
2005 IEEE Swarm Intelligence Symposium 8-10 June 2005, Pasadena, California, USA pp30–37 Revision : 1.33 Corrected crossover rate

UNDERSTANDING PARTICLE SWARM OPTIMISATION BY EVOLVING PROBLEM LANDSCAPES

W. B. Langdon, Riccardo Poli, Owen Holland

Department of Computer Science,
University of Essex, UK

Thiemo Krink

EVALife Group,
University of Aarhus, Denmark

ABSTRACT

Genetic programming (GP) is used to create fitness land-
scapes which highlight strengths and weaknesses of differ-
ent types of PSO and to contrast population-based swarm
approaches with non stochastic gradient followers (i.e. hill
climbers). These automatically generated benchmark prob-
lems yield insights into the operation of PSOs, illustrate
benefits and drawbacks of different population sizes and
constriction (friction) coefficients, and reveal new swarm
phenomena such as deception and the exploration/exploitation
tradeoff. The method could be applied to any type of opti-
mizer.

1. INTRODUCTION

Particle Swarm Optimisation (PSO) [3] is an optimisation
technique based on the collective motion of a flock of parti-
cles, the particle swarm. In the simplest (and original) ver-
sion of PSO, each member of the particle swarm is moved
through a problem space by two elastic forces. One at-
tracting it with random magnitude to the best location so
far encountered by the particle. The other attracting it with
random magnitude to the best location encountered by any
member of the swarm. The position and velocity of each
particle are updated at each time step (with the maximum
velocity being bounded to maintain stability) until the swarm
as a whole converges to an optimum. This is usually very
quick, in terms of the number of updates required, and the
solutions are typically very good for a range of difficult
problems.

The update rule for this basic PSO contains only two
parameters: 1) the relative importance of the influences on
a particle of the particle best and the swarm best solutions
and 2) the number of particles in the swarm. The original
derivation of PSO was an abstract version of the factors in-
volved in the feeding behaviour of flocks of birds. This may
have inspired early progress, which often took the form of
adding terms based on biological or physical analogies. One
of the most successful of these was the “inertia weight”, a
friction coefficient added to the velocity update rule.

Following Kennedy’s graphical examinations of the tra-
jectories of individual particles, and of their responses to
variations in the key parameters [2], the first real attempt
at providing a theoretical understanding of PSO was the
“surfing the waves” model presented by Ozcan and Mohan
[6]. Shortly afterwards, Clerc and Kennedy [1] developed a
comprehensive 5-dimensional mathematical analysis of the
basic PSO system. A particularly important contribution of
that work was the use and analysis of a modified update rule,
involving an additional constant,k, the “constriction coeffi-
cient”. If k is correctly chosen, it guarantees the stability of
the PSO without the need to bound velocities.

In spite of these theoretical contributions, we still do not
have an adequate understanding of why certain parameter
settings, or certain variants of the basic form, perform better
or worse than other PSOs (or other optimisers) on problems
of a given type. A conventional approach to this situation,
which is common to other families of optimisers, would be
to study the performance of various PSOs (and other algo-
rithms) on a subset of a standard suite of problems, and
attempting to identify the reasons behind relative success
or failure. Unfortunately, the observed differences may be
small, making it difficult to discern the source and nature
of the differences. The technique introduced here turns this
idea on its head: instead of studying the performance of
two optimisers on a standard problem in the hope of finding
an informative degree of difference,we evolve new prob-
lems that maximise the difference in performance between
the optimisers. In this way, the underlying strengths and
weaknesses of each optimiser are exaggerated and thereby
revealed.

The next section describes our method. This is followed
in Section 3 by a description of the GP used to create the
new benchmarks, along with details of the PSO and other
optimisers studied and results obtained (Section 4). Sec-
tions 5 and 6 discuss our results and conclude that simplis-
tic assertions that “convergence” is required are unfounded
and must be qualified by consideration of the problem to be
solved.

