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Abstract—In academic empirical studies, mutation testing has
been demonstrated to be a powerful technique for fault finding.
However, it remains very expensive and the few valuable tradi-
tional mutants that resemble real faults are mixed in with many
others that denote unrealistic faults. These twin problems of
expense and realism have been a significant barrier to industrial
uptake of mutation testing. Genetic programming is used to
search the space of complex faults (higher order mutants). The
space is much larger than the traditional first order mutation
space of simple faults. However, the use of a search based
approach makes this scalable, seeking only those mutants that
challenge the tester, while the consideration of complex faults
addresses the problem of fault realism; it is known that 90% of
real faults are complex (i.e. higher order). We show that we are
able to find examples that pose challenges to testing in the higher
order space that cannot be represented in the first order space.

I. INTRODUCTION

Mutation testing is a fault-injection technique in which
a set of mutant versions of a program is created. Usually
each mutant is created by the insertion of a single simple
fault. The faults are traditionally created by a small syntactic
change, such as the replacement of one arithmetic or relational
operator with another. If a test input can distinguish between a
mutant and the original program, by causing each to produce a
different output, then the test input is said to ‘kill’ the mutant.
The effectiveness of a test suite can be assessed by measuring
the percentage of mutants that are killed by members of the
test suite [1]– [4].

Mutation testing has also been used to simulate other test
coverage criteria, such as branch coverage and statement
coverage. Indeed, any test adequacy criterion can be simulated
by mutation testing. The mutation testing approach has also
been used as a basis for test case generation.

Unfortunately, mutation testing is very costly. The number
of simple syntactic changes (i.e. first order mutants) that
can be performed on a program grows with the size of the
program under test, making mutation testing an expensive, if
highly effective approach to testing. Furthermore, many of the
mutants generated by these simple syntactic fault insertions,
are readily killed by the simplest of test cases, leading to much
wasted effort killing rather trivial mutants. Though there are a
large number of first order mutants, most are simply a waste of
time from a testing point of view because they do not denote
realistic faults, the vast majority of which are known to be
complex (i.e. higher order mutants) [5].

At the heart of this problem lies the very nature of tra-
ditional mutation testing. That is, the approach starts with
the assumption that a simple syntactic change is typical of a
fault. This assumption is known as the competent programmer
hypothesis. It states that most programmers are ‘competent’;
they will produce programs that are within a few keystrokes of
being correct. Therefore, based on this hypothesis, faults can
be legitimately simulated by a few simple syntactic changes.

However, though the competent programmer hypothesis has
been stated as an underlying assumption of mutation testing in
many papers, [6], it has not been demonstrated by empirical
evidence. Indeed, recent work by Purushothaman and Perry
[5] challenges the competent programmer hypothesis. This
empirical study found that 90% of post release faults are,
in fact, complex faults; faults that can only be fixed only
by several changes to the syntax of the program at several
different places. This observation and the consequent search
for these ‘subtle’ or ‘complex’ faults was the motivation for
recent work on Higher Order Mutation Testing (HOM Testing)
[7]. 1

We take a radical, perhaps even heretical stand point on
mutation testing. We assert that mutation testing should be
seeking semantic mutant programs rather than syntactic mutant
programs. That is, rather than inserting faults that are syntac-
tically close to the original program, we should be inserting
faults that are semantically close to the original program.
We explore the relationship between these two notions of
similarity; syntactic and semantic in three programs, which
are often used as testing benchmarks.

We use a multi objective Pareto optimal genetic program-
ming approach [8] to explore the relationship between mutant
syntax and mutant semantics with respect to given test sets.
The industrial benchmarks include high quality test sets. A
quality test set was created for the other benchmark by
selecting test sets that achieve at least branch coverage. The
GP algorithm evolves mutant programs according to two
fitness functions: semantic difference and syntactic difference.
Syntactic distance sums the number of changes weighted by
the actual difference. (Details will be given at the end of
Section III.) Semantic distance is measured as the number of
test cases for which a mutant and original program behave
differently. However, should they agree on all test cases, the
mutant may be an equivalent mutant, which is undesirable.

1A higher order mutant is a program which has had multiple simple changes
(first order mutations) made to it.
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Therefore, a semantic distance of zero is treated as a special
case. (By giving such mutants very poor scores they are
normally immediately removed from the population).

