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Figure 1: Left: example tree fromKoza GP video [16, 11mins 10 secs]. Arrows show information flow from leafs, x, to root node
(top oval). Root gives output of program. Right: example of failed disruption propagation on test case x=2 with code change
(x⇒(- x x) red). Disruption only reaches 4th level so evaluation at root is identical. Old eval blue(left), new red(right) on arrows,
unchanged dashed. Incremental evaluation stops at 2nd protected division % as it gives same value (1) in parent and child.

ABSTRACT
Information theory explains the robustness of deep GP trees, with
on average up to 83.3% of crossover run time disruptions failing
to propagate to the root node, and so having no impact on fitness,
leading to phenotypic convergence. Monte Carlo simulations of
perturbations covering the whole tree demonstrate a model based
on random synchronisation of the evaluation of the parent and child
which cause parent and offspring evaluations to be identical. This
predicts the effectiveness of fitness measurement grows slowly as
O(log(n)) with number n of test cases. This geometric distribution
model is tested on genetic programming symbolic regression.

CCS CONCEPTS
• Computing methodologies→ Genetic programming.
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1 INTRODUCTION
1.1 Failed Disruption Propagation
Petke, Clark & Langdon [32] define Failed Disruption Propagation
(FDP) as when software execution is disrupted but later we do not
see evidence of the disruption. Petke et al. [32] showed that FDP
underlies the various types of robustness in software engineering.
By disruption we mean when bugs, run time errors, mutations,
radiation, electromagnetic interference, malicious external noise,
etc., cause an internal difference to the smooth running of the
program. For example, in genetic programming [14], [2], [27], [33]
crossover (e.g. red subtree in Figure 1) potentially changes the
evaluation on every fitness test case. Notice however that in Figure 1
the disruption on test case x=2 caused by replacing x=2 by (-x x) = 0
fails to propagate to the root node.

In the example shown in Figure 1 disruption almost always oc-
curs, however a change at run time need not always happen. For
example, a bug may not be executed, or even if the buggy code
is used, it may be on a particular test it just happens to gener-
ate the same answer as the working code (e.g. x=0 in Figure 1).
Even if a change is made, In [32] we argue that in many cases this
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disruption fails to propagate to the program’s outputs. In determin-
istic programs information theory gives sound reasons why as the
disruption spreads through the executing program intermediate
computations not only progressively dilute the disruption but may
prevent it from having a measurable external impact (see Section 2.3
and Figure 4).

In [32] we do not claim to make programs bug free [28], but
instead that in many cases the impact of the bug cannot be seen
outside the program. Petke, Clark & Langdon [32] unifies several
ideas in software engineering: e.g. correctness attraction [7], an-
tifragile software [31], not fragile [23], equivalent mutants [10],
mutational robustness [35], neutrality [11], coincidental correct-
ness [1], chaos engineering [3] and software robustness [37], but
our focus is on evolution [8], particularly genetic programming.

Often in the software engineering literature the various causes
and outcomes are confused: Is there a bug? Was it triggered? Is the
system now under attack? Did the error cause a faulty result?Will it
give an error the next time the program is used? Therefore we delib-
erately separate the cause of the disruption from its propagation by
ensuring we know where the cause is, guaranteeing it is executed
and thenmeasuring how it propagates. (In Sections 3 and 6 we test
every point in the GP trees.) We study failed disruption in typical
symbolic regression GP trees and in high order polynomials. As
is common in genetic programming, they do not have side effects,
allowing us to measure FDP in highly nested pure structures.

