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Figure 1: Left: an evolved Fibonacci solution. The arrows show the information flow from the leafs to the root node (top oval).
The root gives the output of the whole program. Right: Evaluation of the tree showing two examples of run time disruption.
1) When the bottom most J node (in red) is artificially perturbed by +1, the disruption only reaches the calling SRF function
(in red), whose output does not change. 2) Similarly, on most test cases, disrupting the other red J node by +1, means its calling
SRF node’s (dark pink) output does not change. On test case J=0, the disruption propagates 3 levels to the pink SRF node. On
test case J=1, the disruption propagates as far as the pink MUL node. (See page 2 and Sections 3.3 and 3.7.)

ABSTRACT
We inject a random value into the evaluation of highly evolved
deep integer GP trees 9 743 720 times and find 99.7% of test out-
puts are unchanged. Suggesting crossover and mutation’s impact
are dissipated and seldom propagate outside the program. Indeed
only errors near the root node have impact and disruption falls
exponentially with depth at between e−depth/3 and e−depth/5 for re-
cursive Fibonacci GP trees, allowing five to seven levels of nesting
between the runtime perturbation and an optimal test oracle for
it to detect most errors. Information theory explains this locally
flat fitness landscape is due to FDP. Overflow is not important and
instead, integer GP, like deep symbolic regression floating point
GP and software in general, is not fragile, is robust, is not chaotic
and suffers little from Lorenz’ butterfly.
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1 INFORMATION THEORY
We can view computing as processing information [43]. Information
in the program’s inputs is transformed as it passes through the
program and emerges at its outputs. In deterministic programs,
there is no information gain. Indeed only in the special case that
the program is reversible [20, 21] is the amount of information
(number of Shannon bits) in the output the same as that which
went into the program. In real programs, the information content
is reduced. That is computing destroys information.

Further individual operations inside a digital computer may de-
stroy information. Excluding the special case of reversible functions,
all the functions from which a program is made individually loose
information. For example, a 32 bit addition operation takes two
inputs and creates one output. The inputs may each contain up to
32 bits of information (total 64 bits) but its output can contain no
more than 32 bits of information. Storing data in memory allows
the program to retain information, but when that data is used, its
information is liable to be reduced or even lost [8]. Computation
maps multiple input patterns to the same output. For example: 3 + 5
and 2 + 6, each give the same value, 8. If we follow the input data’s
path through an executing program, e.g. we trace 3,5 in one run
and 2,6 in another, where the paths meet, e.g. at + giving 8, there is
potential entropy [43] loss. Note, from the value 8 we cannot tell if
we started with 3,5 or 2,6.
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Figure 2: Each information funnel represents an irreversible
function taking in total more information than leaves it.
(Output at bottom.) Disruption (in red) is progressively dis-
sipated and may not change the output at all.

Much of genetic programming is concerned with evolving func-
tions without side effects. For example in symbolic regression GP
evolves trees which take data from (32 bit) floating point inputs
and generates a (32 bit) floating point output at its root node. The
information compression is even more dramatic in GP binary clas-
sification problems where all the information in the tree’s inputs is
reduced to at most a single bit.

We can view GP primitives as information funnels [34], with
wide mouths which take information from the function’s inputs and
a narrower output, corresponding to less information leaving the
function. In tree GP it is easy to see the whole tree as being made
from information funnels, with one funnel per node in the tree,
see Figure 2. We can view crossover, mutation, and even runtime
glitches, as injecting a disruption into the GP tree.

