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Evolving a CUDA Kernel from an nVidia Template

W. B. Langdon and M. Harman

Abstract— Rather than attempting to evolve a complete
program from scratch we demonstrate genetic interface pro-
gramming (GIP) by automatically generating a parallel CUDA
kernel with identical functionality to existing highly optimised
ancient sequential C code (gzip). Generic GPGPU nVidia kernel
C++ code is converted into a BNF grammar. Strongly typed
genetic programming uses the BNF to generate compilable
and executable graphics card kernels. Their fitness is given
by running the population on a GPU with randomised subsets
of training data itself derived from gzip’s SIR test suite. Back-
to-back validation uses the original code as a test oracle.

I. INTRODUCTION

The goal of genetic interface programming (GIP) is to
evolve automatically small interfaces between or components
of much larger systems which have already been created
by traditional software engineering techniques. There are
many areas of software where quite small software units are
required to fit a well define interface. In many cases it will
be simplest to write the code. However as systems get more
complex finding a person with skills appropriate to the two
or more potentially very large subsystems being interfaced
becomes more difficult. This is especially true where the
subsystems are written in different languages or by different
suppliers or reside on different hosts.

It becomes still more difficult for the programmer when the
requirements change or involve multiple competing interests.
In a traditional server host there may be little incentive
to produce compact code, whereas in a single user mobile
device space and battery life might need to be juggled against
less severe response time. In principle a multi-objective
automated system could come up with a range of Pareto
optimal implementations allowing the software engineer to
choose the solution appropriate to the current requirement.
Indeed when requirements change the software maintenance
engineer might choose a different solution from the existing
non-dominated set, or even re-run the evolution with new
requirements.

As a very first demonstration of these ideas we have
taken a well constrained problem: evolving an nVidia CUDA
graphics card kernel to parallelise existing sequential code.
Creating high quality GPGPU kernels is known to be difficult
and there are, as yet, few experts in CUDA. In software
engineering this is not uncommon. Indeed it has been known
for systems to be constructed, not in the computer language
of choice, but the language where there is a ready supply of
skilled programmers.

The Software-artifact Infrastructure Repository (SIR)
[Hutchins et al., 1994] contains a version of gzip suitable
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for large scale regression testing and a test suite for it. gzip
works by scanning the file to be compressed for sequences of
bytes which occur multiple times and replacing them in the
compressed file by a shorter code. The longer the replaced
repeated sequences are the better the compression. Searching
for the longest matches consumes most of the CPU time
used by gzip. In principle, for every byte in the input file,
gzip needs to find all the parts of the file which match it. It
then remembers the longest match, which may then become
one of the compression codes. gzip incorporates hashing and
numerous heuristics and restricts the search window to limit
the computational load. These have been tuned by hand. A
possible future investigation would be to consider re-tuning
gzip in the light of modern demands. However we have
not tried to do this, instead we seek a CUDA C++ kernel
which is not only compatible with existing versions of gzip
and compressed files but insist the new graphics code yield
identical outputs.

The next section describes how we start with code supplied
by the manufacture nVidia for a totally different application
and use it as a template for a gzip string matching CUDA
kernel. Section III-A describes its conversion into a context
free BNF grammar. Section III-B says how the existing
SIR test suite for gzip was converted into a GP fitness
function [Poli et al., 2008]. The evolution and validation of
the automatically created CUDA gzip kernel are described
in Sections IV and V. We finish with a discussion including
future work (Section VI) and our conclusions (Section VII).

II. ANALYSING HUMAN EXAMPLES

We start, as a human novice might, by studying the
available example codes. CUDA 2.3 comes with 67 examples
coded in C++. scan naive kernel.cu was selected.
The comments were stripped from it and it is was converted
to take the right inputs and operate on the right types for a
gzip string matching kernel. The human created starting point
for the automatic generation of a CUDA kernel to replace the
gzip longest match routine is shown in Figure 1.

