Abstract—Genetic programming can optimise software, including: evolving test benchmarks, generating hyper-heuristics by searching meta-heuristics, generating communication protocols, composing web services, generating improved hashing and C++ heap managers, redundant programming and even automatic bug fixing. Particularly in embedded real-time or mobile systems, there may be many ways to trade off expenses (such as time, memory, energy, power consumption) vs. functionality. Human programmers cannot try them all. Also the best multi-objective Pareto trade off may change with time, underlying hardware and network connection or user behaviour. It may be GP can automatically suggest different trade offs for each new market. Recent results include substantial speed up by evolving a new version of a program customised for a special case.

I. INTRODUCTION

Genetic programming [Koza, 1992; Poli et al., 2008] has been very widely applied. For example in modelling [Kordon, 2010], prediction [Langdon and Barrett, 2004; Poddorvik et al., 2011; Kovacic and Sarler, 2014], classification [Freitas, 1997], design [Lohn and Hornby, 2006], creating art [Reynolds, 2011; Jacob, 2001; Langdon, 2004; Romero et al., 2013], the generation of hyper-heuristics [Burke et al., 2013], Web mashups [Rodriguez-Mier et al., 2010], Hashing [Hussain and Malliars, 2000], Heap managers [Risco-Martin et al., 2014], multiplicity computing [Cadar et al., 2010] and even to create benchmarks which demonstrate the relative strengths and weaknesses of optimisers [Langdon and Poli, 2005].

Recently genetic programming has been applied to the production of programs itself, however so far relatively small programs have been evolved. Nonetheless GP has had some great successes when applied to existing programs. Perhaps the best known work is that on automatic bug fixing [Arcuri et al., 2011]. Particularly the Humie award winning work of Westley Weimer and Stephanie Forrest [Forrest et al., 2009]. This has received multiple awards and best paper prizes [Weimer et al., 2009; Weimer et al., 2010]. GP has been used repeatedly to automatically fix most (but not all) real bugs in real programs [Le Goues et al., 2012]. Weimer and Le Goues have now shown GP bug fixing to be effective on several millions of lines of C++ programs. Once GP has been used to do the impossible it was improved [Kessentini et al., 2011] and people felt brave enough to try other techniques, e.g. [Nguyen et al., 2013].

Andrea Arcuri was again in at the start of inspirational work on showing GP can create real code from scratch. Although the programs remain small, David White, he and John Clark [White et al., 2011] evolved programs to accomplish real tasks such as creating pseudo random numbers for ultra tiny computers where they showed a trade off between “randomness” and energy consumption.

II. AUTO PORTING FUNCTIONALITY

The Unix compression utility gzip was written in C in the days of Digital Equipment Corp.’s mini-computers. It is largely unchanged. However there is one procedure (of about two pages of code) in it, which is so computationally intensive that it has been re-written in assembler for the Intel 86X architecture (i.e. Linux). The original C version is intensive that it has been re-written in assembler for the Intel 86X architecture (i.e. Linux). The original C version is retained and is distributed as part of Software-artifact Infrastructure Repository sir.unl.edu [Hutchins et al., 1994]. SIR also contains a test suite for gzip. In Genetic Improvement, as with Le Goues’ bug-fixing work, we start with an existing program and a small number of test cases. In the case of the gzip function, we showed genetic programming could evolve a parallel implementation for an architecture not even dreamt of when the original program was written [Langdon and Harman, 2010]. Whereas Le Goues uses the original...
program’s AST (Abstract Syntax Tree) to ensure that many of the mutated programs produced by GP compile, we have used a BNF grammar. In the case of [Langdon and Harman, 2010] the grammar was derived from generic code written by the manufacture of the parallel hardware. Note that it had nothing special to do with gzip. The original function in gzip was instrumented to record its inputs and its outputs each time it was called (see Figure [1]). When gzip was run on the SIR test suite, this generated more than a million test cases, however only a few thousand were used by the GP. Essentially GP was told to create parallel code from the BNF grammar which when given a small number of example inputs returned the same answers. The resulting parallel code is functionally the same as the old gzip code.