If a deep GP tree is perturbed, the disruption has to propagate
from the crossover point, mutation or error, up the tree through
many levels to the root node before it has any impact on the tree’s
fitness. It is known in conventional programming [2, 41] that often
disruptions fail to propagate. We argue that this stems directly from
information loss and so is inherent in all computation, including
GP. We have shown that failed disruption propagation (FDP) can
be common in deep floating point expressions [29]. The mecha-
nisms which cause FDP can vary between programs. For example
in GP symbolic regression, FDP is often associated with rounding
errors [29]. To show an example which is independent of floating
point rounding, we will show (in Section 3) that failed disruption
propagation also occurs in deep integer GP trees, where calcula-
tions are performed exactly.We find small (+1) and large (RANDINT,
Section 3.7) run time disruptions rapidly dissipate in similar ways.
Section 2 describes the integer Fibonacci Problem we will use and
Section 4 discusses our results and their implications for GP and
software more widely.

1.1 Disrupting Integer Arithmetic
Much of Koza’s first GP book [17] is concerned with either floating
point or Boolean expressions. However Koza also introduces the
problem of inducing an integer tree which recursively generates
the Fibonacci sequence of positive integers. Therefore we shall use
the Fibonacci Problem and demonstrate in deep GP trees failed
disruption propagation can also be common in exact arithmetic.

We use GP to evolve large GP trees by simply running to 1000
generations rather than stopping at the first solution. We then re-
evaluate the whole tree on all the training cases having first inserted
a fixed run time perturbation at a given location. We step though
every location in this large highly evolved fit tree and keep a record
of which perturbations do or do not cause a change in evaluation
at the root node and on which test case.

Like Danglot et al. [10], the first perturbation is simply to add 1
to the evaluation (on each test case) at the chosen point in the tree.
This can be thought of as the minimum perturbation. We also repeat
the experiment but instead of making a small change we simply
totally replace the original evaluation by a randomly chosen 32 bit
signed integer value.

2 KOZA’S FIBONACCI BENCHMARK
The Fibonacci sequence 1, 1, 2, 3, 5, 8... is an infinite sequence of
positive integers, where the next one is given by summing the two
previous items in the list. For training we take the first 20 members
of the sequence, i.e. from the 0th (1) to the 19th (6765). See Table 1.
The primitives Koza [17] uses are the four small integers 0, 1, 2
and 3, the sequence index J, the three integer arithmetic operations:
addition, subtraction and multiplication. In addition, to support
recursion, there is a special function SRF which also takes two
arguments. SRF allows access to values calculated by the GP tree
on earlier test cases. SRF’s first argument is the number of the test
case. SRF’s second argument is a default value, to be used if the
first argument is invalid. (For simplicity all arguments, including
where we have multiplication by zero, are always evaluated.) As
an example (SRF 1 0) will evaluate to 0 on the first two (J=0 and
J=1) test cases, and will evaluate to the evolved individual’s answer
for test case J=1 on later tests. Test cases are always run in order,
starting at J=0. Notice, in Section 3, where tree evaluations are
deliberately disrupted, the disruption is applied per test case and
therefore SRF can access the earlier unchanged tree evaluations.

2.1 Background
Perhaps because, by early GP standards, the Fibonacci Problem
needs a large population, see Figure 3, it has been little used in GP.
However 17 years after Koza’s book was published, At EuroGP 2009
Harding et al. gave a nice summary [13]. Their survey includes [14],
[39], [1], [44], and [48], all of these used approaches to the Fibonacci
Problem which differ from Koza’s [17]. Except Kouchakpour [16],
publications on inducing the Fibonacci sequence since EuroGP
2009 have all looked at non-standard GP. They include Castle’s
2012 PhD thesis [7] which used it as one of half a dozen bench-
marks to compare Montana’s strongly typed GP [38] with Castle’s
own Strongly Formed GP and with other higher level imperative
primitive sets. Also in 2012 Bryson and Ofria [6] used Avida to
evolve solutions. Whilst Atkinson’s 2019 PhD thesis [3] looked at
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Table 1: GP to create deep fit Fibonacci trees for
Failed Disruption Propagation (FDP) experiments

Terminal set: J, 0, 1, 2, 3
Function set: ADD SUB MUL SRF
Fitness cases: First 20 members of the Fibonacci sequence.
Selection: Fitness =

∑19
J=0 |GP(J)−Fibonacci J |. I.e. the sum

of the absolute error between GP’s answer and
the value of the Jth member of the Fibonacci
sequence. Tournament size 7.

