
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 1

Evolving Problems to Learn About Particle Swarm
Optimizers and Other Search Algorithms

W. B. Langdon and Riccardo Poli

Abstract—We use evolutionary computation (EC) to automat-
ically find problems which demonstrate the strength and weak-
nesses of modern search heuristics. In particular, we analyze par-
ticle swarm optimization (PSO), differential evolution (DE), and
covariance matrix adaptation-evolution strategy (CMA-ES). Each
evolutionary algorithm is contrasted with the others and with a
robust nonstochastic gradient follower (i.e., a hill climber) based
on Newton–Raphson. The evolved benchmark problems yield in-
sights into the operation of PSOs, illustrate benefits and drawbacks
of different population sizes, velocity limits, and constriction (fric-
tion) coefficients. The fitness landscapes made by genetic program-
ming reveal new swarm phenomena, such as deception, thereby ex-
plaining how they work and allowing us to devise better extended
particle swarm systems. The method could be applied to any type
of optimizer.

Index Terms—Differential evolution (DE), fitness landscapes, ge-
netic programming (GP), hill-climbers, particle swarms.

I. INTRODUCTION

KNOWING the modes of failure and safe operating limits
of a tool (or system) is vital and forms the basis for all

good engineering. However, analyzing complex real-world op-
timization algorithms, particularly those used in evolutionary
computation (EC), has proved to be very hard. We highlight
a variety of previously unknown ways that optimization algo-
rithms may fail. That is, we do not propose new and improved
algorithms but instead a new technique for analyzing industrial
strength algorithms which are routinely used to solve real world
problems.

Particle swarm optimization (PSO) [1] is based on the collec-
tive motion of a flock of particles: the particle swarm. In the sim-
plest (and original) version of PSO, each member of the particle
swarm is moved through a problem space by two elastic forces.
One attracts it with random magnitude towards the best loca-
tion so far encountered by the particle. The other attracts it with
random magnitude towards the best location encountered by any
member of the swarm. The position and velocity of each particle
are updated at each time step (possibly with the maximum ve-
locity being bounded to maintain stability) until the swarm as a
whole converges to an optimum.

The update rule for this basic PSO contains only two pa-
rameters: 1) the relative importance of the influences on a

Manuscript received August 30, 2005; revised June 23, 2006 and August 29,
2006. This paper was supported in part by the Engineering and Physical Sci-
ences Research Council (EPSRC) under Grant GR/T11234/01.

The authors are with the Department of Computer Science, University
of Essex, Colchester CO4 3SQ, U.K. (e-mail: wlangdon@essex.ac.uk;
rpoli@essex.ac.uk).

Digital Object Identifier 10.1109/TEVC.2006.886448

particle of the particle best and the swarm best solutions and
2) the number of particles in the swarm. Perhaps inspired by the
original derivation of PSO (an abstract version of the factors
involved in the feeding behavior of flocks of birds), early
progress in PSO often took the form of adding terms based on
biological or physical analogies. One of the most successful of
these was the “inertia weight”—a friction coefficient added to
the velocity update rule.

Following Kennedy’s graphical examinations of the trajecto-
ries of individual particles and their responses to variations in
the key parameters [2], the first real attempt at providing a theo-
retical understanding of PSO was the “surfing the waves” model
presented by Ozcan and Mohan [3]. Shortly afterwards, Clerc
and Kennedy [4] developed a comprehensive five-dimensional
mathematical analysis of the basic PSO system. A particularly
important contribution of that work was the use and analysis of
a modified update rule, involving an additional constant, , the
“constriction coefficient.” If is correctly chosen, it guarantees
the stability of the PSO without the need to bound velocities.

In spite of some theoretical contributions [5], we still do not
have an adequate understanding of why certain PSO parameter
settings, or certain variants of the basic form perform better or
worse than other PSOs (or other optimizers) on problems of a
given type.

The conventional approach to this situation, which is common
to other families of optimizers, is to study the performance of
various algorithms on a subset of a standard suite of problems,
attempting to find the reasons behind relative success or failure.
Unfortunately, the observed differences may be small, making
it difficult to discern the source and nature of the differences.
The technique introduced here turns this idea on its head: in-
stead of studying the performance of two optimizers on a stan-
dard problem in the hope of finding an informative degree of dif-
ference, we evolve new problems that maximize the difference
in performance between the optimizers. Thus, the underlying
strengths and weaknesses of each optimizer are exaggerated and
thereby revealed (cf. Fig. 1).

Differential evolution (DE) is a very popular popula-
tion-based parameter optimization technique [6]–[8]. In DE,
new individuals are generated by mutation and DE’s crossover,
which cunningly uses the variance within the population to
guide the choice of new search points. Although DE is very
powerful [9], there is very limited theoretical understanding of
how it works and why it performs well [10].

Covariance matrix adaptation (CMA) [11], [12] is a robust
evolutionary strategy (ES), in which not only is the step size of
the mutation operator adjusted at each generation, but so too is
the step direction in the multidimensional problem space, i.e.,
not only is there a mutation strength per dimension but their

1089-778X/$25.00 © 2007 IEEE

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

Fig. 1. Diagrammatic representation of the evolution of fitness landscapes
using GP. In the GP system, the difference in performance of the two optimizers
is used as the fitness measure associated to each program (fitness landscape).

combined update is controlled by a covariance matrix whose el-
ements are updated as the search proceeds. Covariance matrix
adaptation-evolution strategy (CMA-ES) also includes powerful
heuristics to set search parameters, detect premature conver-
gence, and a restart strategy which doubles the population size
on each restart [13], [14]. CMA is a formidable adversary. At the
recent Congress of Evolutionary Computation, it was the winner
of the Real-Parameter Optimization competition [15], [16].

Since the presentation of the No Free Lunch theorems [17] at
ICGA in 1995, it has been known that for an optimization al-
gorithm to solve a problem of interest well, there must be other
problems where it does poorly. Often, it is argued that this is
not useful since there are a huge number of problems and so
the other problems are unlikely to be of interest. Indeed [18]
evolves test functions which are so hard that random search
does better than a robust -ES evolutionary strategy with a
tabu list. Similarly, [19] devises an evolutionary scheme devoted
to finding very hard binary constraint satisfaction problems. In
the future, we may see coevolutionary systems [20] which both
try to evolve difficult problems and evolve hyperheuristic al-
gorithms to solve them [21]. However, we are concerned with
today’s practical continuous optimization algorithms, in partic-
ular, PSOs.

The next section explains how we use genetic program-
ming (GP) to evolve problem landscapes and gives details
of the four optimizers. These are tested against each other in
Sections III–V. Sections III–V not only describe the experi-
ments but also discuss the numerous lessons that we can learn
from them. Sections VI and VII summarize our results and
describe the conclusions that they lead us to.

II. METHOD

The method (Fig. 1) uses the standard form of GP [22]–[25] to
evolve problems on which one search technique performs radi-
cally better or worse than another. (Preliminary results with this
approach have appeared in [26] and [27].) We begin with a GP
population in which each individual represents a problem land-
scape that can be searched by each of the two techniques. In each
generation, the fitness of an individual is established by taking

the difference between the search performances of the two tech-
niques on the function represented by the individual. With this
approach, GP will tend to evolve benchmark problems where
one technique outperforms the other. Note the difference be-
tween the two notions of fitness used. One is the fitness in the
fitness landscapes, and this is what is seen by the two optimizers
in Fig. 1. The second notion is the fitness of the programs rep-
resenting such landscapes. This is measured as the difference in
performance between the two optimizers and it is used in the GP
system to drive the evolution of landscapes.

It is important to note that we are using GP as a tool, it is
the landscapes that it produces that are important. These are the
product of single GP runs. However, we consider in detail the
performance of PSO, etc., on them and we use multiple runs of
the optimizers to show statistical significance of the difference
in their performance on the automatically produced landscapes.
All the quoted results have a of 1% or better.

To ensure the fitness landscapes are easy to understand, we
restrict ourselves to two-dimensional problems covering the
square and with values lying between and
1. Of course, the benchmarks can be generalized to higher
dimensions. Outside the square fitness is defined to be exactly
zero.

Although this is not a strict requirement for our method, in
order to assess the performance of our optimizers, we have
used knowledge about the position of the global optimum
in a landscape. This needs to be computed for each evolved
landscape. Therefore, for simplicity, the range is
divided into 2001 points at which the objective function is
defined. So, on a microscopic level, the search problem is
composed of 2001 2001 horizontal tiles, each 0.01 0.01.
This is 4 004 001 points, so it is easy to find the global optimum
by enumeration.

The optimizers being compared are run on each landscape
until either they find a global optimum or they use up all the
fitness evaluations they are allowed. To avoid problems with
floating point arithmetic, finding a fitness value within of
the highest value in the landscape is regarded as having found a
solution. Note that this applies to all optimizer pairs, e.g., when
we evolve problems where the PSO does better than DE, as well
as when we evolve problems where DE does better than the
PSO. So, it is neither an advantage nor a disadvantage for any
optimizer.