30

http://www.cs.essex.ac.uk/staff/W.Langdon
http://www.cs.essex.ac.uk/staff/poli.htm
http://www.cs.essex.ac.uk/staff/holland.htm
http://www.daimi.au.dk/~krink/

2. APPROACH AND METHOD

We can easily use the standard form of genetic program-
ming (GP) [4, 5] to evolve problems on which one search
technique performs radically better or worse than another.
We begin with a GP population in which each individual
represents a function (a landscape) that can be searched by
each of the two techniques. The fitness of an individual is
established by taking the (signed) difference between the
search performances of the two techniques on the function
represented by that individual. With this approach, GP will
tend to evolve benchmark problems where one technique
outperforms the other.

It is important to note that we are using GP merely as
a convenient tool for producing landscapes on which one
optimiser (or parameter set) performs better than another.
Each such landscape is the output of a single GP run. Once
a landscape has been produced, we perform further multiple
runs of the relevant optimisers on that landscape to establish
the statistical significance of the apparent difference in per-
formance. We then examine in detail the progress of each
optimiser to try and understand the relationship between the
shape of the landscape and the resultant performance.

To ensure that the landscapes produced are readily com-
prehensible, we restrict ourselves to two dimensional fitness
functions (covering the square−10 . . . + 10) with values
0 . . . 1. (The inclusion of values up to±10 should readily
allow extension to discrete integer problems.) For simplic-
ity the −10 . . . + 10 range is divided into 2001 points at
which the objective function is defined. On a microscopic
level, this means that the search problem is composed of
20012 horizontal tiles, each 0.01 x 0.01. This is 4 004 001
points, so it is easy to find the global optimum by enumera-
tion.

3. OPTIMISERS

3.1. Genetic Programming

We use a Java implementation of tinyGP [7] with 100 con-
stants. Details are given in Table 1.

To reduce the inevitable noise when comparing stochas-
tic techniques, each GP individual (i.e. each fitness land-
scape) is used five times. Each time we run both optimisers
until they either find an optimum or exhaust their quota of
trial points (e.g. maximum number of generations× swarm
size). The fitness of the landscape (as far as GP is con-
cerned) is the difference between the sums over the five runs
of the number of trial samples taken by the two optimisers
being compared. To further reduce the noise in the compar-
ison, the two optimisers start from the same start points.

When running PSOs with different population sizes, the
one with the larger population is run first; a subset of its ini-
tial positions and velocities is saved, and the smaller PSO is

started from these positions and velocities. A similar tech-
nique is used when a PSO and a gradient following opti-
miser (Section 3.3) are being compared: the PSO is run first,
a subset of the start positions is saved, and the gradient fol-
lower uses starting points from this set of saved positions.

The GP process turned out to be very reliable. In every
case examined, a single run produced a landscape with the
appropriate performance difference. These results are from
single runs of each combination of optimiser type.

The optimisers we used in this initial investigation are
described below. Although our primary focus is on the dif-
ferences between various forms of PSOs, we are also inter-
ested in how PSOs perform in comparison to other optimis-
ers, so we also included a representative gradient-following
algorithm.

3.2. Partical Swarm Optimiser

We used Java implementations of two standard forms of
PSO, one without constriction and one with constriction.
Depending upon the experiment, the swarm contained either
10 or 100 particles and was run for up to 1000 generations.
The initial random starting points and velocities were cho-
sen uniformly at random from−1 . . .+1. Unless otherwise
stated, the swarms do not use constriction, friction or veloc-
ity limiting. However in some cases the swarm is forced to
remain in the feasible region. (I.e. particles straying outside
the−10 . . . + 10 box are forced back onto its boundary.)

