maurice_Wilkes
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Fig. 4 Left: Avoid compilation overhead by interpreting GP trees. Run single SIMD in-
terpreter on GPU’s stream processors (SP) on many trees. Right: Programs wait for the
interpreter to offer an instruction they need evaluating. For example an addition. When the
interpreter wants to do an addition, everyone in the whole population who is waiting for
addition is evaluated. The operation is ignored by everyone else. The interpreter moves on
to its next operation. The interpreter runs round its loop until the whole population has
been interpreted. Fitness values can also be calculated in parallel.

needed. There are several examples where FPGAs have been used to run GP,
e.g. [52,53,54].

1.8.2 Genetic Programming and Graphics Cards, GPUs

In the early 2000’s it was noticed that the graphics cards (GPUs) used to drive
computer screens were becoming increasingly powerful parallel computing de-
vices in their own right and so people started using them for other things.

Initially GPUs were designed just to rapidly render images on the com-
puter’s screen. To do this quickly (in real time) they comprised many parallel
components all doing the same thing but for different parts of the screen. As
the computer video games market took off, GPUs rapidly ramped up their
processing abilities and power. Each parallel component became a fully func-
tional processor, often with special support for operations common in graphics
applications (such as reciprocal square root [55]). This was so that more of the
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parallel aspects of generating, rather than simply displaying, real time video
could be devolved from the (serial) CPU to the (parallel) graphics card. As
GPUs were often somewhat independent of the end users’ computer mother
board, keen video gamers could easily upgrade their GPU. This promoted
rapid technological improvement, as rival GPU manufactures sought sales by
offering better and/or cheaper hardware than their rivals. However even to-
day, GPUs essentially (like the SIMD MasPar, page 8) require their parallel
processing elements, to do the same thing at the same time.

Initially GPUs were very hard to program and their support software was
only designed to be used by dedicated programmers employed by video game
companies. However the abundant and cheap parallel processing the GPUs of-
fered was taken up by scientific programming, leading to the field of General-
Purpose Computing on GPUs (GPGPU) [56]. As GPGPU became more popu-
lar, the GPU manufactures, particularly nVidia provided much better software
support.

At first in genetic programming GPUs were only used to speed up fitness
evaluation, e.g. work by Simon Harding [57]. and Darren Chitty [58]. Indeed it
was said that, due to the GPUs peculiar SIMD architecture, running the GP
interpreter on the GPU was impossible (cf. Figure 3). Of course this was not
true, and inspired by Juille’s work with the MasPar SIMD supercomputer [59]
(page 8), I built a SIMD interpreter for nVidia’s GPUs (see Figure 4) [60,61]19.
See also [63,64,65,66,67,68,69]20.

As the memory available on the GPU cards increased, it became possible
to work with huge populations of small GP trees. In [70] I used a cascade of
GP populations to winnow useful bioinformatic data from more than a million
GeneChip features. The top level GP populations contained more than five
million individuals trees. This GPU application could scale from a $50 GPU
to a top 500 super computer [71]. Figure 1 in [72] shows the dramatic im-
provement in nVidia GPU speed (2003 to 2012, which still continues), whilst
Table 3 in [73] shows some high performance parallel GP implementations,
almost all running on GPUs21.

1.8.3 Deep Learning and Accelerators: GPUs and TPUs

Due to the availability of internet scale data sets and GPGPU processing
power, since 2010 the field of deep learning has taken off [76]. It is generally
accepted that researchers need a GPU (possibly a whole cluster of GPUs) to

19 People also said that it was impossible to create random numbers on GPU. Again not
true [62]. These days pseudo random number generators PRNG, (e.g. CuRAND) are supplied
by nVidia with its CUDA software.
20 The metric “Genetic Programming Operations per Second” (GPops) permits easy com-

parison of performance, e.g. across different implementations and hardware.
21 Recent extremely high performance on Intel multi-core CPU SIMD hardware [74] has

been achieved, with unchanging fitness functions, in large trees, in converged popula-
tions [75], that do not have side effects (and so can be evaluated in any order). This is
because a lot of work can be omitted, if it can be proved that a child has the same fitness
as its parents.