In Sections 1.2 and 1.3 we complete our introduction. Then Sec-
tion 2 discusses information theory in relation to failed disruption
propagation and GP and the background to our Monte Carlo calcu-
lations (Section 3). In Section 3 we generate a wide range of sizes
(1 to 20 000 001) for GP like trees and show the effect of assuming
a geometric distribution on the distance disruption travels before
FDP occurs. This allows us to model the whole GP search space
rather than just the fit trees that GP evolves. To test both rapidly
quenching (1.0) and very long acting disruptions (130), we use geo-
metric distributions with a wide range of plausible means. To keep
the calculations manageable we selected five means in this range.
Indeed Section 3 calculates more than six billion probabilities for
these Monte Carlo simulations. From these simulations, Section 4
shows crossover or mutation deeper than two or three times the
geometric distribution’s mean have little chance of changing the
tree’s evaluation. Section 5 shows, without additional knowledge,
adding extra tests to the test set only increases its ability to measure
the fitness impact of deep genetic changes slowly ≤∝ log(n). Sec-
tion 6 shows in most of the trees failed disruption propagation does
indeed resemble the geometric distribution, with means (1..120)
depending on test value. However close to the root node, the geo-
metric model does not hold, but in large evolved trees this is only
as small fraction of the tree. Of course not all systems depend upon
a single root node.

1.2 Side Effects and Other Types of GP
The vast majority of GP systems evolve programs which return
their answer as the program terminates. Although the model pre-
sented below deals with trees, this input-execute-result-stop mode
of working is found in both tree and linear GP [2]. Some GP sys-
tems co-evolve multiple trees, e.g. ADFs [15] and multiple classifier

systems [22]. However, although they have multiple evolved root
nodes, typically the different trees’ answers are combined into a sin-
gle answer, either by an externally imposed framework (e.g. voting
or weights) or, in the case of ADFs, by evolved code. Common al-
ternatives include agent control strategies, in which, as the evolved
program runs, it reads information from the environment (e.g. no
food ahead) and sends instructions (e.g. turn left). For example,
the artificial ant benchmark [14],[26],[27] and robot soccer [29],[6].
Teller’s “any time” algorithm requires the GP program to give its
result at any point and so disconnects result giving from program
termination [38]. Whilst Maxwell interrupted his evolved programs
at regular intervals and only those doing well were allowed to con-
tinue [30]. Other forms of GP allow other topologies or inclusion
of memory [17], short cuts [5] or side effects [13].

Our model follows most GP systems and assumes that informa-
tion flows steadily in a feed forward fashion from the outer most
parts of the tree towards the root node (see left hand side of Figure 1
from [16, Koza video 11:10]).

1.3 Using Incremental Evaluation to Measure
Failed Disruption Propagation

Last year we [19, 20] showed considerable savings can be obtained
by replacing top down recursive evaluation of large GP trees by
bottom up evaluation. Since there are no side effects the results
are identical. Then we were mainly interested in speed and often
found that similar trees had identical fitness. Here we explain this
by showing in deep GP trees most disruptions fail to propagate as
far as the tree’s output.

Figure 1 shows a parent and one of its children which inherits its
root node. Since the child was created by crossing over or mutating
the parent, we can readily start bottom up evaluation from the
point where they differ. By continuously comparing evaluations of
parent and child, incremental evaluation [20] can easily see if they
have become identical. Since the only code difference is below the
crossover/mutation point, if at any function on the path between
the code change and the root node their evaluations do become
identical, they will remain identical. The right hand side of Figure 1
shows a small example in which incremental evaluation stops along
the path from crossover point to root node at the % 4 levels deep
because the % calculates an identical value in the parent and child.
Therefore at this point it is known that both programs will return
the same value. In a static environment, if they return the same
values on all test cases, then they have identical fitness.

2 GP POPULATION CONVERGENCE
2.1 Genetic Programming Tree Shapes
As has been repeatedly reported [21], it is common for genetic
programming without size or depth limits to generate trees of a
similar shape to uniform random trees. That is, trees drawn at
random from all the trees of a given size. The mathematics of such
trees has been extensively studied [36] (see also Figures 2 and 3).
Our model of genetic programming is thus based on uniformly
sampling such trees and recent results from incremental evolution.
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tances vary widely. Indeed the coefficient of variation tends
to about 18%. Note log scales.