3.3. Newton-Raphson Optimiser

The Newton-Raphson optimiser (N-R) is an intelligent hill-
climber. If the initial point is an optimum, it stops. (The op-
timum value isassumedto be 1. Remember the GP is con-
strained to generate functions with values no larger than 1.)
If the point is not at an optimum, N-R takes two steps from
its current position. One in thex-direction and the other in
they-direction. From these measurements of the landscape,
it calculates the local gradient. It then calculates the differ-
ence between the current value and the assumed optimum
value of 1. From its estimate of the local gradient, it then
calculates how far it would need to move, and in what di-
rection, in order to reach an optimum value. It then jumps
to this new point. If the new point is an optimum, it stops,
and so on.

We have chosen a variant of N-R which incorporates
several additional strategies to make it more robust. (Al-
though the variant is more properly described as a pseudo-
Newton-Raphson optimiser with restart, we will continue to
refer to it as N-R.) The step used to estimate the local gra-
dient is initially set to a large value, in this instance (1.0).
If N-R fails to reach an optimum at the first attempt it tries
again with the step size halved, in order to get a better es-
timate of the local gradient. Similarly, instead of trying to

31

Table 1. tinyGP Parameters

Function set: +−× DIVa

Terminal set: x, y, 100 constants uniformly randomly chosen in the range0 . . . 1
Fitness: Landscape points sampled by optimiser A minus those by optimiser B. A and B start from same initial

random start points. A and B run 5 times. Individual fitness values are not fixed but each is re-evaluated in
each parent selection tournament. (Current fitness is used when selecting who dies).

Selection: Steady state [8] binary tournaments for both parent selection and who to remove from the population.
Initial pop: Trees randomly grown with max depth of 6 (root=0).
Parameters: Population 10 or 1000. 10% crossover, 90% mutation, 2% chance of mutation per tree node. Optimiser initial

points are chosen uniformly at random from square centred on origin.
Termination: generation 10

a DIV is protected division I.e. if|y| <= 0.001 DIV(x, y) = x else DIV(x, y) = x/y.

jump all the way to an optimal value, after a failure it will
jump only a fraction of the way. (In our implementation,
it will attempt to jump halfway on the second attempt, a
quarter of the way on the third attempt, and so on.) These
measures enable N-R to cope with non-linear problems, but
at the expense of testing the landscape at more points.

Should the step size fall below 0.01 at any time, our
Newton-Raphson optimiser will restart at another starting
point chosen from the saved subset of initial starting points
used by the competing PSO.

4. RESULTS

4.1. PSO v. Gradient Search

Genetic programming can readily find landscapes on which
the PSO beats the quasi Newton-Raphson optimiser. The
lower diagram of Figure 1 shows such a case. In 250 trials
on this landscape, the swarm of ten particles always found
one of the two optimal regions, while the N-R technique was
successful only 131 times. By tracking the steps of each al-
gorithm, it is possible to see why a landscape is easy or diffi-
cult for a particular technique. The PSO and N-R start near
the origin where the gradient is low. Usually this causes
the gradient follower to restart, or to take steps that are too
large. The arrows show an interesting example where the
initial step (horizontal arrow) is too big. By reducing its
step size, the gradient follower starts to ascend one of the
hills, but the progressive reduction in the step size causes it
to get stuck just before it can reach the plateau.

The upper diagram of Figure 1 shows an evolved land-
scape where the Newton-Raphson optimiser does better than
a standard PSO with ten particles. Gradient ascent takes
on average only about 300 fitness evaluations compared to
the PSO’s 1 400. Interestingly, the swarm is more reliable:
over 3 800 random starts, the N-R optimiser solves it only
98.76% of the time compared to the PSO’s 99.95%.

The problem shown in the upper part of Figure 1 is not
particularly difficult for PSO, but it is ideally suited for the

-10
-5

0
5

10
X1 -10

-5
0

5
10

X2
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Objective

-10
-5

0
5

10
X1 -10

-5
0

5
10

X2
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Objective

Figure 1. Upper diagram: landscape0.176 + 1.72x − x2

where quasi Newton-Raphson optimiser outperforms PSO.
The landscape is ideal for N-R, as it is simple, with optima
close to 1 and with convex curvature. Lower: landscape
0.0127xy where PSO beats quasi N-R. Both algorithms
start near the origin where the gradient is low. This usually
causes the gradient follower to take steps that are too large,
or to restart. The arrows show a case where N-R tends to
overshoot as it climbs one of the hills. Therefore it reduces
its step size, but this eventually causes it to get stuck just
before it can reach the plateau.

