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Genetic Programming

William B. Langdon, Robert I. McKay and Lee Spector

Abstract Welcome to genetic programming, where the forces of nature are used to
automatically evolve computer programs. We give a flavour of where GP has been
successfully applied (it is far too wide an area to cover everything) and interesting
current and future research but start with a tutorial of how to get started and finish
with common pitfalls to avoid.

1 Introduction

Getting computers to automatically solve problems is central to artificial intelli-
gence, machine learning and the broad area covered by what Turing called “machine
intelligence” [113]. As we shall show, this is what genetic programming is actually
doing. Today.

Genetic programming [79] works by applying the power of evolution by natural
selection [21] to artificial populations inside your computer, cf. Figure 1. Unlike
in nature, you decide who is fit, who survives and who has children. Like nature,
children are not identical to their parents but suffer random mutations and can be
created by fusing together the genetic characteristics of their parents. Unlike other
approaches to evolving expressions, genetic programming works because it has de-
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fined a way of representing expressions whereby they can be randomly mutated and
still be syntactically correct expression which can be evaluated. Like nature, many
mutants are not as fit as their parents but, like nature, every so often, a mutant is
created which is better. Similarly children produced by sex have genes which are a
random combination of parental genes. Again, every once in a while an improved
combination is found and the offspring program is selected for, prospers and in sub-
sequent generations copies of it spread through the evolving population.

Genetic programming can be thought of as like domesticated animals and plants,
where improvements have been made by breeders progressively selecting preferred
characteristics. (Darwin studied the records of breeders of domesticated pigeons.)
Thus you too must impose a direction on evolution. E.g. to control a robot, design
a radio aerial or find a genetic component of breast cancer survival, you must select
programs that are better at doing it. For example, given the cause of death and life
span of 253 Swedish women cancer patients, you might select a program which
correctly predicted more cases of survival for more than eight years after surgery
than one which was less accurate.

With large populations and/or many generations, selecting individual programs
becomes too tedious to do by hand. Instead we pass the job to a computerised au-
tomatic “fitness function”. On your behalf, it prefers better programmes over the
less good. Ultimately it is your fitness function which guides the evolution of your
population by selecting who will survive and who will have children. The fitness
function is literally a matter of life or death.

There are several fine books on GP ([79, 58] and [53] leap to mind) however we
strongly encourage doing GP as well as reading about it. There are many good free
(unsupported) GP implementations (e.g. lilGP, ECJ, Beagle1 and TinyGP) but its
not so hard to write your own.

1.1 Overview

The next section describes the main parts of genetic programming, whilst Section 3
describes how you put them together to get a working system. Next Sections 4 and 5
describe advanced GP techniques. We survey the enormous variety of applications

Generate Population
of Random Programs

Run Programs and
Evaluate Their Quality

Breed Fitter Programs

Solution
(* (SIN (- y x))
   (IF (> x 15.43)
       (+ 2.3787 x)
       (* (SQRT y)
          (/ x 7.54))))

Fig. 1 The basic control flow for GP, where survival of the fittest is used to find solutions.

1 Darwin was the naturalist onboard HMS Beagle for five years [20].
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of GP in Section 6. This is followed by a collection of trouble-shooting suggestions
(Section 7) and by our conclusions (Section 8).

2 Representation, Initialisation and Operators in Tree-based GP

2.1 Representation

In artificial intelligence it has become accepted wisdom that how information about
the application and its solution is stored (i.e. represented internally within the com-
puting system) and manipulated by it, is crucial to succesfull implementation. Huge
effort is spent by very clever people on designing the correct representation.

Genetic programming has ignored this. In GP, the evolved program contains the
solution and “representation” refers to the language evolution uses to write the pro-
gram. The same representation might be used in a program evolved to predict breast
cancer survival as one evolved to find insider trading in a stock market.

In GP, programs are usually expressed as syntax trees rather than as lines of code.
For example Figure 2 shows the tree representation of the program
max(x+x,x+3*y). The variables and constants in the program (x, y and 3) are
leaves of the tree. In GP they are called terminals, whilst the arithmetic operations
(+, * and max) are internal nodes called functions. The sets of allowed functions
and terminals together form the primitive set of a GP system.

x x

+ +

max

x

y3

∗

Fig. 2 GP syntax tree representing max(x+x,x+3*y).

It is common to represent expressions in prefix notation. E.g. max(x+x,x+3*y)
becomes (max (+ x x) (+ x (* 3 y))). Usually the number of argu-
ments a function takes is known. E.g. sin has one argument but * has two. When
the arity is known, the brackets in prefix-notation expressions are not needed. This
means trees can be represented as simple linear sequences. Usually this is much
more efficient than tree-based representation of programs, which require the stor-
age and management of numerous pointers. In effect, the function’s name gives
its arity and from the arities the brackets can be inferred. For example, the ex-
pression (max (+ x x) (+ x (* 3 y))) can be written unambiguously as
max + x x + x * 3 y.
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The choice of whether to use such a linear representation or an explicit tree repre-
sentation is typically guided by convenience, efficiency, the genetic operations being
used (some may be more easily or more efficiently implemented in one represen-
tation), and other data one may wish to collect during runs. (It is sometimes useful
to attach additional information to nodes, which may be easier to implement if they
are explicitly represented).

Tree representations are the most common in GP. However, there are other im-
portant representations including linear [58, 51, 60, 11] and graph [97, 111, 92]
based programs.

2.2 Initialising the Population

As with other evolutionary algorithms, in GP the individuals in the initial population
are typically randomly generated. There are a number of different approaches to
generating this random initial population, e.g. [85]. However we will describe two
of the simplest methods (the full and grow methods), and the most widely used
combination of the two known as Ramped half-and-half [79].

In both the full and grow methods, the initial individuals are generated so that
they do not exceed a maximum depth you decide. The depth of a node is the number
of edges that need to be traversed to reach the node starting from the tree’s root
node (depth 0). The depth of a tree is the depth of its deepest leaf (e.g., the tree in
Figure 2 has a depth of 3). The full method generates full trees (i.e. all leaves are
at the same depth). It does this by choosing at random from the available functions
(known as the function set) until the maximum tree depth is reached. Then the tree
is finished by adding randomly chosen leafs from the available terminals (known as
the terminal set). Figure 3 shows a series of snapshots of the construction of a full
tree of depth 2. The children of the * and / nodes must be leaves or otherwise the
tree would be too deep. Thus, at steps t = 3, t = 4, t = 6 and t = 7 a terminal must
be chosen. (In this example leafs x, y, 1 and 0, were randomly chosen).

Although, the full method generates trees where all the leaves are at the same
depth, this does not necessarily mean that all initial trees will have an identical
number of nodes (often referred to as the size of a tree) or the same shape. This
happens only if all the functions have the same arity. (I.e. have the same number
of inputs.) Nonetheless, even when mixed-arity primitive sets are used, the range of
program sizes and shapes produced by the full method may be limited. The grow
method creates trees of more varied sizes and shapes. Nodes are selected from the
whole primitive set (i.e., functions and terminals) until the depth limit is reached.
Once the depth limit is reached only terminals may be chosen (just as in the full
method). Figure 4 illustrates growing a tree with depth limit of 2. In Figure 4 (t=2)
the first argument of the + root node happens to be a terminal. This prevents that
branch from growing any more. The other argument is a function (-). It can grow
one level before its arguments are forced to be terminals to ensure that the resulting
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Fig. 3 Creation of a full tree having maximum depth 2 using full initialisation (t = time). [53]

tree does not exceed the depth limit. C++ code for a recursive implementation of
both the full and grow methods is given in Figure 2.2.

+
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Fig. 4 Creation of a five node tree using the grow initialisation method with a maximum depth of
2 (t = time). A terminal is chosen at t = 2, causing the left branch of the root to be closed at that
point even though the maximum depth had not been reached [53].

Because neither the grow or full method provide a very wide array of sizes
or shapes on their own, Koza proposed a combination called ramped half-and-half
[79]. Half the initial population is constructed using full and half is constructed
using grow. This is done using a range of depth limits (hence the term “ramped”)
to help ensure that we generate trees having a variety of sizes and shapes.

While these methods are easy to implement and use, the sizes and shapes of the
trees generated are highly sensitive to the number of functions, the number of inputs
they have and the number of terminals. This makes it difficult to control the sizes and
shapes of the trees. For example if there are many more terminals than functions, the
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//Choose desired depth uniformly at random between min and max depth.
//Choose either full or grow.
SubInit(rnd(max_depth-min_depth)+min_depth, rnd(2), min_depth);

void Individual::SubInit(int depth, BOOL isfull, int min_depth) {
if (depth <= 0)
i=rand_terminal(); // terminal required

else if (isfull || min_depth>0)
i=rand_function(); // function required

else {//grow: terminal allowed 50% of the time
if (rnd(2)) // terminal required
i=rand_terminal();

else // node required
i=rand_function();

}
SETNODE(code[ip],i); //store opcode in Individual
ip++;

for(int a=0;a<argnum(i);a++) {
SubInit(depth-1,isfull, min_depth-1, tree);

}}

C++ code fragment to create a random tree. For efficiency the tree is flattened and stored in array
code (access is via macro SETNODE). SubInit recursively calls itself until it reaches a leaf of
the tree. (Based upon Andy Singleton’s GPquick.)

grow method will almost always generate very short trees regardless of the depth
limit. Similarly, if the number of functions is considerably greater than the number
of terminals, then the grow method will be like the full method.