2.2 Uniform Model of Tree Disruption Sites
For simplicity, we assume each point in a genetic programming
tree is equally likely to be chosen for change1. The change can be
made either by mutation or subtree crossover. We assume that, at
the change site, the injected code gives a different value to that
previously calculated by the original code2.
1 Koza [14] defines his crossover to have a 90% bias towards choosing internal functions
for crossover points. However, particularly in large trees, this makes the calculations
more complex and less general and, simply makes the path to the route node approxi-
mately one function shorter.
2 Typically in GP the chance of replacing a randomly chosen subtree with another
which gives the same value is at most only a few percent. For simplicity we assume it
is zero percent.

2.3 Information Theory of
Phenotypic Fitness Convergence

For simplicity, we start by considering Monte Carlo simulations
(Section 3) with only a single test case. We assume that at each
function between the disruption and the root node there is a fixed
chance that the difference between the original and the new evalu-
ation becomes zero.

Since the tree is hierarchical, once the difference between the
evaluation of the two trees becomes zero, it must remain zero.
To remain general, we do not model exactly how the difference
becomes zero, we simply assume that there is some chance of the
two evaluations synchronising.

Since each function is irreversible, it looses information about
its inputs. (Figure 4 shows an example with two functions + and ∗

and three inputs x, y and z.) Once information is lost, it cannot be
recovered. For example, in the case of 32-bit GP, values calculated by
each function in the tree can contain at most 32 bits of information.
In information theoretic terms [34], their entropy is at most 32 bits.
In particular the conditional entropy of the function’s output at the
disruption point is at most 32 bits. But this falls monotonically with
distance from the disruption. I.e., the distance above the changed
code. Conversely, if the mother and child evaluations are to remain
different, then at each function on the path from the disruption
to the root node, the value calculated by that function must yield
a different 32 bit pattern in mother and child. As the conditional
entropy continually falls, the distribution of the frequencies of each
the 32 bit patterns becomes less uniform, i.e. they bunch together.
Thereby increasing the chance that the 32 bit patterns occupied
by the evaluation of the old and new code, coincide. Once they do
coincide, their evaluations are identical, and will remain identical,
until the program terminates.

In GP systems, we are familiar with explicit mechanisms which
make parent and offspring evaluations the same. For example, in a
Boolean problem, we may encounter an AND function on the path
to the root node whose other argument is false. In which case, no
matter what the change to the GP tree, the evaluation of the AND
will be false. That is, above the AND (including the output root
node) the parent and offspring will have the same evaluation.

In a floating point GP problem, multiplication scales the differ-
ence between the parent and child’s evaluations. A sequence of
multiplications by values calculated by side subtrees, where the
|values| are less than 1.0, perhaps mixed with linear operations
(e.g. addition and subtraction), can rapidly reduce the magnitude
of the difference. At some later point, a simple addition or subtrac-
tion by a value near 1.0 can cause rounding error to give the same
value in both evaluations. (Section 6.2 contains 1533 such exam-
ples.) E.g., assume a sequence of n multiplies by values near 0.5
mixed with linear operations. Assume at the disruption point the
original and changed code evaluations are old=1.5, new=2.5, so
|diff|=1.0. Then n multiplications later |diff|=1.0 × 1/2n . For n>23
the difference becomes so small that rounding error on addition
(or subtraction) of a value near 1.0, will give the same answer in
both the old and new program. Similarly, if the values of the side
subtrees are consistently outside ±1, multiplication will eventually
lead to numeric overflow in both programs.
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Figure 4: Information view of program (+ x (* y z)). Inputs x
and z are independently drawn from a non-uniform distri-
bution. The blue graphs show the distribution of evaluations
at the five nodes in the program. Note y is originally either 0
or 1. The red graphs show the changed distributions after a
mutation makes y +1 bigger (i.e. now 1 or 2). Before the mu-
tation, at the multiplication node (*) it is easy to tell if y is
zero or not (mutual information 1 bit). Adding x (top node)
makes it harder, reducingmutual information to 0.29. (After
the mutation, red, the mutual information is 0.49 and 0.15)
Notice entropy is always ≤ sum of entropies of inputs.