A. Details of GP Parameter Settings

We used a simple steady-state [28] GP system, tinyGP, im-
plemented in Java [29]. Details are given in Table I. The GP
fitness function uses the difference in performance of the pair
of optimizers being compared. To make the comparison as fair
as possible, where possible, the two optimizers are started from
the same point so neither is disadvantaged by the other starting
from a particularly favorable location. With particle swarms,
population approaches and optimizers which restart, we keep
track of multiple start conditions rather than just a single loca-
tion, e.g., when comparing PSOs with different population sizes,
the starting positions and velocities of the smaller swarm are a
subset of those used by the larger. Similarly, our hill-climber
starts from the initial location of one of the swarm particles. If it

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LANGDON AND POLI: EVOLVING PROBLEMS TO LEARN ABOUT PARTICLE SWARM OPTIMIZERS AND OTHER SEARCH ALGORITHMS 3

TABLE I
TINY GP PARAMETERS

needs to restart, it uses the same initial location as the next par-
ticle. If all the initial conditions are used up, restart points are
generated at random.

To minimize the effects of random factors, such as the pseu-
dorandom numbers used, both optimizers are run five times. Fi-
nally, the steady-state approach allows us to reevaluate GP in-
dividual fitness at each selection tournament. Jin and Branke
[30] give a comprehensive survey, which includes other ways
of dealing with noisy fitness functions.

B. Details of PSO Parameter Settings

We used a Java implementation of PSO (see Table II). In
the PSO versus PSO experiments (Section III), the swarm con-
tained either 10 or 100 particles and was run for up to 1000 (or
100) generations (maximum 10 000 fitness evaluations), while
in the PSO versus CMA, DE, or hill-climber (N-R) experiments
(Section IV), the swarm contained 30 particles and was run for
up to 1000 generations (maximum 30 000 fitness evaluations).
Unless otherwise stated, the speed of the particles is limited to
10 in each dimension and constriction (friction) was not used.
The default value for the coefficients and of the forces
towards the particle best and swarm best are 0.5. As with other
optimizers, the initial random starting points were chosen for
both techniques being compared. They were chosen uniformly
at random from either or . Similarly,
the initial velocities were chosen from either or

.

C. Details of Newton–Raphson (N-R) Parameter Settings

Newton–Raphson (N-R) is an intelligent hill-climber. If the
initial point is an optimum, it stops. Otherwise, it takes two
steps. One in the -direction and the other in the -direction.
From these measurements of the landscape, it calculates the
local gradient. It then assumes that the global maximum will
have a value of 1. (Remember, the GP is constrained to gen-
erate values no bigger than 1. Note N-R has access to a small
amount of not unreasonable domain knowledge. Typically, this
makes little difference, however, Section IV-F gives one ex-
ample where GP turned this assumption against N-R.) From
the current value, it calculates how much more is needed to

reach an optimal value (i.e., the fitness of the best solution to the
problem). From its estimate of the local gradient, it calculates
how far it needs to move and in what direction. It then jumps to
this new point. If the new point is an optimum, it stops.

Our implementation has several strategies to make it more ro-
bust. First, the initial step used to estimate the local gradient is
large (1.0). If N-R fails, the step size is halved to get a better es-
timate of the local gradient. Similarly, instead of trying to jump
all the way to an optimal value, on later attempts it tries only
to jump a fraction of the way. (On the second attempt way,
then and so on.) In this way, N-R is able to cope with non-
linear problems, but at the expense of testing the landscape at
more points.

Should the step size fall to 0.01, our N-R optimizer gives
up and tries another random initial start point (e.g., the starting
position of the second PSO particle in the swarm). N-R con-
tinues until either it finds an optimum or it has used the same
number of fitness evaluations as the maximum allowed to the
other optimizer (e.g., N-R cannot exceed the optimizer popula-
tion size maximum number of generations). This gives a ro-
bust optimizer. Fig. 2 shows the last few steps where N-R suc-
ceeds in finding a unique optimum.

D. Details of DE Parameter Settings

Unlike the first two optimizers, we did not code our own im-
plementation of DE. Instead, we used Rainer Storn’s Java im-
plementation of DE. We modified the source slightly so that
DE stopped immediately when it found a solution. (The down
loaded code fully evaluates each generation [27, Sec. 3.1].) We
followed Storn’s recommendations for parameter settings [31],
[32]. The population was 20, i.e., 10 number of dimensions.
We ran DE for up to 1500 generations (i.e., 30 000 fitness evalu-
ations). The same maximum number of evaluations as the PSO,
N-R, and CMA. The crossover rate was 90% and the F factor
was 0.8. We also used Storn’s “DEBest2Bin” strategy.

E. Details of CMA Parameter Settings

CMA-ES is a sophisticated technique and so we are pleased
to have been allowed to use the inventor’s Java implementation
without changes.

The initial population is created by mutation. Thus, it is not
possible to use exactly the same starting points as the other three
search algorithms. This potentially makes the GP fitness func-
tion more noisy but, as we shall see, GP was able to cope with
the noise.

Since, in the initial generations, CMA’s mutation algorithm
is operating blind, it scatters sample points widely. This means
about 30% of sample points lie outside the square .
This was felt to place CMA at an unfair disadvantage and
so, after discussions with Nikolaus Hansen, we used CMA’s
boundary option to force all test points into the feasible region.
The boundary option means, about 30% of initial test points lie
exactly on the boundary of the square .

We used the CMA defaults (which vary according to dimen-
sionality of the problem). The defaults include doubling the pop-
ulation size and restarting the evolution strategy every time stag-
nation is detected.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

TABLE II
DEFAULT PSO PARAMETERS

Fig. 2. Last four successful steps in gradient-based optimizer N-R on 0:11 +
077x(1� x)� 0:075y landscape [27, Fig. 7]. Dotted arrows at right angles to
each other indicate N-R’s sampling of the problem landscape in order to estimate
the local gradient. Using the gradient, N-R guesses where the global optimum
is. Arrows 1, 2, and 3 show cases where it overestimated the distance to be
traveled and passed the y = �10 boundary. Following each unsuccessful jump,
N-R halves its step size and reestimates the local gradient. Successful jumps are
shown with solid arrows.

III. EXPERIMENTS—COMPARISON OF DIFFERENT PSOS

A. Problems Where Small Swarms Beat Big Swarms

GP can automatically generate problems more suited to one
type of PSO than to another. In the simple (nondeceptive) land-
scape of Fig. 3, the gradient leads directly to the optima. It
is readily solved by both small and large swarms: a swarm of
100 particles on average takes 11 collective updates to reach
the peak, whereas a swarm of 10 particles takes 42. This in-
dicates that the increased sampling associated with the larger
population is delivering relatively little additional information.

Fig. 3. Nondeceptive landscape 0:127 + 0:063x evolved by GP (population
10), where the gradient leads directly to all optima. The arrows show the move-
ment of the ten particles in the swarm for the first eight generations (maximum
speed 1) when a particle is within 0.002 of the optima. To reduce clutter, fluctu-
ations between generation 8 and the end the run in generation 39 are not plotted.
On average, a swarm with 100 particles takes 2-1/2 times as many fitness evalu-
ations to find an optimum (i.e., 11 generations versus 42 for the smaller swarm).

In terms of the number of fitness evaluations required to solve
the problem, the smaller swarm is more efficient, needing on av-
erage only 420 evaluations, in contrast to the 1100 required by
the larger swarm. However, both beat random search.

Fig. 3 also shows the movements of the particles of the
smaller swarm enabling us to see how the swarm is operating
on this landscape. During the first seven updates, it is clear
that the dispersion of this small swarm produces at each step a
reliable increase in the swarm best solution, yielding coherent
motion towards the optimum. Once near the top edge, the swarm
oscillates for some time before finding a maximum value. A

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LANGDON AND POLI: EVOLVING PROBLEMS TO LEARN ABOUT PARTICLE SWARM OPTIMIZERS AND OTHER SEARCH ALGORITHMS 5

Fig. 4. Evolved landscape y(1:32 + 1:78x � x � y) + 0:37 containing a
deceptive peak at 0.9,0,5 with large global optima either side of it. Upper di-
agram: A particle in a swarm of 100 starts close to the optima at x � �1:5
and reaches them in the second generation (119 fitness evaluations). Lower di-
agram: Starting from a subset of the initial conditions used by the large swarm,
all ten particles of the smaller swarm are attracted to a deceptive peak. How-
ever, the maximum speed (1) permits the swarm to remain sufficiently energetic
to stumble towards the optima, one of which is found in generation 107 (1079
fitness evaluations, plotted with +).

larger and more dispersed swarm would find a better swarm best
solution at each iteration, reducing the number of iterations, but
the improvement would be sublinear in relation to the increased
size of the swarm and the number of evaluations required. This
suggests that on simple landscapes small populations should
be used. By a simple landscape, we mean one, e.g., a smooth
unimodal landscape, where in almost every orbit the particles
improve their personal best. This in turn means that in almost
every generation the swarm improves best. Similarly, we would
expect other optimizers to find improved solutions almost
continually. Therefore, the microscopic progress rate [33] gives
a good prediction of overall (macroscopic) performance. Given
this, increasing the population size does not increase the size of
improvements or the frequency of finding them, in proportion
to the extra effort required by the increased population.

B. Problems Where Big Swarms Beat Small Swarms

Fig. 4 shows an example where a swarm of 100 particles
does better than one of ten. In this deceptive landscape, twin
global plateaus lie slightly outside of the region across which
the swarms are initially distributed. However, this region con-
tains a false peak. Initially, in most cases, a member of the larger
swarm lies sufficiently close to one of the global peaks to be able
to move rapidly to it. However, with only ten particles, usually

Fig. 5. GP (population 1000) evolves a landscape 0:54x�x +0:24y�1:26
containing a single peak. Although it is within the initial range of the swarm,
in these two runs, no particle initially samples it. Therefore, the swarm initially
gets no fitness guidance and moves at random. Upper diagram: The swarm of ten
particles with a maximum speed of 10 finds an optimum in generation 65. Lower
diagram: Starting from the same initial positions (but speed limited to 1), the
lower speed limit impedes search and no solution is found in 1000 generations.
Instead, the swarm oscillates about the stationary swarm best.

all of the smaller swarms lie close to the deceptive peak and
are attracted to it. Once either swarm is attracted to the central
peak, it takes many generations to break free. This leads to a
large variation in the number of fitness evaluations, but on av-
erage, the smaller swarm takes more then three times as many
fitness evaluations.