The initial population need not be entirely random. If something is known about
likely properties of the desired solution, trees having these properties can be used to
seed the initial population.

2.3 Selection

As with other evolutionary algorithms, in GP better individuals are more likely to
have more child programs than inferior individuals. Tournament selection is most
often used, followed by fitness-proportionate selection [63], but any standard evolu-
tionary algorithm selection mechanism (e.g. stochastic universal sampling) can be
used.

In tournament selection a number of individuals are chosen at random from the
population. These are compared with each other and the best of them is chosen to
be the parent. When doing crossover, two parents are needed and, so, two selection
tournaments are made. Note that tournament selection only looks at which program
is better than another. It does not need to know how much better. This effectively
automatically rescales fitness, so that the selection pressure is constant. Thus, a sin-
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Fig. 5 Example of subtree crossover. Note that the trees on the left are actually copies of the
parents. So, their genetic material can freely be used without altering the original individuals [53].

gle extraordinarily good program cannot immediately swamp the next generation
with its children. If it did, this would lead to a rapid loss of diversity with poten-
tially disastrous consequences for a run. Conversely, tournament selection amplifies
small differences in fitness to prefer the better program even if it is only marginally
superior to the other individuals in a tournament.

Tournament selection, due to the random selection of programs to be included
in the tournament, is inherently noisy. So, while preferring the best, tournament
selection does ensure that even below average programs have some chance of having
children. Since tournament selection is easy to implement and provides automatic
fitness rescaling, it is commonly used in GP.

2.4 Recombination and Mutation

Crossover (recombination) and mutation in GP are very different from crossover
and mutation in other evolutionary algorithms. The most commonly used form of
crossover is subtree crossover. Given two parents, subtree crossover randomly (and
independently) selects a crossover point (a node) in each parent tree. Then, it creates
the offspring by replacing the subtree rooted at the crossover point in a copy of the
first parent with a copy of the subtree rooted at the crossover point in the second
parent [79], as illustrated in Figure 5.
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Fig. 6 Example of subtree mutation [53].

Typical GP primitive sets lead to trees with an average arity of at least two.
This means most of the program will be leaves. So if crossover points were chosen
uniformly, crossovers would frequently swap very small subtrees (even just leafs).
I.e. exchange only very small amounts of genetic material. Whereas in nature (and
many GAs) often both parents contribute more-or-less equally to their offspring’s
genetic code. To counter this, Koza suggested the widely used approach of choos-
ing functions 90% of the time and leaves 10% of the time [79]. Many other types of
crossover and mutation of GP trees are possible (see [53, pp 42–44]).

The most commonly used form of mutation in GP is subtree mutation. It ran-
domly selects a mutation point in a tree and substitutes the subtree rooted there with
a randomly generated subtree (cf. Figure 6 and [3]).

Another common form of mutation is point mutation, which is GP’s rough equiv-
alent of the bit-flip mutation used in genetic algorithms [63]. In point mutation, a
random node is selected and the primitive stored there is replaced with a different
random primitive of the same arity taken from the primitive set. If no other primi-
tives with that arity exist, nothing happens to that node (but other nodes may still be
mutated). When subtree mutation is applied, it changes exactly one subtree. On the
other hand, every node in the tree has a small probability of being mutated by point
mutation. This means point mutation independently changes a random number of
nodes.

In GP normally only one genetic operator is used to create each child. Which
one is used is chosen at random. Typically, crossover is applied with the highest
probability, the crossover rate often being 90% or higher. On the contrary, the mu-
tation rate is much smaller, typically being in the region of 1%. If the sum of all
the probabilities comes to less than 100% the remaining offspring are created sim-
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ply by copying better individuals from the current population. (This is known as
reproduction.)

3 Getting Ready to Run Genetic Programming

3.1 Step 1: Terminal Set

GP is not typically used to evolve programs in the familiar languages people nor-
mally write programs in. Instead simpler programming languages are used. Indeed
GP can usually be thought of as evolving executable expressions rather than fully
fledged programs. The first two preparatory steps, the definition of the terminal and
function sets, specify the language. Together they define the ingredients that are
available to GP to create computer programs.

Typically the terminal set contains the program’s inputs. (e.g., x, y, cf. Table 1).
It may also contain functions with no arguments. They might be needed because
they return different values each time they are used, such as a function which returns
random numbers, or returns the distance from a robot to an obstacle or because the
function produces side effects. Functions with side effects may: change some global
data structures, draw on the screen, print to a file, control the motors of a robot, etc.

Often an evolved program will need access to constants. We dont know in ad-
vance what their values will be, so GP choses some randomly. In some implemen-
tations the number of constants is limited and it may be that new ones cannot be
created during the GP run. Instead their values must be chosen as the population is
initialised. Typically this done by a special terminal that represents an ephemeral
random constant. Every time it is chosen (either at the start or when a new subtree
is created by mutation), a different random value is generated. This is used for that
particular terminal, and remain fixed for the rest of the run.

3.2 Step 2: Function Set

The function set typically contains only the arithmetic functions (+, -, *, /).
However, all sorts of other functions and constructs typically encountered in com-
puter programs can be used, see Table 1. Sometimes specialised functions or ter-
minals, which are designed to solve particular problems are used. For example,
if the goal is to evolve art, then the function set might include such actions as
select from pallet and paint.

For GP to work effectively, most function sets are required to have an important
property known as closure [79]. Closure can be broken down into type consistency
and evaluation safety. Finally the primitive set must be able to (i.e. must be sufficient
to) express solutions to the problem.
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Table 1 Examples of primitives in GP function and terminal sets.

Function Set
Kind of Primitive Example
Arithmetic +, *, /
Mathematical sin, cos, exp
Boolean AND, OR, NOT
Conditional IF-THEN-ELSE
Looping FOR, REPEAT

Terminal Set
Kind of Primitive Example
Variables x, y
Constant values 3, 0.45
0-arity functions rand, go left

3.2.1 Type Consistency

Crossover (Section 2.4) can mix and join nodes arbitrarily. So it is important that
any subtree can be used as any argument for every function in the function set. The
simplest way to achieve this is to ensure all functions return values of the same type
and that each of their arguments also have this type. For example +, -, *, and / can
can be defined so that they each take two integer arguments and return an integer.
The terminals would also be integers. (Automatic type conversion, e.g. between
Booleans and integers, default values and polymorphic functions, can also be used to
ensure that crossover always produces syntacticly correct and runnable programs.)
Sections 4 and 5 will describe safe ways to extend GP.

3.2.2 Evaluation Safety

The purpose of evaluation safety is to ensure evolved programs can run and thereby
be assigned fitness even when they run into errors. For example, an evolved expres-
sion might divide by 0, or call MOVE FORWARD when facing a wall or precipice. It
is common to use protected versions of numeric functions that can otherwise throw
exceptions, such as division, logarithm, exponential and square root. The protected
version of a function first tests for potential problems with its input(s) before exe-
cuting the corresponding instruction. If a problem is spotted then some default value
is returned. Protected division (often notated with %) checks to see if its second ar-
gument is 0. If so, % typically returns the value 1 (regardless of the value of the first
argument). (The decision to return the value 1 provides the GP system with a simple
way to generate the constant 1, via an expression of the form (% x 0). This com-
bined with a similar mechanism for generating 0 via (- x x) ensures that GP can
easily construct these two important constants.) Similarly, in a robotic application a
MOVE AHEAD instruction can be modified to do nothing if a forward move is illegal
or if moving the robot might damage it. (Braitenberg permitted his imaginary robots
to make dangerous moves as a way of weeding the poor control program from the
better [10].)

An alternative to protected functions is to trap run-time exceptions and strongly
reduce the fitness of programs that generate such errors. However, if the likelihood
of generating invalid expressions is very high, this can lead to too many individuals
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in the population having nearly the same (very poor) fitness. This makes it hard for
selection to choose which individuals might make good parents.

3.2.3 Sufficiency

By sufficiency we mean it is possible to express a solution to the problem using the
elements of the primitive set. For example {AND, OR, NOT, x1, x2, ..., xN}. is a suf-
ficient primitive set for logic problems, since it can produce all Boolean functions
of the variables x1, x2, ..., xN. The primitive set {+, -, *, /, x, 0, 1, 2}, is unable
to represent transcendental functions, such as sin(x). When a primitive set is insuffi-
cient, GP can often develop programs that approximate the desired solution. Which
may be good enough for the user’s purpose. Adding a few unnecessary primitives in
an attempt to ensure sufficiency tends not to slow down GP overmuch.

3.3 Step 3: Fitness Function

The task of the fitness measure, is to choose which parents are to have offspring.
That is, which parts of the search space we have just sampled, (which is what the
current population has done for us) are worth exploring further. The fitness func-
tion is our primary (and often sole) mechanism for giving a high-level statement of
requirements to GP.