https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/General-purpose_computing_on_graphics_processing_units
https://en.wikipedia.org/wiki/Nvidia
https://en.wikipedia.org/wiki/Bioinformatics
https://en.wikipedia.org/wiki/Affymetrix
https://en.wikipedia.org/wiki/TOP500
https://en.wikipedia.org/wiki/Deep_learning
https://en.wikipedia.org/wiki/Pseudorandom_number_generator
https://developer.nvidia.com/curand
https://en.wikipedia.org/wiki/CUDA
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do any form of competitive deep neural net learning. Even with the availability
of cloud computing, this may soon have the effect of “pricing out” individual
academic researchers from the future of deep learning [77].

Sometimes the whole notion of using a GPU to drive a computer’s screen
(also called the computer’s monitor) may be disregarded. Often called “head-
less” GPUs, to save space and power, some GPUs dispensed with the screen
interface altogether. An extreme examples of this is Google’s TPU, which is
totally specialised to Artificial Neural Network (ANN) processing.

As gaming and now AI have become more important, the notion of a GPU
as a cheap alternative to the computer’s CPU has also faded, and now a top
end GPU can cost more than a CPU.

1.9 Other Gaps: Memory, Theory, Bloat

John Koza mentioned that even though Jaws [1] did not include much
work on evolving memory, he regarded it as important because it provides
another route to allow re-use. Since a value stored in memory can be re-used,
potentially many times, without the code for it having to be evolved more
than once. He mentioned my book [78], although using indexed memory in
GP is due to Teller [79]. Surprisingly, there has been a steady stream of
research on evolving memory within GP [80,81,82,83,84,85,86,87,88,89,90,
91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,
111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,
129,130,131,132].

Genetic programming theory has a variety of forms [133]. Jaws [1] starts
with adapting the then current explanations of how linear bit string genetic
algorithms work, due to John Holland and Dave Goldberg. Such schema the-
ories were also analysed by Una-May O’Reilly [134], Justin Rosca [135] and
most notably by Riccardo Poli [136]. Another popular thread is to take ideas
from biology about how evolution works and use them to understand GP [137],
e.g. Price’s theorem [138] [139], population convergence [140,141,75] and neu-
tral networks (plateaus) [142] in fitness landscapes [143] [144,145,146,147].
Similarly biology has been an inspiration for other search operators, such as
homologous crossover [148]. In recent years there has been a flowering of formal
or rigorous run time analysis in evolutionary computing and some success ap-
plying mathematical techniques to GP problems [149,150,151,152,153,154].
Of course it is difficult to make such theorems widely applicable and when
using results we must remember the inevitable assumptions they require. For
example, SAT has been proved to be NP-complete. Nevertheless in the last
decade considerable progress has been made with practical SAT solvers and
they are now routinely applied, e.g. in software engineering. Similarly, the
No Free Lunch theorem [155] applies to GP (as with all optimisers) but fortu-
nately (as in other branches of AI) that has not inhibited development of the
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field. Although, as noted above, there are exceptions, but genetic program-
ming as a whole remains a deeply empirical endeavour with many new ideas
being reported. However it is difficult to persuade authors to carefully analyse
their evolving populations of programs so as to be able to explain why their
experiment succeeded (or even why it failed).

Although John Koza reports [1] bloat22 from the start of genetic program-
ming, the tendency, indeed the name, for programs to be bigger than necessary
is not unique to GP. Bloated human written programs are common. Indeed
people writing computer programs with unnecessary instructions goes back
to the very beginning of electronic digital computers, with bloat reported in
programs run on the first stored program digital computer, the Manchester
Mark I [35]. This human tendency is rampant, with some Internet code bases
having grown to over a billion lines of code in less than 20 years. Bloat contin-
ues to be a well studied topic in GP with 426 entries in the GP bibliography
mentioning it.