A Pareto optimal approach means each objective is treated
separately when comparing solutions. Thus a mutant which
passes more of the test cases and is closer to the original
program is naturally preferred. Similarly if a mutant beats
another on one objective but has the same score on the other
objective, it is again preferred. Naturally one that is worse
on both objectives is not preferred. But when one mutant is
better on one objective but worse on the other the two are both
nondominant solutions. Figure 9 (towards the end of the paper)
contains several “Pareto fronts” each of which contain several
mutants. Mutants on the same Pareto front do not dominate
each other, even though they pass different number of tests
and lie at different distances from the original source. The
whole Pareto front is kept and used to explore for further
improvements.

The primary novelty and contributions are:

1) This is the first paper to explore the relationship between
mutant syntax and semantics and the first to use Pareto
optimality in mutation testing (though this has been used
in other forms of testing [9], [10]). Pareto optimality,
more normally associated with GAs [11], has only been
used a little in GP [12, Sec. 3.9]. This is also one of the
few papers (other than [13]) to tackle mutation testing
using a GP–based approach.

2) We confirm the intuition underlying the well–known
Mutation Testing Coupling Hypothesis. I.e. Monte Carlo
sampling of higher order mutants confirms the widely
held belief that adding test cases to a faulty program
tends to make it more error–prone. However, as the result
reveal, there remain a non–trivial set of higher order
mutants that are hard to kill.

3) The Pareto optimal search is able to find higher order
mutants of the TCAS aircraft Traffic alert and Collision
Avoidance System program that are harder to kill than
any of the first order mutants. This is an example where
adding more faults to a program makes it less error–
prone; it is harder (though not impossible) to detect the
faultiness of the resulting higher order mutant. Such
very–hard–to–kill higher order mutants denote highly
subtle interactions of faulty behaviour and so may be
useful in revealing insight into problem cases and in
driving test data generators to generate better quality
test data.

4) We show how the exploration of the space of higher
order mutants may reveal insights into the structure of
the test suite. For example, we found that the differential
behaviour of test cases in the presence of higher order
mutants creates a clear distinction (in two of the three
programs studied) between those test cases that target
wrong functionality compared to those that target miss–
handled exceptions.
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Fig. 1. High order Multi-objective mutation testing. The BNF grammar
tells GP where it can insert mutations into the original program source.c.
Initially GP creates a population of random mutations, which are compiled
and run against the test suite providing two objectives to NSGA-II. NSGA-
II selects the mutants to retain using a non-dominated Pareto approach
and instructs the GP which mutants to recombine or further change. The
evolutionary cycle continues for 50 or 500 generations.

The next section outlines how our system works. Section III
describes the mutants, whilst Section IV describes how mul-
tiple changes are made to C source code. Sections V–VII
describe the three benchmarks (Triangle, schedule and tcas)
and results obtained. We conclude in Section VIII.

II. HOW IT WORKS. OPTIMISING TWO OBJECTIVES:
DIFFICULTY TO KILL AND SMALL SOURCE CHANGES

Deb’s well known Non-dominated Sorting Genetic Algo-
rithm - II (NSGA-II v1.1, [14]) was down loaded. It is a multi-
objective evolutionary algorithm, which every generation, uses
crossover and mutation to create a new population. The next
generation is given by a Pareto optimal selection from both
the new offspring and their parents. Thus it is naturally elitist.
Fitness sharing is built in to ensure the population does
not bunch together on the Pareto front. To adapt it to our
GP, nsga2r.c was split in two. The first decides which
individuals are to be parents and the second combines the
offspring and parent populations. Crossover, mutation and
fitness calculation are done externally by the strongly typed GP
and the multi-objective fitness passed to NSGA-II. Figure 1
shows the relationships between GP, NSGA-II, the grammar
and the existing testing regime. (Details will be given in
Table II.)

NSGA-II was given two objectives: to minimise the number
of tests failed and to minimise the syntactic distance between
the mutant and the original program. (Since the goal is not
to re-engineer the original program, but to find interesting
high order mutants, programs created by GP which behave
identically to the original program are penalised by giving
them infinitely poor fitness.)