Using a population of size 1000, GP has automatically cre-
ated (and tuned) an example where the initial particle positions
and velocities are important because most of the gradient infor-
mation seen by the PSO is deceptive and leads to a local op-
timum from which it takes a long time to escape. Obviously, the
two particular population sizes are important to this example but
there are other cases where GP has been able to devise a land-
scape which separates small and large populations [26].

C. Problems Where Fast Particles Win

Fig. 5 shows a landscape evolved to prefer energetic swarms.
In 100 runs with a maximum speed of 10 in both dimensions, a
swarm of ten particles always found an optimum, taking on av-
erage 67 generations. Whereas when speed is limited to 1, only
73 runs found a solution within 1000 generations. If we exclude
the other 27 initial starting conditions, there is little difference
in performance. Which of the slower runs fail seems to depend
to some extent on the swarm’s initial conditions. However, the
faster swarm is able to solve the problem even when given unfa-
vorable starting conditions. Note that GP has evolved a problem
where the faster swarm is more robust than our slower one.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

Fig. 6. GP (population 10) evolves a landscape 0:063x � 0:052 containing
a plane ramp. A slowly moving swarm (arrows, upper diagram) finds an op-
timum in 25 generations. Lower diagram: Starting from the same initial posi-
tions, the fast moving swarm oscillates widely and takes 150 generations. To
reduce clutter, only the motion of one of the ten particles (the one which even-
tually finds a global optimum) is shown.

D. Problems Where Fast Particles Lose

Fig. 6 shows a very simple landscape which a speed limited
swarm (max 1) is able to solve every time in 50 runs. In contrast,
a fast moving swarm searches much more widely, takes more
time, and only solves it in 46 of 50 runs. Excluding the four
failed runs, the mean fitness evaluations are 380 versus 2700.

E. Problems Where Constriction Wins

Fig. 7 shows the outcome of an experiment in which we
evolved a problem where a constriction factor of 0.7 is bene-
ficial. In 50 runs, a ten particle PSO with constriction always
found a solution, taking on average 159 fitness evaluations.
However, without constriction or a speed limit and a limit of
1000 generations, it only found an optimum in 37 of 50 runs. In
the successful runs, on average, 900 evaluations were needed.

Often both PSOs took a similar amount of time. However,
in many runs, the unconstrained swarm took much longer.
Figs. 8–11 show other aspects of the first run where both
constricted and unconstricted swarms find a solution. From
this starting point with constriction, only 11 generations were
needed (Fig. 8) and the concentration of the swarm in the
promising region near the solution is clear. However, the

Fig. 7. GP (population 100) evolves a parabolic landscape �(0:171 +
0:0188y)y. With a constriction factor of 0.7, a ten particle swarm (upper
diagram) finds an optimum in 11 generations. Lower diagram: Starting from
the same initial conditions, without constriction the swarm explores more and
so takes 128 generations. (Note change of scale).

Fig. 8. The search progress for the ten particle PSO with a constriction coeffi-
cient of 0.7 on the�(0:171+ 0:0188y)y landscape of Fig. 7 (error bars show
swarm spread, i.e., standard deviation of particles’ positions). Note how the par-
ticles’ position in the y dimension converges towards optimum.

unconstrained swarm oscillates for 128 generations before
stumbling into an optimum (Fig. 9).

Looking at the kinetic energy of the swarm (i.e., sum of
for each particle in the swarm) clearly differentiates

the two cases. Fig. 11 shows without constriction the energy

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LANGDON AND POLI: EVOLVING PROBLEMS TO LEARN ABOUT PARTICLE SWARM OPTIMIZERS AND OTHER SEARCH ALGORITHMS 7

Fig. 9. The oscillating and increasing amplitude of the search made by ten par-
ticle PSO without constriction, etc.,�(0:171 + 0:0188y)y of Fig. 7.

Fig. 10. Kinetic energy of PSO swarm of ten particles with constriction factor
0.7 on landscape�(0:171+0:0188y)y of Fig. 7. (Note the logarithmic scale.)

increases exponentially, while Fig. 10 shows that, with a con-
striction factor of 0.7, energy falls exponentially.

This suggests that where an optimum is near the initial posi-
tions of the particles and the landscape is simple, constriction
can help find it by reducing the energy of the swarm, so helping
to focus the search.

F. Problems Where Constriction Fails

In runs where we were interested in finding fitness landscapes
on which the use of a constriction factor was deleterious, a very
successful evolved strategy was to put the optima some dis-
tance from where the fully connected swarm starts (see Fig. 12).
The more energetic swarm is able to find an optimum, whereas
constriction impedes the exploration which is needed. The bal-
ance between exploration and constriction is important. We can
achieve a more energetic swarm by increasing the forces on the
particles, e.g., if coefficients and are increased from 0.5 to
1.2, the PSO is able to climb to the peak. This shows that there
are circumstances where constriction can impede the search

Fig. 11. The increasing kinetic energy of PSO swarm of ten particles without
constriction on landscape �(0:171+ 0:0188y)y. (Note log scale.)

Fig. 12. Landscape 0:00124x y evolved by GP. With no constriction factor or
speed limit in a new run, a ten particle swarm (upper diagram) finds an optimum
in eight generations. Lower diagram: Starting from the same initial conditions,
the constricted swarm gets stuck despite the strong gradient. In 50 runs, the
constricted PSO was never able to solve this problem (within 1000 generations).

where the swarm needs to seek optima some distance from its
starting locations.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

Fig. 13. Deceptive landscape x(0:643 + y � x(0:299x+ 2:81 + y + y))
evolved by GP. With no constriction factor or speed limit, a ten particle swarm
(upper diagram) finds an optimum in 51 generations. Lower diagram: Starting
from the same initial conditions (chosen at random in the range�10 . . . +10),
with constriction the swarm is less expansive (note change of scale). Once it
finds a local hill, it explores it and never approaches the global optima.

In these experiments, GP went further and made the whole
of the region where the swarms start flat. If all the points seen
by the particles have the same fitness, none of them change
the location of their “best point seen so far.” This also means
the swarm best does not change, so the particles continue their
(noisy) orbits around the same points. This is true both with and
with out constriction, however, with constriction, the orbits con-
tinually lose energy preventing the particles searching widely
outside their start points. This is not true if there is no constric-
tion and the particles’ orbits tend to expand taking them towards
better parts of the search space. Thus, by exploiting the fixed
initialization region, GP evolved landscapes which constricted
swarms could never solve but were easy for swarms without
friction.

The way in which an optimizer is started is obviously an im-
portant part of its search algorithm. To see if GP could find other
cases where constriction is not helpful, we repeated the experi-
ment but forced the optima to lie in the initialization region.

In these new experiments, GP (with a population of 1000)
evolved the deceptive landscape given in Fig. 13. This contains
rows of local optima near the origin well separated in both di-
mensions from a large region containing global optima. In 50
independent runs, without constriction or speed limit a ten par-
ticle swarm solves it 27 times, whereas it could only solve it
six times with constriction. The upper diagram in Fig. 13 shows
typical performance of a swarm without constriction, while the

Fig. 14. Close up of lower part of Fig. 13 showing the position of ten swarm
members with nontrivial fitness values up to generation 1000. Note how a con-
striction factor of 0.7 (no speed limit) narrows the search. Eventually, all but one
particle are tightly bound together some distance from the local hill top which
itself is far from the global optimum. The swarm becomes stuck. Even after
1000 generations, the problem is not solved.

Fig. 15. Close up of lower part of Fig. 14 showing final position of swarm at
the top of a parabolic region of fitness landscape. The adjacent parabolic region
rises higher, but is lower in the swarm’s immediate neighborhood.

lower part (Figs. 14–19) shows the effects of a constant con-
striction factor of 0.7.

The unconstricted swarm searches widely and finds an op-
timum in only 51 update generations. In contrast, the lower
diagram shows the performance of a swarm with a constric-
tion factor of 0.7. The swarm becomes stuck and fails to find
an optimum even after 1000 generations. In this run, the con-
stricted swarm best improves quickly up to generation 27 but
slows down thereafter. The swarm best does not move at all from
between generations 98 and 591 when there are slight move-
ments. No further improvements are found during generations
684–999.

Initially, most particles have zero fitness. However, the best is
near the suboptimal peak. Each particle is attracted to it as well
as its own (unchanged) best position. As the particles oscillate
under the influence of both attractors, they tend to tumble into
the small peak. The ninth finds the hill in generation 911 and

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LANGDON AND POLI: EVOLVING PROBLEMS TO LEARN ABOUT PARTICLE SWARM OPTIMIZERS AND OTHER SEARCH ALGORITHMS 9

Fig. 16. Kinetic energy of swarm members for first run of a ten particle PSO
with constriction on the landscape of Fig. 13. Initially, energy falls rapidly on
average from 18 to 0.25 by generation 15. Then, there is a long period where, as
individual particles converge towards the swarm best, their energy drops rapidly
to a low value (�10).