2.4 Geometric Model of
Convergence of GP Evaluations

To keep the model general, we do not need to consider the GP
primitives and test case in detail. Instead we simply assume at
each function on the path between the crossover point or mutation
location to the root node there is a constant finite chance of the eval-
uation of the parent and child syncronising and once syncronsed
they remain syncronised. The fixed chance p gives us a geometric
probabilty distribution3 (mean=1/p). For simplicity we deal with
the characteristic length 1/p. Earlier work, shows the characteristic
length to be variable with type of GP and test case. Therefore we
use a wide range of lengths (see next section). From 1.0 up to 130.0
(the maximum reported in GP). (Figure 12 confirms this range is
reasonable.)

3 MONTE CARLO SIMULATIONS
The parameters are given in Table 1. We generate uniformly at
random (binary) trees of all legal sizes up to 41 nodes, then increase
tree size by 20 up to 201 then by 200 for trees up to size 2001, and
3 Figure 8 lower three lines, shows geometric probabilty distributions with p = 0.1, 0.2
and 0.3 (characteristic lengths 1/p = 10, 5, and 3.33).

Table 1: Monte Carlo Sampling Parameters for
Failed Disruption Propagation (FDP) in Deep Trees

• Ten trees uniformly sampled from all those of given size
[36],[4],[12],[18].

• Phenotypic change (either mutation or crossover) uniform across
tree.

• Uniform chance of side subtree clearing phenotypic change, lead-
ing to geometric distribution of failed disruption propagation [32]

• Mean disruption lengths: 1, 10, 30, 70, 130
• Size of trees 1, 3 ... 41, 61 ... 201, 401 ... 2001, 4001 ... 20 001,
40 001 ... 200 001, 400 001 ... 2 000 001, 4 000 001 ... 20 000 001
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Figure 5: Predicted chance of crossover or mutation chang-
ing fitness for five geometric models and ten trees of
each size. Straight lines are best RMS regression fits to a/x
(slope -1). Note log scales.

so on. Thus we sample nine sizes for each order of magnitude. The
largest samples have 20 000 001 nodes (74 sizes in total, see Table 1).
As mentioned above (Section 2.2), we assume that every node in
each tree (i.e., up to 20 000 001 points) can be disrupted, calculate
the length of the path from it to the root node and then (using the
geometric distribution) calculate the probability that the disruption
will fail to propagate as far as the program’s output (i.e., fail to reach
the root node). For each node we repeat the calculation for five
characteristic lengths (1, 10, 30, 70 and 130). For each tree size and
each length we run ten experiments with different pseudo random
number seeds. (Total 6 000 016 700 probabilities.)

The results are given in Figure 5. For every function and leaf in
each tree the chance of crossover or mutation at that node changing
the fitness of one test case is calculated for each of the five disruption
lengths. Figure 5 plots the probability of any fitness change for that
tree assuming each node is equally likely to be chosen for crossover
or mutation.

As expected, Figure 5 shows for small trees almost all genetic
changes disrupt fitness (probability ≈1). As we consider larger trees,
the nodes are, on average, further from the root node (see Figure 3)
and so, as expected, the chance of fitness changing falls to near zero
for very large random trees.
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If the chance of fitness disruption across the whole test suite is
below 1/(the population size × the takeover time), then selection
(e.g. tournament selection) will ensure almost every member of
the population has the same fitness4. That is, the population will
converge in terms of fitness (phenotypic convergence), even if each
member of the population is different (no genetic convergence).

As a simple example, assume we have only one test case, a pop-
ulation of 500, and strong selection (take over time 4 generations).
Thus even with 100% crossover, we expect phenotypic convergence
when trees are deep enough to reduce the chance of fitness disrup-
tion below 1/2000. Figure 5 predicts in random trees, that this will
depend very heavily on how effective our test case(s) is at passing
disruption up the tree. For the least effective fitness test(s), the
leftmost (light blue) line in Figure 5 predicts bloat to tree size 1800
(mean depth 52). But for FDP length 10 this rises to 180 000 (mean
depth 531). (Length 30→1 562 000 (depth 1565), length 70→8 560 000
(depth 3666), and trees of size 27 664 000 (mean depth 6591) for a
geometric model length of 130 functions.)