Population: Panmictic, non-elitist, generational.
GP parameters: Initial population of 50 000 trees created by

ramped half and half [17] with depth be-
tween 2 and 6. 100% unbiased subtree crossover.
1000 generations. No size or depth limit.
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Figure 3: Number of successful Fibonacci runs.

solution by evolving graphs. In 2018 Krauss et al. [18] used it with
a very different AST representation in their genetic improvement
[22, 40] experiments.

Other work includes: Gruau et al. [12] who used a Fibonacci
program as an example to show coding Pascal programs as neu-
ral networks. Teller’s 1998 PhD thesis [46] which includes it as
a simple example of neural programming. Yu who showed that
programs generating the Fibonacci sequence can be evolved using
higher-order functions [49]. It has also been used to demonstrate
Spector’s Push [45] and by Binard [4] to demonstrate System F.
Finally Kouchakpour’s 2008 PhD thesis returned to Koza’s setting
of the Fibonacci Problem [16].

3 EXPERIMENTS
3.1 Tuning for Tournament Selection
We did a series of tuning GP runs to choose the population size
(Table 1). From Figure 3 we can see that the chance of success with
tournament size 7, separate, non-overlapping, generations (i.e. with
complete replacement) and a population of 2000 trees is only 1.3%.
So we chose a population of 50 000, where about 47% of runs find
programs which pass all 20 Fibonacci fitness tests by generation 50.
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Figure 4: Mean size of trees in ten extended GP Fibonacci
runs (population 50 000). Note log scale.
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Figure 5: Sum of training |error| in ten extended GP
Fibonacci runs (population 50 000). Note log scale.

3.2 Ten Extended Runs to 1000 Generations
In order to get deep fit Fibonacci trees to try our disruption ex-
periments on, we ran our GP with a population of 50 000 for 1000
generations. (We used the same parameters, Table 1.) Of course
without size or depth limits, the GP bloats [35] (see Figures 4 to 8).
At the end of each run a Fibonacci tree was selected for pertur-
bation. The runs are summarised in Table 2. (Column 3 gives the
expected depth for a random binary tree of a given size, column 1,
whilst column 4 gives the standard deviation [11].)

To reduce run time we used our [26] incremental and “fitness
first” [24] evaluation. Of course this does not effect the course of
evolution but reduces the number of opcodes evaluated by between
27 and 41 fold. (See Figure 7. Figure 9 gives the absolute speed in
terms of GP operations/second, GPops [31].)
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Figure 6: Mean fraction of children with fitness different
from their first (i.e. root donating) parent in ten extended
GP Fibonacci runs (population 50 000). Note log scale.
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Figure 7: Effectiveness of incremental evaluation at exploit-
ing FDP and convergence to reduce the volume of GP op-
codes that must be evaluated to calculate fitness. (Ten ex-
tended GP Fibonacci runs with population 50 000). By gen-
eration 1000, only 2.9% of opcodes are evaluated. Note log
scale.

Table 2: Ten Deep Fit GP Fibonacci Trees

Size Depth Fitness Output disruption on any test
[19] sum |error| +1 RANDINT

86035 663 735 (160) 20 0.114 % -0.31 0.092 % -0.31
4347 160 165 ( 36 ) 10 1.449 % -0.30 1.449 % -0.33
23289 220 383 ( 83 ) 184 3.010 % -0.27 3.053 % -0.27
131159 449 908 (197) 130 0.127 % -0.28 0.121 % -0.29
77479 454 698 (152) 632 0.253 % -0.20 0.256 % -0.20
51697 626 570 (124) 0 0.056 % -0.27 0.056 % -0.27
771 33 64 ( 14 ) 0 7.523 % -0.21 7.523 % -0.22