III. MUTANTS

The Higher Order Mutation Testing Paradigm raises a
natural question: what is a higher order mutant? If one were
to form a higher order mutant from any possible combination
of an arbitrary number of arbitrary first order mutations, then
one could use higher order mutation to transform any program
into any other program. Therefore, we think of a set of higher
order mutants that is generated by a chosen set of first order
mutants, rather than allowing arbitrary or unspecified first
order mutations. That is, a higher order mutant, is a program



that can be obtained by applying several operations drawn
from a set of first order mutations operations, F , to the original
program.

This allows us to explore the relationship between the
simple faults and the so–called complex faults. Simple faults
are the first order mutants. Whilst complex faults are higher
order mutants. The higher order mutants are defined by a
chosen fault model F or with respect to a certain class of
interesting programming language constructs for which we
admit first order mutation.

We study the set of first order mutation operators that
replace one relational operator with another. This is an inter-
esting set because its corresponding higher order mutant set
denotes the set of ways in which one might alter the flow of
control within the program. However, the higher order mutants
can only influence data flow indirectly, by altering control flow
and cannot alter computation by mutating rvalues. In this way,
a higher order mutant denotes a ‘partially jumbled’ compu-
tation composed of the same basic computations (arithmetic
expressions) as the original.

This approach is based the suggestion that programmers are
likely to commit subtle complex faults that might resemble
such slightly anomalous control flow. Though this remains a
conjecture, we shall see that from this first order set, and for
high quality test data and real world programs, it is possible to
construct higher order mutants that are harder to kill than any
of the first order mutants. This lends some evidence to support
the belief that the higher order mutants are both interesting and
potentially complex in the sense of Purushothaman and Perry
[5].

To give a syntactic distance measure, we placed the six C
comparison operations < ,<=, ==, !=, >=, > in order. The
distance of one comparison from another is their distance in
this order plus six if they differ at all. The total distance
of a mutant is the sum of the individual distances for each
comparison it contains. The constant factor (6) ensures a
second order mutant will always have a larger distance than a
first order mutant.

Our distance measure tries to capture the idea that some
changes are bigger than others and generally more changes
make the program more different than fewer. Thus a changing
< to <= implies a distance of 7, whilst changing it to a ==
has a distance of 8. But changing a < to a <= and another a
< to a <= (two changes) has a distance of 14.

Notice that the distance is only based on comparing the
original program and the final mutant. This distance does not
depend upon how many intermediate changes (which may
have undone or redone) there have been.

IV. STRONGLY TYPED GRAMMAR BASED GP FOR
MUTATION TESTING

The target source code is automatically analysed to create
a BNF grammar tree which describes all its possible mutants.
Unlike most BNF’s, the grammar consists mostly of terminals
which regenerate the fixed portions of the source code. How-

ever all comparisons are replaced by the rule <compare>,
which is defined thus:

<compare>::= <compare0> | <compare1>
<compare0>::= <compare00> | <compare01>
<compare00>::= "<" | "<="
<compare01>::= "==" | "!="
<compare1>::= <compare10>
<compare10>::= ">=" | ">"

Notice how three levels of binary choices are needed to cover
all six possible comparisons.

Excluding <compare>, each line of the source is converted
into a unique rule in the grammar. For efficiency as much of
the source code is converted into as few rules as possible.
Indeed a line of C code which does not contain any comparison
operations is converted into a single rule which has only one
production which is itself a terminal containing the whole line.
Lines are grouped into a hierarchy by a binary chop process.

For example, in tcas lines 7 to 10 are described by rule
<line7-10> (cf. Figure 6) which has two productions:
<line7-8> and <line9-10> which each cover two rules.

<line7-10> ::= <line7-8> <line9-10>
<line7-8> ::= <line7> <line8>
<line9-10> ::= <line9> <line10>

This ensures lines of code that are close together in the source
code are close together in the grammar parse tree.

