
Soft Computing Online first Prepublication
DOI 10.1007/s00500-008-0296-x

GP on SPMD parallel Graphics Hardware for mega Bioinformatics
Data Mining

W. B. Langdon, A. P. Harrison

Mathematical and Biological Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK

Abstract We demonstrate a SIMD C++ genetic pro-
gramming system on a single 128 node parallel nVidia
GeForce 8800 GTX GPU under RapidMind’s GPGPU
Linux software by predicting ten year+ outcome of breast
cancer from a dataset containing a million inputs. NCBI
GEO GSE3494 contains hundreds of Affymetrix HG-U133A
and HG-U133B GeneChip biopsies. Multiple GP runs
each with a population of 5 million programs winnow
useful variables from the chaff at more than 500 million
GPops per second. Sources available via FTP.

1 Introduction

Due to its speed, price and availability, there is increas-
ing interest in using mass market graphics hardware
(GPUs) for scientific applications. So far there are a
few reported successful applications of GPUs to Bioin-
formatics (Section 3). In Section 4 we will describe one
where soft computing [Langdon and Buxton, 2004] is
used to data mine a small number of indicative mRNA
gene transcript signals from breast cancer biopsys (tis-
sue samples) each with more than a million variables. In
Sections 5 and 6 GP [Koza, 1992; Banzhaf et al., 1998]
[Langdon and Poli, 2002] is used on a powerful GPU
[Langdon and Banzhaf, 2008] to find a simple non-linear
combination of three mRNA measurements which pre-
dicts long term outcomes at least as well as DLDA, SVM
and KNN using seven hundred measurements
[Miller et al., 2005].

2 Using Games Hardware GPUs for Science

[Owens et al., 2007] gives a recent survey of running sci-
entific or indeed general purpose computation on mass
market graphics cards (GPGPU). Whilst there is in-
creasing interest, to date both Bioinformatics and soft
computing are under represented. As with other GPGPU
applications, the drivers are: locality, convenience, cost
and concentration of computer power. Indeed the prin-
ciple manufactures (nVidia and ATI) claim faster than
Moore’s Law increase in performance (e.g. [Fernando,
2004, page 4]). They suggest that GPU floating point
performance will continue to double every twelve months,
rather than the 18-24 months observed for electronic cir-
cuits in general [Moore, 1965]1 and personal computer
CPUs in particular. Indeed the apparent failure of PC
CPUs to keep up with Moore’s law in the last few years
makes GPU computing even more attractive. Even to-
day’s top of the range GPU greatly exceed the floating
point performance of their host CPU. This speed comes
at a price.

GPUs provide a restricted type of parallel process-
ing, often referred to a single instruction multiple data
(SIMD) or more precisely single program multiple data
(SPMD). Each of the many processors simultaneously
runs the same program on different data items. See Fig-
ure 1. Being tailored for fast real time production of
interactive graphics, principally for the computer gam-
ming market, GPUs are tailored to deal with rendering
of pixels and processing of fragments of three dimen-
sional scenes very quickly. Each is allocated a proces-
sor and the GPU program is expected to transform it
into another data item. The data items need not be of
the same type. For example the input might be a tri-
angle in three dimensions, including its orientation, and
the output could be a colour expressed as four floating

1 Although forty years ago Intel’s Gordon Moore wrote
about number of components per chip, “Moore’s Law” has
popularly taken on a wider meaning, which includes doubling
of speed.

http://dx.doi.org/10.1007/s00500-008-0296-x
http://www.essex.ac.uk/maths/staff/langdon/
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/gpu_gp_2.tar.gz

2 W. B. Langdon, A. P. Harrison

SP

SP

SP

SP

SP

SP

SP

SP

direction

reflected light

Light

and intensity

Program to
calculate

Fig. 1 An example of SIMD parallel processing. The stream
processors (SP) simultaneously run the same program on dif-
ferent data and produce different answers. In this example
each programs has two inputs. One describes a triangle (po-
sition, colour, nature of its surface: matt, how shiny). The
second input refers to a common light source and so all SP
use the same value. Each SP calculates the apparent colour
of its triangle. Each calculation is complex. The stream pro-
cessors use the colour of the light, angles between the light
and its triangle, direction of its triangle, colour of its triangle,
etc.

point numbers (RGB and alpha). Indeed vectors of four
floats can be thought of as the native data type of cur-
rent GPUs. RapidMind’s software translates other data
types to floats when it transfers it from the CPU’s mem-
ory to the GPU and back again when results are read
back. Note integer precision may only be 24 bits, how-
ever GPUs will soon support 64 bits.

Typical GPUs are optimised so that programs can
read data from multiple data sources (e.g. background
scenes, placement of lights, reflectivity of surfaces) but
generate exactly one output. This parallel writing of
data greatly simplifies and speeds the operation of the
GPU. Even so both reading and writing from memory
are still bottlenecks. This is true even though GPUs usu-
ally come with their own memory and memory caches.
(The nVidia 8800 comes with 768Mbytes). Additionally
data must be transfered to and from the GPU. Even
when connected to the CPU’s RAM via PCI, this rep-

resents an even narrower bottle neck. Faster hardware
(e.g. PCI Express x16) is available for some PC/GPU
combinations. However this does not remove the bottle
neck. CPU–GPU communication can also be delayed by
the operating system check pointing and rescheduling
the task.

The manufactures’ publish figures claiming enormous
peak floating point performance. In practise such figures
are not obtainable. A more useful statistic is often how
much faster an application runs after it has been con-
verted to run on a GPU. However the number of GP
operations per second (GPops) should allow easier com-
parison of different GP implementations.

Many scientific applications and in particular Bioin-
formatics applications are inherently suitable for paral-
lel computing. In many cases data can be divided into
almost independent chunks which can be acted upon al-
most independently. There are many different types of
parallel computation which might be suitable for Bioin-
formatics. Applications where a GPU might be suitable
are characterised by:

– Maximum dataset size ≈ 108

– Maximum dataset data rate ≈ 108 bytes/Second
– Up to 1011 FLOP/Second
– Applications which are dominated by small compu-

tationally heavy cores. I.e. a large number of compu-
tations per data item.

– Core has simple data flow. Large fan-in (but less than
16) and simple data stream output (no fan-out).

Naturally as GPUs become more powerful these figures
will change.

In some cases, it might be possible to successfully
apply GPUs to bigger problems. For example, a large
dataset might be broken into smaller chunks, and then
each chunk is loaded one at a time onto the GPU. When
the GPU has processed it, the next chunk is loaded and
so on, until the whole dataset has been processed. The
time spent loading data into (and results out of) each
GPU may be important. If the application needs a data
rate of 100Mbyte/second we must consider how the data
is to be loaded into a personal computer at this rate in
the first place. Alternatively it may be possible to load
data from a scientific instrument directly connected to
the GPU.

nVidia say their GeForce 8800 (Fig. 2) has a theoreti-
cal upper limit of 520 GFLOPS [NVIDIA, 2006, page 36],
however we obtained about 30 GFLOPS in practice. De-
pending on data usage (cf. Section 7), it appears that
100 GFLOPS might be reached in practise. While tools
to support general purpose computation on GPUs have
been greatly improved, getting the best from a GPU is
still an art. Indeed some publications claim a speed up of
only 20% (or even less than one) rather than 7+, which
we report.

http://www.essex.ac.uk/maths/staff/langdon/
http://www.nvidia.com/page/8800_tech_specs.html

GP on SPMD parallel Graphics Hardware for mega Bioinformatics Data Mining 3

64 MB

32bits

64 MB

32bits
memory

64 MB

32bits

64 MB

32bits
memory

64 MB

32bits

64 MB

32bits
memory

64 MB

32bits

64 MB

32bits
memory

64 MB

32bits

64 MB

32bits
memory

64 MB

32bits

64 MB

32bits
memory

ROP ROP ROP ROP ROP ROP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

TF

TF

TA

TF

TF

TA

TF

TF

TA

TF

TF

TA

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

TF

TF

TA

TF

TF

TA

TF

TF

TA

TF

TF

TA

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

TF

TF

TA

TF

TF

TA

TF

TF

TA

TF

TF

TA

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

TF

TF

TA

TF

TF

TA

TF

TF

TA

TF

TF

TA

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

TF

TF

TA

TF

TF

TA

TF

TF

TA

TF

TF

TA

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

TF

TF

TA

TF

TF

TA

TF

TF

TA

TF

TF

TA

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

TF

TF

TA

TF

TF

TA

TF

TF

TA

TF

TF

TA

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

TF

TF

TA

TF

TF

TA

TF

TF

TA

TF

TF

TA

SP

SP

SP

SP

T
hr

ea
d

Pr
oc

es
so

r

L2 CACHEL2 CACHEL2 CACHEL2 CACHEL2 CACHEL2 CACHE

PC

Input Assembler

PCI Express

Thread Execution Manager

L1L1 L1L1 L1L1 L1L1 L1L1 L1L1 L1L1 L1L1

Fig. 2 nVidia 8800 Block diagram. The 128 1360 MHz Stream Processors are arranged in 16 blocks of 8. Blocks share 16 KB
memory (not shown), an 8/1 KB L1 cache, 4 Texture Address units and 8 Texture Filters. The bus (brown) links off chip
RAM at 900 (1800) MHz [NVIDIA, 2006; NVIDIA, 2007]. There are 6 Raster Operation Partitions.

