
A Fast High Quality Pseudo Random Number Generator for
nVidia CUDA

W. B. Langdon

Department of Computer Science, CREST centre, King’s College, London, WC2R 2LS, UK

Wi11iam.Langdon@kcl.ac.uk

ABSTRACT
Previously either due to hardware GPU limits or older ver-
sions of software, careful implementation of PRNGs was
required to make good use of the limited numerical preci-
sion available on graphics cards. Newer nVidia G80 and
Tesla hardware support double precision. This is available
to high level programmers via CUDA. This allows a much
simpler C++ implementation of Park-Miller random num-
bers, which provides a four fold speed up compared to an
earlier GPU implementation. Code is available via ftp.

Categories and Subject Descriptors: D.2.3 [Coding
Tools and Techniques]: Top-down programming

General Terms: Performance

1. INTRODUCTION
Even just a couple of years ago, it was common to disre-

gard the production of pseudo random numbers on graphics
hardware [10, 11]. Fortunately last year’s CIGPU [5, 8] and
previous work [2, sec 7] has helped to dispel this. In par-
ticular last year we presented a C++ RapidMind 2 imple-
mentation of Park and Miller’s minimal standard PRNG [9]
which achieved an average of 833 million random numbers
per second on an nVidia GeForce 8800 GTX [5, p461]. This
has been reimplemented in nVidia CUDA C++ and on an
early engineering Tesla T10P achieves 3544 million random
numbers per second on average. A 4.25 fold increase on the
single precision implementation.

Much of the sorry history of software implementations of
pseudo random numbers and why we chose Park and Miller’s
minimal PRNG is described in [5]. A simple serial CPU im-
plementation is given in Figure 1. The large constants used
by Park and Miller mean their linear congruent algorithm
requires a minimum of 46 bits of precision.

Figure 1 shows the algorithm is quite simple and conse-
quently fast. (A modern Linux PC can generate 27 million
random numbers per second [5].)

2. CUDA DOUBLE FLOAT PARK-MILLER
Figure 2 shows a fragment of the C++ CUDA kernel

which is run on the graphics card by many execution threads
in parallel. Notice that the modulus operation (%) on seed * a

is achieved by replacing % by subtracting the smallest integer
multiple of m which does not exceed seed * a. This in turn

Copyright is held by the author/owner(s).
GECCO’09, July 8–12, 2009, Montreal.
ACM 978-1-60558-505-5/09/07.

int intrnd (int& seed) // 1<=seed<m

{

int const a = 16807; //ie 7**5

int const m = 2147483647; //ie 2**31-1

seed = (long(seed * a))%m;

return seed;

}

Figure 1: park-miller.cc long int implementation.
Multiplication and modulus are used to return a
randomised version of the input. By careful choice
of a and m Park and Miller [9] produce an apparently
random sequence of integers which uniformly sam-
ples the first 231−2 integers without repeating any.

double const a = 16807; //ie 7**5

double const m = 2147483647; //ie 2**31-1

double const reciprocal_m = 1.0/m;

double temp = seed * a;

seed = (int)(temp - m * floor(temp * reciprocal_m));

Figure 2: park-miller_kernel.cu double precision im-
plementation of Park-Miller CUDA kernel. Notice
the modulus operation (cf. Figure 1) has been re-
placed by subtraction, truncation to integer and
double precision multiplication.

is found by multiplying m by the integer part of seed * a/m.
However, especially in Tesla double precision, it is faster to
multiply by m−1 rather than to divide by m.