III. Bowtie 2GP Improving 50,000 Lines of C++

As Figure 2 shows, genetic programming produces populations of programs which may have different abilities on different scales. While Figure 2 shows speed versus quality, other tradeoffs have been investigated. For example it may be impossible to simultaneously minimise execution time, memory footprint and energy consumption. Yet, conventionally human written programs choose one trade-off between multiple objectives and it becomes infeasible to operate the program with another trade-off. For example, consider approximate string matching.

Finding the best match between (noisy) strings is the life blood of Bioinformatics. Huge amounts of people’s time and computing resources are devoted every day to matching protein amino acid sequences against databases of known proteins from all forms of life. The acknowledge gold standard is the BLAST program [Altschul et al., 1997] which incorporate heuristics of known evolutionary rates of change. It is available via the web and can look up a protein in every species which has been sequences in a few minutes. Even before the sequencing of the human genome, the volume of DNA sequences was exploding exploding at a rate like Moore’s Law [Moore, 1965]. With modern NextGen sequencing machines throwing out 100s of millions (even billions) of (albeit very noisy) DNA base-pair sequences, there is no way that BLAST can be used to process this volume of data. This has lead to human written look up tools for matching NextGen sequences against the human genome. Wikipedia list more than 140 programs (written by some of the brightest people on the planet) which do some form of Bioinformatics string matching.

The authors of all this software are in a quandary. For their code to be useful the authors have to chose a point in the space of tradeoffs between speed, machine resources, quality of solution and functionality, which will: 1) be important to the Bioinformatics community and 2) not be immediately dominated by other programs. In practise they have to choose a target point when they start as once basic design choices (e.g. target data sources and computer resources) have been made, few people or even research teams have the resources to discard what they have written and start totally from scratch. Potentially genetic programming offers them a way of exploring this space of tradeoffs [Harman et al., 2012]. GP produce many programs across the trade-off space and so can potentially say “look here is a trade-off which you had not considered”. This could be very useful to the human, even if they refuse to accept machine generated code and insist on coding the solution themselves.

We have made a start by showing GP can transform human written DNA sequence matching code, moving it from one tradeoff point to another. In our example, the new program is specialised to a particular data source and sequence problem for which it is on average more than 70 times faster. Indeed on this particular problem, we were fortunate that not only is the variant faster but indeed it gives a slight quality improvement on average [Langdon and Harman,].

IV. Improving Parallel Processing CUDA Code Written by Experts

In other examples we returned to computer graphics hardware. In the first GP was able to automatically update for today’s GPUs software written specifically by nVidia’s image processing expert to show off the early generations of their graphics cards [Stam, 2008]. Genetic improvement lead (on the most powerful modern Tesla GPU) to almost a seven fold speed up relative to the original code on the same GPU. In another example a combination of manual and automated changes to production 3D medical image processing code lead to the creation of a version of a performance critical kernel which (on a Tesla K20c) is more than 2000 times faster than the production code running on an 2.67GHz CPU.
V. MINISAT: IMPROVING BOOLEAN SATISFIABILITY CODE WRITTEN BY EXPERTS

The basic GI technique has also been used to create an improved version of C++ code from multiple versions of a program written by different authors. Boolean Satisfiability is a problem which appears often. MiniSAT is a popular SAT solver. The satisfiability community has advanced rapidly since the turn of the century. This has been due in part to a series of competitions. These include the “MiniSAT hack track”, which is specifically designed to encourage humans to make small changes to the MiniSAT code. The new code is available after each competition. MiniSAT and a number of human variants were used to graft the new code into an existing program including human hints, was able to evolved new functionality better on a software engineering problem (interaction testing) [Pette et al., 2014b]. At GECCO 2014 it received a Human Competitive award (HUMIE) [Pette et al., 2014a].

VI. BABEL PIDGIN: CREATING AND INCORPORATING NEW FUNCTIONALITY

Another prize winning genetic programing based technique has recently been demonstrated to be able to extend the functionality of existing code [Harman et al., 2014]. GP, including human hints, was able to evolved new functionality externally and then search based techniques [Harman, 2011] were used to graft the new code into an existing program (pidgin) of more than 200,000 lines of C++.

References