As a first step towards the evolution of CUDA code, the
template kernel was deliberately kept simple. By removing
direct access to shared data and threading information,
thousands of GP individuals can be individually tested in
parallel on the GPU without the risk of them interfering with
each other. This does, however, restrict the types of kernels
which can be evolved. Again it must be stressed that at this
stage we seek only to show the approach is possible. As we
said in the introduction, we do not yet try to demonstrate
automatically generating efficient, high performance code or
improved compression by finding more or better matches or
other trade-offs between multiple objectives.
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__device__ void scan_naive(int *g_odata, const uch *g_idata, const int strstart1,
const int strstart2)
{

//extern __shared__ float temp[];
int thid = 0; //threadIdx.x;
int pout = 0;
int pin = 1;
int offset = 0;
int num_elements = 258;
<3var> /*temp[pout*num_elements+thid]*/ = (thid > 0) ? g_idata[thid-1] : 0;
for (offset = 1; offset < num_elements; offset *= 2)
{

pout = 1 - pout;
pin = 1 - pout;
//temp[pout*num_elements+thid] = temp[pin*num_elements+thid];
<3var> = g_idata[strstart+pin*num_elements+thid];
if (thid >= offset)
<3var> += g_idata[strstart+pin*num_elements+thid - offset];

}
return <3var> ;

}

Fig. 1. Template supplied to GIP and from which GIP creates gzip C++ code. Based on scan naive kernel.cu supplied with CUDA 2.3 by nVidia.
Simplified by removing direct access to thread index threadIdx.x, shared data temp (and hence syncthreads()) and replacing function
inputs and direct write to g odata[threadIdx.x] with return. Also convert from float to int and uch data types. The three places where
temp was written are replaced by writing to an int local variable (<3var>). Where elements of temp were read, temp is replaced by the only other
array g idata. n is renamed num elements. To avoid complications between statements inside for loop and outside, the loop control variable offset
is declared at the start of the function rather than in the for statement.

There are too many occurrences of the letter “n”
in the grammar, therefore the variable n was renamed
num inputs. As is usual with GP [Langdon, 1998], values,
including constants, can evolve. Thus the grammar provides
the means for introducing a small number of int and uch
constants which can be used directly or as part of evolved
expressions. 0, 1 and 2 come from the original CUDA code,
whereas 258 comes from gzip. A lot of care was taken
about how the grammar deals with the three lines supplied
by nVidia which update an element of the (now removed)
shared array temp. However, this part of the grammar

does not affect how the evolved solution work (cf. Figure 5).
The interested reader can find details in the technical report:
[Langdon and Harman, 2010].

III. PREPARING GENETIC PROGRAMMING

In addition to the standard five steps described by [Koza,
1992], the strongly typed [Montana, 1995] grammar based
GP [Langdon and Harrison, 2009] needs a BNF grammar.
The next section describes the motivation behind and the
mechanism for, the conversion of the human template (Fig-
ure 1) into a context free grammar (Figures 2 and 3). The
complete grammar spans four pages so is given in full in a
technical report [Langdon and Harman, 2010].

A. The Grammar

The automatic generation of CUDA Kernel’s was in part
motivated by last year’s prize winning work [Weimer et
al., 2009; Forrest et al., 2009] in which bug fixes were
automatically evolved by genetic programming. And earlier

work by [Arcuri and Yao, 2008]. Whereas in [Weimer et al.,
2009] the GP works by automatically reusing lines of human
written code from elsewhere in the faulty code, we use a
BNF grammar to describe a much smaller unit of human
code. (I.e. the nVidia code used as the template described
above in Section II and given in Figure 1.) The grammar also
allows the GP much finer control. Instead of reusing whole
statements, the grammar allows fragments of lines and even
individual expressions to be be manipulated. At the same
time the combination of grammar and strong typing ensures
(unlike [Weimer et al., 2009]) that each of the genetically
manipulated individuals is legal CUDA C++ code. They
compile and run and produce answers. There is of course, as
usual, no guarantee that they do anything sensible.

We use gawk in conjunction with Unix shell scripts.
Firstly, to help create the grammar and secondly, to do all
the genetic manipulations (crossover and mutation) and C++
code generation [Langdon and Harrison, 2009].