32

N-R algorithm: the landscape is simple, the optima are close
to 1, and the curvature is convex. Taken together, these fac-
tors mean that N-R produces good estimates of the location
of the peak. These tend to be closer than it actually is, and
so jumps tend to be improvements. This means the step size
is not reduced. Together this produces very rapid progress
from few evaluations.

4.2. Small Swarms beat Big Swarms

We have found that we can also automatically generate prob-
lems more suited to one type of PSO than to another. The
simple landscape of Figure 2 is not deceptive (i.e. the gradi-
ent leads directly to the optima). However all the optima are
some distance from the swarms’ starting points. The prob-
lem is readily solved by both small and large swarms: a
swarm of 100 particles usually takes four collective updates
to reach the peak, whereas a swarm of 10 particles takes be-
tween 5 and 7). This indicates that the increased sampling
associated with the larger population is delivering relatively
little information. In terms of the number of fitness evalu-
ations required to solve the problem, the smaller swarm is
more efficient, needing only between 50 and 70 evaluations,
in contrast to the≈ 400 required by the larger swarm.

Figure 2 also shows the movements of the particles of
the smaller swarm over the first seven update cycles, en-
abling us to see how the swarm is operating on this land-
scape. In this case it is clear that the dispersion of this
small swarm produces at each step a reliable increase in the
swarm best solution, yielding coherent motion towards the
optimum. A larger and more dispersed swarm would find
a better swarm best solution at each iteration, reducing the
number of iterations, but the improvement would be sub-
linear in relation to the increased size of the swarm, and
the number of evaluations required. Hence,on simple land-
scapes small populations should be used.

4.3. Big Swarms beat Small Swarms

Figure 3 shows an example where a swarm of 100 particles
does better than one of 10. In this landscape, the global peak
occupies only 2% of the region across which the swarms
are initially distributed, but the local gradient leading to the
false peak occupies almost half the search space. In all cases
examined, the smaller population is always deceived into
following the local gradient and therefore fails. (There is
of course a finite probability that this will not happen.) In
contrast, the larger swarm usually finds the global peak by
chance during initialisation.

Genetic programming has automatically created (and
tuned) an example where random search can do relatively
well because the gradient information seen by the PSO is
deceptiveand leads to a local optimum from which it will
never escape. Obviously the two particular population sizes

-10
-5

0
5

10

X1

-10
-5

0
5

10

X2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Objective

Figure 2. Non-deceptive landscape0.032x evolved by GP,
where gradient leads directly to all optima. The arrows
show the movement of the ten particles in the swarm over
the first seven generations.

are important to this example but we would expect GP to be
able to devise other landscapes which would separate other
pairs of small and large populations. It is an open ques-
tion whether all such solutions would involve this mixture
of needle-in-a-haystack and deception.

4.4. Constriction Wins

Figure 4 shows the outcome of an experiment in which we
wanted to evolve problems where a constriction factor is
beneficial to the search. Over 7 010 runs, a 10 particle PSO
with constriction evaluated 76.46 (mean) test points, how-
ever without constriction it took 300.46.

Often both PSO took a similar amount of time. However
in many runs, the unconstrained swarm took much longer.
Figures 5–8 show other aspects of the example given in Fig-
ure 4. From this starting point with constriction only 11
cycles were needed (Figure 6) and the concentration of the
swarm in the promising region near the solution is clear.
However the unconstrained swarm oscillates for 116 gener-
ations before stumbling into an optimum (Figure 5).