The strongly typed GP uses the name of the grammar rules
(i.e. their left hand side) as the rule’s type. This means we
have more types than is common in (non-grammar based)
strongly typed GP. Crossover chooses one crossover point
uniformly at random from the first parent’s grammar. This
gives the type of the crossover point. The crossover point in
the second parent must be of the same type. For example,
if <line7-10> is chosen in the first parent, then it must
also be chosen in the second. Thus, in this example, the child
will inherit lines 1–6 and 11 to the program’s end from the
first parent and lines 7–10 from the second parent. Notice
crossover automatically takes advantage of any modularity the
programmer explicitly coded in her choice of how to layout the
source code. Mutation similarly chooses a rule from the BNF.
Say it also chose rule <line7-10>. All the grammar below
the chosen point is re-created at random. (Mutation ensures at
least one change is made.) Thus a mutation at <line7-10>
will randomly replace the comparison operation in line 7 and
in line 10. (Lines 8 and 9 do not contain any comparisons.)
Implementation details can be found in [15], [16].

Given the rigidity of the grammars we are using to construct
mutants, it might be argued that we do not need the expressive
power of GP and a simpler evolutionary algorithm could be
used. However we automatically get genetic operations which
are tailored to the source code we are investigating.



V. THE TRIANGLE BENCHMARK

A. Triangle Code and Test Suite

The triangle program is often used as an example in
software engineering studies. We used a simplified version
of DeMillo et al.’s [6] translated from Fortran into C. See
Figure 2. It takes the lengths of three sides of a triangle and
classifies it as either scalene, isosceles or equilateral or it is
not a triangle. (Since the layout chosen by the programmer
influences the strength of the crossover linkage between po-
tential mutation sites, the layout in Figure 2. follows that in
triangle.c.)

int gettri(int side1, int side2, int side3)
{

int triang ;

if( side1 <= 0 || side2 <= 0 || side3 <= 0){
return 4;

}

triang = 0;

if(side1 == side2){
triang = triang + 1;

}
if(side1 == side3){

triang = triang + 2;
}
if(side2 == side3){

triang = triang + 3;
}

if(triang == 0){
if(side1 + side2 < side3 ||

side2 + side3 < side1 || side1 + side3 < side2){
return 4;

}
else {

return 1;
}

}

if(triang > 3){
return 3;

}
else if ( triang == 1 && side1 + side2 > side3) {

return 2;
}
else if (triang == 2 && side1 + side3 > side2){

return 2;
}
else if (triang == 3 && side2 + side3 > side1){

return 2;
}

return 4;
}

Fig. 2. triangle.c. It contains 17 mutable comparisons: 7 ==, 4 >, 3 <
and 3 <=. However there are, initially, no >= or != comparisons.

The test set used by DeMillo et al.’s [6] achieved only
statement coverage. Therefore we generated test cases cov-
ering all the possible branches. (Since we are going to modify
the program it is important to cover all branches, including
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TABLE I
NUMBER OF LOW ORDER triangle.c MUTANTS. THIRD ROW (EQUIV)
IS THOSE THAT PASS ALL TEST CASES. LAST ROW (1 TEST) GIVES THOSE
THAT FAIL JUST ONE TEST. (FRACTION 10−6 OF MUTANTS OF THE SAME

ORDER IS GIVEN IN BRACKETS.)

Order 1st (10−6) 2nd (10−6) 3rd (10−6) 4th (10−6)
Number 85 3400 85 000 1 487 500
Equiv 8 (94 118) 28 (8 235) 56 (659) 70 (47)
1 test 7 (82 353) 55 (16 177) 189 (2 223) 371 (249)

branches containing statements that are unreachable in the
original program). However, using this branch coverage test
set, in earlier experiments, we found many mutants related to
conditional statements were not detected. This was because the
test set did not cover some of the Boolean sub-expressions of
the conditional statements. Therefore, we extended our test
set with the test cases covering all of those Boolean sub-
expressions. The final test set contains 60 tests.

B. Triangle Mutants

triangle.c contains 17 comparison operators. (All of
them comparing int with int.) Therefore there are: 17×5 =
85 programs with one change, 17 16

2 × 5 5 = 3400 with two
changes, 17 16 15

2 3 ×5 5 5 = 85 000 with three changes and so
on. The total search space is 617 = 16.9267 1012.

In Figure 3 we plot the fitness of all the 1.5 million mutants
up to order 4. Notice the number of mutants grows expo-
nentially with order and that the fraction of both equivalent
mutants2 and the hardest to detect3 fall rapidly with number
of changes made, cf. Table I. The GP was also able to find
these low order and hard to detect mutants but since there are
only 85 first order mutants, it is easier to enumerate them.

