
Sunday, September 12, 2021

It is tacitly accepted that real software is far from perfect. That everyday
computer systems deliver real economic advantage to their users even
though they contain both documented and undocumented bugs. Often
computer scientists are embarrassed by this imperfection and teach
students that programs should be free from errors. Yet software quality
managers know the fastest way to bankrupt their company is to prevent it
shipping code until all its errors have been corrected. We turn to
information theory to explain why software is resilient to both source code
and run time errors and often yields a usable answer despite its flaws [1].

During the second world war Claude Shannon of Bell Labs, New Jersey,
formalised the notion of information, defining the amount of information
using entropy. The information content of a message defines the minimum
number of bits needed to code it (e.g. in order to send it via a telephony
link).

Pretty much every operation in a digital computer is irreversible. Meaning
that its inputs cannot be determined from its output. From an information
theory point of view, every irreversible operation loses information.
Figure 1 shows computer operations as information funnels, with more
information going into their wide mouths than leaves via their output.

Figure 1 shows two numbers being added together (addition is
irreversible). To make the example more concrete, we assume the two
inputs are independent single digits (1–9, using Benford’s law), and
therefore their sum lies in the range 2–18. The red bar graphs show the
probabilities of the two inputs and of the output. We also show their
entropies. Entropy is defined on probability distributions. The more evenly
spread the distribution, the more information it contains and the higher the
entropy. The output (2–18) being more uniformly spread, has a higher
entropy (3.69 bits) than either input, but it is still less than the entropy of
the combined inputs together. That is, in this case, the addition information
funnel has lost 2.06 bits of information.

Not only is this information loss inevitable, but it is cumulative. That is,
once information is lost, it cannot be restored.

Secondly although pretty much everything, bar simple assignment
statements, losses information, some operations loose more than others.
For example, testing if a value is greater than a threshold outputs a single
bit, containing (at most) 1 bit of information, even if the variable being
tested could contain 32 bits of information. Similarly a common technique
to increase resilience to errors is to use wrappers. E.g. to prevent run-time
exceptions by forcing a module’s input to lie in an expected range. Thus the
module may have a float input, but in reality expects values to be three digit
integers. Hence the developer may design a wrapper to return a default
value for negative numbers and numbers greater than 999.0 and round
other inputs to the nearest integer. Assuming it is sometimes necessary

Information Loss Leads to Robustness

W.B. Langdon, J. Petke, D. Clark

CREST, Department of Computer Science, University College,

London

IEEE Computer Society

IEEE Software

▼ 2021 (1)

▼ September (1)

Information Loss Leads to Robustness
...

► 2020 (5)

► 2019 (24)

► 2018 (10)

► 2017 (30)

► 2016 (45)

► 2015 (7)

Blog Archive

Jeffrey Carver (Practitioners' digest)

Dario Di Nucci (Testing)

Niko Mäkitalo (Microservices/Software
Architecture)

Sofia Ouhbi (Requirements Engineering
and Software Sustainability)

Varun Gupta (Global developments)

Jinghui Cheng (Human Aspects)

Muneera Bano (User Centric/Human
Aspects)

Ronald Jabangwe (Software Engineering
Process Models)

Mehdi Mirakhorli (Design/ Architecture and
Requirements)

Brittany Johnson (Issue and SE Radio
Summary)

Sarah Nadi (Software release and
configuration management)

Stefano Zacchiroli (Open source software
systems)

Federica Sarro (Mobile applications and
systems)

Sridhar Chimalakonda (Software Quality
and Software Reuse)

Danilo Pianini (Pervasive computing)

Karim Ali (Programming Languages)

Mei Nagappan (Practitioner perspectives)

Xabier Larrucea (Practitioner perspectives)

Associate Editors

More Create Blog Sign In

IEEE Software Blog http://blog.ieeesoftware.org/2021/09/information-loss-lea...

1 of 5 9/22/21, 2:47 PM

(e.g. the input is sometimes 5.01), such a robustness increasing wrapper
will destroy information.

Figure 2 shows a large nested function composed of floating point
arithmetic operations (+, -, × and ÷). Each function acts as a two input
information funnel and loses information. The red subtree at the base of
Figure 2 is a bug and the coloured chain shows the execution of nested
functions which call the bug. The whole function is executed on 48 test
cases and the size of the coloured nodes represents the number of tests
when the error and the correct code are not identical at that point in the
execution. The colour of these nodes represents the average difference. In
this example, the error is visible on all the tests at the function immediately
after it. However the number of test cases where the evaluation is not
identical relentlessly falls as we move up the chain of coloured nodes
towards the outer most function. Indeed, in this example, it falls to zero
before we reach the end of the expression. Meaning none of the test cases
are able to detect the error.