Looking at the kinetic energy of the swarm clearly dif-
ferentiates the two cases. Figure 7 shows without constric-
tion the energy increases exponentially. Whilst Figure 8
shows, with a constriction factor of 0.7, kinetic energy falls
exponentially. We would anticipate the gradient in Figure 8
to be given by the increase seen in Figure 7 less a multi-
plicative factor associated with the constriction of 0.7.

We conclude:where an optimum is near the initial posi-
tions of the particles and the landscape is simple, constric-
tion can help find it by reducing the energy of the swarm so
helping to focus the search.

33

-10
-5

0
5

10
X1 -10

-5
0

5
10

X2
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Objective

-10
-5

0
5

10
X1 -10

-5
0

5
10

X2
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Objective

Figure 3. GP uses protected division operation to place op-
tima aty = 0 and a valley atx = 0. Away from these two
lines the landscape is0.0312y. Upper diagram: Swarm of
100 particles. Larger swarm stumbles into an optima purely
by chance. Lower diagram: Starting from a subset of the
initial conditions used by the large swarm, the 10 particle
PSO does not find an optimum in the initial random search
but instead is subsequently pulled up the gradient and away
from the optima.

4.5. Constriction Fails

Figure 9 shows the opposite case, in which we were inter-
ested in finding fitness landscapes on which the use of a con-
striction factor was deleterious. Again, we used a 10 particle
swarm. The upper diagram in Figure 9 shows the typical
performance of a swarm without constriction. It finds an
optimum in only seven update cycles. In contrast, the lower
diagram shows the performance of a swarm with a constric-
tion factor of 0.7. In spite of the strong gradient, the swarm
becomes stuck. In fact, it fails to find an optimum even after
1000 update cycles. Figures 10 and 11 show, initially the
constriction factor causes the energy to fall exponentially
and the whole swarm to converge to a single fitness value.
Once the whole swarm is together particle movements con-
tinue almost imperceptibly.Constriction can impede search
where the swarm seeks optima some distance from its start-
ing locations.

Generations 0-115

-60 -40 -20 0 20 40 60 80
X1 -40

-30
-20

-10
0

10
20

30
40

X2
0

0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

Objective

-0.5 0 0.5 1 1.5 2
X1 -2

-1.5
-1

-0.5
0

0.5
1

1.5
2

X2
0

0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

Objective

Figure 4. Landscape0.8 + 1.08x − x2 evolved to favour
the use of constriction. Upper diagram: The motion of a
ten particle PSO without constriction. The search strays
widely (note the large scale). In this run 116 generations
were needed to reach an optimum. Lower diagram: The
motion of the same swarm on the same landscape (drawn
on a much smaller scale) with a constriction coefficient of
0.7. Starting from the same conditions only 11 generations
where needed for a solution.

34

-15

-10

-5

0

5

10

15

0 20 40 60 80 100 120

C
en

te
r o

f S
w

ar
m

Generations

Mean X
Mean Y

Figure 5. The oscillating and increasing amplitude of the
search made by 10 particle PSO without constriction etc. on
the landscape0.8 + 1.08x− x2 of Figure 4.

-1

-0.5

0

0.5

1

1.5

0 2 4 6 8 10

C
en

te
r o

f S
w

ar
m

Generations

Mean X
X-Optimum

Mean Y

Figure 6. The search progress for the ten particle PSO with
a constriction coefficient of 0.7 on the0.8 + 1.08x− x2

landscape of Figure 4 (error bars show swarm spread,
i.e. standard deviation of particles’ positions). Note how
the particles’ position in thex dimension converges towards
optimum.

0.01

0.1

1

10

100

1000

0 20 40 60 80 100 120

K
in

et
ic

 e
ne

rg
y

Generations

Figure 7. The increasing kinetic energy of PSO swarm of 10
particles without constriction on landscape0.8+1.08x−x2

of Figure 4. (Note the logarithmic scale.)

0.001

0.01

0.1

1

0 2 4 6 8 10

K
in

et
ic

 e
ne

rg
y

Generations

Figure 8. Kinetic energy of PSO swarm of 10 particles with
constriction factor 0.7 on landscape0.8+1.08x−x2. Note
log scale.