Fitness can be measured in many ways. For example, in terms of: the amount of
error between its output and the desired output; the amount of time (fuel, money,
etc.) required; the accuracy of the program in recognising patterns or classifying
objects; the payoff a game-playing program produces.

Fitness evaluation normally requires executing all the programs in the population,
typically multiple times. While one can compile the GP programs that make up the
population, the overhead of building a compiler is usually substantial, so it is much
more common to use an interpreter to evaluate the evolved programs. Interpreting a
program tree means executing the nodes in the tree in an order that guarantees that
nodes are not executed before the value of their arguments (if any) is known. This
is usually done by traversing the tree recursively starting from the root node, and
postponing the evaluation of each node until the values of its children (arguments)
are known. Other orders, such as going from the leaves to the root, are possible.
If none of the primitives have side effects, the two orders are equivalent. Figure 7
contains C++ code fragments which implements top down recursive tree evaluation
using a linear data structure for speed.

In some problems we are interested in the output produced by a program. In other
problems we are interested in the actions performed by a program composed of
functions with side effects. In either case the fitness of a program typically depends
on the results produced by its execution on many different inputs or under a variety
of different conditions. For example the program might be tested on all possible
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//Flatted tree is stored in array of nodes.
//evalnode has three components. It trades space for speed.
//node (not shown) stores the same information in one byte. It
//is used to store the population. node is expanded to evalnode
//before fitness testing.
//typedef allows code to be compiled for several applications.

typedef float retval;
typedef retval (*EVALFUNC)(); // evaluation code with global pointer
typedef struct evalnode {
EVALFUNC ef;
evalnode* jump;
retval value;

} evalnode; // node type

evalnode* IP; //global pointer
evalnode* ExprGlobal; //Array holding flatten tree
//some old Sun compilers incorrectly optimise EVAL (workaround via FTP)
#define EVAL ((++IP)->ef)()
#define GETVAL IP->value
#define TRAVERSE() IP=(++IP)->jump

retval D0Eval() { return data[0]; } //data holds inputs D0-D9. Typically it
retval D9Eval() { return data[9]; } //is different for each training case
retval ConstEval() {return GETVAL;}
retval AddEval() {return EVAL + EVAL;}
retval SubEval() {return EVAL - EVAL;}
retval MulEval() {return EVAL * EVAL;}
retval DivEval() {// "Protected" division
const retval numerator = EVAL;
const retval denominator = EVAL;
if (denominator !=0) return numerator/denominator;
else return 1;

}
retval IflteEval() {//IfLTE(condition1islessthan,condition2,dothis,dothat)
retval rval=EVAL;
if (rval<=EVAL) {
rval=EVAL;
TRAVERSE(); // Jump the third expression

} else {
TRAVERSE(); // Jump the second expression
rval=EVAL;

}
return rval;

}

retval Individual::evalAll() {// eval the whole expression anew
IP=ExprGlobal-1; // start at begining of flatten tree
return EVAL;

}

Fig. 7 Example fast interpreter (based on Andy Singleton’s GPquick). The tree is linearised and
functions and terminals within it are replaced by pointers to C++ functions which implements
them. On a typical modern computer the GP individual and the interpreter are held in fast cache.
Since the tree is flatten into the traditional depth first order, the interpreter runs from top of the
tree to the rightmost terminal in one forward pass. This avoids backtracking. Continuous forward
motion suits typical cache architectures.
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combinations of inputs x1, x2, ..., xN. Alternatively, a robot control program might
be tested with the robot in a number of starting locations. These different test cases
typically contribute to the fitness value of a program incrementally, and for this
reason are called fitness cases.

Despite all this sophistication and the computational work it does, the fitness
function ultimately boils down to just one bit of information: does this mutated
program beget another child? We don’t know the correct answer to this question.
So we add noise (e.g. via tournament selection). Fortunately it is not necessary to
get the answer right all the time, or even most of the time, just as long as we are
right occasionally. We sometimes lose sight of this hard truth. Sometimes it may
be better to accept a less accurate calculation of fitness. If by doing so we reduce
the time taken to calculate a fitness value. Thus allowing us to take the life or death
decision more times.

3.4 Step 4: GP Parameters

The most important control parameter is the population size. It is impossible to
make general recommendations for setting optimal parameter values, as these de-
pend too much on the details of the application. However, genetic programming is
in practice robust, and it is likely that many different parameter values will work.
As a consequence, one need not typically spend a long time tuning GP for it to work
adequately. Some possible parameter settings are given in the tableau in Table 2.

3.5 Step 5: When to Stop and How to Decide Who is the Solution

The last step, is choosing when to stop the GP and how to decide which of the
thousands of programs that it has evolved to use. Typically we stop either when an
acceptable solution has been found or a maximum number of generations has been
reached. Typically, the single best-so-far individual is used. Although one might
wish to study additional individuals. E.g. to look for particularly short or elegant
solutions.

4 Guiding GP with a priori Knowledge

As described so far, GP is essentially knowledge-free: a powerful search mechanism
(evolution) is set free to search the space of all expressions which can be formed
from the function and terminal set. Contrast this with traditional methods, such as
linear regression, in which a very basic search mechanism is used to search a very
restricted set of expressions. Linear regression is often extended to more complex
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Table 2 Typical parameters for example genetic programming run

Objective: Record your problem here
Function set: For example: +, −, % (protected division), and ×; all operating on floats
Terminal set: For example: x, and constants chosen randomly between −5 and +5
Fitness: E.g. sum of absolute errors for a number of fitness cases.

The number of fitness cases may be limited by the amount of training data available
to evaluate the fitness of the evolved individuals. In other cases, e.g. 22-bit even
parity [52], there can be too much training data. Then the fitness function may use a
fraction of the training data. This does not necessarily have to be done manually as
there are a number of algorithms that dynamically change the test set as the GP runs
(see [53, Sect. 10.1]).

Selection: Tournament size 7
Initial pop: Ramped half-and-half (Section 2.2) depth range of 2–6
Parameters: As a rule one prefers to have the largest population size that your system can handle

gracefully. Normally the population size should be at least 500, and people often use
much larger populations. (However some prefer much smaller populations. Typically
these rely on mutation rather than crossover. and run many more generations.)
Traditionally, 90% of children are created by subtree crossover. However, the use of
a 50-50 mixture of crossover and a variety of mutations also appears to work well
[53, Chapter 5].
Some implementations do not require arbitrary limits of tree size. Even so, because
of bloat (the uncontrolled growth of program sizes during GP runs [53, Sect. 11.3]),
it is common to impose either a size or a depth limit or both (see Section 7.6).

Termination: 10–50 (The most productive search is usually performed in those early generations.)

forms (polynomial regression, log regression etc.), but this still leaves a vast gap
between the complete search of GP, and the very restricted parameter search of
classical regression.

In many applications, the user will know a great deal about the form of acceptable
solutions. It can be highly desirable to incorporate this knowledge into the search,
since it can save the user time, e.g. by enabling the user to exclude solutions which
will not be useful for some reason, or to impose a preference ordering on solutions.
Including the user’s background knowlege can also increase data efficiency, and so
allow more complex models to be learnt than could possibly be justified solely by
the available data. In some cases, such restriction may be essential, because it may
not be possible to provide meaningful fitness values for all the solutions a GP system
could evolve. Finally, GP search may be more efficient if the user’s knowledge can
be used to increase the concentration of solutions in the search space. This increase
may be non-trivial (in Example 3 below it is many orders of magnitude) but it is
nevertheless the least important reason.

In principle, a wide range of mechanisms could be used to restrict the search
space; in practice, most available systems use some form of grammar, generally an
extension of Context Free Grammars (CFG [16]). The constraints may range over a
wide range of complexity, for example:

1. Strongly-typed systems (Section 3.2.1, [93]), in which only type-consistent ex-
pressions can be evolved.
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2. Extended process models: in many domains, such as ecological modelling [32],
there is a known sub-model of processes which are certainly occurring (zoo-
plankton are eating phytoplankton, for example), but there may also be other
unknown processes occurring which require adaptation of this process model to
fit the data.

3. Dimensional consistency [98]. For example, in physics, equations must be con-
sistent in time (t), length (l) and mass (m) dimensions. For example integrating
Newton’s second equation of motion gives s = ut + 1

2 at2. s has dimensions of
length. u is a velocity and hence has dimension l/t. 1

2 is a pure number and so
has no dimensions. a is an acceleration and hence has dimension l/t2. Putting
these together, the right hand side gives l/t × t + lt−2 × t2 = l. Which is indeed
the same as the dimensions of the left hand side (l). Dimensionally inconsistent
formulae may fit the data well but they are nevertheless unacceptable.