3 GPUs in Bioinformatics and Soft Computing

We anticipate that after a few key algorithms are suc-
cessfully ported to GPUs, within a few years Bioinfor-
matics will adopt GPUs for many of its routine applica-
tions. However early results have been mixed.

[Charalambous et al., 2005] successfully used a rela-
tively low powered GPU to demonstrate inference of evo-
lutionary inheritance trees (by porting RAxML onto an
nVidia). However a more conventional MPI cluster was
subsequently used [Stamatakis, 2006]. Sequence compar-
ison is the life blood of Bioinformatics. [Liu et al., 2006]
ran the key Smith-Waterman algorithm on a high end
GPU. They demonstrated a reduction by a factor of
up to 16 in the look up times for most proteins. Us-
ing CUDA [Schatz et al.,] ported a different sequence
searching tool (MUMmer) to a more modern G80 GPU
and obtained speed ups of 3–10 when matching short
DNA strands against much longer sequences. By break-
ing queries into GPU sized fragements, they were able
to run short sequences (e.g. 50 bases) against a complete
human chromosome. [Gobron et al., 2007] used OpenGL
on a high end GPU to drive a cellular automata simula-
tion of the human eye and achieved real-time processing
of webcam input.

Soft computing applications of GPUs have included
artificial neural networks (e.g. multi layer perceptrons
and self organising networks [Luo et al., 2005]), genetic
algorithms [Fok et al., 2007] and a few genetic
programming experiments [Lindblad et al., 2002],
[Loviscach and Meyer-Spradow, 2003; Ebner et al., 2005;
Reggia et al., 2006; Harding and Banzhaf, 2007a]
[Harding and Banzhaf, 2007b; Harding et al., 2007]
[Chitty, 2007].

Most GPGPU applications have only required a sin-
gle graphics card, however [Fan et al., 2004] shows large
GPU clusters are also feasible. As [Owens et al., 2007]
makes clear games hardware is now breaking out of the
bedroom into scientific and engineering computing. So
far only certain niches have been explored.

4 Gene Expression in Breast Cancer

[Miller et al., 2005] describes the collection and anal-
ysis of cancerous tissue from most of the women with
breast tumours from whom samples were taken in the
three years 1987–1989 in Uppsala in Sweden. [Miller et
al., 2005]’s primary goal was to investigate p53, a gene
known to be involved in the regulation of other genes
and implicated in cancers. In particular they studied
the implications of mutations of p53 in breast cancer.

4 W. B. Langdon, A. P. Harrison

The p53 genes of 251 women were sequenced so that
it was known if they were mutant or not. Affymetrix
GeneChips (HG-U133A and HG-U133B) were used to
measure mRNA concentrations in each biopsy. Various
other data were recorded, in particular if the cancer was
fatal or not.

Affymetrix GeneChips estimate the concentration of
strands of messenger RNA by binding them to comple-
mentary DNA itself tied to specially treated glass slides.
GeneChips are truly amazing. When working well they
can measure the activity, in terms of mRNA concentra-
tion, of almost all known human genes in one operation.
Each of the two types of GeneChips used contained more
than half a million DNA probes arranged in a 712× 712
square (12.8mm)2 array. Obviously such tiny measuring
devices are very subject to noise are so between 11 and
20 reading are taken per gene. In fact each reading is du-
plicated with a control which differs only by its central
DNA base. These controls are known as mismatch MM
probes.

There has been considerable debate about the best
way of converting each of the 11 or more pairs of read-
ings into a single value to represent the activity of a gene.
[Miller et al., 2005] used Affymetrix’ MAS5. MAS5 uses
outlier detection etc. to take a robust average of the 22 or
more data. The academic community has also developed
its own tools. These have tended to replace the manufac-
turer’s own analysis software. Such tools also use outlier
detection and robust averaging. Some, such as GCRMA
[Wu et al., 2004], ignore the control member of each pair.

[Miller et al., 2005] separately normalised the natural
log of the HG-U133A and HG-U133B values and then
used MAS5 to calculate 44 928 gene expression values
for each pair patient. Between 125 and 5 000 of the most
variable were selected for further analysis. They used di-
agonal linear discriminant analysis to fit the whole data
set. They say DLDA gave better results than k near-
est neighbours and support vector machines. The DLDA
p53 classifier used 32 genes.

Recently we have surveyed defects in more than
ten thousand Affymetrix GeneChips using a new tech-
nique [Langdon et al., ; Langdon et al., 2007a]. While
[Miller et al., 2005] claims GeneChips with “visible arte-
facts” were re-run, we found spatial flaws in all their
data. GeneChips should have an almost random speck-
led pattern due to the pseudo random placement of gene
probes. The large light gray areas in Figure 3 indicate
spatial flaws. Spatial flaws occur most often towards the
edges of GeneChips. Figures 4 and 5 shows the location
and density of known errors in some data used for train-
ing GP and subsequent testing.

5 GeneChip Data Mining using
Genetic Programming on a GPU

Section 3 has listed the previous experiments evolving
programs with a GPU. These have either represented

Fig. 3 First HG-U133B Breast Cancer GeneChip. Data have
been quantile normalised (effectively log transformed). Large
spatial flaws can be seen at the top and lower right hand
corners.

Fig. 4 Density of spatial flaws in 98 HG-U133A Breast Can-
cer GeneChips. Red more than 20 of 98 GeneChips are flawed
(Black at least one).

the programs as trees (like Lisp S-expressions) or as net-
works (Cartesian GP) [Harding and Banzhaf, 2007a] and
used the GPU for fitness evaluation. Harding compiled
his graphs into GPU programs before transferring the
compiled code onto the GPU. We retain the traditional
tree based GP and use an interpreter running on the
GPU. [Langdon, 2007a] explains how it is possible for
SIMD GPU to interpret multiple programs simultane-
ously. Next we shall briefly recap how to interpret mul-

http://www.essex.ac.uk/maths/staff/langdon/

GP on SPMD parallel Graphics Hardware for mega Bioinformatics Data Mining 5

Fig. 5 Density of spatial flaws in 98 HG-U133B Breast Can-
cer GeneChips showing HG-U133B have more spatial errors
than HG-U133A, c.f. Fig. 4.

tiple programs simultaneously on a SIMD computer and
then detail tricks needed to address 512MBytes on a
GPU.

Essentially the interpreter trick is to recognise that
in the SIMD model the “single instruction” belongs to
the interpreter and the “multiple data” are the multiple
GP trees. The single interpreter is used by millions of
programs. It is quite small and needs to be compiled only
once. It is loaded onto every stream processor within the
GPU. Thus every clock tick, the GPU can interpret a
part of 128 different GP trees. The guts of a standard
interpreter is traditionally a n-way switch where each
case statement executes a different GP opcode. A SIMD
machine cannot (in principle) execute multiple different
operations at the same time. However they do provide a
cond statement.

A cond statement has three arguments. The first is
the control. It decides which of the other two arguments
which actually be used. cond behaves as if the calcula-
tions needed by its second and third arguments are both
performed, but only one is used. Which one depends
upon the cond’s first argument.

We use conditional statements like
x=cond(opcode==’+’, a+b, x) to perform an opera-
tion only if required. Otherwise to do nothing. (See Fig-
ures 6 and 7.) In traditional computing, this would be
regarded as wasteful since each instruction in the pro-
gram must be tested against every legal opcode. If there
are five opcodes, this means for every leaf and every func-
tion in the program, the opcode at that point in the tree
will be obeyed once but so too will four cond no-ops. As
we shall see in Section 7.1, the no-ops and indeed the

#define OPCODE(PC) ::PROG[PC+(prog0*LEN)]

PC=0;

FOR(PC,PC<(LEN-1),PC++) {

//if leaf push data onto stack

top = cond(OPCODE(PC)==’+’, stack(1)+stack(0), top);

top = cond(OPCODE(PC)==’-’, stack(1)-stack(0), top);

top = cond(OPCODE(PC)==’*’, stack(1)*stack(0), top);

top = cond(OPCODE(PC)==’/’, stack(1)/stack(0), top);

//remaining stack operation not shown

} ENDFOR

Fig. 6 GPU Reverse Polish Notation SIMD interpreter.
prog0 indicates which RPN program is being evaluated on
which stream processor. The central loop cycles through all
operations on all stream processors. Each individual pro-
gram uses cond statements to execute only those operations
it needs.

Value<8,float> stack;

#define PUSH(V) \

join(join(V,stack(0,1,2)),stack(3,4,5,6))

//conditionally POP stack (fake by using rotation)

#define OP3(XCODE,OP) \

stack = cond(XCODE==OPCODE, \

join(OP,stack(2,3,4),stack(5,6,7,1)), \

stack);

Fig. 7 Partial implementation for GPU stack operations.
Since RapidMind does not support index operations on writ-
ing to arrays the whole stack is updated. On PUSH the 8
element stack is shuffled to the left using nested join() and
the value is placed in stack(0). The upper most element is
lost. GP genetic operations ensure tree depth does not ex-
ceed 8 and so there can be no stack overflow. (However GP
can evolve solutions which happily cause stack over run. Na-
ture will find a way.) OP3 uses cond so that the operation OP

on the two elements on top of the stack only takes place if the
current instruction OPCODE is the right one. Then the stack
is shifted down one place and the result of the operation is
put in stack(0).

functions cost almost nothing. It is reading the inputs
from the training data which is expensive.