As with our previous work on using GP to evolve variants
of complete human written C code for mutation testing
[Langdon et al., 2010b], we start by converting the human
written code (Figure 1) line-by-line into a BNF grammar
(Figure 2). Next comes the grammar start rule (<start>)
and the hierarchical sequence of rules which link it to the
individual lines (i.e. the complete CUDA kernel, Figure 3). In
the work on inserting mutations into existing code [Langdon
et al., 2010b], only small changes were permitted and the
structure of the code, including the order of the lines of code
was fixed to to be identical of the original human written
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code. However, since we seek to evolve new code, this new
grammar allows the lines to be omitted, to be reversed and
structures, like for and if, to be nested.

To ensure the new code compiles, some of the structure
of the template (Figure 2) is enforced by the grammar.
Although the C++ syntax allows fairly free ordering of
variable declarations, variables must still be declared. To
allow this constraint to be simply enforced by the grammar,
the grammar is written so that all the variables are declared at
the start of the CUDA kernel. Similarly, the grammar ensures
that it ends with a return statement.

The right hand side of each BNF production can be
either a binary alternative rule. (Meaning the grammar rule
must be expanded into one of the two given alternatives.)
Alternatively a rule is a single list of terminals and rules to
be expanded, without alternatives. Two alternatives per rule
allows each GP individual to be represented internally as a
binary tree.

We adopt the convention that the alternative closer to
the original code is usually the first alternative. The first
alternative often consists mostly of terminals and so is the
smaller grammar sub-tree. This is useful when the genetic
operations start to run into space or depth limits. If such
limits are reached, the genetic operations can chose the
smaller option in an expansion without the need to investigate
all options and back track to the smallest one. A typical
example of this convention is rule <line6e>.

Grammar rule <line6e> deals with declaring
int pout. <line6e> can either expand to give
code identical to line 6 of the template or something similar,
but slightly more complicated. In the second case, the initial
value of int pout is given by an evolvable constant
(rather than the fixed value 0) by rule <intconst>. By
using <intconst> the grammar ensures the constant is
of the same type as the variable.

Line 8 of the template is fairly complicated. (Full details
are given in technical report [Langdon and Harman, 2010].)
Briefly it may be omitted (i.e. replaced by "") used un-
changed or modified. Rule <line8.0.0> breaks line 8 into
its four components. Again, each of the components has al-
ternatives which are the same as the template code and others
which progressively generalise it. E.g. <line8.2.1.2.2>
gives the most general form of the original code thid > 0
as <intvar> <compare> <intconst>.

Line 10 contains a for loop. Again the grammar allows
generalisations of the template. For example, the loop con-
tinuation test in line 10 uses <, rule <line10.2> says <
may be used but also allows any comparison. As another
example, the template uses *= 2 in the iteration step but
rule <line10.4> allows ++ etc.

Line 16 is a conditional statement. Again the grammar
allows it to be included, omitted, modified and moved. The
final part of the grammar contains most of the generalisation.
The grammar still tends to favour expressions of the same
type and rules like <intspecialexpr> encourage the
reuse of expressions created by the authors of CUDA.

B. The Fitness Function

1) The Training Data: SIR supplies a test suite of 214
tests for gzip. We used 211 of version 1.4 of these. (The
remaining three had proved to be unsuitable for using in
automated scripts, e.g. due to non-determinism introduced
by behaviour which depends on the detailed timing of events
in the test script.) We extended our gzip test bed (used in
mutation testing [Langdon et al., 2010b]) to instrument all
the inputs and outputs of gzip’s longest match routine.
When running our SIR test suite longest match is called
1 599 028 times and makes 42 472 851 searches.

gzip uses a sliding window of 64kb in which it searches
for repeats of each string in the file to be compressed. Princi-
pally by using hashing, it greatly reduces the 2 147 450 880
potential matches. Nevertheless, for each byte in the file,
longest match still has to search every item on a partic-
ular hash chain. For pragmatic reasons gzip limits the length
of matches to between three and 258 bytes.

The number of times longest match is given a hash
chain of a given length falls very rapidly with its length
[Langdon and Harman, 2010, Fig. 9]. So, although the
maximum length of the hash chain is 1588, the median is
only eight and in ≈ 200 000 calls there is only one item
on the hash chain to be checked. To reduce the volume of
test data and give a more uniform spread of training data,
for each of the 211 SIR tests only the first of each call
of longest match with a particular number of parallel
searches was kept and thus available to train the GP. This
yielded 29 315 examples.