Fig. 17. Convergence of ten particle swarm with constriction on landscape of
Fig. 13. Top line refers to whole swarm, while lower one refers to group with
nonzero fitness. In this run, four particles (p1, p4, p6, and p7) get stuck on the
small fitness hill by generation 28. The sudden increases in the spread of the
fit members of the swarm corresponds to five other particles (p2, p8, p5, p3,
and p9) finding nonzero fitness values, and joining the fit group. As they do
so, they move their own best position seen close to the swarm best and so their
oscillations lose energy (cf. Fig. 16). As the energy of the new member falls, it
converges towards the other members of the fit cluster, so reducing its spread.
The whole swarm (top line) never convergences, since one particle never finds
the local hill. The fit members of the swarm rapidly draw together so that they
occupy a single 0.01� 0.01 tile.

quickly starts to lose energy, while one particle never finds a
nonzero fitness.

Figs. 16 and 17 show that initially, the constriction factor
causes the energy to fall rapidly and most of the swarm clusters
together. When particles find nontrivial fitness values (near the
swarm best), they update their local best and join the rest of the
swarm. As they do so, the energy of their search falls dramati-
cally. The bulk of the swarm converges to a single fitness value
and most particle movements continue almost imperceptibly.

Fig. 18. Velocity (in both x and y dimensions) plotted against displacement
from best location for particle 1 in a swarm with constriction on landscape of
Fig. 13 (generations 2–1000). Note almost all the time this particle’s personal
best and the swarm best coincide. This gives rise to damped simple harmonic
motion which is represented by spiraling inward motion in this graph.

Fig. 19. Velocity against displacement from swarm best location for particle 0
on landscape of Fig. 13 (generations 2–1000). To reduce clutter, only velocity
in the x-dimension is plotted. For the first 8–15 generations, the particle loses
energy as it spirals inward. Once the particle spirals in between its own best
and the swarm best (the origin), the random oscillations do not decay and the
particle is kept in motion continuously despite the constriction factor.

Figs. 18 and 19 show two aspects of the constriction factor.
Fig. 18 depicts the motion of particle 1. In almost all genera-
tions, it is the best particle in the swarm and its personal best
is never very far from the swarm best. This means the random
force towards the swarm best and that towards the personal best
always point in the same direction. Thus, the PSO velocity up-
date equation can be simplified. While motion of the particle
is still noisy, it can now be approximated by assuming both
random numbers used in the update are equal to their average
value (i.e., a 1/2). Assuming continuous time, i.e., ignoring the
discrete updates used by the PSO and using differential equa-
tions rather than differences, the equation can be solved. The
solution is a damped simple harmonic motion about the best
location. The decay constant is and the period is

(7.6 for a constriction factor),

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

Fig. 20. Cubic (1:27� 1:1x � 0:53x)x landscape where PSO (speed limit
10) outperforms DE. Both PSO and DE populations start near the origin, but in
40 out of 50 runs DE population find local optima at the small ridge and ignores
the huge global optima in the opposite direction. The PSO always finds one of
the best points.

while the decay time constant is 6.7. Referring to Fig. 18, we
can see that about eight iterations are needed for each cycle of
the spiral. After each improvement in the swarm best, both
and dimensions converge exponentially with a decay constant
of 0.15, as predicted, i.e., both the observed period and damping
are close to predictions. Notice that the period and damping are
the same in both and dimensions, so oscillations in both di-
mensions remain instep. In Fig. 18, this means the two spirals
remain in step with each other.

When the particle best and swarm best do not coincide, the
motion can be approximated by replacing the two points by their
(randomly) weighted average, and we again get damped simple
harmonic motion (with the same decay constant). However, the
random weights used to form the average are changed every
generation. Thus, this is only a reasonable approximation when
the weighted average position does not move much compared
with the motion of the particle, i.e., when the particle lies some
distance from both the swarm best and the particle’s personal
best.

If the particle lies near or between both attractors, we can
think of it as oscillating with the same period about some ran-
domly chosen point between them for one time unit. However, at
the next time unit, another random point will be chosen. This has
the effect of keeping the particle in continuous motion. Fig. 19
looks at a particle where the swarm best and particle best are
(approximately) the same distance apart through out the whole
run. Consequently, the random forces in the PSO update equa-
tions keep it moving. Note the particle’s kinetic energy depends
on the distance between the swarm best and its own best. This
explains why the kinetic energy of some particles decays rapidly
to zero, while that of others is stable for long periods, cf. Fig. 16.

IV. COMPARISON OF DIFFERENT OPTIMIZERS

A. Problems Where a Velocity Limited PSO Beats DE

If we use velocity clamping, GP (with population size 1000)
finds a landscape (see Fig. 20) which deceives DE. In 40 out of

Fig. 21. Landscape (0:33 � 0:32x � 2:32y)y evolved by GP so that PSO
outperforms DE. High fitness values are arranged along an inverted parabolic
ridge, centred near the origin at about 4 to the y = 0 line. Note that the end
at x = �10 is higher than that at x = +10. Both PSO and DE (+) initial
populations are widely scattered (�10 . . . +10). In this run, the DE population
converges after generation 38(�) onto the smaller peak and never finds the
larger peak. In contrast, the PSO (maximum speed 10 but no constriction) being
more stochastic always finds a global optimum.

50 runs, DE goes to a local optimum, while the PSO (starting
from the same points) always finds the global optimum within
52 generations. (When DE succeeds, it is faster than the PSO).

This result is important because it shows that it sometimes has
a limited ability to move its population large distances across
the search space if the population is clustered in a limited por-
tion of it. Indeed, in other experiments (not reported), we noted
that DE has problems with the spiral “long path problem” [25,
p. 20]. This may be why Storn’s WWW pages recommend that
the initial population should be spread across the whole problem
domain. This is also recommended in [7, p. 85]. The reasons for
DE getting stuck may also be due to lack of movement opportu-
nities. [34] and [35] calls this “stagnation.” However, [34] says
“stagnation is more likely to occur” with “small population size

,” while we have observed slow movement with larger
populations as well.

To avoid this bias against DE, in the remaining experiments
(i.e., Sections IV-B to V), we extended the initial population to
the whole region. (Except for CMA, we still use
the same initial points for the PSO, DE, and the other optimizers.
Also, our PSO is speed limited, , but constriction is
not used in these final comparisons.) In some cases, GP needed
a larger population (up to 1000) but in every case it managed to
evolve a landscape which suited the desired optimizer in com-
parison with the other.

B. Problems Where PSO Beats DE

In experiments with these new settings, the best of run indi-
vidual produced by the first GP run (with a population of 1000)
had a high fitness on the training examples, but when the PSO
and DE were rerun with new pseudorandom number seeds, they
performed equally well on the evolved landscape. However, the
landscape evolved in the second GP run did generalize. This is
given in Fig. 21. Fig. 21 suits the PSO as it always finds a global
optimum [peak near (,1)]. However, in 23 of 100 runs, the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LANGDON AND POLI: EVOLVING PROBLEMS TO LEARN ABOUT PARTICLE SWARM OPTIMIZERS AND OTHER SEARCH ALGORITHMS 11

Fig. 22. Evolved landscape (GP population 100) y(0:093+0:39y+0:15y �
0:17y �(0:19y +0:20y)x) showing points explored by N-R in the first run.
Note arrows in the plane z = 0, where gradient search fails. However, after 32
restarts, N-R restarts near one of the global optima and quickly climbs to it (total
582 fitness evaluations). In contrast, the speed limited PSO (max speed =
half width of feasible region) takes only 126 fitness evaluations and con-
sistently outperforms N-R.

DE fails to find it. Fig. 21 shows a typical case where the DE
population starts widely scattered but by generation 38 has con-
verged on the wrong peak.

Fig. 21 shows PSO’s more expansive search is more likely to
find the global optima near (,0), while DE tends to be less
expansive than a PSO, its more directed search is deceived by a
local optima, whereas (cf. Fig. 20) the PSO readily picks up the
bigger signal issued by a large global optimum.

Again, this landscape is very instructive. DE may be deceived
into converging on the wrong peak and, once there, it is impos-
sible for it to escape. Note Storn’s DE Java implementation fol-
lows [7, p. 86]’s recommendation and, after initialization, does
not limit the search. Instead, the fitness function is effectively
bounding DE’s search to the box (the legal region)
since its population never leaves it.

C. Problems Where PSO Beats N-R

GP readily evolves a landscape where our particle swarm
optimizer beats our N-R optimizer, see Fig. 22. In 50 runs
(with new starting positions), PSO and N-R always solved the
problem but our PSO significantly outperformed our N-R, on
average evaluating 463 versus 1030 points.

This happens because approximately 95% of the search space
has low fitness and is flat. N-R wastes many fitness evaluations
where there is no gradient before giving up and restarting. In
contrast, the problem is easily solved by PSO. Obviously, gra-
dient search is inefficient where only a relatively small subset of
the points in the search space have nonzero gradient.

D. Problems Where PSO Beats CMA

The normalized landscape evolved on the first run is shown
in Fig. 23. CMA does poorly, compared with our velocity lim-
ited PSO, because it picks up the low-frequency component of
the search space which guides successive generations towards

. Each time the CMA population gets stuck at ,
CMA restarts its ES with a bigger population. Eventually, the

Fig. 23. 8681 points sampled by CMA on its first test run shown on the evolved
landscape x� (x� 1)=x (GP population 10). On average, the velocity limited
PSO needs 3000 and CMA 12 000 evaluations. With small populations, CMA
is lead by the sloping plane up to x = 10 where it gets stuck, it then restarts
with a bigger population. In the first run, CMA restarts eight times before the
population is big enough to find the central spine by chance. In contrast, the
PSO stumbles into it on generation 40 (1228 evaluations).