GPUs, at present, cannot imagine anyone having a
screen bigger than 2048×2048 and therefore do not sup-
port arrays with more than 222 elements. Each training
example has data from both HG-U133A and HG-U133B,
i.e. 2 × 7122 = 1013 888 floats. Therefore we pack four
training examples per array. Since we split the available
data into more or less equal training and holdout sets,
the GPU fitness evaluation code need process at most
only half the 251 patients’ data at a time. The code al-
lows 32 arrays (i.e. upto 128 patients). This occupies
512MB. All data transfers and data conversions are per-
formed automatically by RapidMind’s package. Rapid-
Mind keeps track of when data are used and modified.
Since the training data are not modified, they are stored
in the GPU at the start of the run. Each generation, only

6 W. B. Langdon, A. P. Harrison

+

GP population from host

GP

Training
Data

Fit

TP

TN
Fitness to host Computer

TN
TP

Fig. 8 GPU software architecture needed to overcome 222

and ≤ 16 arrays GPU limits in order to access 512MB of
training data and a population of 5 million GP programs.
The population is split into 20 256k parts by the host CPU.
256k GP programs are passed to GPU (red). There are four
parameterised instances of the SIMD interpreter (pink). Each
uses 1+8+2 arrays (plus others for control, not shown, and
debug, total 12 or more). Each instance is limited to ≤ 16 ar-
rays. We pack four sets of patient data (4 × 1 013 888) per
array. 4 groups of 8 arrays allows 512M of training data.

the data which has changed, i.e. the GP individuals and
their fitness’s, are transfered between the host computer
and the GPU. The architecture is shown shown in Fig-
ure 8.

The interpreter has to be structured to work within
another GPU restriction. Like most other GPUs, the
nVidia 8800 allows each GPU program at most 16 in-
puts. I.e. the interpreter cannot access all 32 training
data arrays simultaneously. Since it must access other
data arrays (programs, fitness, debugging, etc.) as well
as the training arrays, the interpreter was split into four
equal parts, each of which deals with 8 arrays (i.e. upto
32 patients). A parameterised C++ macro is used to de-
fine the interpreter code for one array. To access the 32
arrays of training data, the macro is used eight times in
each of the four programs.

The four sets of outputs are summed and combined
into a single fitness value per GP individual. For conve-
nience the summation and fitness calculation are done by
three auxiliary GPU programs. Only the final result is
transfered to the host computer. RapidMind’s optimis-
ing compiler deals with all seven GPU programs as one
unit and therefore can, in principle, optimise across their
boundaries. C++ code to invoke the GPU via Rapdi-
Mind is shown in Figure 9.

#include <rapidmind/platform.hpp>

#include <rapidmind/shortcuts.hpp>

using namespace std;

using namespace rapidmind;

//NP is Number of programs in Population

const int NP = 2560*2048;

//Maximum GP individual length, allow stop code

const int LEN =15+1;

//Number gp individual Programs loaded onto GPU

const int GPU_NP = 4*1024*1024/LEN; //22bit limit

//virtual array prog0 is used to simulate indexOf

Array<1,Value1i> prog0 = grid(GPU_NP);

for(int n=0;n<(NP/GPU_NP);n++) {

// Access the internal arrays where the data is stored

unsigned int* in_PROG = PROG.write_data();

memcpy(in_PROG,&Pop[n*GPU_NP*LEN],LEN*GPU_NP*opsize);

Array<1,Value1i> TP0;

Array<1,Value1i> TN0;

Array<1,Value1i> TP1;

Array<1,Value1i> TN1;

Array<1,Value1i> TP2;

Array<1,Value1i> TN2;

Array<1,Value1i> TP3;

Array<1,Value1i> TN3;

Array<1,Value1i> TP;

Array<1,Value1i> TN;

Array<1,Value1f> F;

bundle(TP0,TN0) = gpu->m_update0(prog0);

bundle(TP1,TN1) = gpu->m_update1(prog0);

bundle(TP2,TN2) = gpu->m_update2(prog0);

bundle(TP3,TN3) = gpu->m_update3(prog0);

TP = gpu->sum(TP0,TP1,TP2,TP3);

TN = gpu->sum(TN0,TN1,TN2,TN3);

F = gpu->fitness(TP,TN);

const float* fit = F.read_data();

memcpy(&output[n*GPU_NP],fit,GPU_NP*sizeof(float));

}//endfor each GPU sized element of Pop

Fig. 9 Part of C++ code to run GP interpreter on the GPU
twenty times (NP/GPU NP) per generation. At the start of the
loop the next fragment of Pop is copied into RapidMind vari-
able PROG. PROG’s address given by write data(). RapidMind
variables TP0 to TN are used to calculate fitness, cf. Figure 8.
They are not used by the host CPU and are never transfered
from the GPU to the CPU. The four m update?(prog0) pro-
grams each run the GP interpreter on 256k programs on 32
patients’ data. They are identical, except they are parame-
terised to run on different quarters of 128 training cases. The
RapidMind bundle() provides a way that is compatible with
C++ syntax for a GPU program to return two or more val-
ues. All evaluation is run on the GPU until read data() is
called. read data() not only transfers the fitness values, in
F, but also resynchronises the GPU and CPU.

http://www.essex.ac.uk/maths/staff/langdon/

GP on SPMD parallel Graphics Hardware for mega Bioinformatics Data Mining 7

As described in [Langdon and Banzhaf, 2008] the in-
terpreter represents the GP trees as linearised reverse
polish expressions. By using a stack these can be eval-
uated in a single pass. For simplicity, the expressions
are all the same length. Smaller trees are simply padded
with no-ops. Because of the enormous number of inputs,
it is no longer possible to code each opcode into a byte
[Langdon and Banzhaf, 2008] instead at least 20 bits
are needed. In fact we us a full word per opcode. This
means a population of 5 million 15 node programs can
be stored in 320Mbyte on the PC. Here we again run
into the 222 GPU addressing limit. Since each program
occupies 16 words (15, plus one for a stop code), the
population is broken into twenty 256k units.

It takes slightly less than a second to evaluate all
262 144 programs. This fits tolerably well with our earlier
finding [Langdon and Banzhaf, 2008] that, to get the
best from the GPU, its work should be fed into the GPU
in units of between 1 and 10 seconds.

5.1 GP for large scale data mining

We have previously described using genetic program-
ming to data mine GeneChip data [Langdon and Bux-
ton, 2004]. Our intention is to automatically evolve a
simple (possibly non-linear) classifier which uses few sim-
ple inputs to predict the future about ten years ahead.
To ensure the solutions are simple (and for speed) the
GP trees are limited to 15 nodes. (Whilst comparatively
small, [Yu et al., 2007] successfully evolved classifiers lim-
ited to only 8.)

In our earlier work we had only one GeneChip for
each of the 60 patients (and that was an older design).
Also the data set did not include the probe values but
only 7129 gene expression values [Langdon and Buxton,
2004]. We now have the raw probe values (and com-
pute power to use them). Therefore we will ask GP to
evolve combinations of the probe values rather than use
Affymetrix or other human designed combinations of
them. This gives us more than a million inputs. The
first step is to use GP as its own feature selector.

Essentially the idea is to use Price’s theorem [Price,
1970]. Price showed the number of fit genes in the pop-
ulation will increase each generation and the number of
unfit genes will decrease. We run GP several times. We
ignore the performance of the best of run individual and
instead look at the genes it contains. The intention was
the first pass would start with a million inputs and we
would select in the region of 10 000 for the second pass.
Then we would select about 100 from it for the third
pass. Finally a GP run would be started with a much
enriched terminal set containing only inputs which had
showed themselves to be highly fit in GP runs. However
we found only two selection passes were needed, cf. Sec-
tion 6.

The question of how big to make the GP population
can be solved by considering the coupon collector prob-

2560

2048

256

21
21 256

256

Each parent is best of
four chosen from 441

Fig. 10 Left: The GP population is arranged on a
2560× 2048 grid, which does not wrap around at the edges.
At the end of the run the best in each 256 × 256 tile is
recorded. Right: (note different scale) parents are drawn by
4-tournament selection from within a 21× 21 region centred
on their offspring.

lem [Feller, 1957, p284]. On average n(log(n)+c) random
trials are needed to collect all of n coupons. The exact
value of c depends upon n, but for large n, c is in the
region of e−1. Since we are using GP to filter inputs,
we insist that the initial random population contains at
least one copy of each input. That is we treat each in-
put as a coupon (so n = 1 013 888) and ask how many
randomly chosen inputs must we have in the initial ran-
dom population to be reasonably confident that we have
them all. The answer is 14 106. The spread in the distri-
bution of answers to the coupon collector problem is of
the order of square root of n. Therefore if we overshoot
by a few thousands, we are sure to get all the leafs into
the initial population. Since a program of 15 nodes has
8 leafs and half of these are constants we need at least
1
414 106 = 3.6 106 random trees. An initial population of
5 million ensures this.