In each generation 100 of the 29 315 examples were
randomly chosen (without reselection). The fitness of every
evolved CUDA kernel in the population is assessed on the
same one hundred examples. Thus, the number of times
each GP individual is called will be the same in a given
generation but vary randomly between generation. Each time
it is called it is given the address of the current string and
that of a putative match. (Actually a point in the file with the
same hash value.) The individual should return the number of
bytes for which the two locations match. The distribution of
correct answers for the whole of the training data is very non-
uniform. Due to interaction with gzip’s hashing algorithm
there are only 407 strings of a single byte and none with
two bytes. In contrast there are 100 333 searches where the
strings don’t match at all and 2 222 039 where only their first
three bytes are identical. Again each generation is subject to
different sampling noise.

2) Compiling and Linking the Evolving Kernels: Unlike
our earlier experiments with evolving DNA regular expres-
sions [Langdon et al., 2010a], the time to compile the CUDA
code dominates the fitness evaluation process. ([Harding and
Banzhaf, 2009] describe a way of reducing the compilation
overhead by running the compiler in parallel across a cluster
of workstations.) There is some initial overhead with starting
the compiler. It appears that the compilation time grows non-
linearly as the volume of code increases. Initial experiments
suggested that a good compromise between startup overhead
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<line2> ::= " device int kernelXXX(const uch *g idata, const int strstart1,
const int strstart2)\n"

<line3> ::= "{\n"
<line5> ::= "int thid = 0;\n"
<line6> ::= "int pout = 0;\n"
<line7> ::= "int pin = 1;\n"
<line71> ::= "int offset = 0;\n"
<line72> ::= "int num elements = 258;\n"
<line8> ::= <3var> "= (thid > 0) ? G idata(" <strstart> "thid-1) : 0;\n"
<line10> ::= "for (offset = 1; offset < num elements; offset *= 2)\n"
<line11> ::= "{\n" "if(!ok()) break;\n"
<line12> ::= "pout = 1 - pout;\n"
<line13> ::= "pin = 1 - pout;\n"
<line15> ::= <3var> "= G idata(" <strstart> "pin*num elements+thid);\n"
<line16> ::= "if (thid >= offset)\n"
<line17> ::= <3var> "+= G idata(" <strstart> "pin*num elements+thid - offset);\n"
<line18> ::= "}\n"
<line20> ::= "return" <3var> ";\n"
<line21> ::= "}\n"
<3var> ::= "thid"
<strstart> ::= "strstart1+" "strstart2+"

Fig. 2. First part of grammar used to evolve CUDA matches kernel for gzip. These rules allow little variation but reproduce the initial template, Figure 1.
XXX is replaced by the GP individual’s identification number. ok() is a macro (#define ok() ((nfor++<2000)? 1 : 0)) which prevents infinite
loops. <3var> could be any of the three variables pout, num elements or thid but only thid was implemented. The vertical bar in the last line
means rule <strstart> must be replaced by either "strstart1+" or "strstart2+". Other rules, e.g. <line20>, are expanded to a list of strings
and/or rule names. Strings, e.g. "return", cannot be expanded further. Whereas rules, e.g. <3var>, must be expanded.

<start> ::= <line2> <line3> <line5> <line6e> <line7e> <line71e> <line72e>
<line8e> <line10-20> <line21>

<line10-20> ::= <line10-18> <line20e>
<line10-18> ::= "" <line10-18a>
<line10-18a> ::= <line10e> <line11> <forbody> <line18>
<line12-17> ::= <line12-17a> <line12-17b>
<line12-17a> ::= <line12-13> <line15-17>
<line12-17b> ::= <line15-17> <line12-13>
<line12-13> ::= <line12-13a> <line12-13b>
<line12-13a> ::= <line12e> <line13e>
<line12-13b> ::= <line13e> <line12e>
<line15-17> ::= <line15-17a> <line15-17b>
<line15-17a> ::= <line15e> <line16-17>
<line15-17b> ::= <line16-17> <line15e>
<line16-17> ::= <line16-17a> <line17.0>
<line16-17a> ::= <line16-17.1> <line16-17.2>
<line16-17.1> ::= <line16e> <line17.0>
<line16-17.2> ::= <line16e> "{{" <forbody> "}}"
<forbody> ::= <line12-17> <forbody.1>
<forbody.1> ::= <forbody.1a> <forbody.1b>
<forbody.1a> ::= <line8e> <line12-17>
<forbody.1b> ::= <line12-17> <line8e>