Ten of our 60 triangle test cases are extremely effective
against random mutants. They each individually detect more
than 99% of the high order mutants. This causes the vertical
concentration of points in the fitness scatter plot in Figure 4.

2 Equivalent mutants are those that make no detectable difference and so
pass all the test cases.

3I.e. fail just one test.
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These ten tests are all those that check for normal operation.
Whereas the other 50 tests check that triangle.c detects
“not a triangle”. It looks like high order mutants are easily
detected by tests for correct operation because correct opera-
tion requires more of the code to be executed and so there is
more chance of striking the mutated code before one of the
return statements in Figure 2.

VI. THE SCHEDULE BENCHMARK

A. Code and Test Suite, Robustness Improvements

schedule.c (SIR version 2.0) was down loaded from the
Software-artifact Infrastructure Repository [17]. It consists of
412 lines of code, split into 18 procedures and 2650 test cases.
Each test case provides up to five inputs from the command
line and reads up to 289 integers from one of the 2650 input
files. It produces an ordered list of the scheduled processes.
The output consists of up to 45 integers and possibly an error
message.

To ease automatic testing, printfs were replaced by code
to direct the scheduled process identifiers (ints) to a buffer
and to replace the two textual error messages by two status
codes. The outputs generated by the unmodified version of the
schedule program (as created by SIR’s runall.sh script)
were converted to the new format. During mutation testing a
mutant is said to have failed a test if any of its outputs do
not match that of the original program or if its status does not
match the original error message (if any).

Unlike triangle.c, schedule.c accesses arrays, dy-
namically creates and deletes data structures, uses pointers
to them, and runs for loops. Thus we are faced with the
likelihood that mutants will cause: array indexing errors, run
out of memory, corrupt the heap, read or write illegal memory
(with unknown consequences) and loops will not terminate. If
a mutant does one of these then we say it has failed that test.
However we must ensure that a single mutant does not affect
the testing of other mutants or itself when running a different
test.

Initial experiments showed it would not be feasible to use
the normal isolation and protection provided by the operating
system. This is because the overhead of creating and starting
a separate process per mutant and per test case is too large.
Instead all the mutants for a generation are compiled together
and run on each test case. In this way it is feasible to test
hundreds of thousands of mutants on all 2650 test cases. To
allow us to do this additional checks were added to the source
code:

• Heap memory large enough for all of the test cases is
allocated before testing is started. The original calls to
allocate and free memory are replaced by using this area.
It is cleared between each test and checks added that it
is not exceeded.

• Before any pointer is used, it is checked. I.e. has a legal
value consistent with its type.

• Index checks are made before all array accesses.
• Code is added to terminate each for loop if the total

number of loop iterations for an individual test exceeds
ten times the maximum required by the unmodified
program.

If any of these checks fail the test is safely aborted and
the mutant is said to have failed that test. The next is started
knowing it is safe to do so and it will not be affected by the
previous failure.

B. Schedule Mutants

schedule.c contains 14 comparison operators. (All of
them comparing int with int.) Therefore there are 70 first
order mutants. The number of tests which detect them is
plotted in Figure 5. Ten of the 70 make no visible difference
but one first order mutant fails a single test.

Figure 5 shows random high order schedule.c mutants
are easily detected. Most of the tests are good at finding
them. Even the worst test detects most high order mutants.
schedule.c is much more complicated than the triangle
program. Perhaps this is why multiple mutations scattered at
random are more easily detected than in triangle.c. The
GP was also able to solve the problem, but since there are
only 70 first order mutants, it is easy to enumerate them.

VII. THE TCAS (AIRCRAFT TRAFFIC ALERT AND
COLLISION AVOIDANCE SYSTEM) BENCHMARK

A. tcas Benchmark, Robustness Improvements, Creating and
Testing Mutants

tcas (SIR version 2.0) was down loaded from the Software-
artifact Infrastructure Repository [17]. It consists of 135 lines
of C code (excluding comments and blank lines) with 40
branches [18, Table 2] and 1608 test cases with up to 12
input parameters and one output. The supplied main() was
recoded to return tcas’ answer to the GP rather than printing
it. Similarly when tcas detects an error, instead of it printing
an error message and exiting, it returns a unique error code
to the GP.
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tcas.c contains an array but no array index checking. This
leads to array bound errors, which we have reported. A check
was added. This ensures mutants cannot crash the GP and they
cannot affect the execution of each other. This check cannot
be mutated by the GP. Similarly the existing array index check
(on argv in tcas’ main) cannot by mutated.