In [Langdon and Banzhaf, 2008] we used a fairly gen-
tle selection pressure. Here we need our programs to
compete, so the tournament size was increased to four.
However we have to be cautious. At the end of the first
pass, we want of the order of 100 000 inputs to chose
from. This means we need about 25 000 good programs
(each with about 4 inputs). We do not want to run our
GP 25 000 times. The compromise was to use overlapping
fine grained demes to delay convergence of the popula-
tion [Langdon, 1998]. The GP population is laid out on
a rectangular 2560× 2048 grid (cf. Figure 10). This was
divided into 80 256×256 squares. At the end of the run,
the genetic composition of the best individual in each
square was recorded. Note to prevent the best of one
square invading the next, parents were selected to be
within 10 grid points of their offspring. Thus genes can
travel at most 100 grid points in ten generations. The
GP parameters are summarised in Table 1.

8 W. B. Langdon, A. P. Harrison

Table 1 GP Parameters for Uppsala Breast Tumour Biopsy

Function set: ADD SUB MUL DIV operating on floats
Terminal set: 7122 Affymetrix HG-U133A and 7122

HG-U133B probe mRNA concentrations.
1001 Constants -5, -4.99, -4.98, ... 4.98, 4.99, 5

Fitness: AUROC [Langdon and Barrett, 2004](
1
2

TP
No. pos + 1

2
TN

No. neg

)
less 1.0 if number of true positive cases (TP=0)
or number of true negative cases (TN=0).

Selection: tournament size 4 in overlapping fine grained
21×21 demes [Langdon, 1998], non elitist, Pop-
ulation size 2560× 2048

Initial pop: ramped half-and-half 1:3 (50% of terminals are
constants)

Parameters: 50% subtree crossover. 50% mutation
(point 22.5%, constants 22.5%, subtree 5%).
Max tree size 15, no tree depth limit.

Termination: 10 generations

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.0045

-6 -4 -2 0 2 4 6

Fr
ac

tio
n

Data Value (0.01 bins)

HG-U133A
HG-U133B

Fig. 11 Uppsala breast cancer distribution of log deviation
from average value.

5.2 Data Sets

As part of our large survey of GeneChip flaws we had
already down loaded all the HG-U133A and HG-U133B
data sets in GEO (6685 and 1815 respectively) and cal-
culated a robust average for each probe [Langdon et al., ;
Barrett et al., 2007]. These averages across all these hu-
man tissues were used to separately quantile normalise
the 251 pairs of HG-U133A and HG-U133B GeneChips
and flag locations of spatial flaws. (Cf. Figures 3–5.) The
value presented to GP is the probe’s normalised value
minus its average value from GEO. This gives an ap-
proximately normal distribution centred at zero. Cf. Fig-
ure 11.

The GeneChip data created by [Miller et al., 2005]
were obtained from NCBI’s GEO (data set GSE3494).
Other data, e.g. patients’ age, survival time, if breast
cancer caused death and tumour size, were also down
loaded. Whilst [Miller et al., 2005] used the whole dataset:

with more than a million inputs we were keen to avoid
over fitting, therefore the data were split into indepen-
dent training and verification data sets.

Initially 120 GeneChip pairs were randomly chosen
for training but results on the verification set were dis-
appointing. Accordingly we redesigned our experiment
to chose training data in a more controlled fashion. To
reduced scope for ambiguity we excluded patients who:
a) survived for more than 6 years before dying of breast
cancer, b) survived for less than 9.8 years before dying of
some other cause, c) patients where the outcome was not
known. We split the remaining data as evenly as possible
into training (91) and verification (90) sets.

It is known that age plays a prominent role in disease
outcomes but the patients were from 28 to 83 years old.
So we ordered the data to ensure both datasets had the
same age profile. We also balanced as evenly as possible
outcome (140 v. 41), tumour size, estrogen receptor (ER)
status and progesterone receptor (PgR) status.

6 Results

GP was run one hundred times with all inputs taken
from the 91 training examples using the parameters given
in Table 1. After ten generations the best program in
each of the 80 256× 256 squares was recorded. The dis-
tribution of inputs used by these 100 × 80 programs is
given in Figure 12. Most probes were not used by any of
the 8000 programs. 24 810 were used by only one. 2091
by two, and so on.

The 3422 probes which appeared in more than one
of the 8000 best of generation ten programs were used in
a second pass. In the second pass GP was also run 100
times.

Eight probes appeared in more than 240 of the best
8000 programs of the second pass. These were the inputs
to a final GP run. (The GP parameters were again kept
the same).

The GP found several good matches to the 91 train-
ing examples. Ever mindful of overfitting. As a solution
we chose one with the fewest inputs (3). GP found a non-
linear combination of two PM probes and one MM probe
from near the middle of HG-U133A, cf. Figure 13 and
Table 2. The evolved predictor is the sum of two non-
linear combination of two genes (decorin/C17orf81 and
C17orf81(2.94 + 1/S-adenosylhomocysteine hydrolase),
cf. Figure 14). Both sub expressions have some predic-
tive ability. The three probes chosen by GP are each
highly correlated with all PM probes in their probeset
and so can be taken as a true indication of the corre-
sponding gene’s activity. The gene names where given by
the manufacturer’s netaffx www pages. Possibly terms
like decorin/C17orf81 are simply using division as a con-
venient way to compare two probe values. Indeed the
sign indicates if two values are both above or both be-
low average.

http://www.essex.ac.uk/maths/staff/langdon/

GP on SPMD parallel Graphics Hardware for mega Bioinformatics Data Mining 9

Table 2 Top 20 Affymetrix probes used most in 8000 best of generation 10 second pass GP programs. Cf. Figure 12.

Used X,Y chiptype Affy id NetAffx Gene Title
1 579 350,514 A 200903 s at 8.mm S-adenosylhomocysteine hydrolase
2 493 325,511 A 219260 s at 7.pm C17orf81. chromosome 17 open reading frame 81
3 363 254,667 A 201893 x at 2.pm decorin
4 291 392,213 A 219778 at 4.pm zinc finger protein, multitype 2
5 286 366,310 B 230984 s at 10.mm 230984 s at was annotated using the Accession mapped clusters based pipeline

to a UniGene identifier using 17 transcript(s). This assignment is strictly based
on mapping accession IDs from the original UniGene design cluster to the latest
UniGene design cluster.

6 265 324,484 A 216593 s at 9.mm phosphatidylinositol glycan anchor biosynthesis, class C
7 263 542,192 B 233989 at 4.mm EST from clone 35214, full insert. UniGene ID Build 201 (01 Mar 2007)

Hs.594768 NCBI
8 245 269,553 B 223818 s at 2.pm remodeling and spacing factor 1

9 209 416,107 B 226884 at 10.pm leucine rich repeat neuronal 1
10 194 613,230 B 235262 at 6.mm Zinc finger protein 585B. 235262 at was annotated using the Accession mapped

clusters based pipeline to a UniGene identifier using 7 transcript(s). This as-
signment is strictly based on mapping accession IDs from the original UniGene
design cluster to the latest UniGene design cluster.

11 185 61,573 A 221773 at 4.pm ELK3, ETS-domain protein (SRF accessory protein 2)
12 177 619,316 B 235891 at 6.mm 235891 at was annotated using the Genome Target Overlap based pipeline to a

UCSC Genes,ENSEMBL ncRNA identifier using 2 transcript(s).
13 159 531,613 A NA
14 157 426,349 A 213706 at 11.pm glycerol-3-phosphate dehydrogenase 1 (soluble)
15 144 57,434 B 242689 at 10.mm Ral GEF with PH domain and SH3 binding motif 1. 242689 at was annotated

using the Accession mapped clusters based pipeline to a UniGene identifier using
5 transcript(s). This assignment is strictly based on mapping accession IDs from
the original UniGene design cluster to the latest UniGene design cluster.

16 140 15,353 A 213071 at 4.pm dermatopontin
17 137 65,606 B 229198 at 6.mm ubiquitin specific peptidase 35
18 136 107,597 A 202995 s at 4.pm fibulin 1
19 136 108,393 A 209615 s at 5.pm p21/Cdc42/Rac1-activated kinase 1 (STE20 homolog, yeast)
20 136 135,279 A 202995 s at 2.pm fibulin 1

1

10

100

1000

1 10 100 1000 10000 100000

N
um

be
r b

es
t g

en
 te

n
pr

og
ra

m
s

rank

Second 100 GP runs
First 100 GP runs

Fig. 12 Distribution of usage of Affymetrix probe in 8000
best of generation 10 GP programs. Both distributions are
almost a straight lines (note log scales). Cf. [Zipf, 1949].

The evolved classifier gets 70% of the verification set
correct. If we use the 3 input predictor on the whole
Uppsala dataset (excluding the 15 case where the out-
come is not known), it gets right 184 out of 236 (78%).

decorin

−

C17orf81

/

C17orf81

*

+*

/1.54

C17orf81

hydrolase
S−adenosylhomocysteine

2.94

x

Fig. 13 GP evolved three input classifier. (Us-
ing Affymetrix probe names) survival is predicted if
1.54 201893 x at.2pm

219260 s at.7pm
− 2.94 219260 s at.7pm− 219260 s at.7pm

200903 s at.8mm
< 0

decorin

/

C17orf81

hydrolase
S−adenosylhomocysteine

1

2.94

+

/

C17orf81

*

Fig. 14 The GP classifier (Figure 13) is the weighted addi-
tion of two two input classifiers (left and right).