3. TESTING
The CUDA kernel is invoked by C++ code running on

the host CPU. The Tesla returns a vector of random num-
bers, each one seeded with a different initial value. These
were automatically compared with values given by our orig-
inal C++ implementation. Both were validated using the
method suggested by Park and Miller [9]. Also they were
each run up to 2 147 483 647 times and their results con-
firmed against those at http://www.firstpr.com.au/dsp/

rand31/rand31-park-miller-carta.cc.txt

4. CONFIGURATION & PERFORMANCE
Using ebuild merge we installed 1) nVidia drivers (180.27),

2) CUDA toolkit 2.1 and 3) CUDA SDK 2.10 (1215.2015) on
a dual 2.66GHz CPU PC running 2.6.24-gentoo-r3 GNU/Linux
with gnu gcc 4.1.2 C/C++ compiler. Default setting, includ-
ing nvcc compiler optimisation, were used through out.

http://www.cs.ucl.ac.uk/staff/W.Langdon/
http://crest.dcs.kcl.ac.uk/
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/random-numbers/cuda_park-miller.tar.gz
http://www.firstpr.com.au/dsp/rand31/rand31-park-miller-carta.cc.txt
http://www.firstpr.com.au/dsp/rand31/rand31-park-miller-carta.cc.txt
http://www.firstpr.com.au/dsp/rand31/rand31-park-miller-carta.cc.txt
http://www.dcs.kcl.ac.uk/staff/W.Langdon/gentoo-cuda/

We used an early release of an nVidia Tesla T10P (192
computation cores ×1.08 GHz) which can only give an in-
dication of performance on production Tesla or future re-
leases. CUDA SDK’s bandwidthTest program suggests the
PC/Tesla combination is capable of 1882 Megabytes per sec-
ond data transfer rate to the device and 1433 MB/sec back
to the host PC.

For ease of comparison with previous work [5] we again
generate in parallel up to 4 million streams of PRNG. To
estimate the actual costs of data transfers and starting and
stoping execution threads we calculate: the next, the next
10 and next 100 random numbers from each random number
sequence.

We arranged the CUDA execution threads in one dimen-
sional blocks, which were in turn arranged in a one dimen-
sional grid. The maximum number of active threads is given
by the product of the number of threads per block and
the number of blocks in the grid. However the number of
threads actually running is limited by the number of process-
ing cores, their arrangement, their loading, the availability
of data within the Tesla, etc.

As expected, the rate at which random numbers are gen-
erated is reduced when the number of threads per block is
eight or less. Each block is run on a multiprocessor consist-
ing of eight cores. Therefore at least eight threads per block
are need to keep the whole multiprocessor busy. In fact, to
allow multiple threads to execute when others are blocked,
nVidia recommend at least 16 threads per block. Indeed
Figure 3 confirms this and shows performance is reduced
when the number of threads per block is ≤ 8. Figure 3 show
performance for block size 1, 2, 4, etc., up to 512. (512 is
the maximum block size for the Tesla.)

Each block of threads runs on a single multiprocessor.
Therefore at least 24 blocks of threads are needed to get
the best from the Tesla. Again it appears to be necessary to
have more than 24 blocks of threads active to keep the whole
Tesla busy. Figure 3 suggests increasing the grid size above
64 does not give much additional performance. Figure 3
shows performance for grid sizes 1, 2, 4, etc., up to 8192.

Figure 3 suggests with only when more than 2048 threads
are available will the 8× 24 = 192 cores be fully loaded.

Inspection of the nvcc compiler output (cf. Figure 4) re-
veals there are ten double precision operations (f64) and five
32 bit instructions for each random number. (The 32 bit in-
structions are not shown in Figure 4.) However run time
may be dominated by the three double precision multiplica-
tions (mul.f64). If we concentrate on the ten double preci-
sion operations and multiply by the peak rate at which Park-
Miller random numbers are calculated (3544 million/sec)
this suggests the Tesla’s maximum average double precision
performance with our kernel is 35 Gflops.

If the Park-Miller CUDA kernel was really able to fully
load the T10P it would be using 192 × 1.08 109 clock ticks

per second. I.e., 192×1.08 109

3544 10 6 = 59 clock ticks per PRNG. If
each of the non-mul.f64 operations takes a tick, this would
suggest each mul.f64 takes in the region of 16 ticks.