There are 14 comparison operations non-uniformly scat-
tered through the 8 mutable functions. A BNF grammar (cf.
Figure 6) describing the mutable functions was automatically
created. Each generation our strongly typed GP system used
the grammar to generate up to 10 000 mutations of tcas. These
were compiled together by gcc into a single executable. Each
mutant was run on all 1608 tests and the number of times it
produced a different answer was recorded. (A small efficiency
improvement could have been made by not running those tests
which are trapped by immutable tests. Since these are the array
index changes, which GP cannot change, the mutant must pass
these tests.)

As is usual in GP, the initial population was constructed
from random individuals. (I.e. very high order mutants, in
which almost all comparisons are changed.) We anticipate
finding interesting mutants which are good at passing tcas’s
test cases and not too dissimilar from it. As we have already
seen in the triangle and schedule programs (Figures 4 and 5)
and confirmed by Figure 7, random high order mutants are
naturally some distance away from the goal. An alternative
would be to start the evolving population nearer the anticipated
solutions by seeding it with low order mutants. This would
undoubtably introduce a bias, which might be beneficial.
However, if successful, seeding would tend to confirm our
initial assumptions, rather than challenge them. Therefore we
chose to avoid this particular bias and allow evolution to move
the population. We tried two strategies to allow the population
to move some distance: a large population (10 000) for 50
generations and a small population (100) for 500 generations,
cf. Table II. Both worked and came to different solutions.

TABLE II
STRONGLY TYPED GRAMMAR GP TO FIND HARD TO KILL TCAS MUTANTS

Primitives: The function and terminal sets are defined by the BNF
grammar (cf. Figure 6). BNF rules with two options corre-
spond to binary GP functions. The rest of the BNF grammar
correspond to GP terminals.

Fitness: Two objectives. 1) minimise the number of tcas test cases
failed 2) minimise the syntactic difference (Section III) from
tcas.c. However programs which pass all test cases are
treated as if they failed INT_MAX tests.

Selection: NSGA-II. I.e. Pareto multi-objective rank based binary
tournament selection on combined current and offspring
populations.

Population size = 100 or 10000
Initial pop: Ramped half-and-half 3:7
Parameters: 90% subtree crossover. 10% subtree mutation. Max tree

depth 17 (no tree size limit)
Termination: 500 or 50 generations

B. tcas Mutants

Since for each comparison there are five possible mutations,
there are 70 (5 × 14) first order mutations. The fitness (i.e.
semantic and syntactic differences from tcas itself) are plotted
in Figure 7. About a third (24) of the 1st order mutants are
not discovered by any of the 1608 test cases. Many of the rest
are fairly easy to find and fail many tests. However there is
one first order mutant which fails only three tests.

Monte Carlo sampling (cf. dots in Figure 7) shows there
are 264 tcas tests which defeat 98.33% of random programs
but 428 (Figure 8) which are passed by all 10 000 high order
mutants.

Figure 8 plots the expected output from tcas for each test
case. The three groups identified in the previous paragraph
(cf. also Figure 7) are high lighted by sorting the tests by
their effectiveness against random high order mutants. As
with triangle and schedule, the most effective tests are those
that check for more than default operation. For tcas this
means all the tests which expect either UPWARD RA or
DOWNWARD RA (i.e. aircraft collision threat identified) are
highly effective. A few of the 428 tests which are always
ineffective are due to non-mutable error detection (lower two
set of points in Figure 8). Most of the tcas test suite checks for
UNRESOLVED. Some of these are totally ineffective against
random mutations but most are fairly poor and find only about
1.67% of them.

C. Running the Pareto GP on tcas

Figure 9 shows NSGA-II progressively improved the initial
random high order mutants. It both reduced the number of
test cases able to find them and their syntactic distance from
tcas. In generation 13 a 7th order mutant was found which is
killed by only one test. In generation 44 a 5th order mutant
was found which is defeated by only one test. Although the
5th order mutant is a subset of the 7th, i.e. the 7th has two
additional changes, they behave differently and fail on different
tests. No mutant which failed on two tests was found in this
run but the second run (Section VII-D3) found several.