10 W. B. Langdon, A. P. Harrison

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14

K
ap

la
n-

M
ei

er
 p

ro
ba

bi
lit

y

Disease-Specific Survival Time in years

148

33

GP predicts 167 survival
GP predicts 69 cancer

Fig. 15 Kaplan-Meier survival. Three input GP classifier
predicts 167 survivors and 69 breast cancer fatalities. The
survival times are plotted for each group separately.

Figure 15 shows this non-linear classifier gives a bigger
separation between the two outcomes than a 32-gene
model requiring non-linear calculation of more than seven
hundred probe values [Miller et al., 2005, Fig. 3 B].

We tried applying our evolved classifier to a different
Breast tumour dataset [Pawitan et al., 2005]. Unfortu-
nately we have less background data and no details of fol-
low up treatment for the second group of patients. Also
they were treated in another hospital a decade later. Un-
doubtedly cancer treatment has changed since our data
was collected. These, and other differences between the
cohorts, may have contributed to the fact that our classi-
fier did less well on the second patient cohort. For exam-
ple, the Kaplan survival plot to 8 years [Langdon et al.,
2007a, Figure 6] is less well separated than in Figure 15
for 12 years.

7 Discussion/Practicalities

7.1 Limits to speed of GPU Computing

Measurements of data transfer into and out of the GPU
show the CPU to GPU data transfer rate is 613 106 byte/S
for this application. This is near the bandwidth of the
host computer’s PCI bandwidth (800 MByte/S). As ex-
pected, reading data back from the GPU is slower, at
181 106 byte/S. (nVidia supports PCI Express, which
in theory should provide 4 GB/S both to and from the
GPU. NB. this requires special support in the PC’s mother
board to actually obtain data transfer at 4 GB/S.) Once
the GP interpreter and training data has been loaded,
only the new GP individuals (16 floats each) have to be
transfered to the GPU and their fitness values (1 float
each) read back. Since the GPU can cope with arrays of
222 we break the population into 20 units, each of 256k.
(NB. 256k×16 = 28 × 210 × 24 = 222.) The program up-
load is calculated to take 27mS and the fitness read back
to take 6mS.

To calculate the fitness of an individual requires the
GPU to schedule 7 programs (cf. Figure 8) per individ-
ual. It appears the GPU’s thread scheduler (Figure 2,
green) works in units of 16 programs. So each 256k unit
will require 114 688 scheduling operations. We estimate
this and other book keeping operations will take 15mS.

Figure 2 shows the dominant role of the GPU bus
linking the GPU chip to the GPU’s 6 pairs of memory
chips (arranged as 6 pairs of 16M 32 bit words
[Samsung, 2007]). Details of how contentions for the bus
when multiple stream processing units, etc. need access
to the same memory bank, how address and data signals
are multiplexed by the bus and how RapidMind arrays
are allocated to memory banks are not clear. However if
we make some reasonable assumptions we find that the
GPU’s performance is limited by the off chip RAM.

For simplicity and since they are relatively small, we
will ignore data transfers inside the GPU needed for the
programs themselves, their fitness and the class labels.
Instead we concentrate upon the inputs to the GP pro-
grams during fitness training. We also assume the data
caches are able to hold all local variables, the active pro-
grams and avoid multiple data reads during the execu-
tion of one program. (There are two caches: L1 8KB and
L2 128KB [NVIDIA, 2007; Rys, 2006].) We assume the
GPU splits the 256k programs into 2048 128 units and
runs each on its own processor. The 128 units are them-
selves split into 8 groups of 16. Each 16 share access
to memory, cf. Figure 2. We assume the GPU will wait
until all 16 are finished before starting the next group.
Therefore runtime will be dominated by the slowest pro-
grams. I.e. those needing the most data. The maximum
possible is eight inputs per GP individual. Whilst each
of the GP programs may have different inputs, they will
all come from the same training example, which will be
stored in the same RapidMind array. We assume each
array is stored in one of the six memory banks. There-
fore that memory bank will receive up to 128×8 requests
for single floats almost simultaneously.

The caches will probably not help, since each GP
program will want different data. Given the random lo-
cations requested, reading ahead and transferring 64 bits
rather than just the requested 32 will also not help.

Thus to process 256k programs on 128 training case
will entail transferring up to 256k×128×8 = 256M floats.
Since each memory chip can deliver data at 900M 32 bit
word/S [Samsung, 2007], even ignoring bus contention,
this will take at least 256× 220/900 106 = 298mS. Per-
haps a more realistic estimate would be about 650mS
(i.e. ignoring time taken to issue the memory request
and assuming contention between the L1 caches can be
resolved in about 1 nS). We did try spreading the simul-
taneous memory load more evenly but it appears that
the L1/bus hardware cannot take advantage of overlap-
ping memory reads to different chips. Since timing will
be dominated by the slow threads each stream processor
is effectively blocked when it needs data which is not in

http://www.essex.ac.uk/maths/staff/langdon/

GP on SPMD parallel Graphics Hardware for mega Bioinformatics Data Mining 11

the L1 cache. That is, until the GP data value arrives
from one of GPU’s 12 memory chips.

Without knowing the details of the machine code
generated by RapidMind, it is difficult to estimate how
many instructions the GPU is actually performing. How-
ever it seems reasonable to assume that the stack join op-
erations needed by the interpreter are fairly complex and
so we guess about ten GPU instructions for each of the
five GP opcodes (+ - × / and leaf). Allowing 3 to control
the innermost loop gives 53 floating point operations per
GP primitive. Again the SIMD parallel operations will
move at the speed of the slowest program. Therefore we
can reasonably estimate GPU time spent in computation
at 256k×128×15×53 = 267 106. (128 training examples
and each program being 15 instructions long.) This will
take about 267 106/(128 × 1.350 109) = 154mS. This is
smaller than the lower bound for time taken by mem-
ory transfers and confirms that, for this Bioinformatics
application, only a little improvements can be extracted
by improving the GPU interpreter itself.

One of the standard objections to interpreted lan-
guages, is that they tend to be slow in comparison to
compiled programs. We would expected a decent com-
piler to be able to reduce the number of GPU operations
by at least a factor of ten compared to our SIMD inter-
preter. Supposing it did. This might reduced the time
from 154mS to 15mS. Assuming we still do not get the
advantage of 64 bit data transfers and multiple GPU
programs can be loaded and scheduled efficiently, this
would and reduce the execution time of 256k programs
from 883mS to 775mS, a speed up of less than 19%.
This highlights a problem with using FLOPS: the com-
piler approach uses only a tenth as many floating point
operations, so its FLOP rating will be about a tenth that
of the interpreter, despite being slightly faster.

To a first approximation, any soft computing super-
vised learning technique, which used this training data
in the same way will take about a second or more to test
256k random classifiers; be they rules, artificial neural
networks or programs.

7.2 Over fitting and Cross Validation

The evolved program has been tested on data that was
never used in any part of the training process. Therefore
its performance on this independent verification dataset
can be reasonably taken as a true indication of its perfor-
mance on new data from the same population. I.e. women
of the same age distribution etc. as those in Uppsala,
whose breast tumours have been biopsied and who un-
dergo the same follow up treatment. However cancer
treatments have changed since 1987. This emphasises
the problem of working with historical data and the dif-
ficulties of predicting the future!

n-fold cross validation is another popular over fitting
technique. In cross validation the available training data

is split evenly into n “folds”. The machine learning ap-
proach uses n − 1 folds as training data and produces
an output (e.g. a artificial neural network, a decision
tree). The performance of the predictor is measured on
the remaining data. Notice that where n � 1, this has
the potential advantage that the predictor is trained on
almost all the available data. These train and test op-
erations are repeated n times, each time leaving out a
different fold. This produces n predictors. The perfor-
mance of the learning technique is taken as the average
of the performances across the n folds that were left out.

In general such a n-fold scheme might work well on
a GPU. Firstly we have to run the machine learning
n times, so having a fast GPU implementation would
be attractive. Secondly, in principle, all of the n folds of
training data could be pre-loaded into the GPU and be
shared by the n training runs. Of course this is not fea-
sible in our example, since we have filled the GPU with
about half the training data. Nevertheless most machine
learning tasks are far less demanding.

Unfortunately n-fold cross validation, including the
case where n =the total number of training examples
(known as leave-one-out cross validation) usually assumes
the machine learning technique is deterministic. I.e. that
if run on the same training examples, it will always pro-
duce the same ANN (or decision tree etc.). Genetic pro-
gramming is a stochastic algorithm. Even if run on the
same training inputs, the evolved answer may be differ-
ent when the GP is run again. In principle, the average
GP performance on a given fold could be estimated by
running the GP several times. Say A times. This could be
repeated n times, i.e. once per fold, to give an estimate
of GP performance on average. Thus we have A× n GP
runs on (n−1)/n of the whole of the available data. How-
ever even this does not address the problem of which of
evolved programs produced by this multiplicity of runs
to actually use for new data. Any selection based on how
well they were measured to do, is liable to be suspect of
over fitting.