35727 425 474 (103) 0 0.073 % -0.30 0.073 % -0.30
53305 485 579 (126) 0 0.032 % -0.33 0.032 % -0.33
23377 360 383 ( 83 ) 0 0.137 % -0.26 0.137 % -0.26
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Figure 8: Mean number of functions evaluated above
crossover point per test case in ten extended GP Fibonacci
runs using incremental evaluation [26] (population 50 000).
Note linear scale.
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3.3 Fraction of +1 Disruptive Perturbations
In almost all locations in the ten deep highly evolved GP Fibonacci
trees, the +1 disruption at run time fails to reach the root node on
all twenty training cases. The right hand side of Table 2 gives the
fraction (%, column 6) which disrupt fitness on any of the twenty
test cases. Even for the three shallowest trees more than 90% of the
perturbations fail to propagate to the program’s output on any test
case. Therefore the fitness would be identical despite the runtime
change. In most cases the fraction of FDP on any of the fitness cases
is well in excess of 99% (max 99.968% for run 9).
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Figure 11: How far RANDINT disruption travels up tree for
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root node on any test are given in Table 2 and not plotted
here. Table 2 also gives median slope. Note log scale.

In floating point symbolic regression [29] failed disruption prop-
agation depends on the magnitude of the test case (with values near
zero being suppressed most easily). In contrast, Figure 10 shows in
the Fibonacci Problem almost the same behaviour for all test cases.
This suggests Fibonacci test cases are not independent. Which in
turn hints at potential runtime saving by sub-sampling test cases.
Only the zeroth test case (J=0) is slightly different, and we see
disruption dying away even faster than in the other nineteen test
cases. Notice in Figure 10, FDP behaves similarly across ten very
different trees. Each shows, for each test case, a similar exponential
decrease in the number of functions the +1 disruption propagates
through before becoming totally lost. Column 7 in Table 2 gives
the exponent for the decrease with depth averaged (median) across
all twenty test cases. The values lies between -0.33 and -0.20, mean-
ing on average between 14 and 23 nested functions will reduce
disruption by 100 fold.
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Figure 12: Location of +1 disruptions which affect fitness on
any training case. (See also left side of Figures 14 and 15.)
Note log scale.
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fitness on any training case. (See also right side of Figures 14
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3.4 Location of +1 Disruptive Perturbations
The small fraction of +1 disruptions which reach the root node, on
any test case, and so do change fitness, lie close to the root node
itself. I.e, the disruption travels only a short distance through the
code. Depending on run, most lie within 4–9 levels of the root node.
For most runs (see Figure 12) more than 99% of these disrupted
evaluations start within 8 nested function calls of the root. Runs 1, 3
and 5 have long tails, so that more than 1% of disrupted evaluations
start more than 20 levels deep. Even so in these runs no disruption
traverses more than 31 levels and still impacts fitness.

3.5 Integer Overflow
In the +1 FDP experiments, except for one subtraction, only integer
multiplication leads to overflowing 32 bits. The fraction of mul-
tiplication (MUL) node outputs being truncated to 32 bits varies
considerably between runs. In most cases there is none or very little
(<1%), in others between 5% and 23% of disrupted multiplications
overflow. In all cases, +1 disruption which causes 32 bit integer
overflow is stopped by the usual mechanisms (see next section) and
does not reach the program’s output.
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3.6 Fibonacci Mechanisms for
Failed Disruption Propagation

Although we argue that information theory suggests that failed
disruption propagation is universal, we can see specific mechanisms
for FDP in the Fibonacci Problem. For simplicity let us just consider
cases where the disruption on all 20 test cases stops at the same
point. 20% of such +1 disruptions stop on a multiply by zero. That is,
one argument of multiply is zero and so disruption to the other fails
to propagate past the multiply, since its output is zero regardless of
the disruption. All the others stop on a SRF function. Of these most
(98.7%) are because the SRF node returned its default value as it
did before the disruption. This may be because the SRF function’s
first argument (the index) was already invalid and so caused SRF to
return its default value (the 2nd argument). And if disrupting the
index value still leaves it invalid, the SRF will continue to return its
unchanged default value. Meaning the disruption stops at the SRF
node.

