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ABSTRACT
We inject a random value into the evaluation of highly evolved
deep integer GP trees 9 743 720 times and find 99.7% of test out-
puts are unchanged. Suggesting crossover and mutation’s impact
are dissipated and seldom propagate outside the program. Indeed
only errors near the root node have impact and disruption falls
exponentially with depth at between e−depth/3 and e−depth/5 for re-
cursive Fibonacci GP trees, allowing five to seven levels of nesting
between the runtime perturbation and an optimal test oracle for
it to detect most errors. Information theory explains this locally
flat fitness landscape is due to FDP. Overflow is not important and
instead, integer GP, like deep symbolic regression floating point
GP and software in general, is not fragile, is robust, is not chaotic
and suffers little from Lorenz’ butterfly.
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1 FAILED DISRUPTION PROPAGATION
If a deep GP tree is perturbed, the disruption has to propagate from
the crossover point, mutation or error, up the tree through many
levels to the root node before it has any impact on the tree’s fitness.
It is known in conventional programming [1, 22] that often dis-
ruptions fail to propagate. We argue that this stems directly from
information loss and so is inherent in all computation, including
GP. We have shown that failed disruption propagation (FDP) can
be common in deep floating point expressions [16]. The mecha-
nisms which cause FDP can vary between programs. For example
in GP symbolic regression, FDP is often associated with rounding
errors [16]. To show an example which is independent of floating
point rounding, we will show (in Section 3) that failed disruption
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propagation also occurs in deep integer GP trees, where calcula-
tions are performed exactly.We find small (+1) and large (RANDINT,
Section 3.6) run time disruptions rapidly dissipate in similar ways.
Section 2 describes the integer Fibonacci Problem we will use and
Section 4 discusses our results and their implications for GP and
software more widely.

1.1 Disrupting Integer Arithmetic
Much of Koza’s first GP book [6] is concerned with either floating
point or Boolean expressions. However Koza also introduces the
problem of inducing an integer tree which recursively generates
the Fibonacci sequence of positive integers. Therefore we shall use
the Fibonacci Problem and demonstrate in deep GP trees failed
disruption propagation can also be common in exact arithmetic.

We use GP to evolve large GP trees by simply running to 1000
generations rather than stopping at the first solution. We then re-
evaluate the whole tree on all the training cases having first inserted
a fixed run time perturbation at a given location. We step though
every location in this large highly evolved fit tree and keep a record
of which perturbations do or do not cause a change in evaluation
at the root node and on which test case.

Like Danglot et al. [4], the first perturbation is simply to add 1
to the evaluation (on each test case) at the chosen point in the tree.
This can be thought of as the minimum perturbation. We also repeat
the experiment but instead of making a small change we simply
totally replace the original evaluation by a randomly chosen 32 bit
signed integer value.

2 KOZA’S FIBONACCI BENCHMARK
The Fibonacci sequence 1, 1, 2, 3, 5, 8... is an infinite sequence of
positive integers, where the next one is given by summing the two
previous items in the list. For training we take the first 20 members
of the sequence, i.e. from the 0th (1) to the 19th (6765). See Table 1.
The primitives Koza [6] uses are the four small integers 0, 1, 2
and 3, the sequence index J, the three integer arithmetic operations:
addition, subtraction and multiplication. In addition, to support
recursion, there is a special function SRF which also takes two
arguments. SRF allows access to values calculated by the GP tree
on earlier test cases. SRF’s first argument is the number of the test
case. SRF’s second argument is a default value, to be used if the
first argument is invalid. (For simplicity all arguments, including
where we have multiplication by zero, are always evaluated.) As
an example (SRF 1 0) will evaluate to 0 on the first two (J=0 and
J=1) test cases, and will evaluate to the evolved individual’s answer
for test case J=1 on later tests. Test cases are always run in order,
starting at J=0. Notice, in Section 3, where tree evaluations are
deliberately disrupted, the disruption is applied per test case and
therefore SRF can access the earlier unchanged tree evaluations.
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Table 1: GP to create deep fit Fibonacci trees for
Failed Disruption Propagation (FDP) experiments

Terminal set: J, 0, 1, 2, 3
Function set: ADD SUB MUL SRF
Fitness cases: First 20 members of the Fibonacci sequence.
Selection: Fitness =

∑19
J=0 |GP(J)−Fibonacci J |. I.e. the sum

of the absolute error between GP’s answer and
the value of the Jth member of the Fibonacci
sequence. Tournament size 7.