<line1>::= "bool Non_Crossing_Biased_ClimbXXX()\n"
<line2>::= "{\n"
<line3>::= "int upward_preferred;\n"
<line4>::= "int upward_crossing_situation;\n"
<line5>::= "bool result;\n"
<line6>::= "\n"
<line7>::= "upward_preferred = Inhibit_Biased_Climb()"

<compare> "Down_Separation;\n"
<line8>::= "if (upward_preferred)\n"
<line9>::= "{\n"
<line10>::= "result = !(Own_Below_ThreatXXX()) ||

((Own_Below_ThreatXXX()) && (!(Down_Separation"
<compare> "ALIM())));\n"

<line11>::= "}\n"
<line12>::= "else\n"
<line13>::= "{\n"
<line14>::= <line14A> <line14B>
<line14A>::= "result = Own_Above_ThreatXXX() &&

(Cur_Vertical_Sep" <compare> "MINSEP) &&
(Up_Separation"

<line14B>::= <compare> "ALIM());\n"
<line15>::= "}\n"
<line16>::= "return result;\n"

...

<start>::= <line1> <line2> <line3> <line4> <line5>
<line6> <line7-30> <line31-54> <line55>
<line56> <line57> <line58> <line59> <line60>
<line61> <line62> <line63> <line64> <line65>
<line66> <line67> <line68> <line69> <line70>
<line71> <line72> <line73>

<line7-30>::= <line7-17> <line18-28> <line29> <line30>
<line7-17>::= <line7-10> <line11-14> <line15>

<line16> <line17>
<line7-10>::= <line7-8> <line9-10>
<line7-8>::= <line7> <line8>
<line9-10>::= <line9> <line10>
<line11-14>::= <line11> <line12> <line13> <line14>
<line18-28>::= <line18> <line19> <line20> <line21>

<line22> <line23> <line24> <line25-26> <line27-28>
<line25-26>::= <line25> <line26>
<line27-28>::= <line27> <line28>
<line31-54>::= <line31> <line32-43> <line44-54>
<line32-43>::= <line32-35> <line36-39> <line40>

<line41> <line42> <line43>
<line32-35>::= <line32> <line33> <line34> <line35>
<line36-39>::= <line36> <line37> <line38> <line39>
<line44-54>::= <line44-49> <line50-54>
<line44-49>::= <line44> <line45> <line46> <line47>

<line48> <line49>
<line50-54>::= <line50> <line51> <line52-53> <line54>
<line52-53>::= <line52> <line53>

Fig. 6. Fragments of Backus-Naur form grammar used to specify tcas
mutants. In total it contains 104 rules. (Common code which is not mutable
is excluded. This gives a minor efficiency gain.) <compare> is defined in
Section IV. XXX is replaced by the individual mutant’s identification before
it is compiled.

D. Hard to Detect tcas Mutants

At the left hand side of Figure 9 there are two points (“Gen
14-44” and “Gen 45-50”) above x = 1. They represent two
high order tcas mutants which pass all but one test.

1) Seventh Order tough tcas Mutant:
The mutant changes lines 87 in function Non_Crossing_
Biased_Climb() (twice), 101 in Non_Crossing_
Biased_Descend() (twice), 112 in Own_Below_
Threat() 117 in Own_Above_Threat() and line 127
in alt_sep_test().
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a) line 127 input 10 v. NO_INTENT = ; ≤:
In normal operation this change would have no impact since
it tests one of the twelve inputs directly, and NO_INTENT is
the smallest of its legal values. (Input 10 is not used elsewhere
by tcas.) The tcas test cases include 18 illegal values for input
10, seven of which are less than NO_INTENT (0). This would
suggest that as a first order mutant, it would be easier to detect



than average. However its effect is totally masked by the rest
of tcas. I.e. as an isolated first order mutant this change to
line 127 is not detected by the test suite.

b) lines 112 & 117, Comparing inputs 4 & 6, < ; ≤:
These two mutants can be thought of as a pair. They
occur in paired routines Own_Below_Threat() and
Own_Above_Threat() and both compare inputs 4 and 6.
Further the two routines are used together.