Obviously the loss of information and details of error hiding will depend on
the details of the expression and test suite. Nonetheless in functional parts
of the code, the monotonic fall in the effectiveness of testing with distance
from the error is always true and holds regardless of whether the error is
caused by a bug in the source code or a runtime induced fault. Preliminary
results hint that the effectiveness of test suites increases only slowly with
the number of tests (in proportion to log of the number of tests) and
suggests that independent tests are more effective at uncovering faults.

In traditional imperative code the data flow need not follow the execution
flow. In particular, the effect of an error may be stored in a variable which is
used later. Nonetheless when it is used (computed on) the information it
contains about the error may be (partially) lost, particularly if the impact of

Figure 1: An information funnel. All computer operations lose information. Even something as fundamental as addition

outputs less information than it took in. Example (see red bar charts): addition of two independent numbers (drawn using

Benford’s Law from 1 to 9, each contain 2.88 bits of information, total 5.75 bits). The result, 2 to 18, contains only 3.69

bits.

Figure 2: Impact of error (red subtree) dissipates the further away we measure its change on test values. Size of

functional nodes shows number of disrupted test cases. The colour shows, on a log scale, the average difference in

evaluation on the remaining disrupted nodes. Brightest yellow shows smallest non-zero difference (RMS 3.1 10
−10

).

Eventually this large change has no impact at all [2] [3].

Subscribe To

 Posts

 Comments

IEEE Software Blog http://blog.ieeesoftware.org/2021/09/information-loss-lea...

2 of 5 9/22/21, 2:47 PM

the error passes through a long chain of operations.

The information funnel view is entirely consistent with Voas’ PIE
(propagation, infection, and execution) framework [4] for explaining
software errors. Voas says to have any observable effect the error must be
executed, that execution must make a difference, i.e. infect the state of
the computation, and crucially that state change must propagate to the
program’s output. What we see is where the change of state passes through
a chain of operations (each of which loses information) information about
the error may disappear on one or more test cases. That is, information
theory backs up the intuition that deeply nested errors will be more difficult
to find using testing but also they may have no impact on many test cases.
It also justifies the use of unit testing, as not only may the bug be easier to
locate, but also, as the code is less heavily nested, bugs may manifest
themselves more readily.

The fact that software is not fragile [5] is only tacitly recognised, is perhaps
partially explained by the large number of software engineering phenomena
which express it using a range of terminology from different research silos:

In mutation testing the problem of equivalent mutants is wide
spread. And yet, an equivalent mutant is simply a code change
which can not be separated from the original code by testing.

Schulte et al. [6] described software mutational robustness when
they showed in examples of production C and assembler code that
more than 30% of random code changes made no difference under
testing.

Similarly Harrand et al. [7] found neutral program variants when
they mutated Java code.

Members of the same Stockholm team [8] use the term correctness
attraction to describe the imperturbability of ordinary software to
injection of minimal changes. That is, the Java program gives the
same output (assumed to be correct) even though a value set by
executed code has been changed by a small amount at run time.

We [1] suggest the phrase disruption propagation failure as a
generalisation of failed error propagation [9], to recognise that the
change in program state need not be an error or traditional source
code bug and instead she includes all manner of errors, mutations
and run-time perturbations.

Coincidental correctness and fault masking can be placed in Voas’
PIE framework in that an error is said to have occurred but that it
did not manifest (e.g. due to not infecting the state in the first
place or failing to propagate).

In future we will see software systems of increasing complexity. Such
systems have long past the point of being comprehensible by any one
person and indeed any team of people. Any yet globally we depend on the
reliability of software.

In a world addicted to software, managing its quality will become ever more
important. Information theory and entropy loss analysis offers a unified
view of bugs, faults, transient errors, hardening code to resist tampering
and attack, defect resilience and can offer insights into software verification
and validation (V&V), particularly testing.

You might also enjoy reading

Wikipedia article on information theory and Shannon entropy.