Sometimes cross validation is used to tune the learn-
ing parameters (e.g. c in SVMs). The worth of each pa-
rameter setting is assessed by using that particular pa-
rameter setting in n cross validation runs. Only when
an optimal parameter setting has been found, is the ma-
chine learner run for real. Where there are multiple pa-
rameters to set, one can readily see a combinatorial ex-
plosion in the number of runs required. Since in most
machine learning examples the whole of training data
could be loaded into the GPU, running this multiplic-
ity of training operations on the GPU, could be highly
attractive.

7.3 FLOP ratings and Speed Up

Measurements show each 256k unit takes on average
883mS. Adding I/O time (27mS+6mS) and scheduling

12 W. B. Langdon, A. P. Harrison

overhead (15mS) to estimated computation time (154mS)
leaves 680mS, which, if we include contention time, comes
close to our estimate of time taken to read the 500MB
of training data, cf. Section 7.1.

Running 267 106 floating point instructions in 885mS
gives the GPU an estimated 30 GFLOPS rating for this
application in practise. In parallel computing, it is com-
mon for performance to rise linearly with number of pro-
cessing elements initially but for the increase to fall off
as more processing elements are added. It appears the
nVidia card is unable to keep all 128 stream processors
busy all the time.

For this application, the GP interpreter’s runs 535
million GP operations per second. 535 MGPop/S is only
slightly less than we measured previously
[Langdon and Banzhaf, 2008] with training sets contain-
ing ten times as many examples but only about 5kB of
training data in total.

To determine speed up, the RapidMind C++ GPU
interpreter was converted into a normal C++ GP inter-
preter and run on the same CPU as was used to host
the GPU. I.e. an Intel CPU 6600 2.40GHz. Within the
differences of floating point rounding, the GPU program
and the new program produced the same answers but in
terms of the fitness evaluation the GPU ran 7.59 times
faster.

On a different example with more training examples
but each containing much less data we obtained a GPU
speed up of 12.6 [Langdon and Banzhaf, 2008]. The GPU
interpreter’s performance on a number of problems has
been in the region 1

2 to 1 giga GPops. In contrast the per-
formance of compiled GPs on GPUs has varied widely.
E.g. with number of training examples and program size.

7.4 Computational Cube

In genetic programming fitness evaluation, which usu-
ally totally dominates run time, can be thought of along
three dimensions: 1) the population 2) the training ex-
amples and 3) the programs or trees themselves. While
it need not be the case, often the GP uses a generational
population. Meaning (1) the whole population is eval-
uated as a unit before the next generation is created.
(2) Often either the whole of the training data, or the
same subset of it, is used to calculate the fitness of every
member of the population. (Sometimes, in other work,
between generations we change which subset is in use.)
(3) In many, but by no means all, cases the programs
to be tested have a maximum size, do not contain dy-
namic branches, loops, recursion or function calls. Even
for trees, this means the programs can be interpreted
in a single pass through a maximum number of instruc-
tions. (Shorter programs could, in principle, be padded
with null operations.) We can think of these three di-
mensions as forming a cube of computations to be done.
See Figure 16.

5 fitness cases

4 programs

Max length 12

2.68
4.61

E

*
A

+
B

A
/

−3.65
−4.88

A
+

A
/

+
B

/
*

+
4.34

*

−3.35
+

F

+
C

2.94

*
+

*
/

2.94
−3.03

A

−

B

2.14

Fig. 16 Evaluating a GP population of four individuals each
on the same five fitness cases. There are upto 4× 5× 12 GP
operations to be performed by, in principle, 240 GPU threads.
Each cube needs the opcode to be interpreted, the fitness test
case (program inputs) and the previous state of the program
(i.e. the stack).

In our implementation (Section 5) the computational
cube is sliced vertically (Figure 16) with one GPU thread
for each program and each thread looking after all the
fitness cases for an individual program. Explicit code in
the thread loops along the length of the program and
process all the fitness cases for that program. We belive
this model of parallel processing works well generally.

Recently we have implemented horizontal slicing. That
is, each fitness case has its own GPU thread. The fun-
damental switch in the GP interpreter makes little dif-
ference to the GPU and is readily implemented. Indeed
in this respect the GPU is quite flexible. It is relatively
straightforward to radically re-arrange the way in which
the GPU parallel hardware is used. We have not as yet
tried slicing the computational cube along the programs’
lengths.

In principle it is possible for each GP instruction to
be executed in a different computational thread. In nor-
mal program this would not be contemplated since the
complete computational state would have to be passed
through each thread, However the complete state for
many GP applications is purely the stack. In many cases
this is quite small and could be considered. This dimen-
sion, also requires dealing with programs that are of dif-
ferent lengths. It is also unattractive since variable data
needs to be passed, whilst the corresponding data along
the other dimensions are not modified (i.e. is read only).

http://www.essex.ac.uk/maths/staff/langdon/

GP on SPMD parallel Graphics Hardware for mega Bioinformatics Data Mining 13

It appears that efficient use of current GPUs requires
thousands of active threads. While the computational
cube is an attractive idea it is easy to see that far from
having too few threads it would be easy to try to di-
vide a GP fitness computation into literally millions of
parallel operations, which could not be efficiently imple-
mented. However dividing it along two of the possible
three planes is effective.

7.5 GPU Power Requirements

Although obvious after-the-fact, it came as surprised just
how much power the GPU would take and the conse-
quent replacement of both the power supply and enclo-
sure which were needed to re-equip a modern PC with
an nVidia GPU.

nVidia’s figure of 145 watts per card appears accu-
rate. A figure of 200W per PC chassis is a reasonable
estimate for electricity bills and air conditioning. Never-
theless you must ensure your PC’s power supply is able
to meet the peak demand of your GPU and all the other
PC components. For the GeForce 8800 GTX, nVidia sug-
gest the PC’s power supply must be at least 450W.

7.6 Absence of Debugger and Performance Monitoring
Tools

RapidMind allows C++ code to be moved between the
CPU, the GPU and CELL processors without recompi-
lation. Their intention is the programmer should debug
C++ code on the CPU. This allows programmers to
use their favourite programming environment (IDE), in-
cluding compiler and debug tools. Recently RapidMind
has introduced a “debug backend” but it too actually
runs the code being debugged on the host CPU. Linux
GNU GCC/GDB and Microsoft visual C++ are both
supported.

The RapidMind performance log can be configured to
include details about communication between the CPU
and the GPU. Details include, each transfer, size of trans-
fer, automatic data conversion (e.g. unsigned byte to
GPU float) and representation used on the GPU. (E.g.
texture size, shape and data type.) However for the in-
ternal details of GPU performance and location of bottle
necks one is forced to try and infer them by treating the
GPU as a back box.

Recent software advances under the umbrella term
of general purpose computing on GPUs (GPGPU) have
considerably enhanced the use of GPUs. Nevertheless,
GPU programming tools for scientific and/or engineer-
ing applications are primitive. However to some extend
these might be address by Google’s PeakStream, which
has some simularities with RapidMind, but “is the first
platform to provide profiling and debugging support”
[Owens et al., 2008].

For GPU manufactures GPGPU remains an add-
on to their principle market, games. Accompanying the
rapid development in hardware they make correspond-
ing changes in their software. This means the manufac-
turer’s APIs tend to tested and optimised for a few lead-
ing games. This can have unfortunate knock effects on
GPGPU applications [Owens et al., 2008]. Potentially
GPU developers can isolates themselves from this by us-
ing higher level tools or languages, like RapidMind.

Despite their undoubted speed, if GPUs remain dif-
ficult to use, they will remained limited to specialised
niches. To quote John Owens “Its the software, stupid”2.

7.7 Tesla and the Future of General Purpose GPU
Computing

Unsurprisingly a large fraction of the 618 106 transistors
of the GPU chip are devoted to graphics operations, such
as anti-aliasing. This hardware in unlikely to be useful
for scientific computing and so represents an overhead.
It appears the newly introduced Tesla cards retain this
overhead. However if Tesla makes money, the next gener-
ation of GPGPU may trade transistors to support graph-
ics operations for transistors to support more scientific
data manipulation. E.g. for bigger on chip caches.

7.8 C++ Source Code

C++ code can be down loaded via anonymous ftp
or http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/
gp-code/gpu gp 2.tar.gz Also gpu gp 1.tar.gz has
a small introductory example [Langdon and Banzhaf,
2008]. Whereas random-numbers/gpu park-miller.tar.gz
is for generating random numbers [Langdon, 2007b].

8 Conclusions

We have taken a large GeneChip breast cancer biopsy
dataset with more than a million inputs to demonstrate
a successful soft computing application running in par-
allel on GPU mass market gaming hardware (an nVidia
GeForce 8800 GTS). We find a 7.6 speed up.

Initial analysis of the GPU suggests that the major
limit is access to its 768Mbytes where the training data
is stored. Indicating that, if other soft computing tech-
niques, access the training data in similar ways, they
would suffer the same bottle neck.