4.1 Context Free Grammars in GP

CFG-based GP systems are the most widely used, and the simplest to explain, so
we take them as our base case. From the user’s perspective, a CFG-GP system is
very similar to a standard GP system. However instead of just providing a list of
function and terminal symbols2, the user must provide a grammar specifying the
ways in which they may be used. That is the only change really required; the user
does not have to do anything special with respect to the GP operators (selection,
crossover, mutation); the system takes care of those. For some systems, there may
be one further difference. In a grammar-based system, the fitness function can be
defined in the same way as for standard GP. However the grammar defines how to
build up more complex expressions from simpler ones. In many cases, it is easier to
define how to build up the meanings of the expressions (i.e. how to evaluate them) at
the same time – we call this ’providing a semantics for the grammar’. If this is done,
the fitness function definition may reduce to just a few lines of code, defining how
these values contribute to the fitness. We give a brief example in sub-section 4.1.1
below.

The grammar provides an additional way for the user to interact with the evolving
population. When the CFG-GP system is first run, it may not produce the results
the user desires. E.g. the evolved solution may not fit the data sufficiently well. Or
it may not be acceptable to the user for some other reason. However, the CFG-GP
runs may help the user see how the problem may be solved. Frequently, it is possible
to incorporate this insight into the grammar so as to achieve more useful results in

2 A word of caution: GP and grammar terminology were both developed before grammar-based
GP systems and use some of the same words. Unfortunately, when they came together in grammar-
based GP, some inconsistencies arose. Thus, in a CFG-GP system, a (GP) function symbol is a
terminal (in grammar terms), though it is not a member of the GP terminal set. Unfortunately there
does not seem to be any reasonable way to resolve this inconsistency.
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subsequent runs. This ability to interact with the solution space, through grammar
definitions, is one of the primary practical benefits of grammar-based GP systems.

Of course, the implementation of CFG-GP is a little more complex than sim-
ple tree GP, though this is generally not visible to the user. In GP, the individuals
of the evolutionary population are expression trees; in CFG-GP, the individuals are
parse trees from the grammar. I.e. CFG-GP individuals are paths through the user-
supplied grammar, starting from the grammar’s start symbol (the root of the parse
tree). Eventually the path will reach terminals of the grammar (i.e. symbols which
cannot be expanded further). The list of terminals (in the order they were encoun-
tered) is the output of the grammar. Typically, this list is an executable program
(written in the language specified by the user’s grammar). It is then run in order to
find the fitness of the CFG-GP individual.

Initialization, which requires ensuring grammar consistency while guaranteeing
to stay within the depth bound, is also a little complex; most systems use a variant of
the grow-tree algorithm described in Section 2.2. This is combined with a counting
mechanism, to ensure that it is always possible to complete a parse tree within the
remaining depth. Crossover and mutation are defined in ways that preserve grammar
consistency. Mutation replaces a subtree from the grammar with a random subtree.
It creates the random subtree in the same way as the initial population is created, ex-
cept that it starts from the location in the grammar occupied by the subtree it has just
removed, rather than at the root. Crossover is essentially like normal GP crossover,
except that crossover is only allowed between nodes with the same grammar non-
terminal. This ensures, as with mutation, that the offspring is consistent with the
grammar.

4.1.1 Example of CFG-GP: Strong Typing in GP

We use Strongly Typed GP [93] as a simple example of grammar use. A GP prob-
lem requiring two types, arithmetic and Boolean, might use a grammar such as in
Table 3. Thus the first “arithmetic” rule says that an arithmetic expression may con-
sist of the sum of two arithmetic expressions, or (| means or) the difference of two
arithmetic expressions, and so on. The second “interaction” rule says that a Boolean
expression may be formed by comparing two arithmetic expressions, with any of the
comparison operators <, = or >. Thus the grammar permits arbitrarily complex nest-
ing of arithmetic and Boolean expressions, but guarantees that they are combined in
meaningful ways.

In systems which also support semantic specification within the rules, a rule such
as A → A∗A would be expanded to include variables. These variables represent the
values generated by the rule (such as A(A0) → A(A1) ∗ A(A2)). Extra (semantic)
rules then give the values of those variables (such as val(A0) = val(A1) * val(A2)).
Of course, in simple cases like this, where the meaning of ’*’ is already built into
the language in which the GP system is written, the advantage is limited. In more
complex domains, or problems where other properties of the expression in addition



7. Genetic Programming 201

Table 3 An example grammar for Boolean and arithmetic types. The following six rules define
how non-terminal symbols A (the start symbol, representing arithmetic expressions) and B (repre-
senting Boolean expressions) can be expanded into 15 (grammar) terminals +−∗/ x 0 if(, , ) < =
> & ∨ ¬ true false.

Arithmetic Rules
A → A+A|A−A|A∗A|A/A
A → x | 0

Interaction Rules
A → if(B, A, A )
B → A < A|A = A|A > A

Boolean Rules
B → B&B|B∨B ¬B
B → true | false

to its value may be needed, semantic specification can greatly simplify coding the
problem.

4.2 Variants of Grammar-Based GP

4.2.1 More Powerful Grammars

Perhaps the most important issue is that the user’s knowledge may not be express-
ible in context-free form. This has led to a wide range of extended-grammar sys-
tems. They fall into two main classes: Context Sensitive Grammars (CSG) [116]
and attribute and other semantic grammars [68].

CSG permit more precise syntactic restrictions on the search space; for some
problem domains, this greater expressiveness is important for encoding the problem.

Attribute grammars extend the semantic specification we described in Sec-
tion 4.1.1. In some problems, the semantics may allow us to decide early in the
evaluation process, that the individual will have low fitness. For example, in a con-
straint problem, we may know that if a constraint is breached early in evaluating an
individual, the violation is only going to get worse as we continue with its evalua-
tion. Thus semantic constraints may be used to short-circuit fitness evaluation. But
even more intriguingly, they may be used to avoid creating poor individuals at all.
For example, when we come to cross over individuals, the semantic values attached
to the nodes in an individual might indicate that a crossover at a particular point
would automatically breach a constraint. A system based on semantic grammars
can then simply abort the crossover, never creating the potentially poor individual.
In general, if it is difficult to express the user’s knowledge about the search space in
a CFG, consider using either a CSG or a semantic grammar.

4.2.2 More Flexible Representations: GE and Tree Adjunct Grammars

The reduction in search space size provided by a CFG representation can be ben-
eficial for search; but it comes at a cost. The CFG reduces not only the number
of formulae that can be represented in the search space, but also the links between
them. Paradoxically, in some cases this sparser search space might be more difficult
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for evolution to search than the original search space. Two approaches have been
introduced to avoid this problem. In the first [95, 28], the CFG representation is
linearized: instead of representing the individuals directly as grammar parse trees,
a coding scheme represents them as linear strings. This approach has led to one of
the most widely used GP systems, known as Grammatical Evolution (GE) [28]. The
other [48] uses an alternative representation from natural language study, Tree Ad-
junct Grammars (TAGs [70]); unlike CFG trees, any rooted subtree of a TAG tree is
syntactically and semantically meaningful, so that there is much more flexibility in
transforming one TAG tree to another.

In both cases, the syntactic flexibility provides an additional benefit: it is rel-
atively easy to implement new operators (often analogous to biological processes
that occur in DNA evolution) which may simplify search in particular domains.
Practically, this means that where search with standard-GP and CFG-GP systems
has stagnated, it may be worth investigating GE or TAGs. They may be able to solve
problems which are beyond the reach of more classical GP systems.

4.2.3 Grammar Learning

A number of more experimental grammar-based systems [99, 59, 9] refine the gram-
mar describing the search space as search proceeds. (These systems are usually
based on probabilistic grammars: each grammar rule option has a probability at-
tached to it, indicating the probability that it will be used in generating an individ-
ual.) This has two consequences. It can make for faster search. But more impor-
tantly, it means that the grammar at the end of the search space may give an explicit
representation of the space of solutions (rather than the implicit representation given
by the best individuals in a final GP population).

This explicit representation may be of value in its own right, especially in appli-
cations such as scientific research, where the desired outcome is better understand-
ing of the processes in the domain, rather than simply predictive models. The use of
probabilistic grammars means that the understanding may be quite sensitive, going
beyond just the content of the grammar rules. In some parts of the grammar, the
probabilities may converge close to either 1.0 or 0.0, indicating that that aspect of
the grammar is important in defining a solution to the problem; in others, the prob-
abilities may be more widely spread, indicating that that aspect of the grammar is
not particularly important to the problem solution.

5 Expanding the Search Space in Genetic Programming

In Section 4 we described some of the ways in which you can give the evolutionary
process a helping hand. For example, by providing domain-specific data types or by
constraining programs to conform to an appropriate grammar. But, in the context of
a particular problem or a particular set of program representations, we don’t nec-
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essarily know how to give evolution a helping hand. In which case it can be useful
to expose more, rather than less, of the system’s decisions about data and control
architecture to evolution. Doing so will often incur new costs, some from the added
complexity of the system and some from the expansion of the space of programs
which GP is searching [86]. However in many cases these costs can be justified by
improvements to problem solving power or scalability.