Although there are potential ways of mitigating bloat’s impact on run-
time [156] and reducing its memory requirements with DAGs [157] (indeed
bloated trees produced by crossover [158] should be highly compressible), in
practice bloated populations can quickly overwhelm the available computer
resources and so the common approach is to shut bloat down. For example, by
enforcing either depth or size limits on the evolving programs. However this
is not risk free [159] and more sophisticated approaches may be wanted. For
example, controls on selection, such as using multiple fitness objectives (e.g. a
size versus performance Pareto trade-off [160,161]) or tighter controls on off-
spring generation [162,163,164,165]. In many cases bloat appears to be an
unexpected aspect of early (even premature) convergence and so has some sim-
ilarity with overfitting sometimes seen with artificial neural networks (ANNs),
where prolonged search drives locally improved performance on the training
data. This gives a more convoluted mapping between the ANN’s inputs and
outputs but at the possible expense of the ANN’s ability to generalise to
unseen data. Where the goal is to explain or predict, such complexity or
overfitting is clearly unhelpful. In ANN anti-over fitting techniques are es-
sential. These include stopping training early (i.e. in GP terms using fewer
generations), regularization [166,167,168], changing the training data during
training [169,170] and even expression simplification [171], either during evo-
lution [172] or to increase comprehensibility and explainability, cf. XAI, after
GP has finished [173]. Whilst Dale Hopper [172] and other authors, ensure
their automatic rewrite of GP individuals gives a semantically equivalent but
smaller replacement, in many cases this is not wanted. When a 100% correct
program is not realistic, e.g. on many prediction tasks, it may be better to
accept (or allow evolution to find) a similar but much simpler program, rather
than spending a lot of effort creating an exactly equivalent program to what
is essentially only an approximation.

22 Bloat is the tendency for programs to grow in size without commensurate increase in
performance.
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However, bear in mind that evolution is a hacker. It builds on what was
there before. In biology evolution overfits. Classic example include: 1) the
Giraffe’s left laryngeal nerve, which runs the whole length of its neck from its
head, round the aorta in its chest and then returns to its throat at the top of
its neck, because evolution did not find a shorter path, 2) the male peacock’s
heavy tail which helps secure a mate but impedes flight and 3) the human
brain which consumes 20% of our food [174] but made our ancestors more
appealing as mates to other members of their tribe [175].

2 A Brief Selection of Other Genetic Programming Work

In addition to continuing with evolving Lisp like trees, major branches of
genetic programming include: linear genetic programming [176] cartesian ge-
netic programming (CGP) [177] and grammatical evolution (GE) [178], all of
which use a linear chromosome. Following John Koza’s automatically defined
functions, ADFs, see page 7, there were several attempts to encourage the evo-
lution of modular programs using individuals with multiple trees or libraries
of subtrees [179,180,181,182]. However, these seem not to have taken hold.

As with evolutionary computation in general, the major computational
cost of GP is usually evaluating fitness [1, p783]. In tree GP this is usually the
cost of interpreting the trees. When members of the population are going to be
run many times23 it may be worth the cost of compiling the population and
then running the compiled programs24 rather than interpreting them [187].
However, as Ronald Crepeau showed [188], for GP, it is not essential to run
a full blown compiler, instead knowing the restricted set of primitives used
by GP, he constructed a dedicated fast compiler which converted the evolved
code into machine code and ran that directly.

Peter Nordin eliminated the compilation step entirely by using GP to evolve
firstly Sun 32 bit SPARC RISC architecture machine code [84] and later Intel
x86 binaries [189] (which in turn later became Discipulus [190]). He used tai-
lored mutation operations which respected the layout of the machine code.
Although perhaps first motivated by speed and simplicity, the idea of evolving
variable length linear programs has taken off [191,192].