Fig. 24. Landscape 0:063x evolved by GP (population 10), showing 230 points
explored by first run of DE. In contrast, a speed limited PSO starting from the
same points took 1829.

ES population is big enough to detect the small basin of attrac-
tion near the ridge line near and it quickly converges on
a global value. In contrast, the PSO search is more stochastic.
While CMA’s restart strategy is robust, it may waste fitness eval-
uations before it chooses an appropriate population size.

E. Problems Where DE Beats PSO

With a population of ten, GP evolved a landscape (see Fig. 24)
which DE does consistently better than our PSO. In 50 runs,
both DE and PSO (with a maximum speed of 10) always solved
it, taking on average 400 versus 2100 evaluations.

Both PSO and DE find this type of landscape hard. The
speed limited PSO without constriction finds it hard to home in
on the narrow region of optima (cf. Section III-E). Notice also
that DE finds this type of “cliff edge” landscape hard because
the gradient on one side continuously leads it to overshoot the
global optimum, cf. also Section IV-I. However, unlike Figs. 20
and 21, there is a narrow global optimum (occupying 0.05%

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

Fig. 25. Landscape �(0:13 + 0:24y)y evolved by GP (population 10). High
fitness points lie in a line at y = 0:27. Arrows indicate 6733 points explored
by first run of N-R gradient follower before it found a solution. In contrast, DE
starting from the same points took 1024. N-R is forced to restart 211 times before
starting close enough to a solution to find it. Note: 1) large flat area where both
do badly and 2) optimum is 0.017, which is very different from 1.0. This causes
N-R to overestimate distance to it (long diagonal arrows) but does not affect DE.
(To reduce clutter, the 16 cases where N-R started near the high fitness region
but was unsuccessful are not plotted).

of the feasible search space). This target proves to be quite
small for our PSO, causing it to take on average 2100 fitness
evaluations to find it. This shows a weakness of the PSO: the
particles are unable to home in on “narrow” global optima.
Schoenauer and Michalewicz [36] have suggested that global
optima of constrained problems are often at the boundary
between a smoothly varying feasible region and an infeasible
region (where a constraint is violated). Depending upon how
the constraint is handled, fitness in the infeasible region may
be dramatically lower than in the feasible region, i.e., cliff
edges may be common in constrained problems and so our
results suggest that DE and PSOs might not perform well on
constrained optimization problems.

F. Problems Where DE Beats N-R

GP (with a population of 10) readily finds a parabolic land-
scape where it consistently beats gradient search, see Fig. 25.
In 50 runs, both DE and N-R always find solutions but on av-
erage DE takes 770 fitness evaluations versus 3600 for N-R. Re-
member, the gradient follower assumes the optimum value will
be near 1.0, GP has exploited this and set it at only . When
N-R uses the local gradient to estimate the location of the op-
timum, this causes it to massively overestimate the distance it
should move. N-R only solves the problem when it starts very
near a solution. Note that if we rescale the landscape so that the
optimum is 1.0, then on average N-R needs only 620 samples
and will beat DE.

All search heuristics must make assumptions about their
search space. GP has turned N-R’s assumption, that the optima
are near unity, against it. By rescaling the landscape, GP has
further strengthen DE’s advantage. In the experiments with
CMA, we prevent GP doing this by normalizing the evolved
landscape by linearly rescaling so that the largest value is
always one.

Fig. 26. Landscape evolved by GP (population 100). DE is able to converge on
a narrow region near the optimum, e.g., in the first test run, 35% of DE sample
points (+) lie near x = �0:23. However, CMA converges towards (�10;�5)
far from the optimum. (� shows the 49% of points sampled by DE that lie in or
below the nearly flat (z � 0:33) region, while 16% of DE samples lie outside
the feasible region and are not shown).

Fig. 27. Strength of mutation in first CMA test on evolved landscape of Fig. 26.
Step size falls towards end of each CMA run (CMA restarts eight times). 43 high
fitness values are randomly sampled but CMA is unable to converge on them
because: 1) single values have little impact on CMA population mean and 2) in
the next generation, mutation is still strong and creates offspring some distance
away. (Since CMA, but not DE, knows the�10 . . .+10 boundaries, this causes
the generation steps, particularly visible on lower right).

G. Problems Where DE Beats CMA

DE solved the normalized problem shown in Fig. 26 86 times
out of 100, but CMA found the optimum in only 14. Again (cf.
Fig. 23), a ridge proves too narrow to attract CMA and most of
the population ends near .

Fig. 27 shows, in a typical run, even when CMA samples
close to the ridge, this is near the start of the run, and therefore
the mutation steps in the next generation are large and carry the
ES individuals far from the region leading
to the optimum. In contrast, DE’s population hugs this region.
CMA’s ability to average over the population makes it robust to
noise but less able to respond to outliers.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LANGDON AND POLI: EVOLVING PROBLEMS TO LEARN ABOUT PARTICLE SWARM OPTIMIZERS AND OTHER SEARCH ALGORITHMS 13

Fig. 28. Evolved landscape 0:0043+0:024y showing 146 points explored by
N-R in the first test run. The plot has been rotated to show the large number
of cases where N-R overshoots (the optima are less than 1.0). However, they
are closer to 1.0 than in Fig. 25 and the landscape is simpler, so our gradient
follower does better. With a speed limit of 10, our PSO has problems since
optima occupy only 0.05% of the feasible region of the search space. In this
run, using the same starting positions at the N-R, the PSO samples 412 points
before finding an optimum.

H. Problems Where N-R Beats PSO

With a population of 100, GP evolved the landscape shown in
Fig. 28. In 50 runs, using starting points chosen independently
from those used by the GP, both our gradient-based searcher and
PSO always found a solution. However, on average, N-R took
450 landscape samples compared with 2400 for the PSO.

Due to the cliff edge top of the landscape, the optima occupy
only 0.05% of the feasible region. Although the PSO samples
points near the optimum very quickly, the particles’ energy
tends to increase (cf. Section III-E) and the swarm becomes
increasingly erratic. Note that even though the swarm best is
stable, without constriction, friction, or position limiting, it
is not sufficient to keep the swarm near the optimal region.
Therefore, as time progresses, our PSO searches ever wider
on this landscape, i.e., the swarm samples points further and
further from the optimum, before eventually tumbling into an
optimum. This is interesting (although not unknown): a PSO
without constriction or friction can focus its search for only a
limited number of iterations. If the optimum is not found in that
time, the PSO is unlikely to find it later. This is the opposite
of most other population-based search algorithms, like a GA,
which tend to focus, rather than expand, their search in later
generations.

I. Problems Where N-R Beats DE

With a population of 1000, GP evolved the parabolic problem
landscape shown in Figs. 29 and 30 in which N-R does better
than DE. In 50 runs, N-R always found a solution, while DE
failed nine times. N-R took on average 120 evaluations, while
DE required 550 (on its 41 successful runs).

The bimodal nature of the landscape means both optimizers
are quite likely to head towards the lower ridge line (at

). However, N-R wins over population-based
approaches because: 1) it ascends the gradient faster and 2) it
stops when it reaches the lower hill top and restarts from another

Fig. 29. Run 0 of gradient-based optimizer, showing movement of N-R on
0:102+0:00189y+0:00635y landscape. Initially, N-R uses too large a step
size, which causes it to test outside the feasible region. N-R reduces its step size
and finds an optimum in 28 fitness evaluations, cf. Fig. 2.

Fig. 30. A successful (+) and a nonsuccessful (�)DE run, on same landscape
as Fig. 29. In the successful run, DE evaluated 437 points. In the other run, DE
ascends the slightly lower hill and gets stuck at the top of it,� shows the points
evaluated during the last generation. Notice the gradient leads the DE population
to jump lemming like past the optima at the cliff edge, so many test points have
zero fitness.

random position. Restarting virtually guarantees N-R will find
the right ridge ().

The evolved landscape is smooth, allowing gradient-based
search to reach the optima more quickly than population
search. However, GP has reinforced this advantage by making
the problem multimodal. This benefits N-R, since it rapidly
restarts on reaching a local optimum, while DE may be deceived
into heading in the wrong direction and does not restart.

Again, this landscape (Figs. 29 and 30) is very interesting. It
emphasizes the differences in the strategy used to deal with local
optima by N-R and DE. A hill-climber with restarts deals with
them by finding them and restarting. A population-based algo-
rithm (such as DE) deals with nonglobal optima by assuming
they will have smaller basins of attraction than the global op-
timum. When this is true, most members of the population are
more likely to sample the neighborhood of the global optimum
and so they can pull the whole population towards it. If the
basins of attraction of local and global optima have almost iden-
tical sizes (like the landscape evolved by GP), this strategy may

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

Fig. 31. Normalized evolved landscape 2x+ 0:91=x (GP pop = 10), which
favors N-R against CMA. Even N-R finds it hard. Successful N-R starting points
� are mostly in the narrow region above the ridge (at x = 0), where the gradient
is negative. There are also isolated regions near �1 and �1=2, where the dis-
tance to the ridge meshes nicely with N-R’s heuristics. As with Figs. 23 and 26,
CMA follows the low-frequency gradient and its populations tend to get stuck
at x = 10 causing repeated restarts.

fail. In fact, in deceptive problems, where population based al-
gorithms perform badly, nonglobal optima have much bigger
basins of attraction than that of the global optimum. This ex-
ample shows that GP has automatically discovered that the no-
tion of deception applies to DE.