We will discuss some of the ways in which researchers have expanded the
purview of the evolutionary process in GP. In Section 5.1, we first examine the
evolution of data structures and the ways in which they can be accessed and ma-
nipulated by evolving programs. We then turn to program and control structure.
Section 5.2 describes how GP can be used to evolve programs that use subroutines,
macros, and more exotic techniques for controlling the flow of execution. The con-
cept of “development” (here development means the evolved programs build other
structures which then produce the desired behaviors) provides for even more evolu-
tionary flexibility (Section 5.3). The last part of this section (5.4) describes mecha-
nisms by means of which the evolutionary processes themselves can be allowed to
evolve.

5.1 Evolving Data Structures and their Use

The earliest and simplest GP applications evolved programs that used single, simple
data types. The use of multiple—but still simple—data types has been helped in a
variety of ways, for example by the use of strong typing (see Section 4 and [93]).
An important technique for evolving programs that use more complex data types is
indexed memory, which was first presented by Teller [110]. An indexed memory is
simply an array of variables of some simple type, accessed using integer indices.
Teller showed that by including indexed memory read and write functions in
the GP function one can evolve programs that use memory in relatively complex
and useful ways. He also showed that the inclusion of indexed memory was useful
in expanding the space of programs over which GP can search. E.g. it can be shown
to include programs for all Turing computable functions.

Indexed memory can be used by evolving programs to implement a wide variety
of more complex data structures, but modern software engineering practice suggests
that it is even more useful for human programmers—and hence possibly also for
GP—to have access to higher-level data structures. Langdon has investigated the
extent to which GP can evolve, and subsequently use, more abstract data structures
including stacks, queues and lists [84]. He showed that GP can indeed evolve and
subsequently solve problems using such data structures, and that GP with abstract
data types can outperform GP with indexed memory on several problems, including
a context free language recognition problem and the problem of implementing a
simple four function calculator.

Alternative program representations provide additional opportunities for the evo-
lution and use of data structures. For example, approaches based on polymorphic
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functional representations, initially developed by Yu using Haskell [121], have re-
cently been extended by Binard and Felty, using a version of the λ -calculus to which
they have added an operation of abstraction on types [8]. They showed how their sys-
tem could evolve and use abstractions for Boolean and list data types which were
not explicitly present in their initial environments.

To some extent, the ways in which data types and program syntax are interre-
lated determine the ways in which GP can discover and use complex data struc-
tures. Strongly typed GP and polymorphic GP provide two approaches but they do
not exhaust the possibilities. For example, in the Push programming language all
communication between instructions is accomplished via typed global data stacks.
It is not specified by placing the instructions next to each other, as in most pro-
gramming languages. This decouples an evolving program’s type structures from
its control structures and thereby permits greater flexibility (for good or ill) in the
expression of programs that manipulate multiple data types [107, 45].

5.2 Evolving Program and Control Structure

Most interesting programs that are written by humans involve the use of control
structures not available in the simplest GP systems. These include mechanisms that
support iteration, recursion, and the definition and use of reusable code modules.
As with data structures, GP researchers have developed a range of techniques for
evolving programs that evolve and use these powerful control abstractions.

Limited forms of iteration are relatively easy to handle through the use of primi-
tive functions that simply repeat the execution of a subexpression some specified
number of times. This was demonstrated in Koza’s first book using do until
structures [79]. A variety of more sophisticated techniques, such as the “restricted
iteration creation” operations of Koza and Andre [81], have been developed to help
GP systems incorporate iteration into evolving programs. Both iteration and recur-
sion present challenges with respect to nontermination; this is generally handled
either by imposing execution limits or by using primitives that are naturally self-
limiting, such as the foldr function in Haskell [118]. While the search space of
recursive programs appears to be rugged, and several early attempts to evolve recur-
sive programs produced negative results (e.g. [115]), more recent research has been
increasingly successful (e.g. [12, 118, 117, 119, 45, 1]).

Modular structures can also be incorporated into evolving programs in several
ways. A common approach, pioneered by Koza [80], is to simultaneously evolve a
“main program” (sometimes called a “result producing branch”) and one or more
“automatically defined function” (ADF) branches that can be called by the main
program and possibly by each other (usually with restrictions to prevent nontermi-
nating recursion). This approach has been shown to provide dramatic advantages in
certain problem areas with exploitable regularities. In the original ADF framework
the number of ADFs and the numbers of arguments that they take are specified man-
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ually, but the subsequent development of “architecture altering operations” brought
these decisions, as well, under evolutionary control [38].

A variety of other approaches to the evolution and use of modules have also been
developed. For example, in “evolutionary module acquisition” the code for modules
is not evolved in separate branches but rather is extracted from the main programs
of relatively successful individuals in the population [4, 74, 114]. “Automatically
defined macros” allow GP to evolve not only function modules but also control
structure modules that execute code conditionally or repeatedly [102]. And several
researchers have shown how GP can be used to evolve object-oriented programs in
which functionality is modularized through the use of classes and objects [14, 87].

More radical forms of control structure evolution have also been explored. For
example, the inclusion of combinators (higher-order functions studied in the theory
of functional programming languages) in the function set can allow GP to explore
a large space of control architectures while imposing minimal constraints on pro-
gram syntax [45, 13]. Perhaps the greatest flexibility—and therefore potentially the
most intractable search space— is provided by the Push programming language, in
which programs can contain arbitrary code-manipulation instructions and thereby
transform their own code in arbitrary ways during execution [107, 45]. All of these
innovations have been demonstrated to be useful in certain circumstances, but fur-
ther study is required to determine exactly when.

5.3 Evolving Development

In nature an organism’s genes do not interact directly with its environment; rather,
they direct the construction of proteins which form the organism’s body. It is that
body—the phenotype—that interacts with the organism’s environment.

Several GP techniques have been inspired by the biological distinction between
genotype and phenotype, and by the process, called ontogeny, by which the geno-
type leads to the phenotype (e.g. [6, 69, 108, 54]). In the most common approach,
developmental GP, the programs produced by GP are structure-building programs,
and it is the structures that are built by these programs, rather than the programs
themselves, that are tested for fitness in the problem environment.

Typically one begins the developmental process with an “embryo” that consists
of a minimal structure of the appropriate kind. The functions in the GP function set
then, when executed, augment this embryo. For example, if the desired structure is
a neural network then the embryo might consist of a single input node connected to
a single output node and the functions in the GP function set might add additional
nodes and connections [65]. Or if the desired structure is an electrical circuit then
the embryo might consist of a voltage source connected to a load resistance and the
functions in the GP function set might add components and wires [38].

The developmental approach has been successful in a wide range of applica-
tion areas, ranging from the evolution of control systems [40] to the evolution of
quantum circuits [103]. Part of its appeal comes from the way that it facilitates the
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application of GP to the evolution of structures that are not themselves best viewed
as computer programs; developmental GP still evolves computer programs, but the
programs build (develop) structures that might be quite different in nature from
computer programs. Other attractions of developmental GP may derive from ways
in which it affects the GP search process. For example, one might expect mutation
to have a different range of effects when applied early in a developmental process
than when applied to the fully developed phenotype (as is done in standard GP).
Whether this will be the case, and whether a developmental approach will therefore
help or hinder, will depend on the specific problem and program representations.
In biology, however, evolution often proceeds through adjustments to developmen-
tal programs and timing [64], and there is recent evidence that it can also lead to
desirable properties such as robustness and self-repair in GP [91].

When the phenotype is not a computer program, developmental GP makes it
easier to apply GP by making it easier to choose the function set. Because of the
freedom that one has in designing a structure-building function set, developmental
GP also allows you to experiment with different genotype-to-phenotype mappings,
some of which may be more successful than others.

5.4 Evolving Evolutionary Mechanisms

The most radical expansions of the GP search space involve evolutionary control of
the evolutionary process itself. There is a long history of research on self-adaptive
mechanisms in evolutionary computation (e.g. see [2, 90]). In most areas outside
of GP this means that numerical parameters of the evolutionary algorithm—for ex-
ample mutation rates—are themselves encoded in the evolving genomes and are
thereby subject to variation and selection. Similar strategies can also be applied to
GP, but because GP involves the evolution of programs it is natural to ask whether a
GP process can also usefully evolve its own utility programs—for example its utility
program for performing mutation—and other aspects of the overall evolutionary al-
gorithm along with the main problem-solving programs that are its primary targets.

Several approaches to self-adaptation in GP have been explored. These include
several “meta-GP” approaches, in which programs implementing genetic operators
(like mutation and crossover) co-evolve with problem-solving programs in separate
populations [101, 111, 23]. In “autoconstructive evolution” these evolving auxil-
iary functions are encoded in the problem-solving programs themselves; much as
in biology. Code for reproduction (mate selection, mutation, recombination, etc.)
can be intermingled with, and can interact with, code for survival (problem-solving
performance) in an individual’s genome [107].

The attractions of these techniques, which allow a GP system to evolve itself as
it runs, stem from the possibility that the resulting systems will be adapted to their
problem environments and therefore more effective than hand-designed systems. As
with the other expansions to the GP search space discussed above, however, there
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are significant associated costs and many open research questions about how and
when these costs can be overcome or justified.