Grammatical Evolution (GE) [193,194] shows the virtues of trying ideas
out. Michael O’Neill and Conor Ryan took the idea of a variable length lin-
ear chromosome, simplified it to become just an ordered list of byte sized
integers (0..255) and married it to another favourite of computer scientists:
the Backus-Naur form grammar (BNF). Pretty much anything which can be
run on a computer can be expressed in a BNF grammar. They disregarded

23 Considerable saving are sometimes possible by accepting fitness selection will be some-
what random and using a cheaper and approximate fitness function. After all, the goal of
a fitness function, is not to measure performance (that can be done after the run) but to
guide search. Why run thousands of fitness cases, when fitness will ultimately be reduced
to a single bit: does this individual get a child or not? Even then, we typically add noise to
this bit, e.g. via tournament selection, [183,184,185], see also [186, Sect. 10.1].
24 Lisp provides compilation as an alternative to interpreting programs [1, p785].
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that BNF is essentially tree shaped and trusted in evolution to find a way of
putting them together. The linear stream of bytes is mapped using modulus to
say which branch to take next in the grammar. If there are not enough bytes,
we simply wrap round and start again from the first. If there are too many, we
ignore the excess. The resulting grammar is treated as the individual’s phe-
notype and in a problem dependent way converted into a trial solution with
a fitness value. The sloppiness of the mapping from genotype to phenotype
offended some and provoked wide discussion in a peer commentary issue of
“Genetic Programming and Evolvable Machines” [195]. But as Conor Ryan
says “GE works” [196]. Indeed the separation of genotype from BNF gram-
mar makes grammatical evolution flexible and has been widely used. (The GP
bibliography contains well over seven hundred entries relating to grammatical
evolution.)

With Cartesian Genetic Programming (CGP) [177,197,198,199,200], Ju-
lian Miller turned to a fixed representation, more a kin to traditional bit string
genetic algorithms (GAs). However the chromosome is a fixed sized two dimen-
sional rectangle, rather than a single string, where each cell contains a digital
computational unit, such as an XOR gate. Both the contents of the cells and
crucially the connections between them are evolvable25. Notice, like linear GP
(but unlike GE), evolution directly sets the contents and connections of each
cell (i.e. evolution acts directly on the phenotype). Also there is no explicit
left-right flow of control. In CGP the chromosome is treated as a circuit and
so its evaluation has to take note of where data enters and leaves. It is also
not necessary to evaluate cells which are not connected. Cartesian GP has
been widely used, including in the evolution of approximate computing [201,
202], where evolution can be well suited to finding good trade-offs between
conflicting objectives, such as fidelity, size, number of components, power con-
sumption and speed.

2.1 Inspired by Computer Science

In order for subtree crossover to freely mix subtrees from parents to create
children, John Koza required the components of his GP trees to have clo-
sure [1, Sect. 6.1.1]. Meaning 1) any leaf or function in the tree can be an
argument to any other function. Since components typically communicate via
function return values, this often means GP trees use a single type, often float.
2) To ensure each function can deal with any combination of inputs, many func-
tions have protected GP versions. Such as protected log RLOG [1, p83], which
returns a defined value (rather than raising an exception) even if its input is
zero or negative. Alternatives might be to allow evolution to deal with the ex-
ception, or simply assign poor fitness to individuals with illegal combinations.

25 Nowadays in cartesian genetic programming people often set the width of the FPGA
like rectangle of components to 1, making it effectively a string. Similarly it is common to
allow only feed forward connections, so preventing recurrent loops.
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However notice that ruling it out prevents GP exploring not only this tree but
all the trees that might have evolved from it.