Population: Panmictic, non-elitist, generational.
GP parameters: Initial population of 50 000 trees created by

ramped half and half [6] with depth between
2 and 6. 100% unbiased subtree crossover.
1000 generations. No size or depth limit.

Table 2: Ten Deep Fit GP Fibonacci Trees

Size Depth Fitness Output disruption on any test
[7] sum |error| +1 RANDINT

86035 663 735 (160) 20 0.114 % -0.31 0.092 % -0.31
4347 160 165 ( 36 ) 10 1.449 % -0.30 1.449 % -0.33
23289 220 383 ( 83 ) 184 3.010 % -0.27 3.053 % -0.27
131159 449 908 (197) 130 0.127 % -0.28 0.121 % -0.29
77479 454 698 (152) 632 0.253 % -0.20 0.256 % -0.20
51697 626 570 (124) 0 0.056 % -0.27 0.056 % -0.27
771 33 64 ( 14 ) 0 7.523 % -0.21 7.523 % -0.22

35727 425 474 (103) 0 0.073 % -0.30 0.073 % -0.30
53305 485 579 (126) 0 0.032 % -0.33 0.032 % -0.33
23377 360 383 ( 83 ) 0 0.137 % -0.26 0.137 % -0.26

3 EXPERIMENTS
3.1 Tuning for Tournament Selection
We did a series of tuning GP runs to choose the population size
(Table 1). We chose a population of 50 000, where about 47% of
runs find programs which pass all 20 Fibonacci fitness tests by
generation 50.

3.2 Ten Extended Runs to 1000 Generations
In order to get deep fit Fibonacci trees to try our disruption ex-
periments on, we ran our GP with a population of 50 000 for 1000
generations. (We used the same parameters, Table 1.) Of course
without size or depth limits, the GP bloats [19] (see Figures in [13]).
At the end of each run a Fibonacci tree was selected for pertur-
bation. The runs are summarised in Table 2. (Column 3 gives the
expected depth for a random binary tree of a given size, column 1,
whilst column 4 gives the standard deviation [5].)

To reduce run time we used our [11] incremental and “fitness
first” [9] evaluation. Of course this does not effect the course of
evolution but reduces the number of opcodes evaluated by between
27 and 41 fold.

3.3 Fraction of +1 Disruptive Perturbations
In almost all locations in the ten deep highly evolved GP Fibonacci
trees, the +1 disruption at run time fails to reach the root node on
all twenty training cases. The right hand side of Table 2 gives the

 0  5  10  15  20  25  30  35  40  45 0
 2

 4
 6

 8
 10

 12
 14

 16
 18

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

Faction
run time

disruption

RANDINT 10 deep trees

Evaluation levels

Test case

Faction
run time

disruption

Figure 1: How far RANDINT disruption travels up tree for
each training case (0–19). Small fraction which reach the
root node on any test are given in Table 2 and not plotted
here. Cols 7&9 of Tab 2 also givemedian slope. Note log scale.

fraction (%, column 6) which disrupt fitness on any of the twenty
test cases. Even for the three shallowest trees more than 90% of the
perturbations fail to propagate to the program’s output on any test
case. Therefore the fitness would be identical despite the runtime
change. In most cases the fraction of FDP on any of the fitness cases
is well in excess of 99% (max 99.968% for run 9).

In floating point symbolic regression [16] failed disruption prop-
agation depends on the magnitude of the test case (with values near
zero being suppressed most easily). In contrast, in the Fibonacci
Problem we see almost the same behaviour for all test cases. This
suggests Fibonacci test cases are not independent. Which in turn
hints at potential runtime saving by sub-sampling test cases. Only
the zeroth test case (J=0) is slightly different, and we see disruption
dying away even faster than in the other nineteen test cases. Also
FDP behaves similarly across ten very different trees. Each shows,
for each test case, a similar exponential decrease in the number of
functions the +1 disruption propagates through before becoming
totally lost. Column 7 in Table 2 gives the exponent for the decrease
with depth averaged (median) across all twenty test cases. The val-
ues lies between -0.33 and -0.20, meaning on average between 14
and 23 nested functions will reduce disruption by 100 fold.