Correctness Attraction: A Study of Stability of Software Behavior
Under Runtime Perturbation, 12 November 2018. Martin
Monperrus and his co-authors discuss results on 10 Java programs
where injection of minimal run time changes made no difference in
most (68%) cases.

IEEE Software Blog http://blog.ieeesoftware.org/2021/09/information-loss-lea...

3 of 5 9/22/21, 2:47 PM

Bit-Rot: Computer Software Degrades over Time. IEEE Software
blog, 11 March 2020.

Genetic Improvement. How search is being used to improve
existing programs. IEEE Software blog, 2 February 2016.

Automated bug fixing. An interview with Westley Weimer and
Martin Monperrus (published in Ubiquity, 2015, March, pp 1–11).

Automated bug fixing in Facebook. Mark Harman and his
coauthors describe genetic improvement at a global scale [10].

Benford’s law of anomalous numbers. Wikipedia article on why
leading digits are often small.

References

[1] Justyna Petke, William B. Langdon, and David Clark. Software
robustness: A survey, a theory, and some prospects. In Paris Avgeriou
and Dongmei Zhang, editors, ESEC/FSE 2021, Ideas, Visions and
Reflections, Athens, Greece, 23-28 August 2021. ACM.

[2] William B. Langdon. Fitness first. In Wolfgang Banzhaf, Leonardo
Trujillo, Stephan Winkler, and Bill Worzel, editors, Genetic
Programming Theory and Practice XVIII, East Lansing, MI, USA,
19-21 May 2021. Springer. Forthcoming.

[3] William B. Langdon, Justyna Petke, and David Clark. Dissipative
polynomials. In Nadarajen Veerapen, Katherine Malan, Arnaud
Liefooghe, Sebastien Verel, and Gabriela Ochoa, editors, 5th
Workshop on Landscape-Aware Heuristic Search, GECCO 2021
Companion, Internet, 10-14 July 2021. ACM.

[4] Jeffrey M. Voas. PIE: a dynamic failure-based technique. IEEE
Transactions on Software Engineering, 18(8):717–727, Aug 1992.

[5] William B. Langdon and Justyna Petke. Software is not fragile. In
Pierre Parrend, Paul Bourgine, and Pierre Collet, editors, Complex
Systems Digital Campus E-conference, CS-DC’15, Proceedings in
Complexity, pages 203–211. Springer, September 30-October 1 2015.
Invited talk.

[6] Eric Schulte, Zachary P. Fry, Ethan Fast, Westley Weimer, and
Stephanie Forrest. Software mutational robustness. Genetic
Programming and Evolvable Machines, 15(3):281–312, September
2014.

[7] Nicolas Harrand, Simon Allier, Marcelino Rodriguez-Cancio,
Martin Monperrus, and Benoit Baudry. A journey among Java neutral
program variants. Genetic Programming and Evolvable Machines,
20(4):531–580, December 2019.

[8] Benjamin Danglot, Philippe Preux, Benoit Baudry, and Martin
Monperrus. Correctness attraction: a study of stability of software
behavior under runtime perturbation. Empirical Software
Engineering, 23(4):2086–2119, 1 August 2018.

[9] Gunel Jahangirova, David Clark, Mark Harman, and Paolo Tonella.
An empirical study on failed error propagation in Java programs with
real faults. ArXiv, 24 Nov 2020. abs/2011.10787.

[10] John Ahlgren, Maria Eugenia Berezin, Kinga Bojarczuk, Elena
Dulskyte, Inna Dvortsova, Johann George, Natalija Gucevska, Mark
Harman, Ralf Laemmel, Erik Meijer, Silvia Sapora, and Justin Spahr-
Summers. WES: Agent-based user interaction simulation on real
infrastructure. In Shin Yoo, Justyna Petke, Westley Weimer, and Bobby
R. Bruce, editors, GI @ ICSE 2020, pages 276–284, internet, 3 July
2020. ACM. Invited Keynote.

IEEE Software Blog http://blog.ieeesoftware.org/2021/09/information-loss-lea...

4 of 5 9/22/21, 2:47 PM

Older PostHome

Subscribe to: Post Comments (Atom)

Posted by Federica Sarro at 8:02 AM

Enter your comment...

Comment as: Google Account

PublishPublish PreviewPreview

No comments:

Post a Comment

Simple theme. Powered by Blogger.

IEEE Software Blog http://blog.ieeesoftware.org/2021/09/information-loss-lea...

5 of 5 9/22/21, 2:47 PM