Perhaps the most famous extensions to closure are Dave Montana’s strongly
typed GP [203] and Tina Yu’s polymorphic GP [204,205] which allow multi-
ple types but ensure evolution explores only type safe expressions. Another
approach is to use various types of grammar to try and keep evolution in the
most productive parts of the search space [206]. For example, using context
free grammars [207,208], using grammars to ensure the evolution of expres-
sions which are dimensionally consistent [209], using tree-adjunct grammars
to guide GP (TAG3) [210] and using GP with Lindenmayer Systems (often
abbreviated to L-Systems) [211,212,213,214].

Whereas Lisp and most GP systems implicitly use the system stack, pro-
grams which explicitly use a stack [215,216], e.g. to pass vectors and matri-
ces [217], are also possible. An explicit stack allows the evolution of Reverse
Polish Notation (RPN) [61] and even infix expressions [218]. In PushGP [219]
there are multiple stacks, one per type. These may include a code stack, so
allowing GP to manipulate code, thus permitting GP to evolve its own genetic
operators.

2.2 Non Genetic GP

John Koza’s GP [1] is clearly strongly influenced by his PhD supervisor, John
Holland, and GP [1] is essentially the application of John Holland’s genetic al-
gorithms to the evolution of Lisp s-expressions, i.e. tree shaped programs. But,
as we have seen, the programs need not be trees, and similarly the search algo-
rithm does not have to be a genetic algorithm. Other techniques include: local
search, Simulated Annealing [220,221], Differential Evolution [222], Bayesian
probability search [223], Estimation-of-Distribution Algorithms (EDAs) [224,
225] Ken Stanley’s Neat [226,227,228] and even deterministic search, e.g. Trent
McConaghy’s FFX [229]. Indeed search does not have to be guided only by
fitness but can “look inside” the program [230] and its execution [231]. SR-
bench [232] compares many GP and non-GP approaches to symbolic regres-
sion, including MRGP [233], M3GP [234], FEW [235] and Operon [236].

2.3 Less Explored

2.3.1 Assembly Code, Byte Code

In human terms assembly code is usually viewed as intermediate between high
level languages and machine code. Offering the potential advantage of machine
code (speed and compactness), and ease of use and readability of high level
source code. There has been very little GP work on evolving assembly code.
Exceptions include microcontroller assembly [237], nVidia GPU PTX [238,239]
and the intermediate (IR) code used by LLVM [240], and again on GPUs [241].
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Java, and some other interpreted languages, compile the source code into
byte code which they then interpret. Eduard Lukschandl showed it is possible
to run GP at the level of Java byte code [242].

2.3.2 Modularity, Recursion, Loops

Some of the work on encouraging the evolution of modular code was mentioned
on page 13. In Jaws, John Koza described GP solving the Fibonacci problem
[1, pp473–477] as an example requiring the evolution of recursion and several
examples where GP evolved do-until loops and other forms of iteration, but
again there has been relatively little work on either by others. Again a few
exceptions. These include work by Peter Whigham [243,244] and Tom Castle
[245].

2.3.3 Coevolution

As with many topics, there are examples of co-evolution [246,247] in Jaws [1]
and many elsewhere in genetic programming [80], for example in agent learn-
ing [248]. However, it does feel like coevolution has not yet fulfilled its potential.
In deep artificial neural networks there is interest in antagonistic adversarial
learning and so perhaps this will stimulate renewed interest in coevolution in
genetic programming.

3 The Future

At GECCO 2022 Erik Goodman asked if there we any applications of GP that
had surprised John Koza. Amongst the many human competitive [6] results,
perhaps one of the most encouraging is quantum computing. As with quantum
physics, quantum computing has a deserved reputation for being difficult for
people. However, the rules about quantum computing gates can be coded for
GP to use without being an expert quantum physicist, and then GP can be
left to evolve novel quantum circuit designs incorporating them [249,250,251].
Riccardo Poli, Leonardo Vanneschi and others have previously reported on the
state of GP and in particular what remains to be done [252,253].