3.4 Location of +1 Disruptive Perturbations
The small fraction of +1 disruptions which reach the root node, on
any test case, and so do change fitness, lie close to the root node
itself. I.e, the disruption travels only a short distance through the
code. Depending on run, most lie within 4–9 levels of the root node.
For most runs more than 99% of these disrupted evaluations start
within 8 nested function calls of the root. Runs 1, 3 and 5 have long
tails, so that more than 1% of disrupted evaluations start more than
20 levels deep. Even so in these runs no disruption traverses more
than 31 levels and still impacts fitness.

3.5 Fibonacci Mechanisms for
Failed Disruption Propagation

Although we argue that information theory suggests that failed
disruption propagation is universal [13], we can see specific mech-
anisms for FDP in the Fibonacci Problem. For simplicity let us just
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consider cases where the disruption on all 20 test cases stops at
the same point. 20% of such +1 disruptions stop on a multiply by
zero. That is, one argument of multiply is zero and so disruption
to the other fails to propagate past the multiply, since its output
is zero regardless of the disruption. All the others stop on a SRF
function. Of these most (98.7%) are because the SRF node returned
its default value as it did before the disruption. This may be because
the SRF function’s first argument (the index) was already invalid
and so caused SRF to return its default value (the 2nd argument).
And if disrupting the index value still leaves it invalid, the SRF
will continue to return its unchanged default value. Meaning the
disruption stops at the SRF node.

3.6 RANDINT Disruption
We repeated the above experiments replacing the small perturba-
tion, which simply added one to the evaluation of each point in each
large GP tree for each test case, by replacing the existing evaluation
by a random integer value. The value was chosen uniformly at ran-
dom from all 232 possible signed integer values. Then as before we
trace how far the large disruption propagates through the evolved
tree.

Starting with Table 2 we see that the large RANDINT disruption
behaves very similarly to the +1 disruption. Comparing the last four
columns of Table 2, we see almost all large disruptions fail to reach
the root node and so make no difference to the program’s output or
fitness. And further the exponential rate (between −1/3 and −1/5)
with which the average disruption dies away with distance from
the root node, although different between runs, is very similar for
+1 and RANDINT. Figure 1 shows the how far the large disruption
travels for each test case and in each run. The log vertical scale in
Figure 1 emphasises the exponential dissipation of the run time
perturbations as they travel up the tree through the evolved code
towards the root node. The distances traveled by the small (+1) and
large disruptions are similar (see also figures in [13]). The small
fraction of large and small disruptions which are able to reach the
program’s output are similarly clustered close to the output itself
(the root node), see Figure 2, next section.

3.7 Disruptable code lies near the output
Figure 2 (To reduce clutter, SRF functions are shown with =.) uses
Daida’s circular lattice [3]. This can be thought of as viewing the
binary tree from the top looking down on the root node (in the
center) with each side subtree spread out around it. The colours
indicate how many times the program’s answer is changed when
evaluation at that point in the program is disrupted on each test
case.

As expected, the root node (center) is always disrupted and so
is shown in bright yellow (20 test cases). The number of test cases
disrupted falls monotonically with distance from the root node.
Dotted gray lines indicates parts of the tree where disruption does
not reach the root node on any test case. For ease of comparison,
each plot is shown at the same scale with parts of the tree outside
the square box (-10:+10)2 centered on the root node not being
plotted. In half the runs, this box captures all the parts of the tree
where disruption does reach the root node. Indeed in all runs all
the heavily disrupted parts (bright yellow) are plotted. Only in the
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Figure 2: Colour shows locations where run time disruption
impacts output of a large evolved GP tree. Brighter colours
meanmore test cases (1–20). Tree plotted with output at cen-
ter of circular lattice [3]. Almost all the tree is grey, mean-
ing no impact, but only the center -10:+10 by the root node
is shown. = indicates SRF node, * multiplication.

third run, is there code which is disruptive on more than three cases
(blue) which is not plotted because it lies outside -10:+10.

4 DISCUSSION
At first sight it seems surprising in a continuous domain (albeit
with exact arithmetic) that arguably the smallest (+1) and largest
(RANDINT) disruptions should behave almost identically. How-
ever the two problem dependent mechanisms for failed disruption
propagation (identified in Section 3.5) apply to both small and large
changes. That is 1) multiplication by zero, gives a zero result, no
matter how small or large the other argument is and 2) SRF will
return its default value if its first argument is just out of range or if
it is widely out of range.