Fig. 3. Second part of grammar. <start> is the start rule of the grammar. Each C++ gzip kernel is created by recursively expanding <start> until all
the rules (denoted by < >) have been replaced by ordinary text. These rules allow lines of code (defined in Figure 2) to be used, excluded, reversed and to
be nested. Note using the first of each binary option tends to give a GP individual closer to the template, Figure 1. The function header, int declarations
(<line2> . . . <line72e>) and the return statement (<line20>) are always included. The complete grammar is given in technical report [Langdon
and Harman, 2010].
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and non-linear increase with size was when about one
hundred kernels were compiled together. Therefore, the gawk
scripts which perform crossover and mutation also split the
population into ten parcels each containing one hundred GP
individuals.

Each parcel contains a 100-way switch statement and
code which unpacks the arguments supplied by the host
PC and directs the overall kernel to the right GP individual
and returns its answer to the host PC. The ten parcels are
compiled by the CUDA 2.3 nvcc compiler into ten object files
which are linked into a single executable. (The compilation
might be 18% faster if the switch statement was moved to
the host C++ code. Similarly using the -O1 nvcc command
line switch might also speed up nvcc by 16%. The times
given below were obtained with default settings.)

3) Testing the Evolving Kernels: The executable runs on
the host Linux computer. It reads files holding the test data.
Using gzip code, it calculates the answers that should be
returned. (This is done only once.)

For efficiency, the whole GP population is run on each
test example and their answers saved. This allows the data
needed for each training example, which typically includes
64kb of data from the file to be compressed, to be loaded
only once for all 1000 members of the population.

As mentioned above, the population is compiled into ten
object files. For the purposes of training the GP, each is a
separate CUDA kernel. The host launches these ten kernels
in series. Their answers are returned to the host before the
next is launched. In principle, this could be done in parallel.
Each of the ten kernels runs its one hundred GP individuals
across the whole of the current hash chain in parallel. While
the exact number of parallel execution threads running on
the GPU will vary across the training examples, the mean
hash chain length is 293, so on average each kernel is run
293× 100 = 29 300 times in parallel.

For each generation, the GPU will launch the 10 kernels
for each of the 100 training examples. On average fitness
testing takes 6.5 seconds per generation (which includes host
file processing). In contrast generating and compiling the
population takes 49.0 seconds (most of which is spent in
the nvcc compiler) [Langdon and Harman, 2010, Fig. 11].

4) Error based Fitness and Penalties: For each test case
the GPU will return 1000×the length of the hash chain
answers. (I.e. up to 1 588 000 integers.) Each is one of the
population’s answer to the question how many bytes match
between two points in the current 64kb window onto the
file being compressed. As described in Section III-B.3, we
already know gzip’s answer to this question. This allows us
to define an error based fitness function. Fitness is essentially
the sum of the absolute error between the answer returned
by each GP and that calculated by the gzip code.

Some values are much more common in the training
data than others. A simple strategy for obtaining a good
fitness is to choose one of these and to always return this
constant value. To deter this and so limit the number of
children allocated to constants a penalty of 10 000 times
the number of training examples was introduced. E.g. in the

TABLE I
STRONGLY TYPED GENETIC PROGRAMMING PARAMETERS FOR

AUTOMATICALLY CREATING C++ GZIP NVIDIA KERNELS.

Function: Binary rules in the BNF grammar (Figures 2–3).
Terminals: Grammar rules without alternatives (Figures 2–3). Array

g idata indexes are forced to their legal range by reducing
modulo array size.