In genetic improvement [13] existing (human written) software is optimised
(typically by using GP). Notice genetic improvement does not start from pri-
mordial ooze [1]. Instead search automates the potentially labour intensive,
tedious and error prone task of find modifications. For example, to repair
bugs [42,46,12,254,48], including energy bugs [255], reducing memory con-
sumption [256], reduce run time [173,257,258,259,260,261,262,263,264] im-
prove existing functionality (e.g. to give better predictions [265]), porting to
new hardware [266] including improving GPU applications [261,262,263,264,
267,241] or even to incorporate existing functionality from outside the existing
code base [268].
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The idea of mixing evolutionary computing (including GP) with other op-
timisation tools to give hyperheuristics [269] has a long history. In particular,
with the recent explosion of interest in deep artificial neural networks, combin-
ing evolutionary learning and artificial neural networks seems set to continue.
One particularly encouraging trend is AutoML tools such as TPOT [270,271]
which automatically tune existing machine learning pipelines.

In GP, as in most optimisation problems, most of the computation effort
is spent on evaluating how good the proposed solutions are. Various ideas for
speeding up fitness evaluation have been proposed, for example surrogate fit-
ness functions [272]. Colin Johnson’s Learned Guidance Functions [273] seem a
particularly elegant approach to making best used of previously gained knowl-
edge. It would be interesting to see Learned Guidance Functions applied to
genetic programming or when using genetic improvement to adapt existing
human written programs.

Since all digital computing progressively loses information, information
about crossover and mutation gets progressively washed out the further it has
to travel. In nested functions without side effects, deep genetic changes be-
come invisible to the fitness function. Thus to evolve complex programs, they
must remain shallow and so I propose that to evolve large complex programs,
they be composed of many shallow trees, within a strong low entropy-loss data
interconnect to and from the environment. This should ensure that the good
and bad effects of most genetic code changes are externally measurable [274].

At GECCO John Koza pointed out that in both biology and in human
design, modularity and reuse are ever present. Biology scales from a single cell
to individuals containing billions of cells. It does this, like human engineers,
not by solving many billions of individual problems but by reusing existing
designs. We need to revisit the scaling problem.

4 Conclusions

We have seen that in the thirty years since John Koza published his first GP
book, the field has blossomed. The genetic programming bibliography contains
some 16 367 entries by 16 342 authors26. Many of the genetic and evolutionary
computation papers judged to be the best human competitive work of each
year have used genetic programming. Clearly GP is doing well in its mission
to help the world.

As mentioned at the end of the last section, although GP continues to
flourish, perhaps we need to tackle the scaling problem. Are we evolving small
things? Do we need to be more ambitious? Following Stephanie Forrest’s recent
questions [275]: what could GP do with Google Deep AI scale resources?

As John Koza foresaw, 30 years of Moore’s law [276] (with component count
doubling every 18 months) means 20 lots of doubling (220 = 1 048 576). That is,

26 The GP bibliography was started by John Koza. Although in recent years it has un-
doubtedly missed some work, in the five years before the pandemic (i.e. 2015–19) there were
3340 new entries and 5177 authors published at least one GP paper.
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since the genetic programming field started, the computer power available to us
has increased a million fold. What of the next 30 years? Perhaps Moore’s Law
will end? Certainly the death of Moore’s Law has been confidently predicted
many times. What seems certain is we will not see dramatic increases in silicon
computing’s clock speeds. Instead we anticipate the future of computing will
be ever more parallel. But as John Koza says GP is embarrassingly parallel.
Indeed the use of distributed parallel GP populations, not only makes good
use of current and future compute resources but is in keeping with Sewall
Wright’s [277] model of natural evolution and as John Koza reports by keeping
population diversity, the distributed population demes of the island model,
improve GP results as well as speeding it up.

In 2052 will genetic programming researchers be using computers a million
times faster than they use today? Certainly GP seems well placed to exploit
them.
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