6 Applications

There are more than 5000 recorded uses of GP. These include an enormous number
of applications. It is impossible to list them all. However we shall start with a discus-
sion of the general kinds of problems where GP has proved successful (Section 6.1)
and the important area of symbolic regression (Section 6.2). Next come sections
which review the main application areas of GP: Image and Signal processing (6.3)
Finance (6.4) Industrial Process Control (6.5) Medicine and Bioinformatics (6.6)
Hyper-heuristics (6.7) Entertainment and Computer Games (6.8) and Art (6.9). We
conclude with a description of some of the human-competitive results automatically
generated by GP (Section 6.10).

6.1 Where GP has Done Well

If one or more of the following apply, GP may be suitable.

• The interrelationships among the relevant variables are unknown or poorly un-
derstood. GP can help discover which variables and operations are important;
provide novel solutions to individual problems; unveil unexpected relationships
among variables; and, sometimes GP can discover new concepts. These might
then be taken and applied as in a conventional way.

• Finding the size and shape of the ultimate solution is a major part of the problem.
• Many training data are available in computer-readable form.
• There are good simulators to test the performance of tentative solutions to a prob-

lem, but poor methods to directly obtain good solutions.
In many areas there are tools to evaluate a completed design. (E.g. how far will
this bridge bend under the forecast load.) Such tools solve the direct problem of
working out the behaviour of a solution. However, the knowledge held within
them cannot be easily used to solve the inverse problem of designing an artifact
from its requirements. GP can exploit simulators and analysis tools and “data-
mine” them to solve the inverse problem automatically.

• Conventional mathematical analysis cannot give analytic solutions.
• An approximate solution is acceptable.
• Small improvements are highly prized. Even in mature applications GP can

sometimes discover small delta improvements, which may be very valuable.

Two examples are NASA’s work on satellite radio aerial design [35] and Spec-
tor’s evolution of new quantum computing algorithms that out-performed all pre-
vious approaches [43, 44]. Both of these domains are complex, do not have ana-
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lytic solutions, but good simulators existed which were used to define the fitness of
evolved solutions. In other words, people didn’t know how to solve the problems
but they could (automatically) recognise a good solution when they saw one. In
both cases GP discovered highly successful and unexpected designs. Also the key
component of the evolved quantum algorithm was extracted and applied elsewhere
[105].

6.2 Curve Fitting, Data Modelling and Symbolic Regression

There are many very good tools which will fit curves to data, however typically
they require you to specify the type of curve you want fitted. E.g. a straight line, an
exponential, a Gaussian distribution. Where GP can help is where the form of the
curve or underlying model is unknown. In fact the main problem can be discovering
the form of the solution or which data to use. This is generally known as symbolic
regression.

By regression we mean finding the coefficients (e.g. slope and y-intercept) of
a predefined function such that the function best fits some data. However until a
good fit is found the experimenter has to keep trying different functions by hand
until a good model for the data is found. Sometimes, even expert users have strong
biases when choosing functions to fit. For example, in many applications there is a
tradition of using linear models, even when the data might be better fit by a more
complex model. Since GP does not make this assumption, it is well suited to this
sort of discovery task.

For instance, GP can evolve soft sensors [30]. The idea is to evolve a function
which estimates what a real sensor would measure, based on data from other actual
sensors in the system. (E.g. where placing an actual sensor would be expensive.)
Experimental data (e.g. from industrial plant) typically come in large tables where
numerous quantities are reported. Usually we know which variable we want to pre-
dict (e.g., the soft sensor value), and which other quantities we can use to make
the prediction (e.g., the real sensor values). If this is not known, then experimenters
must decide which are going to be their dependent variables before applying GP.
Sometimes there are hundreds or even thousands of variables. (In Bioinformatics the
number of variables may approach a million.) It is well known that in these cases the
efficiency and effectiveness of any machine learning or program induction method,
including GP, can dramatically drop as most of the variables are typically redundant
or irrelevant. This forces the system to waste considerable energy on isolating the
key features. To avoid this, it is necessary to perform some form of feature selection,
i.e., we need to decide which independent variables to keep and which to leave out.
There are many techniques to do this, its even possible that GP itself can be used to
do feature selection [83].

There are problems where more than one output (prediction) is required. For
example, Table 8 contains data collected from a robot. The left hand side gives
four control variables, whilst the right hand side contains six dependent variables
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measured after the robot obeyed the commands. The Elvis robot is shown in Figure 9
during the acquisition of a data sample. The roles of the independent and dependent
variables are swapped when GP is given the task of controlling the arm given data
from the robot’s eyes.

Arm actuator Left eye Right eye
x y size x y size

-376 -626 1000 -360 44 10 29 -9 12 25
-372 -622 1000 -380 43 7 29 -9 12 29
-377 -627 899 -359 43 9 33 -20 14 26
-385 -635 799 -319 38 16 27 -17 22 30
-393 -643 699 -279 36 24 26 -21 25 20
-401 -651 599 -239 32 32 25 -26 28 18
-409 -659 500 -200 32 35 24 -27 31 19
-417 -667 399 -159 31 41 17 -28 36 13
-425 -675 299 -119 30 45 25 -27 39 8

...
...

...
...

...
...

...
...

...
...

continues for a total of 691 lines

Fig. 8 Samples showing the size and loca-
tion of Elvis’s finger tip as apparent to his
two eyes, given various right arm actuator set
points. GP inverts the mapping and evolves 4
functions which take data collected by both
cameras (which show a target) and output in-
structions to the four arm motors so that his
arm moves to the target.

Fig. 9 Elvis robot sitting with his right hand
outstretched. The apparent position and size of
a bright red laser attached to his finger tip is
recorded. The data are then used to train a GP to
move the robot’s arm to a spot in three dimensions
using only his eyes.

There are several GP techniques which might be used to deal with applications
where multiple outputs are required. E.g. GP individuals made of multiple trees, lin-
ear GP with multiple output registers, graph-based GP with multiple output nodes,
and a single GP tree with primitives operating on vectors.

After a suitable data set has been assembled, the GP terminal set (cf. Section 3.1)
must be defined. Since the independent variables will become the evolved code’s
inputs, they must be included in the terminal set. Typically some constants are also
included. Next is the function set (cf. Section 3.2). It is often sufficient to give GP
the standard four arithmetical operations (+−×%) and an if. The terminal and
function sets are the raw components from which GP tries to build its solutions.

In virtually all symbolic regression applications the fitness function (cf. Sec-
tion 3.3) must measure how close the outputs produced by each program are to
the values of the dependent variables, when the corresponding values of the inde-
pendent ones are used as inputs for the program. So, symbolic regression fitness
functions tend to include summing the errors measured for each record in the data
set. Usually either the absolute difference or the square of the error is used.
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6.3 Image and Signal Processing

Ford were among the first to consider using GP for industrial signal processing
[66]. They evolved algorithms for pre-processing electronic motor vehicle signals
for possible use in engine monitoring and control.

Several applications of GP for image processing have been for military uses. For
example, QinetiQ evolved programs to pick out ships using SAR radar from space
satellites and to locate ground vehicles from airborne photo reconnaissance. They
also used GP to process surveillance data for civilian purposes, such as predicting
motorway traffic jams from subsurface traffic speed measurements [67]. Satellite
images can also be used for environmental studies and for prospecting for valuable
minerals [24].

Zhang has been particularly active at evolving programs with GP to visually
classify objects (such as human faces) [122].

To some extent, extracting text from images (OCR) can be done fairly reliably,
and the accuracy rate on well formed letters and digits is close to 100%. How-
ever, many interesting cases remain [17] such as Arabic [76] and oriental languages,
handwriting [25, 112, 94] (such as the MNIST examples of handwritten digits from
IRS tax returns) and musical scores [46].

The scope for applications of GP to image and signal processing is almost un-
bounded. A promising area is medical imaging. GP image techniques can also be
used with sonar signals [89]. Off-line work on images includes security and veri-
fication. For example, [33] have used GP to detect image watermarks which have
been tampered with.

6.4 Financial Trading, Time Series Prediction and
Economic Modelling

GP is very widely used in these areas. It is impossible to describe all its applications
instead we will just hint at a few. Chen has written more than 60 papers on using
GP in finance and economics. He has investigated modelling of agents in stock mar-
kets [15], game theory, evolving trading rules for the S&P 500 [120] and forecasting
the Hong Kong Hang-Seng index.

The efficient markets hypothesis is a tenet of economics. It is founded on the
idea that everyone in a market has “perfect information” and acts “rationally”. If
the efficient markets hypothesis held, then everyone would see the same value for
items in the market and so agree the same price. Without price differentials, there
would be no money to be made from the market itself. Whether it is trading potatoes
in northern France or dollars for yen, it is clear that traders are not all equal and
considerable doubt has been cast on the efficient markets hypothesis. So, people
continue to play the stock market. Game theory has been a standard tool used by
economists to try to understand markets but is often supplemented by simulations
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with both human and computerised agents. GP is increasingly being used as part of
these simulations of social systems.