J. Problems Where N-R Beats CMA

Once more GP has chosen a narrow ridge to allow our gra-
dient following hill-climber to beat CMA. As Fig. 31 shows, the
normalized landscape contains a ridge which is also difficult for
N-R with only 1 in 230 starting points leading to an optimum.
Nevertheless, N-R decides more quickly than CMA if it needs to
restart. So N-R takes on average 6000 fitness evaluations versus
8000 for CMA, excluding the 10% of cases where CMA failed
to find a solution before using 30 000 fitness evaluations. (N-R
failed once in 200 test runs.)

K. Problems Where CMA Beats PSO

CMA has no difficulty exploiting its knowledge of the legal
boundaries to beat our PSO. On average, it takes only 21 fit-
ness evaluations to find the unique global optimum to the nor-
malized problem shown in Fig. 32, while our PSO never found
it in 100 runs. However, the PSO does get very close. On av-
erage, it comes within 0.003 of maximum fitness (0.002–0.005
quartiles). We also tried increasing the coefficients of the forces
towards the previous bests from 0.5 to 1.2, cf. Table II. De-
spite running our PSO on the problem 100 times, neither
the t-test nor the sign test showed that improved perfor-
mance. Further strengthening the generality of results.

CMA finds the problem easy because GP has put the global
optimum in a corner. If mutation generates any point lying in

and , the boundary conditions will force it
to , which is where GP has put the solution!
Obviously, this is unfair, but exactly the same conditions were
used in Section IV-D when PSO defeated CMA. Also, if we

Fig. 32. Normalized evolved landscape x � y (GP pop = 10) which favors
CMA over a PSO. Points show the CMA population in a typical run.

Fig. 33. Normalized evolved landscape (1:03 + 2:81x)y (GP pop = 10)
which favors CMA over DE. In the first successful DE test run, + shows that
DE converges on the optimum. In the second test run (�), DE converges on
the slightly lower corner and never finds the solution. In both cases, DE scatters
many test points beyond the local peak.

do not help CMA but instead allow it to search everywhere, it
still beats our PSO and the mean number of evaluations only
rises from 12 to 442. The optimum occupies only of the
search space. It is too small for our velocity limited gbest PSO
swarm to locate.

L. Problems Where CMA Beats DE

CMA has absolutely no difficulty in doing better than DE on
the normalized evolved landscape shown in Fig. 33. CMA takes
only 35 fitness evaluations (35 median, 14–282 quartiles) to find
the optimum. Notice how GP has played to CMA strengths by
placing the optima at one corner but has made things hard for
DE. DE finds difficult because: first, there is a
local optima in the opposite direction from the global peak, and
second, because the optimum is on a “cliff edge.” In 41 of 100
test runs, DE failed. In the other 59, DE took 1134 fitness eval-
uations (1134 median, 1002–1245 quartiles). See Sections IV-E
and IV-I for other examples of DE and cliff edges and DE being
deceived. Even if we remove CMA’s “unfair” advantage and

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LANGDON AND POLI: EVOLVING PROBLEMS TO LEARN ABOUT PARTICLE SWARM OPTIMIZERS AND OTHER SEARCH ALGORITHMS 15

Fig. 34. Normalized evolved landscape x y (GP pop = 10) which favors
CMA over a N-R. Points show first 2493 evaluations in a typical N-R run.

allow it to test outside the square, it still beats DE
but it is slowed down (new median evaluation is 561, 328–1000
quartiles).

M. Problems Where CMA Beats N-R

In the normalized evolved landscape (shown in Fig. 34),
GP has placed an optimum in each corner. (As noted in the pre-
vious section, when CMA is told the boundaries of the feasible
region, it is especially suited to finding solutions in corners.) On
average, CMA takes only 12 evaluations to find one. In contrast,
N-R succeeds within 30 000 evaluations, only in 13 of 100 runs.
(Even if we remove this advantage, CMA still beats N-R and
solves the problem 100% of the time and the mean number of
fitness evaluations only rises from 12 to 462.)

Our N-R assumes the problem is smooth and takes samples
near its present location to estimate the local gradient. Except
in the flat region (cf. Section IV-C) in the middle of , this
works well and initially the gradient follower climbs rapidly.
However, the concave fitness landscape causes N-R to repeat-
edly overestimate the distance to 1.0, causing it to reduce its step
size and take more fitness evaluations (cf. Section IV-I). More-
over, when N-R nears the edges, local samples are drawn from
outside of the feasible region and the estimate of the gradient
becomes unreliable. This causes N-R to restart. Only if the as-
cent remains away from the edges (i.e., towards the diagonals)
can N-R reach one of the corners. As Fig. 34 shows, N-R per-
forms poorly where solutions are near discontinuous regions.

V. PSO VERSUS CMA IN MANY DIMENSIONS

Finally, we extended the benchmark evolved in Section IV-D
to many dimensions. The objective value in high dimensions is
the sum of the objective values for one dimension. This is lin-
early rescaled so that the global optima remain 1.0. This extends
the essential features of the landscape shown in Fig. 23. That is,
there is a plane, formed by , which guides the search to-
wards (10, 10, 10) and away from the global optima, which
are narrow spines running parallel to each axis near .

In Fig. 35, we show the performance of PSO and CMA after
the fitness landscape has been extended up to 51 dimensions.
While there is some variation (particularly for smaller problems)

Fig. 35. Median fitness evaluations to solve x � (x � 1)=x by 100
PSO and CMA runs (n must be odd). Note x �(x �1)=x is scaled to ensure
the size of both the basin of attraction and the global optima as fraction of the
search space remain the same as the number of dimensions changes. Both PSO
and CMA are forced to search only in the (�10 . . . + 10) hypercube. Error
bars indicate lower and upper quartiles.

for five or more dimensions, the performance of both CMA
and PSO is fairly consistent. The lesson from two dimensions
(Section IV-D) applies to higher dimensions.

VI. DISCUSSION

The results of Section IV are summarized in Table III. Rather
than using predefined benchmarks, it proved easy for GP to
find simple landscapes where each of four very different op-
timizers beats its opponent. We looked at all pairwise compar-
isons. We also (especially for the case of particle swarms) com-
pared different parameter settings of the same optimizer. Again,
GP found landscapes which suited particular parameter settings.
In every case, GP succeeded in finding a landscape which suited
the technique (or parameter setting) over the other technique
and vice versa. Note that not only does an alternative landscape
exist, which the No Free Lunch [17] results assure us must exist
in theory, but an example could be readily found.

Where the first GP run did not find a landscape which reliably
separated the two optimizers, we increase the population by a
factor of 10 to 100 or 1000. Only once (cf. Section IV-B) did
we need to run a GP with a population of a 1000 individuals
again. Each landscape shown has been examined to prove the
differences are indeed statistically significant.

Run time depends heavily on a number of factors. These
include the computer used and which of the optimizers are
being compared, their population sizes (1, 20, 30, etc.), the
number of generations they are allowed (up to 1500), the size
of the GP population (10, 100, or 1000), and the number of GP
generations (10). (Figures in brackets indicate values used in
Sections III–V.) Nevertheless, to give an indication of the costs
of our technique, we note that the smallest GP run with the
fastest heuristic (N-R) took about a minute on a 3 GHz PC. The
longest run with a population 100 times bigger took 53 hours.
Doubtlessly, if need arose, these times could be greatly reduced
by suitable code optimization and/or parameter tuning.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

16 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

TABLE III
MEAN FITNESS EVALUATIONS IN OPTIMIZER VERSUS OPTIMIZER EVOLVED LANDSCAPES

Real-world problems typically contain many dimensions and
so practical optimizers, such as those we have used, must deal
with far more than two dimensions. However, it is common for
such algorithms to be subdivided into parts which deal with one
dimension at a time. Both PSO and DE do this, but then bring
together dimensions (e.g., in the inner loop in Table II our
PSO deals with each dimension separately. Then, the following
code (loop) deals with all dimensions.) Therefore, we suggest
that in many cases lessons learnt in lower dimensional problems
can, with appropriate caution, be used in higher dimensions.
Indeed, none of the lessons highlighted in Sections III and IV
are specific to the low dimensionality used in experiments. In
Section V, we describe an experiment to start confirming this.

We are greatly encouraged by the success of this new tech-
nique. There are many ways this work could be extended.
For example, by considering other types of optimizers. We
have used it with one algorithm with time-varying parameters
(CMA), it could be used with other algorithms which adapt their
parameters (e.g., population size) as they run, such as certain
types of PSO. There are many other types of more sophisti-
cated PSOs [37] (e.g., CPSO [38], UPSO [39], CLPSO [40],
FDR-PSO [41], HPSO-TVAC [42]), and differential evolution
(e.g., SaDE [43] and SADE [44]) where our technique might
be used. Extensions to investigate constrained optimization or
multiobjective optimization techniques (e.g., GDE [45]–[47])

might be needed. However, we have established the viability
of using GP to devise test problems for continuous optimiza-
tion problems and using them as tools to analyze real-world
optimization algorithms.

VII. CONCLUSION

Theoretic analysis of evolutionary algorithms, in general, and
particle swarm optimizers, DE and CMA-ES, in particular, is
very hard. While we have not abandoned this, it is clear that
evolutionary computing itself can help our understanding. We
have shown that GP, by forcing alternative techniques to com-
pete inside a single computer (rather than scattered across the
pages of diverse conferences and journals), can readily produce
fitness functions which illustrate their comparative strengths and
weaknesses, cf. Table III.