With the small disruption and 32 bit arithmetic, integer overflow
seldom occurs and if it does, it makes no difference to failed dis-
ruption propagation [13]. With the large change, overflow is more
common but it still make little difference to FDP.

We have used various recent efficiency improvements to Single-
ton’s GPquick [8–10]. In particular with extended runs [17] incre-
mental evaluation [11] again gave substantial speed up without
affecting evolution.

Columns 3 and 4 of Table 2 show again [14], but now over an
extensive period (1000 generations rather than [14]’s 50 or 75), with
two arity functions and no size or depth constraints (Table 1) that
GP evolves trees whose shape is similar to that of most binary
trees [5].

We see highly evolved integer GP programs, like floating point
[15] and human written code [18] [2], are not fragile. Indeed they
are robust not only to genetic changes like crossover, but to run
time errors, which they did not encounter during training.
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4.1 Lorenz’ butterfly need not trouble software
Edward N. Lorenz (1972) was uncertain if a single flap of a butter-
fly’s wings in one hemisphere could cause a dramatic change in
the weather the other side of the equator but argued that the atmo-
sphere is chaotic and so difficult to predict in the short term [20].

We have argued that deterministic programs are not chaotic. We
have shown often a single perturbation deep within such software
has no effect. Whereas the atmosphere’s chaos is powered by all the
Sun’s energy falling on the Earth and contains an unmeasurable
number of flapping wings, deterministic programs (in particular
GP) dissipate information and so (mostly) give the same result even
if a “butterfly” or other “bug” flips some bits deep within them [4].

4.2 Good and bad failed disruption propagation
The impact of failed disruption propagation is profound. It is a two
edged sword. One side means crossovers, mutations, perturbations,
radiation, coding errors, etc., may only have local impact and their
disruption may monotonically fall to nothing. Making the software
robust. The other edge cuts the tester: Even if an error, glitch or
bug infects the local state [23], if it is far from the tester’s software
or hardware probe the disruption may have faded away before it
can be recorded. Thus rendering the test ineffective and leaving the
error undetected. However although undetected now, possibly it
may have an effect on a customer later.

4.3 Better Evolutionary Computation?
In tree GP [6], almost all crossovers or mutations occur away from
the root node. In deep trees, their impact is often lost before it
reaches the program’s output (the root node). In artificial systems
we are free to choose where to place mutations and where to cut
and slice in recombination. So we could opt to place such disrup-
tion close to the root node. However, if we are to evolve complex
programs with many many features, they will have to be large.

Evolving a monolithic one or two dimensional structure with all
information channeled via a single output node risks the program
being so deep that it is impossible to measure the fitness of most
genetic updates, or, if we move the crossover locations to be by the
output node, we have the problem of carrying a large dead weight
of code which cannot adapt beneath a tiny living evolving surface
near the route node. Therefore instead we may want to adopt a
porous open sponge like high dimensional structure, with a large
surface area, where much of the program (and hence most of the
genetic locations) is close to the program’s environment [12].

5 CONCLUSIONS
We have measured software engineering’s failed disruption prop-
agation (FDP) [22] in genetic programming and find as predicted
by information theory in integer functions it is very common. On
average in our deep trees 99.7% of large run time disruptions fail to
propagate to the root node and so have no impact on fitness.

We see failed disruption propagation scaling at between e−depth/3
and e−depth/5, meaning the chance of detecting disruption (be it
induced by crossover, mutation, cosmic ray or indeed software bug)
falls significantly within 3 to 5 levels. Indeed, with every extra level
of nesting, the effectiveness of optimal test oracle placement or
fitness measurement, falls by between 18% and 28%.

We see little difference between the smallest possible disruption
(Section 3.3) and total runtime randomization (Section 3.6), suggest-
ing Danglot et al.’s [4] correctness attraction will hold more widely
than their +1 disruption. Indeed these experiments with integer
functions, support the view that software is not fragile [18].

The average depth, rather than size, is critical. With nesting
deeper than 5–7 levels it becomes impossible to see the effect of
most individual crossovers or mutations and the fitness landscape
becomes increasingly flat and evolution harder. This suggests either
the need to limit the depth of crossover and mutation or the need
to move fitness testing from the root node to closer to the genetic
changes [12].
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