Replacing < by ≤ clearly can only change behaviour when
inputs 4 and 6 are equal. (Again neither input 4 nor 6 are
modified by tcas.) There are 23 such test cases. Therefore
either mutation by itself could in principle fail up to 23 tests.
However 22 of these are masked by the combined effects of
tcas itself and the other six changes.

Oddly, the first order mutation on line 112 (input 4 < input 6
; input 4 ≤ input 6) is masked by the rest of tcas in 11 of the
23 test cases. However the very similar mutation on line 117
(input 6 < input 4 ; input 6 ≤ input 4) is always masked
and so is equivalent.

c) lines 101 and 87, checking inputs 1 and 8:
There are two mutations on each line. We group
these four mutations together since they appear
in the same location in two complementary
routines, Non_Crossing_Biased_Climb() and
Non_Crossing_Biased_Descend(). Again the pair
of routines are used together. In line 87 input 1 ≥ 300 &&
input 8 ≥ ALIM() is mutated to input 1 < 300 && input 8
≤ ALIM() (Again neither input is modified by tcas.) Line
101 has been mutated in somewhat similar way input 1 ≥
300 && input 8 ≥ ALIM() becomes input 1 6= 300 &&
input 8 ≤ ALIM().

As isolated first order mutants all four pass all the tests.
This may be because they are nested within routines which
themselves are nested in the logic of tcas so that the com-
parisons are seldom made when tcas is run. However they
appear to interact with the three other mutations to make the
combination very tough to test against.

2) Fifth Order tough tcas Mutant:
Referring back to the left hand side of Figure 9 we see
evolution continues after generation 14 so that in generation
45 a fifth order mutant is discovered which also passes a single
test. Since it syntactically closer to tcas, it replaces the seventh
order mutant on the Pareto front.

While not an immediate descendent of the 7th order
mutation it is similar and was probably found through an
intermediate cousin.

The 5th order mutation contains the same last 5 changes
as the 7th order one. I.e. it is the same except for line 87.
However, while the two high order mutations both fail just
one test, it is a different test. In fact its a different one of
the 23 tests where inputs 4 and 6 are equal. Note, removal of
two equivalent mutations has actually changed the behaviour
of tcas.

3) Third Order tough tcas Mutant:
A separate GP run with a small population (100) but more
generations found two more high order mutants which are
defeated by a single test case. In generation 90 a fourth order
mutant was found. This was replaced in generation 105 by
a third order mutant. Again they are similar. The third order
mutant is identical to the fourth except it does not include the
mutation to line 117. For brevity we shall just described the
third order mutant.

The mutant changes lines 101 in Non_Crossing_
Biased_Descend() (once), 112 in Own_Below_
Threat() and 117 in Own_Above_Threat() in the
same way as described in Section VII-D1.

Although this mutant only contains three of the seven
mutations described in Section VII-D1 it fails the same
test (test 1400). (Which is different from that failed
by the 5th order, which differs by two of the same
four changes.) Test 1400 (like all the other tcas tests)
was taken from the runall.sh script provided by
SIR. It runs tcas with 12 command line arguments:
tcas 601 1 0 502 200 502 0 599 400 0 0 1
The third order mutant yields 2 (DOWNWARD RA) whereas
the original program prints 0 (UNRESOLVED).

These results tend to suggest that if further testing effort
were available it might be concentrated around lines 87,
101, 112, 117 and possibly 127. Note all twenty first order
mutations to lines 87 and 101 are equivalent.

VIII. CONCLUSIONS

We have introduced a new form of mutation testing, re-
formulating traditional mutation testing as a multi objective
search problem in which the goal is to seek higher order
mutants that are hard to kill and syntactically similar to the
original program under test. The approach uses higher order
mutation testing, but subsumes traditional mutation testing
since a first order mutant is also a special case of a higher
order mutant (for which the order is simply 1).

Using the search based approach, we are able to specifically
seek the mutants that denote more realistic complex faults that
are also hard problems for testing. We have implemented this
approach using genetic programming (GP) on a normal office
personal computer running Linux and report results on three
cases studies including two real world programs together with
the Triangle ‘benchmark’ example. The results demonstrate
st144that in a few minutes the Higher Order GP Mutation
testing approach is able to find complex faults denoted by
(non–equivalent) higher order mutants of real programs that
cannot be denoted by any first order mutant and which are
harder to kill than any first order mutant.
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