We also tried root mean squared (RMS) fitting of the log data
with depth as well as size, using quadratic and linear models but
a simple model assuming a fixed sized sensitive region a in trees
of size x , which gives an a/x model works well. The regression
lines in Figure 5 are the best RMS fit (in log space) for probability
versus 1/size for each FDP length.

Figure 6 and Table 2 consider when the 1/x model applies by cal-
culating the difference between its predictions and the Monte Carlo
measurements. The difference is normalised by dividing by the ob-
served standard deviation, and so is somewhat noisy. Nonetheless
in each case Figure 6 makes clear the fit is very good (mostly within
one standard deviation) once the tree depth exceeds a threshold.
And the threshold depends upon how far the crossover disruption
propagates (FDP length). See Table 2.

4Goldberg’s takeover time is the expected number of generations taken by selection
alone for all but one member of the population to have the same fitness [9].

Table 2: Smallest tree when reciprocal 1/x model holds. See
also Figures 5 and 6. Columns described in Section 4.

FDP reciprocal mean mean depth/FDP size ratio
length model a/x depth p size/a

1 0.9 3.2 3.23 4% 9.1 9.94
10 89.5 23.5 2.35 10% 308.1 3.44
30 780.9 66.7 2.22 11% 2871.7 3.68
70 4280.0 213.1 3.04 5% 21734.4 5.08
130 13832.3 348.0 2.68 7% 36703.6 2.65

4 SIZE OF SENSITIVE AREA BY ROOT NODE
Table 2 lists for each of our five geometric FDP lengths: the numeric
value of the best RMS fit shown in Figure 5, and the minimum depth
and size of trees to which the RMS fit applies. I.e. the shallowest tree
when the model prediction’s is less than three standard deviations
out. (Columns 3 and 6 are calculated using linear interpolation.) We
can interpret the results as telling us that, for each FDP length, there
is a sensitive area around the root node. If we consider bigger trees,
the chance of a crossover landing in the sensitive area falls directly
in proportion to the size of the tree. Hence the 1/x law found in
Figure 5. That is, the size of the sensitive region is fixed. The second
column in Table 2 tells us its size. The fourth column expresses the
mean depth (col 3) as a multiple of characteristic length for our
geometric model (col 1). Notice col 4 tells us that once the average
tree depth is about 2 or 3 times the characteristic depth, the 1/x fit
applies. That is, crossover or mutations deeper than 2–3 times the
characteristic depth have little chance of changing fitness. (The fifth
column, p, holds the chance as a percentage % of disruption given
by the geometric model for a change at the mean depth, col 3.)

Empirically the size of sensitive region near the root is about the
same size as an average tree of height 2.37 × the mean FDP length.
The last column in Table 2 confirms, excluding the very shortest
FDP length (1), the 1/x rule is highly predictive for trees that are
more than about three times this size.

5 LIMITED EFFECTIVENESS OF MANY TESTS
5.1 n Independent Test Cases with the

Same Propagation give logn Impact
Figure 7 shows that our geometric model predicts that if each mem-
ber of the GP test set is equally effective and independent then the
effectiveness of the whole test suite (of n tests) grows only slowly
(as logn) as the number of tests is increased. (We hinted at logn
dependence for independent tests in [21, 24, 25] but closely spaced
tests may not be independent, making additional tests even less
effective.)