3.7 RANDINT Disruption
We repeated the above experiments replacing the small perturba-
tion, which simply added one to the evaluation of each point in each
large GP tree for each test case, by replacing the existing evaluation
by a random integer value. The value was chosen uniformly at ran-
dom from all 232 possible signed integer values. Then as before we
trace how far the large disruption propagates through the evolved
tree.

Starting with Table 2 we see that the large RANDINT disruption
behaves very similarly to the +1 disruption. Comparing the last four
columns of Table 2, we see almost all large disruptions fail to reach
the root node and so make no difference to the program’s output
or fitness. And further the exponential rate (between −1/3 and
−1/5) with which the average disruption dies away with distance
from the root node, although different between runs, is very similar
for +1 and RANDINT. Comparing Figures 10 and 11 again shows
little difference between the distance traveled through the evolved
code by the large and small disruptions. Whilst Figures 12 and 13
show the small fraction of large and small disruptions which are
able to reach the program’s output are similarly clustered close to
the output itself (the root node). Figures 14 and 15, next section,
also show that +1 and RANDINT have similar patterns of failed
disruption propagation.

When disrupting by replacing an evaluation by a large value
(rather than making a small change), both addition and subtrac-
tion may subsequently overflow 32 bits. However multiplication
continues to be by far the most likely operation to cause overflow.
Again there is variation between runs with between 30% and 65% of
disruptions leading to overflow. Of the small fraction of RANDINT
disruptions which reach the root (column 8 in Table 2), between 1%
and 38% are affected by overflow.

3.8 Disruptable code lies near the output
Figures 14 and 15 compare the impact of the +1 and random replace-
ment perturbations. (To reduce clutter, SRF functions are shown
with =.) The plots are each in five rows of horizontal pairs. In each
row the same program is shown. With the impact of increasing

each evaluation by +1 shown on the left and the impact of replace-
ment with a random 32 bit value (RANDINT) on the right. The
plots show the binary trees using Daida’s circular lattice [9]. This
can be thought of as viewing the binary tree from the top looking
down on the root node (in the center) with each side subtree spread
out around it. The colours indicate how many times the program’s
answer is changed when evaluation at that point in the program is
disrupted on each test case.

As expected, the root node (center) is always disrupted and so
is shown in bright yellow (20 test cases). The number of test cases
disrupted falls monotonically with distance from the root node.
Dotted gray lines indicates parts of the tree where disruption does
not reach the root node on any test case. For ease of comparison,
each plot is shown at the same scale with parts of the tree outside
the square box (-10:+10)2 centered on the root node not being
plotted. In half the runs, this box captures all the parts of the tree
where disruption does reach the root node. Indeed in all runs all
the heavily disrupted parts (bright yellow) are plotted. Only in the
third run, is there code which is disruptive on more than three cases
(blue) which is not plotted because it lies outside -10:+10.

4 DISCUSSION
At first sight it seems surprising in a continuous domain (albeit
with exact arithmetic) that arguably the smallest (+1) and largest
(RANDINT) disruptions should behave almost identically. How-
ever the two problem dependent mechanisms for failed disruption
propagation (identified in Section 3.6) apply to both small and large
changes. That is 1) multiplication by zero, gives a zero result, no
matter how small or large the other argument is and 2) SRF will
return its default value if its first argument is just out of range or if
it is widely out of range.

With the small disruption and 32 bit arithmetic, integer overflow
seldom occurs and if it does, it makes no difference to failed disrup-
tion propagation. With the large change, overflow is more common
but it still make little difference to FDP.

We have used various recent efficiency improvements to Sin-
gleton’s GPquick [23–25]. In particular with extended runs [30]
incremental evaluation [26] again gave substantial speed up with-
out affecting evolution.