The US Federal Reserve Bank used GP to study intra-day technical trading on the
foreign exchange markets to suggest the market is “efficient” and found no evidence
of excess returns [26]. This negative result was criticised in [37]. Later work by
Neely et at. suggested that data after 1995 are consistent with Lo’s adaptive markets
hypothesis rather than the efficient markets hypothesis [27]. GP and computer tools
are being used in a novel data-driven approach to try and resolve issues which were
previously a matter of dogma.

From a more pragmatic viewpoint, Kaboudan shows GP can forecast interna-
tional currency exchange rates [71], stocks and stock returns, house prices and con-
sumption of natural gas. Tsang and his co-workers continue to apply GP to a variety
of financial arenas, including: betting [29], forecasting stock prices, studying mar-
kets, approximating Nash equilibrium in game theory and arbitrage. Dempster and
HSBC also use GP in foreign exchange trading [47]. Pillay has used GP in social
studies and teaching aids in education, e.g. [96].

6.5 Industrial Process Control

Kordon and his coworkers in Dow Chemical have been very active in applying GP
to industrial process control. In [77] Kordon describes where industrial GP stands
now and how it will progress. Another active collaboration is that of Kovacic and
Balic, who used GP in the computer numerical control of industrial milling and
cutting machinery [78]. The partnership of Deschaine and Francone is most famous
for their use of Discipulus for detecting bomb fragments and unexploded ordinance
[22]. Genetic programming has also been used in the food processing industry. For
example Barriere et al. modelled the ripening of camembert [50].

Lewin, Dassau and Grosman applied GP to the control of an integrated circuit
fabrication plant [31]. GP has also been used to identify the state of a plant to be
controlled (in order to decide which of various alternative control laws to apply).
For example, Fleming’s group in Sheffield used multi-objective GP [42] to reduce
the cost of running aircraft jet engines.

6.6 Medicine, Biology and Bioinformatics

Kell and his colleagues in Aberystwyth have had great success in applying GP
widely in bioinformatics [72]. Another very active medical research group is that
of Moore and his colleagues at Vanderbilt [34]. Many medical datasets are very
wide. Some have many thousands of inputs, but relatively few cases. (For exam-
ple, a typical GeneChip dataset will have tens of thousands of measurements per
patient but may cover less than a hundred people [83]). Such wide datasets tend to
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be avoided by traditional statistical techniques, where often the first reaction is to
try and remove as many attributes as possible. Discarding whole columns of train-
ing data is often called “feature selection”. However, as has been repeatedly shown,
e.g. by the Aberystwyth and Vanderbilt groups, GP can sometimes be successfully
applied directly to very wide datasets.

Computational chemistry is widely used in the drug industry. Some properties of
simple molecules can be calculated. However, the interactions between chemicals
which might be used as drugs and medicinal targets within the body are beyond
exact calculation. Therefore, there is great interest in the pharmaceutical industry
in approximate in silico models which attempt to predict either favourable or ad-
verse interactions between proto-drugs and biochemical molecules. Since these are
computational models, they can be applied very cheaply in advance of the manu-
facturing of chemicals, to decide which of the myriad of chemicals might be worth
further study. Potentially, such models can make a huge impact both in terms of
money and time without being anywhere near 100% correct. Machine learning and
GP have both been tried. GP approaches include [7, 57].

6.7 GP to Create Searchers and Solvers – Hyper-heuristics

A heuristic can be considered to be a rule-of-thumb or “educated guess” that re-
duces the search required to find a solution. A meta-heuristic (such as a genetic
algorithm) is a non-problem specific heuristic. I.e. a rule-of-thumb which can be
tried on a range of problems. A hyper-heuristic is a heuristic to choose other heuris-
tics. The difference between meta-heuristics and hyper-heuristics is that the meta-
heuristic operates directly on the problem search space with the goal of finding
optimal or near-optimal solutions. Hyper-heuristic operate on the heuristics search
space (which consists of the heuristics used to solve the target problem). Their aim
is to find good heuristics for a problem, for a certain class of instances of a problem
or even for a particular instance of the problem.

GP has been very successfully used as a hyperheuristic. For example, GP has
evolved competitive SAT solvers [61], state-of-the-art bin packing algorithms, par-
ticle swarm optimisers, evolutionary algorithms and travelling salesman problem
solvers [73].

6.8 Entertainment and Computer Games

Today, a major usage of computers is interactive games. There has been some work
on incorporating artificial intelligence into mainstream commercial games. Natu-
rally the software owners are not keen on explaining exactly how much AI the games
contain or giving away sensitive information on how they use AI. However pub-
lished work on GP and games includes: Othello, Poker, Backgammon [5], robotics,
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including robotic football, Corewares, Ms Pac-Man, radio controlled model car rac-
ing, Draughts, and Chess. Funes [62] reports experiments which attracted thousands
of people via the Internet who were entertained by evolved Tron players.

6.9 The Arts

Computers have long been used to create purely aesthetic artifacts. Much of today’s
computer art tends to ape traditional drawing and painting, producing static pictures
on a computer monitor. However, the immediate advantage of the computer screen
— movement — can also be exploited. In both cases evolutionary computation can,
and has been, exploited. Indeed, with evolution’s capacity for unlimited variation,
evolutionary computation offers the artist the scope to produce ever changing works.
The use of GP in computer art can be traced back at least to the work of Karl Sims
and William Latham. Christian Jacob’s work provides many examples. Many recent
techniques are described in [88].

Evolutionary music has been dominated by Jazz [104]. which is not to everyone’s
taste. Most approaches to evolving music have made at least some use of interactive
evolution [109] in which the fitness of programs is provided by users, often via the
Internet. The limitation is almost always finding enough people willing to partici-
pate [82]. It is surprising given their monetary value that so far little use has been
made of GP to generate novel cell phone ring tones.

One of the sorrows of AI is that as soon as it works it stops being AI and becomes
computer engineering. For example, the use of computer generated images has re-
cently become cost effective and is widely used in Hollywood. One of the standard
state-of-the-art techniques is the use of Reynold’s swarming “boids” [100] to cre-
ate animations of large numbers of rapidly moving animals. This was first used in
Cliffhanger (1993) to animate a cloud of bats. Its use is now commonplace (herds
of wildebeest, schooling fish, and even large crowds of people). In 1997 Craig was
awarded an Oscar.

6.10 Human Competitive Results: The Humies

A particularly informative measure of the power of a problem-solving technology is
its track record in solving problems that could only be solved previously by means
of human intelligence and ingenuity. In order to highlight such achievements by ge-
netic and evolutionary computation an annual competition has been held since 2004
at the Genetic and Evolutionary Computation Conference (GECCO), organized by
the Association for Computing Machinery’s Special Interest Group on Genetic and
Evolutionary Computation (ACM SIGEVO). This competition, known as the “Hu-
mies,” awards substantial cash prizes to results deemed “human competitive” as
assessed by objective criteria such as patents and publications [39].
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Fig. 10 Award winning human-competitive antenna design produced by GP.

25 gold, silver, and bronze “medals” with cash prizes have been awarded in the
Humies competition, totaling $45,700. Of these, 13 of the medals (4 gold, 7 silver,
2 bronze) have been awarded to teams using GP (as opposed to other genetic and
evolutionary computation methods), in application areas including antenna design,
quantum circuit design, mechanical engineering, optical system design, game strat-
egy design, computer vision, and pure mathematics. Figure 10 shows a gold medal
winning result from 2004, an antenna that was designed using GP for NASA’s Space
Technology 5 mission [35]. Figure 11 shows a silver medal winning result from
2005, a lens system that duplicates the functionality of the patented Nagler lens
system but with a novel topology [41].

7 Trouble Shooting GP

The evolutionary dynamics are often very complex so it often difficult to trou-
bleshoot evolutionary computation system. On the other hand they can be very
resilient and even GP systems with horrendous bugs can evolve valid solutions.
Nonetheless, we suggest some general issues to keep in mind. To a large extent the
advice in [75], [79] and [84, Chapter 9] also remains sound.
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Fig. 11 Award winning human-competitive lens designed by GP [41, Fig. 12].

7.1 Can you Trust your Results?

Here we have an interesting divergence between universities and life. Are your re-
sults about your GP system? (E.g. is it better than a GP without mutation?) Or about
your application? (E.g. have you evolved a better image filter?) [53] describes how
to overcome the stochastic nature of evolution and what it means to be better.

In complex applications with powerful techniques, like GP, the danger of learn-
ing the training data and so creating a solution which fits it too faithfully is ever
present [18]. The classic example is where a neural network was asked to find tanks.
It was presented with pictures of fields containing tanks and the same fields without
tanks. After prolonged training, it could differentiate between the two. However the
final system failed to find tanks. Eventually the problem was traced to the training
images. Since tanks are heavy all the pictures with tanks in them were taken on one
day, the tanks were moved, and some time later another set of pictures were taken.
The ANN had cheated, it had learnt (using brightness) to distinquish pictures taken
early in the day from those taken later and totally ignored the presence or absence
of the tanks. While it humerous and is easy to see after the fact, you must ensure the
machine learning does not play this joke on you.