Recall our failed disruption propagation model assumes that at
each function from the genetic change to the root node there is
a small chance p of the evaluation (for a given test case) of the
parent and offspring synchronising. This gives rise to a geometric
distribution, p(1 − p)k−1. Define len = 1/p. len is the mean of the
geometric distribution. Thus if the crossover or mutation point is
many times len from the root node, there is essentially no chance it
will change the child’s overall evaluation. To be definite, if we want
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to be 99% sure the child’s evaluation is the same as its parent then:

1 − (1 − p)k ≥ 0.99
(1 − p)k ≤ 0.01

k log(1 − p) ≤ log(0.01)
k ≥ log(0.01)/log(1 − p)

k ≥ −
1
p
log(0.01) = 1

p
log(100) = 4.60517

p
= 4.60517 len

That is, to be 99% sure there is no change in evaluation on one test
case, the crossover has to be deeper than 4.6 times len. (We have
used p ≪ 1 so log(1 − p) ≈ −1/p is reasonably tight.) If we increase
the number of tests n this depth increases only slowly.

Suppose we haven independent tests. If none cause an evaluation
change, then there is no fitness change. We calculate the depth to
be 99% sure of this. We need all n tests to be give the same answers
they gave before, so(

1 − (1 − p)k
)n

≥ 0.99

1 − (1 − p)k ≥
n√0.99

k log(1 − p) ≤ log
(
1 − n√0.99

)
k ≥ log

(
1 − n√0.99

)
/log(1 − p)

k ≥ −
1
p
log

(
1 − n√0.99

)
k ≥ −

1
p
log

(
1 − exp

(
1
n
log(0.99)

))
k ≳ −

1
p
log

(
0.0100503

n

)
k ≳

1
p
(log(n) + 4.60015) (1)
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depth where chance of evaluation changing is 0.01. Note at
depth, less effective tests (20%, 30%) add little.

5 Notice dependence on logn. (See also Figure 7.)
In continuous GP problems, e.g. floating point, test values which

are close together may not be independent but instead may behave
similarly. That is, they may have similar abilities to detect changes
within the GP tree. Therefore, from an efficiency point of view, they
add little to the test set. Where fitness tests have similar abilities
to propagate disruption up GP trees, we expect Equation 1 (and
Figure 7) to apply, if we treat n as the number of independent tests,
rather than the total size of the test set.

5.2 Independent Test Cases with
Different Propagation

Of course if tests are not independent, then increasing the number
of them may not help at all. Also, even if tests are independent,
adding weaker ones to the test suite makes little difference.

Figure 8 shows the combined effectiveness of three independent
tests, each with a geometric distribution. In this example, the mean
lengths are 10 (1/10=10%), 5 (1/5=20%) and 3.33 (1/3.33=30%). Notice
the weaker tests (20% dashed blue) and (30% dashed purple) make
little difference to the combined (black dotted) fitness function’s
ability to measure the impact of deep genetic changes.

6 FAILED DISRUPTION PROPAGATION IN
DEEP FIT GP TREES

In the final experiments (Sections 6.1 and 6.2) we demonstrate the
robustness of deep evolved GP trees by changing the evaluation
of the trees at every location in the tree and tracing how far this
artificial disruption travels before either reaching the root node or
being quenched by FDP within the tree.

5Note log(0.99) = -0.0100503 and log(− log(0.99)) = −4.60015

http://www.cs.ucl.ac.uk/staff/W.Langdon
https://afnan.ws/
http://www.cs.ucl.ac.uk/staff/D.Clark


Measuring Failed Disruption Propagation in Genetic Programming GECCO ’22, July 9–13, 2022, Boston, MA, USA

Table 3: Failed Disruption Propagation in Deep GP Trees

Terminal set: X, 250 constants -0.995 to 0.997
Function set: MUL ADD DIV SUB (Section 6.1)

MUL ADD (Section 6.2)
Fitness cases: 48 fixed input -0.97789 to 0.979541 (randomly se-

lected in -1.0 to +1.0). Target Sextic polynomial
y = xx(x−1)(x−1)(x+1)(x +1)

Selection: Fitness = 1
48

∑48
i=1 |GP(xi )−yi | tournament size 7

Population: Panmictic, non-elitist, generational.
GP parameters: Initial population 500 ramped half and half [14]

depth between 2 and 6. 100% unbiased subtree
crossover. 600 generations. No size or depth limit.