Whilst primarily interested in mutation of the p53
gene, [Miller et al., 2005] tried support vector machines
and k nearest neighbour but say diagonal linear discrimi-
nant analysis worked better for them. [Miller et al., 2005]
used DLDA to construct a non-linear model with more
than 704 data items per patient. The non-linear model

2 Experiences with gpu Computing, 2007

http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/gpu_gp_2.tar.gz
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/gpu_gp_2.tar.gz
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/gpu_gp_1.tar.gz
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/random-numbers/gpu_park-miller.tar.gz

14 W. B. Langdon, A. P. Harrison

evolved by genetic programming uses only three. It has
been demonstrated on a separated verification dataset.
As Figure 15 shows, on all the available labelled data
(236 cases), the classifier evolved using a GPU gives a
wider separation in the survival data.

Acknowledgements

I would like to thank Derek Foster, John Owens and
Lance Miller.

References

[Banzhaf et al., 1998] Wolfgang Banzhaf, Peter Nordin,
Robert E. Keller, and Frank D. Francone. Genetic Pro-
gramming – An Introduction; On the Automatic Evolution
of Computer Programs and its Applications. Morgan Kauf-
mann, San Francisco, CA, USA, January 1998.

[Barrett et al., 2007] Tanya Barrett, Dennis B. Troup,
Stephen E. Wilhite, Pierre Ledoux, Dmitry Rudnev, Car-
los Evangelista, Irene F. Kim, Alexandra Soboleva, Maxim
Tomashevsky, and Ron Edgar. NCBI GEO: mining tens
of millions of expression profiles – Database and tools up-
date. Nucleic Acids Research, 35(Database issue), January
2007.

[Charalambous et al., 2005] Maria Charalambous, Pedro
Trancoso, and Alexandros Stamatakis. Initial experiences
porting a bioinformatics application to a graphics proces-
sor. In Advances in Informatics, 10th Panhellenic Confer-
ence on Informatics, PCI 2005, Volos, Greece, November
11-13, 2005, Proceedings, pages 415–425, 2005.

[Chitty, 2007] Darren M. Chitty. A data parallel approach to
genetic programming using programmable graphics hard-
ware. In Dirk Thierens, Hans-Georg Beyer, Josh Bon-
gard, Jurgen Branke, John Andrew Clark, Dave Cliff,
Clare Bates Congdon, Kalyanmoy Deb, Benjamin Do-
err, Tim Kovacs, Sanjeev Kumar, Julian F. Miller, Jason
Moore, Frank Neumann, Martin Pelikan, Riccardo Poli,
Kumara Sastry, Kenneth Owen Stanley, Thomas Stutzle,
Richard A Watson, and Ingo Wegener, editors, GECCO
’07: Proceedings of the 9th annual conference on Genetic
and evolutionary computation, volume 2, pages 1566–1573,
London, 7-11 July 2007. ACM Press.

[Ebner et al., 2005] Marc Ebner, Markus Reinhardt, and
Jürgen Albert. Evolution of vertex and pixel shaders.
In Maarten Keijzer, Andrea Tettamanzi, Pierre Collet,
Jano I. van Hemert, and Marco Tomassini, editors, Pro-
ceedings of the 8th European Conference on Genetic Pro-
gramming, volume 3447 of Lecture Notes in Computer Sci-
ence, pages 261–270, Lausanne, Switzerland, 30 March -
1 April 2005. Springer.

[Fan et al., 2004] Zhe Fan, Feng Qiu, Arie Kaufman, and
Suzanne Yoakum-Stover. GPU cluster for high perfor-
mance computing. In Proceedings of the ACM/IEEE
SC2004 Conference Supercomputing, 2004.

[Feller, 1957] William Feller. An Introduction to Probability
Theory and Its Applications, volume 1. John Wiley and
Sons, New York, 2 edition, 1957.

[Fernando, 2004] Randy Fernando. GPGPU: general
general-purpose purpose computation on GPUs. NVIDIA
Developer Technology Group, 2004. Slides.

[Fok et al., 2007] Ka-Ling Fok, Tien-Tsin Wong, and Man-
Leung Wong. Evolutionary computing on consumer graph-
ics hardware. IEEE Intelligent Systems, 22(2):69–78,
March-April 2007.

[Gobron et al., 2007] Stephane Gobron, Francois Devillard,
and Bernard Heit. Retina simulation using cellular au-
tomata and GPU programming. Machine Vision and Ap-
plications, 2007. Online First.

[Harding and Banzhaf, 2007a] Simon Harding and Wolfgang
Banzhaf. Fast genetic programming on GPUs. In Marc
Ebner, Michael O’Neill, Anikó Ekárt, Leonardo Vanneschi,
and Anna Isabel Esparcia-Alcázar, editors, Proceedings of
the 10th European Conference on Genetic Programming,
volume 4445 of Lecture Notes in Computer Science, pages
90–101, Valencia, Spain, 11 - 13 April 2007. Springer.

[Harding and Banzhaf, 2007b] S. L. Harding and
W. Banzhaf. Fast genetic programming and artificial
developmental systems on GPUs. In 21st International
Symposium on High Performance Computing Systems
and Applications (HPCS’07), page 2, Canada, 2007. IEEE
Computer Society.

[Harding et al., 2007] Simon L. Harding, Julian F. Miller,
and Wolfgang Banzhaf. Self-modifying cartesian genetic
programming. In Dirk Thierens, Hans-Georg Beyer, Josh
Bongard, Jurgen Branke, John Andrew Clark, Dave Cliff,
Clare Bates Congdon, Kalyanmoy Deb, Benjamin Do-
err, Tim Kovacs, Sanjeev Kumar, Julian F. Miller, Jason
Moore, Frank Neumann, Martin Pelikan, Riccardo Poli,
Kumara Sastry, Kenneth Owen Stanley, Thomas Stutzle,
Richard A Watson, and Ingo Wegener, editors, GECCO
’07: Proceedings of the 9th annual conference on Genetic
and evolutionary computation, volume 1, pages 1021–1028,
London, 7-11 July 2007. ACM Press.

[Koza, 1992] John R. Koza. Genetic Programming: On the
Programming of Computers by Means of Natural Selection.
MIT Press, Cambridge, MA, USA, 1992.

[Langdon and Banzhaf, 2008] A SIMD interpreter for ge-
netic programming on GPU graphics cards. In EuroGP,
LNCS, Naples, 26-28 March 2008. Springer. Forthcoming.

[Langdon and Barrett, 2004] W. B. Langdon and S. J. Bar-
rett. Genetic programming in data mining for drug discov-
ery. In Ashish Ghosh and Lakhmi C. Jain, editors, Evolu-
tionary Computing in Data Mining, volume 163 of Studies
in Fuzziness and Soft Computing, chapter 10, pages 211–
235. Springer, 2004.

[Langdon and Buxton, 2004] W. B. Langdon and B. F. Bux-
ton. Genetic programming for mining DNA chip data from
cancer patients. Genetic Programming and Evolvable Ma-
chines, 5(3):251–257, September 2004.

[Langdon and Poli, 2002] W. B. Langdon and Riccardo Poli.
Foundations of Genetic Programming. Springer-Verlag,
2002.

[Langdon et al., 2007a] W. B. Langdon, R. da Silva Ca-
margo, and A. P. Harrison. Spatial defects in 5896
HG-U133A GeneChips. In Joaquin Dopazo, Ana Conesa,
Fatima Al Shahrour, and David Montener, editors, Critical
Assesment of Microarray Data, Valencia, 13-14 December
2007.

[Langdon et al.,] W. B. Langdon, G. J. G. Upton,
R. da Silva Camargo, and A. P. Harrison. A survey of

http://www.essex.ac.uk/maths/staff/langdon/
http://dx.doi.org/10.1093/nar/gkl887
http://dx.doi.org/10.1093/nar/gkl887
http://dx.doi.org/10.1093/nar/gkl887
http://dx.doi.org/10.1007/11573036_39
http://dx.doi.org/10.1007/11573036_39
http://dx.doi.org/10.1007/11573036_39
http://www.cs.bham.ac.uk/~wbl/biblio/gecco2007/docs/p1566.pdf
http://www.cs.bham.ac.uk/~wbl/biblio/gecco2007/docs/p1566.pdf
http://www.cs.bham.ac.uk/~wbl/biblio/gecco2007/docs/p1566.pdf
http://dx.doi.org/10.1007/b107383
http://dx.doi.org/10.1109/SC.2004.26
http://dx.doi.org/10.1109/SC.2004.26
http://http.download.nvidia.com/developer/presentations/2005/I3D/I3D_05_GPGPU.pdf
http://http.download.nvidia.com/developer/presentations/2005/I3D/I3D_05_GPGPU.pdf
http://dx.doi.org/10.1109/MIS.2007.28
http://dx.doi.org/10.1109/MIS.2007.28
http://dx.doi.org/10.1007/s00138-006-0065-8
http://dx.doi.org/10.1007/s00138-006-0065-8
http://dx.doi.org/10.1007/978-3-540-71605-1_9
http://www.cs.bham.ac.uk/~wbl/biblio/gecco2007/docs/p1021.pdf
http://www.cs.bham.ac.uk/~wbl/biblio/gecco2007/docs/p1021.pdf
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/langdon_2008_eurogp.pdf
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/langdon_2008_eurogp.pdf
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/wbl_bioavail.pdf
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/wbl_bioavail.pdf
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/wbl_dnachip.pdf
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/wbl_dnachip.pdf
http://www.cs.ucl.ac.uk/staff/W.Langdon/FOGP/
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/langdon_camda2007.ps
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/langdon_camda2007.ps

GP on SPMD parallel Graphics Hardware for mega Bioinformatics Data Mining 15

spatial defects in Homo Sapiens Affymetrix GeneChips.
In preparation.