ACKNOWLEDGMENT

We would like to thank J. Kennedy, M. Clerc, M. Oltean,
H.-G. Beyer, C. Stephens, T. Krink, O. Holland, C. Di Chio,
A. Kucerova, and N. Hansen for papers, helpful discussions, and
suggestions. We would like to thank R. Storn and N. Hansen for
the use of their DE and CMA-ES Java code.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LANGDON AND POLI: EVOLVING PROBLEMS TO LEARN ABOUT PARTICLE SWARM OPTIMIZERS AND OTHER SEARCH ALGORITHMS 17

REFERENCES

[1] J. Kennedy and R. C. Eberhart, Swarm Intelligence. San Mateo, CA:
Morgan Kaufmann, 2001.

[2] J. Kennedy, “The behavior of particles,” in Proc. 7th Ann. Conf. Evol.
Program., San Diego, CA, 1998, pp. 581–589.

[3] E. Ozcan and C. K. Mohan, “Particle swarm optimization: Surfing
the waves,” in Proc. Congr. Evol. Computa., P. J. Angeline, Z.
Michalewicz, M. Schoenauer, X. Yao, and A. Zalzala, Eds., Wash-
ington, D.C., Jul. 6–9, 1999, vol. 3, pp. 1939–1944.

[4] M. Clerc and J. Kennedy, “The particle swarm-explosion, stability, and
convergence in a multidimensional complex space,” IEEE Trans. Evol.
Comput. vol. 6, no. 1, pp. 58–73, Feb. 2002. [Online]. Available: http://
ieeexplore.ieee.org/xpl/abs_free.jsp?arNumber=985692

[5] F. van den Bergh, “An analysis of particle swarm optimizers” Ph.D.
dissertation, Dept. Comput. Sci., Univ. Pretoria, Pretoria, South Africa,
Nov. 2001. [Online]. Available: http://www.cs.up.ac.za/cs/fvdbergh/
publications/phd_thesis.ps.gz

[6] R. Storn and K. Price, Differential evolution—A simple and efficient
adaptive scheme for global optimization over continuous spaces
Int. Comput. Sci. Inst., Berkeley, CA, Tech. Rep. TR-95-012, Mar.
1995. [Online]. Available: ftp://ftp.icsi.berkeley.edu/pub/techreports/
1995/tr-95-012.pdf

[7] K. V. Price, “An introduction to differential evolution,” in New Ideas
in Optimization, ser. Maidenhead, Advanced Topics in Computer Sci-
ence, D. Corne, M. Dorigo, and F. Glover, Eds. Berkshire, U.K.: Mc-
Graw-Hill, 1999, ch. 6, pp. 79–108.

[8] R. Storn, “Designing digital filters with differential evolution,” in New
Ideas in Optimization, ser. Maidenhead, Advanced Topics in Computer
Science, D. Corne, M. Dorigo, and F. Glover, Eds. New York: Mc-
Graw-Hill, 1999, ch. 7, pp. 109–125.

[9] J. Lampinen and I. Zelinka, “Mechanical engineering design opti-
mization by differential evolution,” in New Ideas in Optimization, ser.
Maidenhead, Advanced Topics in Computer Science, D. Corne, M.
Dorigo, and F. Glover, Eds. New York: McGraw-Hill, 1999, ch. 8,
pp. 127–146.

[10] D. Zaharie, “Control of population diversity and adaptation in
differential evolution algorithms,” in Proc. 9th Int. Conf. Soft
Comput. MENDEL, R. Matousek and P. Osmera, Eds., Brno,
Czech Republic, Jun. 2003, pp. 41–46. [Online]. Available:
http://www.info.uvt.ro/~dzaharie/mendel03.pdf

[11] A. Ostermeier, A. Gawelczyk, and N. Hansen, “A derandomized ap-
proach to self-adaptation of evolution strategies,” Evol. Comput. vol.
2, no. 4, pp. 369–380, 1995. [Online]. Available: http://www.bionik.tu-
berlin.de/user/niko/derapproaEc.pdf

[12] N. Hansen, S. D. Müller, and P. Koumoutsakos, “Reducing the time
complexity of the derandomized evolution strategy with covariance
matrix adaptation (CMA-ES),” Evol. Comput. vol. 11, no. 1, pp. 1–18,
Spring 2003. [Online]. Available: http://mitpress.mit.edu/journals/pdf/
evco_11_1_1_0.pdf

[13] A. Auger and N. Hansen, “A restart CMA evolution strategy with in-
creasing population size,” in Proc. IEEE Congr. Evol. Comput., D.
Corne, Z. Michalewicz, B. McKay, G. Eiben, D. Fogel, C. Fonseca, G.
Greenwood, G. Raidl, K. C. Tan, and A. Zalzala, Eds., Edinburgh, U.K.,
Sep. 2–5, 2005, vol. 2, pp. 1769–1776. [Online]. Available: http://iee-
explore.ieee.org/servlet/opac?punumber=10417&isvol=2

[14] N. Hansen, “The CMA evolution strategy: A tutorial,” Nov. 11, 2005.
[Online]. Available: http://www.bionik.tu-berlin.de/user/niko/cmatu-
torial.pdf

[15] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y.-P. Chen, A.
Auger, and S. Tiwari, “Problem definitions and evaluation criteria
for the CEC 2005 special session on real-parameter optimization,”
Tech. Rep., Nanyang Technological Univ., Singapore and Kanpur
Genetic Algorithms Laboratory, IIT, Kanpur, KanGAL Rep. 2005005,
May 2005. [Online]. Available: http://www.ntu.edu.sg/home/epn
sugan/index_files/CEC-05/Tech-Report-May-30-05.pdf

[16] N. Hansen, “Compilation of results on the CEC benchmark function
set,” Inst. Comput. Sci., ETH Zurich, Switerland, Tech. Rep., 13,
Sep. 2005. [Online]. Available: http://www.ntu.edu.sg/home/epn
sugan/index_files/CEC-05/compareresults.pdf

[17] D. H. Wolpert and W. G. Macready, “No free lunch theorems for op-
timization,” IEEE Trans. Evol. Comput., vol. 1, no. 1, pp. 67–82, Apr.
1997.

[18] M. Oltean, “Searching for a practical evidence for the no free
lunch theorems,” in Proc. 1st Int. Workshop Biologically Inspired
Approaches to Advanced Inf. Technol., A. J. Ijspeert, M. Murata,
and N. Wakamiya, Eds., Lausanne, Switzerland, Jan. 29–30, 2004,
vol. 3141, pp. 472–483. [Online]. Available: http://www.cs.ubb-
cluj.ro/~moltean/oltean_bioadit_springer2004.pdf, ser. LNCS, revised
Selected Papers.

[19] J. I. van Hemert, “Evolving binary constraint satisfaction problem in-
stances that are difficult to solve,” in Proc. Congr. Evol. Comput., R.
Sarker, R. Reynolds, H. Abbass, K. C. Tan, B. McKay, D. Essam, and
T. Gedeon, Eds., Canberra, Dec. 8–12, 2003, pp. 1267–1273.

[20] B. Edmonds, “Meta-genetic programming: Co-evolving the operators
of variation,” Elektrik vol. 9, no. 1, pp. 13–29, May 2001. [Online].
Available: http://cogprints.ecs.soton.ac.uk/archive/00001776/, Turkish
J. Elec. Eng. Comput. Sci.

[21] R. Poli, W. B. Langdon, and O. Holland, “Extending particle
swarm optimization via genetic programming,” in Proc. 8th Eur.
Conf. Genetic Program., M. Keijzer, A. Tettamanzi, P. Collet, J.
I. van Hemert, and M. Tomassini, Eds., Lausanne, Switzerland,
Mar.–Apr. 30–1, 2005, vol. 3447, pp. 291–300. [Online]. Available:
http://www.cs.essex.ac.uk/staff/poli/papers/eurogpPSO2005.pdf, ser.
LNCS

[22] J. R. Koza, Genetic Programming: On the Programming of Computers
by Means of Natural Selection. Cambridge, MA: MIT Press, 1992.

[23] W. Banzhaf, P. Nordin, R. E. Keller, and F. D. Francone, Genetic Pro-
gramming—An Introduction; On the Automatic Evolution of Computer
Programs and its Applications. San Mateo, CA: Morgan Kaufmann,
1998.

[24] W. B. Langdon, Genetic Programming and Data Structures. Nor-
well, MA: Kluwer, 1998.

[25] W. B. Langdon and R. Poli, Foundations of Genetic Programming.
New York: Springer-Verlag, 2002.

[26] W. B. Langdon, R. Poli, O. Holland, and T. Krink, “Understanding
particle swarm optimization by evolving problem landscapes,” in
Proc. IEEE Swarm Intelligence, L. M. Gambardella, P. Arabshahi,
and A. Martinoli, Eds., Pasadena, CA, Jun. 8–10, 2005, pp. 30–37.
[Online]. Available: http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/pa-
pers/langdon_2005_SIS.pdf

[27] W. B. Langdon and R. Poli, “Evolving problems to learn about particle
swarm and other optimizers,” in Proc. IEEE Congr. Evol. Comput., D.
Corne, Z. Michalewicz, M. Dorigo, G. Eiben, D. Fogel, C. Fonseca, G.
Greenwood, T. K. Chen, G. Raidl, A. Zalzala, S. Lucas, B. Paechter,
J. Willies, J. J. M. Guervos, E. Eberbach, B. McKay, A. Channon, A.
Tiwari, L. G. Volkert, D. Ashlock, and M. Schoenauer, Eds., Edinburgh,
U.K., Sep. 2–5, 2005, vol. 1, pp. 81–88. [Online]. Available: http://
www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/wbl_cec2005.pdf

[28] G. Syswerda, “A study of reproduction in generational and steady state
genetic algorithms,” in Foundations of Genetic Algorithms, G. J. E.
Rawlings, Ed., Jul. 15–18, 1990, pp. 94–101.