DIV and % denote protected division (y!=0)? x/y : 1

In both Section 6.1 and 6.2 we run GP ten times with a population
of 500 for 600 generations on Koza’s Sextic polynomial problem [14]
with 48 test cases (see Table 3) before choosing a high fitness tree
and reevaluating it on all 48 test cases6 on each node within it but
with the evaluation increased by 1.0 [7]. Note we do not change the
tree’s genetic material, but simply inject this large perturbation into
every point in its fitness evaluation7. Naturally disruptions near
the root node often change its fitness but, as we shall see, those
deep within the tree often do not.

In Section 6.1 we use the traditional four GP functions (addition,
multiply, subtraction and protected division). On average 83.3% of
disruptions fail to propagate as far as the root node. A small fraction
of these are halted simultaneously on all 48 test cases by a “classic
intron” such as multiplication or division by zero, which produce
the same result regardless of the function’s other argument (see
end of Section 6.1). In Section 6.2 we run GP without subtraction
and protected division. This dramatically reduces the chance of the
constant zero being evolved. (In fact, it does not occur at all in our
examples.) But we still see failed disruption propagation.

6.1 GP Symbolic Regression
After 600 generations the evolved trees are deep enough so that
in most cases the injected disruption fails to propagate to the root
node. Table 4 shows if the tree depth exceeds 200, more than 80% of
our changes do not impact the values calculated by the GP tree on
the fitness cases. It gives the tree depth and corresponding mean
fraction of the tree where our disruption of the evaluation did make
a difference at the root node, averaged over all 48 test cases. As
expected, deeper trees tend to have lower disruption. Figures 9
and 10 show that with fitness test values near zero, the disruption
tends to propagate up through a smaller number of functions in the
GP tree, and therefore they are less good at detecting the changed
evaluations.

Figure 9 shows failed disruption propagation by test case for ten
highly evolved deep fit trees (fitness 6.4 10−5–0.036, size 7415–546 441,
depth 126–2794). Figure 9 does not plot the 16.7% of cases where
6Notice we are re-using the testset, so if the trees have overfit we are testing for FDP
exactly where they might be expected to do well. Also Section 5 has shown at best
increasing the number of tests n above 48 only makes a logarithmic difference (log(n)).
7We are studying run time perturbation. It can also be viewed as a somewhat realistic
approximation to genetic disruption since typically GP genetic operations, such as
crossover and mutation, choose at random from all parts of the parent tree and in the
Sextic polynomial changes in evaluation at the point where the code has been changed
are of the order of 1.0.

Table 4: Run time perturbation of ten evolved GP trees

Run Tree size Depth Fitness changed
1 32833 350 12.2%
2 546441 2794 0.2%
3 31925 363 17.1%
4 50679 300 19.6%
5 27147 174 38.6%
6 24437 649 7.2%
7 28105 388 4.0%
8 16747 273 19.8%
9 7415 126 27.1%
10 10685 175 21.4%

 0  100  200  300  400  500  600  700-1
-0.8

-0.6
-0.4

-0.2
 0
 0.2

 0.4
 0.6

 0.8
 1

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

Fraction

ten four function GP runs

Distance from +1 disruption when it stops

test value

Fraction

Figure 9: Distance disruption caused by adding 1.0 travels be-
fore evaluation on test case becomes identical. TenGP Sextic
runs for 600 generations. Log vertical scale.

the perturbation did reach the root. Note initial rapid rise in fraction
of evaluations where disruption is lost, followed by approximately
log-linear tails.

On average 83.3% of perturbations do not reach the root node.
Most (72.8%) do not stop at the same point for all 48 test cases.
However some cases of disruption failing to propagate are classic
introns. Across the ten runs there are a total of 23 952 cases (10.5%
of perturbations) where all 48 test cases fail to propagate at the
same point in the evaluation of the tree. 23 481 are when either
multiplication by zero or division by zero yields 0 or 1, on all test
cases regardless of their other argument (i.e. classic introns). The
remaining 471 (0.4%) are on addition or subtraction where one input
is very small but is combined (by + or −) with a value near 1.0, so
that rounding error means the result is the same as it was before
the injected perturbation.