Fitness: Sum of absolute errors between evolved answer and that
given by gzip across pseudo random sample of 100 of
29 315 examples drawn from compressing files in the SIR
test suite (Section III-B.1).

Selection: Generational. 4 members tournaments. New sample of
training data each generation.

Population: 1000
Initial pop: Ramped half-and-half 2:6
Parameters: 50% subtree crossover, 50% subtree mutation. Crossover

and mutation points are chosen uniformly (i.e. without a
function bias [Koza, 1992]) treating each grammar rule as
a distinct type and ensuring each offspring is genetically
different from both its parents. Max depth 100, No size
limit. ok() (Figure 2) limits all for loops to ≤ 2000
iterations.

Termination: 1 000 generations

initial generation the 100 fitness cases together cover 29 328
putative string matches. This means the minimum constant
penalty is 293 280 000. (We take care to avoid int overflow.)
The penalty is is doubled if the constant was 2, tripled if it
was 1 and quadrupled if it was 0.

In the initial population 70.7% of random CUDA kernels
return a fixed value. As evolution progresses the fraction of
such useless kernels in the population eventually settles near
6.9%. Most of these always return zero, despite the fact it
carries the largest fitness penalty.

5) Debug: There were many troubles during development.
In the end it was decided to sacrifice the last member
of the GP population and replace it with a non-evolved
code fragment which simply reflected the training data. This
allowed the host code to verify that the training data had
indeed been copied successfully to the GeForce 295 GTX
nVidia GPU graphics card, the kernel had been run and had
been able to read its inputs, and it had succeeded in returning
its answer to the host. If any of these steps fail, the Unix
process is aborted until the problem is manually resolved.

IV. EVOLVING SOLUTIONS

The details of our grammar based GP are given in Ta-
ble I. The terminal and function sets are determined by the
grammar described in Section III-A. The error based fitness
function was described in the previous section.

The evolution of the population in the first run is plotted
in Figure 4. The first solution was found in generation 50.
Five runs out of ten reported solutions by generation 100.

Given the BNF grammar all that is needed to construct
each program is the sequence of choices made at the binary
alternative nodes. The rest of the parse tree and hence the
program itself can be inferred from these. If we treat the
parse tree as the important underlying skeleton of the evolved
code and look at two statistics (the number of nodes in the
tree and their maximum depth from the <start> node)
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Fig. 4. Absolute error + constant penalty across ≈ 29 000 training
examples (varies between generations). Note non-linear vertical scale. Pro-
grams which make no errors are first created in generation 50 (49 minutes)
Typically after generation 57 about 3

4
of the population pass all the tests.

we see the usual patterns of GP. The trees increase in size
and depth. When we look at the evolution of both size and
depth [Langdon and Harman, 2010, Fig. 15] we see the
same behaviour as traditional GP benchmarks [Langdon and
Poli, 2002, Chapter 11] [Langdon, 2000]. It is remarkable
that a strongly typed grammar based GP which highly con-
strains evolution to ensure syntactically correct, executable
C++ code yields such similar behaviour to tree GP where
crossover may occur between any two points in the parent
trees. This is reinforced when we look at the evolution of the
distribution of the number of choice nodes in the individuals.
Again we see the characteristic “humped” distribution with
a long upper tail, with both the location of the hump and
tails increasing over time. [Dignum and Poli, 2007] shows
(for a totally different GP system) that this is a Lagrange
distribution. Note even in generation 100, when most of the
population are highly fit, mutation is producing small unfit
children.

Circular lattices [Daida et al., 2005] [Poli et al., 2008,
p 136] are a nice alternative way to display GP trees. They
emphasise the shape of the tree rather than its contents.
(Contrast Figures 6 and 7, which both refer to the underlying
parse tree of the same evolved CUDA kernel.) The <start>
rule is notionally the center of the circular display and we
do indeed see its ten subsequent rules clustered around it.
However, some of these (e.g. <line2>) are always imme-
diately expanded into terminals of the grammar and cannot
be expanded further. Other rules (e.g. <line10-20>) must
be followed by other rules and large subtrees are often
attached to them. Thus the rules of the BNF grammar give
rise to asymmetric trees. However, this only exacerbates the
natural tendency, we have already noted, for GP to evolve
randomly shaped asymmetric trees [Langdon and Poli, 2002,
Chapter 11] [Langdon, 2000].