[Langdon, 1998] William B. Langdon. Genetic Programming
and Data Structures. Kluwer, Boston, 1998.

[Langdon, 2007a] W. B. Langdon. A SIMD interpreter for
genetic programming on GPU graphics cards. Technical
Report CSM-470, Department of Computer Science, Uni-
versity of Essex, Colchester, UK, 3 July 2007.

[Langdon, 2007b] W. B. Langdon. PRNG random num-
bers on GPU. Technical Report CES-477, Computing and
Electronic Systems, University of Essex, Colchester, UK,
29 November 2007.

[Lindblad et al., 2002] Fredrik Lindblad, Peter Nordin, and
Krister Wolff. Evolving 3D model interpretation of images
using graphics hardware. In David B. Fogel, Mohamed A.
El-Sharkawi, Xin Yao, Garry Greenwood, Hitoshi Iba, Paul
Marrow, and Mark Shackleton, editors, Proceedings of the
2002 Congress on Evolutionary Computation CEC2002,
pages 225–230. IEEE Press, 2002.

[Liu et al., 2006] Weiguo Liu, Bertil Schmidt, Geritt Voss,
Andre Schroder, and Wolfgang Muller-Wittig. Bio-
sequence database scanning on a GPU. In 20th Inter-
national Parallel and Distributed Processing Symposium,
IPDPS 2006, pages 8–, 25-29 April 2006.

[Loviscach and Meyer-Spradow, 2003] Jörn Loviscach and
Jennis Meyer-Spradow. Genetic programming of vertex
shaders. In M. Chover, H. Hagen, and D. Tost, editors,
Proceedings of EuroMedia 2003, pages 29–31, 2003.

[Luo et al., 2005] Zhongwen Luo, Hongzhi Liu, and Xincai
Wu. Artificial neural network computation on graphic pro-
cess unit. In Proceedings of the 2005 IEEE International
Joint Conference on Neural Networks, IJCNN ’05, num-
ber 1, pages 622–626, 31 July-4 Aug 2005.

[Miller et al., 2005] Lance D. Miller, Johanna Smeds, Joshy
George, Vinsensius B. Vega, Liza Vergara, Alexander
Ploner, Yudi Pawitan, Per Hall, Sigrid Klaar, Edison T.
Liu, and Jonas Bergh. An expression signature for p53
status in human breast cancer predicts mutation status,
transcriptional effects, and patient survival. Proceedings
of the National Academy of Sciences, 102(38):13550–5, Sep
20 2005.

[Moore, 1965] Gordon E. Moore. Cramming more compo-
nents onto integrated circuits. Electronics, 38(8):114–117,
1965.

[NVIDIA, 2006] NVIDIA GeForce 8800 GPU architecture
overview. Technical Brief TB-02787-001 v0.9, Nvidia Cor-
poration, November 2006.

[NVIDIA, 2007] NVIDIA CUDA compute unified device ar-
chitecture, programming guide. Technical Report version
0.8, NVIDIA, 12 Feb 2007.

[Owens et al., 2007] John D. Owens, David, Naga Govin-
daraju, Mark Harris, Jens Kruger, Aaron E. Lefohn, and
Timothy J. Purcell. A survey of general-purpose compu-
tation on graphics hardware. Computer Graphics Forum,
26(1):80–113, March 2007.

[Owens et al., 2008] John D. Owens, Mike Houston, David
Luebke, Simon Green, John E. Stone, and James C.
Phillips. GPU computing. Proceedings of the IEEE, 96(5),
May 2008.

[Pawitan et al., 2005] Yudi Pawitan, Judith Bjohle, Lukas
Amler, Anna-Lena Borg, Suzanne Egyhazi, Per Hall, Xia
Han, Lars Holmberg, Fei Huang, Sigrid Klaar, Edison T

Liu, Lance Miller, Hans Nordgren, Alexander Ploner, Ker-
stin Sandelin, Peter M Shaw, Johanna Smeds, Lambert
Skoog, Sara Wedren, and Jonas Bergh. Gene expression
profiling spares early breast cancer patients from adjuvant
therapy: derived and validated in two population-based co-
horts. Breast Cancer Research, 7:R953–R964, 3 Oct 2005.

[Price, 1970] George R. Price. Selection and covariance. Na-
ture, 227, August 1:520–521, 1970.

[Reggia et al., 2006] J. Reggia, M. Tagamets, J. Contreras-
Vidal, D. Jacobs, S. Weems, W. Naqvi, R. Winder,
T. Chabuk, J. Jung, and C. Yang. Development of a
large-scale integrated neurocognitive architecture - part 2:
Design and architecture. Technical Report TR-CS-4827,
UMIACS-TR-2006-43, University of Maryland, USA, Oc-
tober 2006.

[Rys, 2006] Rys. NVIDIA G80: Architecture and GPU anal-
ysis, 8 Nov 2006. Last updated: 25th Apr 2007.

[Samsung, 2007] Samsung. Graphics memory product guide.
General information, Memory Division, Jan 2007.

[Schatz et al.,] Michael C Schatz, Cole Trapnell, Arthur L
Delcher, and Amitabh Varshney. High-throughput se-
quence alignment using graphics processing units. BMC
Bioinformatics, 8:474. Published 10 December 2007.

[Stamatakis, 2006] A. Stamatakis. RAxML-VI-HPC: max-
imum likelihood-based phylogenetic analyses with thou-
sands of taxa and mixed models. Bioinformatics,
22(21):2688–2690, Nov 1 2006.

[Upton and Cook, 2001] Graham J. G. Upton and Ian Cook.
Introducing Statistics. Oxford University Press, 2nd edi-
tion, 2001.

[Wu et al., 2004] Zhijin Wu, Rafael A. Irizarry, Robert Gen-
tleman, Francisco Martinez-Murillo, and Forrest Spencer.
A model-based background adjustment for oligonucleotide
expression arrays. Journal of the American Statistical As-
sociation, 99(468):909–917, 2004.

[Yu et al., 2007] Jianjun Yu, Jindan Yu, Arpit A. Almal,
Saravana M. Dhanasekaran, Debashis Ghosh, William P.
Worzel, and Arul M. Chinnaiyan. Feature selection and
molecular classification of cancer using genetic program-
ming. Neoplasia, 9(4):292–303, April 2007.

[Zipf, 1949] George Kingsley Zipf. Human Behavior and the
Principle of Least Effort: An Introduction to Human Ecol-
ogy. Addison-Wesley Press Inc., 1949.

http://www.cs.ucl.ac.uk/staff/W.Langdon/gpdata
http://www.cs.ucl.ac.uk/staff/W.Langdon/gpdata
http://cswww.essex.ac.uk/technical-reports/2007/csm_470.pdf
http://cswww.essex.ac.uk/technical-reports/2007/csm_470.pdf
http://www.essex.ac.uk/dces/research/publications/technicalreports/2007/ces-477.pdf
http://www.essex.ac.uk/dces/research/publications/technicalreports/2007/ces-477.pdf
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/lindblad_2002_emioiugh.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/lindblad_2002_emioiugh.html
http://dx.doi.org/10.1109/IPDPS.2006.1639531
http://dx.doi.org/10.1109/IPDPS.2006.1639531
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/LM03.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/LM03.html
http://dx.doi.org/10.1109/IJCNN.2005.1555903
http://dx.doi.org/10.1109/IJCNN.2005.1555903
http://dx.doi.org/10.1073/pnas.0506230102
http://dx.doi.org/10.1073/pnas.0506230102
http://dx.doi.org/10.1073/pnas.0506230102
http://dx.doi.org/10.1111/j.1467-8659.2007.01012.x
http://dx.doi.org/10.1111/j.1467-8659.2007.01012.x
http://dx.doi.org/10.1186/bcr1325
http://dx.doi.org/10.1186/bcr1325
http://dx.doi.org/10.1186/bcr1325
http://dx.doi.org/10.1186/bcr1325
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/price_nature.pdf
https://drum.umd.edu/dspace/bitstream/1903/3957/1/MarylandPart2.pdf
https://drum.umd.edu/dspace/bitstream/1903/3957/1/MarylandPart2.pdf
https://drum.umd.edu/dspace/bitstream/1903/3957/1/MarylandPart2.pdf
http://www.beyond3d.com/content/reviews/1/
http://www.beyond3d.com/content/reviews/1/
http://dx.doi.org/10.1186/1471-2105-8-474
http://dx.doi.org/10.1186/1471-2105-8-474
http://dx.doi.org/10.1198/016214504000000683
http://dx.doi.org/10.1198/016214504000000683
http://dx.doi.org/10.1593/neo.07121
http://dx.doi.org/10.1593/neo.07121
http://dx.doi.org/10.1593/neo.07121

	Introduction
	Using Games Hardware GPUs for Science
	GPUs in Bioinformatics and Soft Computing
	Gene Expression in Breast Cancer
	GeneChip Data Mining using Genetic Programming on a GPU
	Results
	Discussion/Practicalities
	Conclusions