7.2 Study your Populations

If you’re not getting your desired results, take the time to dig around in the pop-
ulations and see what is actually being evolved. For example, if you included a
particular input or function, is it included in the better individuals? Are they using
it in sensible ways? (Sometimes the tree may include an input but it has no or lit-
tle impact on the program’s behaviour. E.g. because it is multiplied by zero.) Is the
primitive being multiply used? Similarly, if you’re using grammatical evolution; are
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your evolved individuals using your grammar as you expected? Or is the grammar
biasing the system in an undesirable or an unexpected way?

Remember GP is doing genetic search. GP increases the numbers of genes (i.e.
terminals and functions) which appear in above average fitness individuals. You
might keep a count of the number of times important primitives occur in the popu-
lation. Mostly gene numbers vary randomly according to how lucky they are. How-
ever look out for primitives that become extinct or (if using mutation) reduce to low
background levels. If this happens, it suggests that the fitness function is driving the
current GP population in an unintended direction.

Is the distribution of fitness values of members of the population (particularly that
of the better programs) dominated by a few values with large gaps between them?
This suggests jumping these gaps may be hard. It also suggests that the next im-
provement may also be separated from the current best. So finding the next improved
solution will require jumping a large gap and so be difficult. Perhaps changing your
fitness function to be more continuous will improve performance considerably.

7.3 Studying your Programs

A major advantage of GP is you create visible programs. You can see how they work.
You can explain how they work to your customers. When presenting GP results, in-
clude a slide of the evolved program. The dot package (http://www.graphviz.org/)
is good a starting point for nicely presented graphs. GP trees can be automatically
converted to dot (http://www.cs.ucl.ac.uk/staff/W.Langdon/lisp2dot.html).

There are methods to automatically simplify expressions (e.g., in Mathematica
and Emacs). However, simply things like removing excess significant digits and
combining constant terms can make your solution more intelligible. After cleaning
up the answer, make sure it still works.

In some cases the details of the trees (e.g., the particular nodes) are less important
than the general size and shape. In [36], Daida describes a way to visualise the
size and shape of either individual trees or an entire population, cf. Figure 12. (A
Mathematica implementation is available via http://library.wolfram.com/infocenter/
MathSource/5163/.)

7.4 Encourage Diversity

If GP is to benefit from using a population: the population must be diverse. (Oth-
erwise it might be much more efficient to use a hill climbing or other single point
search like simulated annealing.) Sections 7.2 and 7.3 have described measuring
its diversity in terms of its genes (i.e. functions and terminals) and the size and
shape of the programs. You can also consider the variation in the programs’ be-
haviour (c.f., for Boolean problems, [49]). Studying behaviour, as opposed to ge-
netic makeup, avoids the problem that GP populations often bloat [53, Sect. 11.3]. In

http://www.graphviz.org/
http://www.cs.ucl.ac.uk/staff/W.Langdon/lisp2dot.html
http://library.wolfram.com/infocenter/MathSource/5163/
http://library.wolfram.com/infocenter/MathSource/5163/
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Fig. 12 The size and shape of 1,000 individuals in the final generation of runs using a depth limit
of 50 (on the left) and a size limit of 600 (on the right). The inner circle is at depth 50, and the
outer circle is at depth 100. These plots are from [19].

bloated populations syntactically (i.e. genetically) evolved programs appear differ-
ent but the difference is in unused code. However studying the programs’ behaviours
will show if the population’s phenotypes have converged excessively.

Since mutation and crossover often produce diverse but low fitness individuals
you could restrict studies of population diversity to just the subset of the population
which is selected to have children.

If you suspect the population has converged excessively you could:

• Not use the reproduction operator.
• Add one or more mutation operators.
• Use a weaker selection mechanism. E.g. reduce the tournament size.
• If you are using the “steady state” approach. I.e. you add new programs to the

population immediately, rather than waiting until a whole new population has
been created. You could choose who to overwrite at random. (Often people kill
the worse member of the population and replace him with the new child. This is
fine but tends to increase the convergence of the population.) You might want to
protect the best member of the population to ensure he is not deleted.

• Use a generational population model instead of a steady-state model.
• The standard population is panmictic. This means there are no restrictions on

which individual mates with and favourable genetic innovations rapidly spread
through and may take over the whole population. In contrast a large population
may be split into semi-isolated demes [53, Sect. 10.5] which keeps diversity high
by slowing the spread of improvements [106, 84].
Demes are often used in conjunction with parallel hardware. The speed at which
innovations spread is controlled both by the number of emigrants and how the
demes are interconnected. Both all-to-all and toroidal topologies are common.
They have very short paths between demes. Arranging demes in a ring gives
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a longer convergence time. Typically many individuals (say 2%) are transfered
between demes each generation. Over Biological timescales, such a high immi-
gration rate is sufficient to prevent a converged population diverging into separate
species. However GP is typically not run for so many generations and, from an
engineering standpoint, one has to trade off rapid take up of good solutions versus
searching different locations.

• Use fitness sharing or even multi-objective approaches to encourage the forma-
tion of many fitness niches.

7.5 Approximate Solutions are Better than No Solution

When GP starts, typically, it starts from nowhere, i.e. well behind the state of the art.
For the initial population to evolve, it must contain some programs with an “edge”.
With some advantage, even if slight, over the rest of the population. You must de-
sign your selection and fitness function to amplify this. A typical fitness function
gives a continuous measure of how far a program is from your requirements. The
final program will be a descendent of those you select at the beginning so the fitness
function must not only prefer better than random but also reward approximate solu-
tion to the whole problem which may be refined into a complete solution. Or rather,
an approximate solution to the whole problem.

This is true throughout the run. At every generation the fitness function must seek
out approximate solutions from which better ones can be evolved. Even standing still
may not be enough. Nature tends to the easy thing. In GP this often corresponds to
finding new programs which have the same fitness as their parents. Unfortunately
within a few generations, they can evolve to become very resistant to change and
further progress to your goal (as opposed to theirs) becomes very hard.

Consider (just for illustrative purposes) a problem with just five test cases, four
of which are fairly easy and consequently less important, with the fifth being crucial
and quite difficult. So the population may contain individuals that can do the four
easier tasks, but are unable to make the jump to the fifth. There are several things you
could try: 1) weight the hard task more heavily or 2) use a multi-objective approach.
However a more fundamental and probably more successful approach is to redesign
how you sort the programs. E.g.: 3) divide the task up in some way into sub-tasks,
4) provide more tasks, or 5) change it from being a binary condition (meaning that
an individual does or does not succeed on the fifth task) to a continuous condition,
so that an individual GP program can partially succeeds on the fifth task to a greater
or less extent. The idea is to create a smoother gradient for the evolutionary process
to follow.
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7.6 Control Bloat

If you are running out of memory or your execution times seem inordinately long,
look the size of your evolved expressions. Often they will be growing over time.
It is usually neccessary to provide some form of bloat control, cf. [53, Sect. 11.3].
Controlling bloat is also important if one’s goal is to find a comprehensible model,
since in practice these must be small. A large model will not only be difficult to
understand but also may over-fit the training data [55].

7.7 Convince your Customers

For your work to make an impact it must be presented in a form that can convince
others of the validity of its results and conclusions. This might include: a pitch
within a corporation seeking continued financial support for a project, the submis-
sion of a research paper to a journal or the presentation of a GP-based product to
potential customers. [53] contains suggestions on improving written and verbal pre-
sentation of artificial evolution experiments. Whilst [56, e.g. Chapter 14] has many
suggestions about getting your work accepted (and paid for) by your customers.

The burden of proof is on the users of GP. It is important to use the customer’s
language. If the fact that GP discovered a particular chemical is important in a re-
action or drug design, you should make this stand out during the presentation. A
great advantage of GP over many AI techniques in that its results are often sim-
ple equations. Ensure these are intelligible to your customer, e.g., by simplification.
Also make an effort to present your results using your customer’s terminology. Your
GP system may produce answers as trees, but if the customers use spreadsheets,
consider translating the tree into a spreadsheet formula.

Also, one should try to discover how the customers intend to validate GP’s an-
swer. Do not let them invent some totally new data which has nothing to do with the
data they supplied for training (“just to see how well it does...”). Avoid customers
with contrived data. GP is not omnipotent, it knows nothing about things it has not
seen. At the same time you should be scrupulous about your own use of holdout
data. GP is a very powerful machine learning technique. With this comes the ever
present danger of over-fitting. One should never allow performance on data reserved
for validation to be used to choose which answer to present to the customer.

8 Conclusions

We have seen how genetic programming works and how to use it. We have hinted
at just two of the many exciting research areas. The first widens the application of
GP by using formal grammars to capture user knowledge and so guide GP. The
second (so far) complementary approach extends GP by doing the opposite! That
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is, sometimes GP can benefit from having additional freedom, including the free-
dom to evolve parts of itself. We have skimmed through a few of GP’s many many
applications, including cases where GP has evolved Human competitive solutions.
Finally we have tried to distill some practical “how to” knowledge into a few pages.

To conclude perhaps the best introduction to genetic programming is to create
your own (or borrow someone else’s) and evolve things.
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