5. ADVANTAGES OF CUDA
It is unclear if this is due to CUDA or the different hard-

ware set up but the CUDA/Tesla combination has been
much more stable than several earlier Linux PC/GeForce
8800 systems. The system has never hung and the operat-
ing system has never been forced to reboot.

cvt.rn.f64.u32 %fd1, %r19;

mov.f64 %fd2, 0d40d069c000000000; // 16807

mul.f64 %fd3, %fd1, %fd2;

mov.f64 %fd4, 0d3e00000000200000; //4.65661e-10

mul.f64 %fd5, %fd3, %fd4;

cvt.rmi.f64.f64 %fd6, %fd5;

mov.f64 %fd7, 0d41dfffffffc00000; //2.14748e+09

mul.f64 %fd8, %fd6, %fd7;

sub.f64 %fd9, %fd3, %fd8;

cvt.rzi.s32.f64 %r24, %fd9;

Figure 4: Fragment of ptx assembler generated by
nvcc for kernel shown in Figure 2. reciprocal_m

is 4.65661e-10. There are ten double precision (or
mixed format) operations per random number.

The T10P provides 1 Gbytes of storage. Using CUDA all
of this can be used in a single operation. I.e., there is no
need to split work up into 4 million sized units. E.g., should
you wish, it is possible to generate in parallel 250 million in-
dependent streams of random numbers and to transfer 250
million random numbers in one go. (Each Park-Miller ran-
dom number occupies four bytes.)

As well as supporting double precision, CUDA eases lower
level access to the GPU or Tesla. E.g. CUDA allows ac-
cess to the meta-assembly language (ptx) generated by the
compiler. In some cases lower level knowledge of the GPU
architecture is required. For example RapidMind 2 did not
require the programmer to think in terms of cores or multi-
processors. Instead RapidMind divides the work up between
the parallel units for the programmer.

6. DISCUSSION
CUDA SDK provides several “quasi random”number gen-

erators. These claim about the same performance as Park-
Miller. (One is about twice as fast and one about half the
speed of our CUDA Park-Miller.) However it is notable that
the CUDA implementation does not provide identical results
to their own C++ implementation. How “good” a pseudo
random number is depends on it usage [4]. We have imple-
mented a PRNG for CUDA and validated it against Park
and Miller’s minimal standard PRNG [9].

Howes and Thomas [3] implement rather different PRNGs
in CUDA and show similar performance. Also they claim
speed ups using a “GeForce 8 GPU” (relative to a quad
2.2 GHz PC) of 26 and 59 fold for two financial applications.
Gulati and Khatri [1] use a GeForce 8800 GTX to perform
Monte Carlo based simulations but of the speed of digital
circuits rather than markets. CUDA based PRNG have also
been used when simulating biochemical systems [6].

7. CONCLUSIONS
A fast GPU implementation of a pseudo random num-

ber generator, meeting Park and Miller’s minimum recom-
mendations [9] has been described and benchmarked. It has
been implemented in CUDA and demonstrated on an nVidia
Tesla. The code is available via anonymous ftp from http://

www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/random

-numbers/cuda_park-miller.tar.gz

Measurements suggest the early engineering sample Tesla
is at least 130 times faster than running Park-Miller on the
host CPU and transferring pseudo random numbers to the
GPU (even ignoring the cost of copying the data into the

http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/random-numbers/cuda_park-miller.tar.gz
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/random-numbers/cuda_park-miller.tar.gz
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/random-numbers/cuda_park-miller.tar.gz

1e+06

1e+07

1e+08

1e+09

1e+10

1 4 16 64 256 1024 4K 16K 64K 256K 1M 4M

P
a

rk
-M

ill
e

r
R

a
n
d

o
m

 n
u

m
b

e
rs

 g
e
n

e
ra

te
d
 p

e
r

s
e

c
o

n
d

Available pseudo random number threads on T10P early engineering sample

grid size >=64 and block_size>=32
grid size 32
grid size 16
block size 8

grid size 8
block size 4

grid size 4
block size 2

grid size 2
block size 1

grid size 1

Figure 3: Park-Miller random numbers per second (excluding host-GPU transfer time) on nVidia pre-release
Tesla. In the test environment the rate depends upon how effectively the 192 parallel cores can be used.
The lower line of each pair refers to calculating just the next random number in the Park-Miller sequence.
Therefore these lines include the cost of starting each thread and other overheads. In contrast the upper
lines refers to generating either 10 or 100 random numbers together and so better reflects the actual cost of
generating the Park-Miller random numbers on the Tesla.