Figure 4 shows after generation 57 the fitness of a large
part of the population converges on the same fitness value.

(I.e. fitness value zero. Zero is the best possible value since
it means no errors have been reported.) However even after
1000 generations the population does not fully converge.
The GP mutation and crossover operations remain disruptive
and their active search means they continues to produce
populations in which ≈ 23.7% of children make errors.

As with fitness, the population also converges in the sense
that many parse trees have similar (rather than identical)
shapes. Again, the strongly typed GP trees behave as would
be expected of an ordinary tree based GP. (Animations
displaying these three views of these evolving populations
can be found on the GIP web pages.)

V. VALIDATING THE SOLUTIONS

The evolved kernel passes all the tests in generation 50.
It does what it was evolved to do: run on the graphics card
and provide answers that emulate those needed by gzip.

Notice that, although it skips the second byte, in its
context in gzip and in particular the way gzip’s hashing
works, this is very unlikely to make any difference. Indeed
when the evolved kernel is compiled as part of gzip’s
longest match routine the new code produces identical
answers. This was verified in a version of gzip containing
both old and evolved code and compressing gzip 1.4.tar
(19 322 880 bytes) which contains the complete release for
SIR including the whole SIR test suite. However, it might,
in principle, be possible to find an example where it fails.

On average, only every fifth generation contains training
examples with strings which match for exactly one byte. The
first such generation after the first solution has been evolved
is generation 55. Generation 55 contains seven programs
which pass all its tests. The last one was chosen as being the
simplest to explain. It is given in Figure 5. The corresponding
grammar parse tree is given in Figures 6 and 7. Apart from
the correct initial value for the for loop control variable
(and the irrelevant assignments to variable thid) it is iden-
tical to the kernel found five generations earlier. (The nvcc
compiler automatically removes code which has no impact
on the kernel’s output.) The generation 55 kernel checks
all the bytes in both strings. Like the solution evolved in
generation 50 it succeeds on the whole of gzip 1.4.tar
(19 322 880 bytes). It also passes contrived tests designed to
check for one byte errors run outside gzip.

Obviously such naive kernels do not provide any speed
up.

VI. DISCUSSION

gzip is a venerable Unix utility which still betrays its roots
in 16-bit micro computing. It has been highly optimised
and, in particular, the string match finding code has been
carefully contorted by skilled human programmers to get
the best from traditional single CPU systems. It contains
several heuristics which are designed to give a good tradeoff
between execution time, and degree of compression obtained
on typical ASCII Unix text files. Doubtless better tradeoffs
could be obtained for other circumstances. For example,
where the files to be compressed are specialised or when

2381



__device__ int kernel978(const uch *g_idata, const int strstart1, const int strstart2)
{
int thid = 0;
int pout = 0;
int pin = 0 ;
int offset = 0;
int num_elements = 258;
for (offset = 1 ; G_idata( strstart1+ pin ) == G_idata( strstart2+ pin ) ;offset ++ )

{

if(!ok()) break;
thid = G_idata( strstart2+ thid ) ;

pin = offset ;

}

return pin ;
}

Fig. 5. C++ code of the gzip CUDA kernel automatically generated by GIP.

<start>

<line2> <line3> <line5> <line10-20> <line21>

<line6> <line7.0> <line71> <line72>

<line10-18a> <line20.1>

<line11> <line18>

<line10e1>

<foruchcomp>

<foruchexpr2> <foruchexpr2>

<uchexprT> <uchexprT>

<line12-17b>

<line15-17b> <line12-13a>

<line17.0>

<3var>

<uchexpr1.2>

<uchexprT>

<line13.2.1>

Fig. 6. Path through the grammar, c.f. Figures 2 and 3, taken by GIP to
create the gzip CUDA kernel evolved in generation 55. Figure 5 gave the
resulting C++ program. Ovals indicate binary decision rules. With shaded
ovals the second option was used.

running on new hardware (such as remote robotic platforms)
where energy consumption rather than compression speed
is paramount. Relaxing limitations inherited from its 16-bit
heritage might also allow different tradeoffs between memory
used by gzip, CPU time and size of compressed output. All
of these involve a small fraction of gzip which is heavily
used. Existing profiling tools can automatically identify such
regions in much bigger legacy systems.