6.2 Robust Evolved GP Polynomials
We repeated the experiments in Section 6.1 again ten times but
without subtraction or division (see Table 3). I.e. GP evolved poly-
nomials. (Across the ten polynomial examples fitness, i.e. average
|error|, 0.033 to 5.0 10−5, size 8827 to 863 131 and depth 121 to 5103.)
Omitting subtraction and division prevented the evolution of nodes
which evaluated to zero for all test cases and thus there are no
classic introns. Indeed in the ten runs there are only 1533 (0.08%)
cases (excluding the root nodes) where the evaluation perturbation
is lost by all test cases at the same point. (All are due to rounding
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Figure 10: Distance +1.0 disruption travels before evaluation
on test case becomes identical to the unperturbed evalua-
tion. Ten GP runs 600 generations. (Linear scales.)

error on addition.) Figure 10 shows how far disruption propagated
in ten deep fit evolved polynomials by test case.

Figure 11 shows in detail one test case from Figure 10. (We
chose the smallest test value, which is also the central test case,
number 25, X=0.00546999). Depending upon the run, the maximum
of the distribution is between 4 and 35 functions above the point in
the tree where the evaluation was initially disrupted. However it
then falls approximately log-linearly as predicted by a geometric
distribution. That is, the geometric distribution is only partially
correct and some “warm up” is needed before we reach the peak
but it models the fall afterwards (Figures 9 and 10).

Figure 11 shows the log-linear RMS best fit to the right of the
peak in the curves in Figure 11 for fitness test case 25 on each of the
ten runs. (These best fits are shown as straight lines in Figure 11.) To
avoid excessive noise, the best RMS fit ignores data with less than
ten instances. Figures 11 and 12 give the slope as the mean num-
ber of functions traversed (assuming the continuous, exponential,
distribution started at 1.0).

Notice in keeping with the very different GP trees evolved in
the ten runs, there is considerable variation between the 10 runs
shown in Figures 10 to 12. However Figure 12 shows a trend for
disruption to fail to propagate more quickly with GP fitness test
values that are near zero than for values near -1 or +1.

7 CONCLUSION
Information loss is inevitable in digital computing. We have argued
that it causes failed disruption propagation (FDP). We show FDP is
common in deep genetic programming trees, and in many cases run
time perturbations of similar size to those caused by crossover and
mutation are invisible to fitness test cases. If all tests fail to detect
genetic change, offspring inherit identical fitness and selection then
causes the population to phenotypically converge despite genetic
diversity and useful evolution stops.

We have presented a geometric model of failed disruption prop-
agation and shown it has some similarity to deep evolved GP trees.
Our mathematical model (Equation 1) quantifies the slow logarith-
mic increase in the effectiveness of test suites with number n of
equally effective independent tests. Notice, that without additional,
white box, insight,O(logn) is the best that can be done. In contrast:
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Figure 11: Straight lines show the log-linear (geometric) fall
with distance that disruption caused by adding 1.0 travels
before evaluation on middle test case (25) becomes identical
to unperturbed evaluation. Ten MUL ADD GP runs. As Fig-
ure 10, excludes small number of cases which did reach root
or where all test cases behave the same. Log vertical scale.
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Figure 12: RMS fit assuming geometric model to +1 disrup-
tion data in Figure 10 for each fitness test value. Note despite
variation between evolved GP trees, disruption of the eval-
uation with test values near zero (centre of graph) is more
rapidly quenched than for values near ±1. Data for test case
25 (center) plotted in detail in Figure 11.

1) Similar test values may not be independent and so add little to
the test suite as a whole. 2) The effectiveness of fitness test sets
composed of tests of mixed abilities are dominated by the most
effective and the weak ones (e.g. perhaps values near zero) add
little.
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