Columns 3 and 4 of Table 2 show again [36], but now over an
extensive period (1000 generations rather than [36]’s 50 or 75), with
two arity functions and no size or depth constraints (Table 1) that
GP evolves trees whose shape is similar to that of most binary
trees [11].

We see highly evolved integer GP programs, like floating point [33]
and human written code [32] [5], are not fragile. Indeed they are
robust not only to genetic changes like crossover, but to run time
errors, which they did not encounter during training.

4.1 Lorenz’ butterfly need not trouble software
Edward N. Lorenz (1972) was uncertain if a single flap of a but-
terfly’s wings in one hemisphere could cause a dramatic change
in the weather the other side of the equator but argued that the
atmosphere is chaotic and so difficult to predict in the short term
[37].
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Figure 14: Colour shows location of run time disruption in evolved tree and number of test cases (1–20) where it impacts the
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Failed Disruption Propagation in Integer Genetic Programming

We have argued that deterministic programs are not chaotic. We
have shown often a single perturbation deep within such software
has no effect. Whereas the atmosphere’s chaos is powered by all the
Sun’s energy falling on the Earth and contains an unmeasurable
number of flapping wings, deterministic programs (in particular
GP) dissipate information and so (mostly) give the same result even
if a “butterfly” or other “bug” flips some bits deep within them [10].

4.2 Good and bad failed disruption propagation
The impact of failed disruption propagation is profound. It is a two
edged sword. One side means crossovers, mutations, perturbations,
radiation, coding errors, etc., may only have local impact and their
disruption may monotonically fall to nothing. Making the software
robust. The other edge cuts the tester: Even if an error, glitch or
bug infects the local state [47], if it is far from the tester’s software
or hardware probe the disruption may have faded away before it
can be recorded. Thus rendering the test ineffective and leaving the
error undetected. However although undetected now, possibly it
may have an effect on a customer later.

4.3 Better Evolutionary Computation?
In tree GP [17], almost all crossovers or mutations occur near leafs
far from the root node. In deep trees, their impact is often lost
before it reaches the program’s output (the root node). In artificial
systems we are free to choose where to place mutations and where
to cut and slice in recombination. So we could opt to place such
disruption close to the root node. However, if we are to evolve
complex programs with many many features, they will have to be
large.

Evolving a monolithic one or two dimensional structure with all
information channeled via a single output node risks the program
being so deep that it is impossible to measure the fitness of most
genetic updates, or, if we move the crossover locations to be by the
output node, we have the problem of carrying a large dead weight
of code which cannot adapt beneath a tiny living evolving surface
near the route node. Therefore instead we may want to adopt a
porous open sponge like high dimensional structure, with a large
surface area, where much of the program (and hence most of the
genetic locations) is close to the program’s environment [27].

5 CONCLUSIONS
We have measured software engineering’s failed disruption prop-
agation (FDP) [41] in genetic programming and find as predicted
by information theory in integer functions it is very common. On
average in our deep trees 99.7% of large run time disruptions fail to
propagate to the root node and so have no impact on fitness.

We see failed disruption propagation scaling at between e−depth/3

and e−depth/5, meaning the chance of detecting disruption (be it
induced by crossover, mutation, cosmic ray or indeed software bug)
falls significantly within 3 to 5 levels. Indeed, with every extra level
of nesting the effectiveness of optimal test oracle placement or
fitness measurement falls by between 18% and 28%.

We see little difference between the smallest possible disruption
(Section 3.3) and total runtime randomization (Section 3.7), sug-
gesting Danglot et al.’s [10] correctness attraction will hold more

widely than their +1 disruption. Indeed these experiments with
integer functions, support the view that software is not fragile [32].

The average depth, rather than size, is critical. With nesting
deeper than 5–7 levels it becomes impossible to see the effect of
most individual crossovers or mutations and the fitness landscape
becomes increasingly flat and evolution harder. This suggests either
the need to limit the depth of crossover and mutation or the need
to move fitness testing from the root node to closer to the genetic
changes [27].
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