Tesla). Currently single board Tesla are available with up
to 240 cores each running at 1.5 GHz, suggesting a further
increase in performance of up to 1.74 fold might be possible.

Acknowledgment
The Tesla [7] T10P early engineering sample was supplied
by nVidia.

I am greatful for the assistance of Timothy Lanfear, Chris
Butler and Sumit Gupta of nVidia, Graham Ashton and
William Shaw of KCL, Simon Harding of Memorial and
Michal Januszewski of gentoo.org.

8. REFERENCES
[1] Gulati, K., and Khatri, S. P. Accelerating

statistical static timing analysis using graphics
processing units. In ASP-DAC ’09: Proceedings of the
2009 Conference on Asia and South Pacific Design
Automation (Yokohama), IEEE Press, pp. 260–265.

[2] Harding, S. L., and Banzhaf, W. Fast genetic
programming and artificial developmental systems on
GPUs. In 21st International Symposium on High
Performance Computing Systems and Applications
(HPCS’07) (Canada, 2007), IEEE, p. 2.

[3] Howes, L., and Thomas, D. Efficient random
number generation and application using CUDA. In
GPU Gems 3, H. Nguyen, Ed. nVidia, 2007, ch. 37.

[4] Knuth, D. E. The Art of Computer Programming,
2nd ed., vol. 2 Seminumerical Algorithms.
Addison-Wesley, 1981.

[5] Langdon, W. B. A fast high quality pseudo random
number generator for graphics processing units. In
2008 IEEE World Congress on Computational
Intelligence (Hong Kong) J. Wang, Ed., pp. 459–465.

[6] Li, H., and Petzold, L. R. Stochastic simulation of
biochemical systems on the graphics processing unit.
Submitted 2007.

[7] Lindholm, E., Nickolls, J., Oberman, S., and
Montrym, J. NVIDIA Tesla: A unified graphics and
computing architecture. IEEE Micro, 28, 2
(March-April 2008), 39–55.

[8] Pang, Wai-Man, Wong, Tien-Tsin, and Heng,
Pheng-Ann Generating massive high-quality random
numbers using GPU. In 2008 IEEE World Congress
on Computational Intelligence (Hong Kong, 1-6 June
2008), J. Wang, Ed., IEEE Computational Intelligence
Society, IEEE Press.

[9] Park, S. K., and Miller, K. W. Random number
generators: Good ones are hard to find.
Communications of the ACM 32, 10 (Oct 1988),
1192–1201.

[10] Warden, P. Random numbers in fragment programs,
10 May 2005. Accessed 24 March 2009.

[11] Wong, Tien-Tsin, Wong, Man-Leung, and Fok,
Ka-Ling Why current GPU is no good for
high-quality random numbers generation?
http://www.cs.cuhk.edu.hk/~ttwong/software/

ecgpu/ecgpu.html epgpu version 0.99. Accessed
24 March 2009.

http://www.nvidia.com
http://dx.doi.org/10.1109/HPCS.2007.17
http://http.developer.nvidia.com/GPUGems3/gpugems3_ch37.html
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/langdon_2008_CIGPU.pdf
http://dx.doi.org/10.1109/MM.2008.31
http://dx.doi.org/10.1109/MM.2008.31
http://petewarden.com/notes/archives/2005/05/random_numbers.html
http://www.cs.cuhk.edu.hk/~ttwong/software/ecgpu/ecgpu.html
http://www.cs.cuhk.edu.hk/~ttwong/software/ecgpu/ecgpu.html

	Introduction
	CUDA Double Float Park-Miller
	Testing
	Configuration & Performance
	Advantages of CUDA
	Discussion
	Conclusions
	References