[29] R. Poli, TinyGP. (See TinyGP GECCO 2004 competition) 2004. [On-
line]. Available: http://cswww.essex.ac.uk/staff/sml/gecco/TinyGP.
html

[30] Y. Jin and J. Branke, “Evolutionary optimization in uncertain
environments—A survey,” IEEE Trans. Evol. Comput. vol. 9,
no. 3, pp. 303–317, Jun. 2005. [Online]. Available: http://ieeex-
plore.ieee.org/xpls/abs_all.jsp?isnumber=30975&arnumber=1438403
&count=6&index=4

[31] R. Storn, “DeApp—An application in java for the usage of differen-
tial evolution,” 1999. [Online]. Available: http://http.icsi.berkeley.edu/
~storn/devol.ps

[32] ——, “Differential evolution.” Feb. 15, 2005. [Online]. Available:
http://www.icsi.berkeley.edu/~storn/code.html

[33] H.-G. Beyer, The Theory of Evolution Strategies, ser. ser. Natural Com-
puting Series. New York: Springer, 2001.

[34] J. Lampinen and I. Zelinka, “On stagnation of the differential evolution
algorithm,” in Proc. 6th Int. Mendel Conf. Soft Computing, P. Osmera,
Ed., Brno, Czech Republic, Jun. 7–9, 2000, pp. 76–83. [Online]. Avail-
able: http://citeseer.ist.psu.edu/317991.html

[35] M. Clerc, “Stagnation analysis in particle swarm optimization or
what happens when nothing happens,” Jan. 19, 2006. [Online].
Available: http://clerc.maurice.free.fr/pso/stagnation_analysis/stagna-
tion_analysi s.pdf

[36] M. Schoenauer and Z. Michalewicz, “Evolutionary computation at the
edge of feasibility,” in Lecture Notes in Computer Science, H.-M. Voigt,
W. Ebeling, I. Rechenberg, and H.-P. Schwefel, Eds. Berlin, Ger-
many: Springer-Verlag, Sep. 22–27, 1996, vol. 1141, Parallel Problem
Solving From Nature—PPSN IV, pp. 245–254. [Online]. Available:
http://www.cs.adelaide.edu.au/~zbyszek/Papers/p26.pdf

[37] M. Clerc, “Particle swarm optimization,” ISTE, 2006.
[38] F. van den Bergh and A. P. Engelbrecht, “A cooperative ap-

proach to particle swarm optimization,” IEEE Trans. Evol.
Comput. vol. 8, no. 3, pp. 225–239, Jun. 2004. [Online]. Available:
http://ieeexplore.ieee.org/iel5/4235/28981/01304845.pdf?tp=&arnum
ber=1304845&isnumber=28981

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

18 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

[39] K. E. Parsopoulos and M. N. Vrahatis, “UPSO: A unified particle
swarm optimization scheme,” in Proc. Int. Conf. Comput. Methods
Sci. Eng., ser. Lecture Series on Computer and Computational Sci-
ences. Attica, Greece: VSP International Science, Nov. 19–23,
2004, vol. 1, pp. 868–873. [Online]. Available: http://www.math.upa-
tras.gr/~kostasp/papers/ICCMSE04PV.pdf

[40] J. J. Liang, A. K. Qin, P. N. Suganthan, and S. Baskar, “Compre-
hensive learning particle swarm optimizer for global optimization
of multimodal functions,” IEEE Trans. Evol. Comput. 2006. [On-
line]. Available: http://ieeexplore.ieee.org/iel5/4235/26785/ 101109
TEVC2005857610.pdf?tp=&arnumber=101109TEVC2005857610&
isnumber=26785

[41] T. Peram, K. Veeramachaneni, and C. K. Mohan, “Fitness-distance-
ratio based particle swarm optimization,” in Proc. 2003 IEEE Swarm
Intell. Symp., Indianapolis, IN, Apr. 24–26, 2003, pp. 174–181. [On-
line]. Available: http://dx.doi.org/doi:10.1109/SIS.2003.1202264

[42] B. C. H. Chang, A. Ratnaweera, S. K. Halgamuge, and H. C. Watson,
“Particle swarm optimization for protein motif discovery,” Genetic
Program. Evolv. Mach., vol. 5, no. 2, pp. 203–214, Jun. 2004.

[43] A. Qin and P. Suganthan, “Self-adaptive differential evolution
algorithm for numerical optimization,” in Proc. IEEE Congr.
Evolut. Comput., D. Corne, Z. Michalewicz, B. McKay, G.
Eiben, D. Fogel, C. Fonseca, G. Greenwood, G. Raidl, K. C.
Tan, and A. Zalzala, Eds., Edinburgh, U.K., Sep. 2–5, 2005,
vol. 2, pp. 1785–1791. [Online]. Available: http://ieeexplore.ieee.
org/servlet/opac?punumber=10417&isvol=2

[44] O. Hrstka and A. Kučerová, “Improvements of real coded genetic al-
gorithms based on differential operators preventing premature conver-
gence,” Adv. Eng. Softw., vol. 35, no. 3–4, pp. 237–246, Mar.–Apr.
2004.

[45] J. Lampinen, “A constraint handling approach for the differential evo-
lution algorithm,” in Proc. Congress on Evol. Comput., D. B. Fogel,
M. A. El-Sharkawi, X. Yao, G. Greenwood, H. Iba, P. Marrow, and M.
Shackleton, Eds., Honolulu, HI, May 12–17, 2002, pp. 1468–1473.

[46] S. Kukkonen and J. Lampinen, “An extension of generalized differ-
ential evolution for multi-objective optimization with constraints,” in
Lecture Notes in Computer Science, X. Yao, E. Burke, J. A. Lozano,
J. Smith, J. J. Merelo-Guervós, J. A. Bullinaria, J. Rowe, P. T. A.
Kabán, and H.-P. Schwefel, Eds. Berlin, Germany: Springer-Verlag,
Sep. 18–22, 2004, vol. 3242, Proc. Parallel Problem Solving From Na-
ture—PPSN VIII, pp. 752–761.

[47] ——, “GDE3: The third evolution step of generalized differential
evolution,” in Proc. IEEE Congr. Evol. Comput., D. Corne, Z.
Michalewicz, B. McKay, G. Eiben, D. Fogel, C. Fonseca, G. Green-
wood, G. Raidl, K. C. Tan, and A. Zalzala, Eds., Edinburgh, U.K.,
Sep. 2–5, 2005, vol. 1, pp. 443–450. [Online]. Available: http://iee
explore.ieee.org/xpl/freeabs_all.jsp?isnumber=33079&arnumber=155
4717&count=127&index=57

W. B. Langdon is a Senior Research Fellow in computer systems engineering
at Essex University, Colchester, U.K. He worked on distributed real-time
databases for control and monitoring of power stations at the Central Electricity
Research Laboratories. He then joined Logica to work on distributed control
of gas pipelines and later on computer and telecommunications networks.
After returning to academe to receive the Ph.D. degree in genetic program-
ming (sponsored by National Grid plc.), he has worked at the University of
Birmingham, the CWI, UCL and, most recently, Essex University.

Riccardo Poli is a Professor in the Department of
Computer Science, University of Essex, Colchester,
U.K. He has coauthored Foundations of Ge-
netic Programming (Springer-Verlag, 2002) with
W. B. Langdon. He has published over 180 refereed
papers on evolutionary algorithms (particularly
genetic programming), neural networks, and image/
signal processing. His main research interests in-
clude genetic programming (GP) and the theory of
evolutionary algorithms.

Prof. Poli was elected a Fellow of the International
Society for Genetic and Evolutionary Computation (ISGEC), in recognition of
sustained and significant contributions to the field and the community, in July
2003. He has been cofounder and Co-Chair of EuroGP, the European Confer-
ence on Genetic Programming for 1998, 1999, 2000, and 2003. He was the
Chair of the GP theme at the Genetic and Evolutionary Computation Confer-
ence (GECCO) 2002 (the largest conference in the field) and was Co-Chair of
the prestigious Foundations of Genetic Algorithms (FOGA) Workshop in 2002.
He has been (the first non-U.S.) General Chair of GECCO in 2004, and served
as a member of the business committee for GECCO 2005. He is Technical Chair
of the International Workshop on Ant Colony Optimization and Swarm Intelli-
gence (ANTS 2006) and Competition Chair for GECCO 2006. He is an Asso-
ciate Editor of Evolutionary Computation (MIT Press), Genetic Programming
and Evolvable Machines (Springer), and the International Journal of Computa-
tional Intelligence Research (IJCIR). He has been program committee member
of over 50 international events. He has presented invited tutorials on GP at ten
international conferences. He is a member of the EPSRC Peer Review College
and has attracted, as Principal Investigator or Co-Investigator, funding for over
$1.8M from EPSRC, DERA, Leverhulme Trust, Royal Society, and others.