Although a pure approach might require total automation,
it may be that people will be less hesitant to adopt a
pragmatic approach in which many novel “outside-the-box”

<line2>
<line3>

<line5>

<line8e>
<line21>

<line6>
<intconst1.1>

<line71>

<line72>

<line11> <line18>

<line10.1.1>

<strstart>

<intvar2>

<compare01>

<strstart>

<intvar2>

<intmod>

<line15e>

<3var><modassign>

<strstart>

<thidexpr>

<line12.2>

<intvar2>

<intvar2>

Fig. 7. Grammar expansion for the gzip CUDA C++ kernel evolved in
generation 55. Identical to Figure 6 but displayed as a circular lattice [Poli
et al., 2008, p 136] [Daida et al., 2005]. The last rule in each branch of the
BNF grammar tree is labeled.

tradeoffs between complex objectives are tried automatically.
Inspecting these Pareto optimal evolved solutions might in-
spire human engineers to create and deploy a trusted interface
incorporating multiple complex design compromises which
they might not have tried had they not been suggested by
evolution.

We have used gzip as a demonstration system for an
approach which seeks not to re-engineer complete systems
but to automatically generate code for tiny fraction of them.
Given an existing system and its test suite, we have the
bare bones to evolve a replacement for part of it. The
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existing system can be used as the “Gold standard” for the
desired functionality. There is no need to create a formal
specification. Each trial replacement can be simply compared
with the existing system. We have taken the approach of
requiring the replacement code to run on new hardware but
there might be other, indeed multiple, objectives for the new
plugin.

For efficiency, gzip deliberately relaxes its own objective
of finding the longest match between strings in a file. This
means sometimes it uses a match even though it is not the
longest. However, although the search may have taken a
long time it is relatively quick to verify the reported match
is indeed a match. Indeed the debug version of gzip, has
such a check permanently enabled. It is not uncommon for
operations which are expensive in the forward direction to
have a (relatively) cheap inverse check, or sanity check.
E.g. after performing statistical calculations (mean, standard
deviation) on large numbers, it is cheap to double check that
their variance is non-negative.

We have adapted [Weimer et al., 2009]’s approach, and
used the manufacturer’s supplied code as a template to guide
the evolutionary process. We can see that in the general case
there will always be the existing system to use as a guide.
Whilst nVidia supplied only 67 modestly sized codes the
volume of code typically available is much bigger. Even
so such code may not be too large to prevent automatic
analysis. Indeed this may be the next aspect of GIP we seek
to demonstrate.

Whilst the grammar is firmly based on the nVidia supplied
example, we have incorporated little information from gzip.
Another approach to be tried in the future might be to
investigate more automated ways of combining information
gleaned from multiple sources.

VII. CONCLUSIONS

Automatic programming has been a goal of Computer
Science for many years. With millions of people employed
programming computers this still seems very remote. Nev-
ertheless by pragmatically adopting less lofty ambitions,
progress is being made in automating software engineer-
ing and particularly software maintenance [Arcuri and Yao,
2008; Weimer et al., 2009]. The long-term goal of GIP is to
automate the construction of small quantities of high value
code (rather than to create whole systems). Particularly either
code which is critical to the efficiency of the whole program
or is critical to the success of a new system by linking
together traditional codes. We have started with a small but
achievable goal, where we have taken a crucial part of a
venerable C program and GIP has ported it to new hardware.

Whilst automatic bug fixing has been demonstrated on a
number of real C and C++ codes, this is the first time com-
putational intelligence has been used to automatically create
an nVidia CUDA kernel which runs in parallel on a state of
the art graphics card as part of a legacy system. Section II
described the context free grammar created from example
code supplied by nVidia, whilst Section III explained the
strongly typed grammar based genetic programming (GP)

system. The results in Section IV show it is possible to
evolve C++ code. The automatically created kernels have
been tested (Section V) back-to-back with the original code
many millions of times without error.
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