35

-10
-5

0
5

10
X1 -10

-5
0

5
10

X2
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Objective

-10
-5

0
5

10
X1 -10

-5
0

5
10

X2
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Objective

Figure 9. Upper diagram: landscape0.00124x2y evolved
to hinder use of constriction. Showing the movement of a
ten particle swarm without constriction or position or speed
limits. In this run 7 generations were needed. Lower dia-
gram: the movement on the same landscape when using a
construction coefficient starting from the same initial con-
ditions. The swarm becomes stuck despite the strong gradi-
ent. Even after 1000 generations the problem is not solved
cf. Figures 10 and 11.

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

0 100 200 300 400 500 600 700 800 900 1000
Generations

Dispersion
Kinetic Energy

Figure 10. RMS spread of swarm members (+) and the
mean kinetic energy (×) of swarm members for first run
of a ten particle PSO with constriction on the0.00124x2y
landscape of Figure 9. (The swarm best does not improve
after generation 63.)

Figure 11. Position of ten swarm members on0.00124x2y
landscape of Figure 9. In first run with constriction, all ten
particles occupy the same0.01× 0.01 tile from generation
90 to generation 1000.

36

5. DISCUSSION

The use of the technique introduced in this paper has so far
proved quite informative. Evolving landscapes to differenti-
ate between particle swarm optimisers (PSO) and a gradient
ascent technique (Section 4.1, Figure 1) confirms that gradi-
ent ascent can easily beat basic PSO on simple landscapes.
However it also shows that only a slight increase in problem
complexity is needed to reverse this situation.

Evolving landscapes to differentiate between population
sizes confirms small populations can move across simple
landscapes faster, i.e. with fewer fitness evaluations (cf. Sec-
tion 4.2, Figure 2). More interestingly, the experiment in
Section 4.3 (Figure 3) illustrates GP’s ability to find surpris-
ing and illuminating solutions. We asked it to find a land-
scape suitable for a large population, which it did. However
GP’s solution does not use the swarm nature of the PSO. In-
stead it generates a “swarm deceptive” problem which drags
the smaller swarm in the wrong direction but allows the
larger initial population to find an optimum by pure chance.

Section 4.4 (Figures 4–8) shows a nice problem (gener-
ated by GP) where constriction narrows the search, concen-
trating the swarm about the optima. One of which is quickly
found. Without constriction the swarm does not converge
at all. Instead it becomes increasingly energetic and ex-
plorative. This behaviour is the opposite of that shown by
many search techniques. For example, both genetic algo-
rithms (GAs) and simulated annealing tend to explore in the
initial phases of a run. Whilst, in the later stages they tend
more and more to exploit what they have discovered. The
evolved landscape helps us see that where an optimum is
near the initial positions of the particles and the landscape
is simple, constriction can help find it by reducing the en-
ergy of the swarm, so helping to focus a search that would
otherwise diverge.

In contrast, Section 4.5 (Figures 9–11) shows an exam-
ple where simple constriction can produce unwanted con-
vergence. In cases like this where the swarm must travel
some distance across the landscape to find an optimum, con-
striction may cause premature convergence to a non-optimal
value. Indeed it can do this even when there is a strong gra-
dient. This leads us to suggest that unconstrained PSOs may
do well on problems where the optimiser should remain ex-
plorative for a length of time, rather than becoming focused
early in the search process.

6. CONCLUSIONS

We have shown that it is practicable to use genetic pro-
gramming to devise benchmark problems tailored to show
the relative strengths and weaknesses of different optimis-
ers, and in particular of different particle swarm optimiser
(PSO) parameter settings. We have also demonstrated that

the examination of the problem landscapes and of the opti-
misers’ success or failure in dealing with them can give a
deeper understanding of the ways in which particular opti-
misers work, and of the problems for which they may be
most appropriate. Indeed we hope to extend and generalise
this idea to compare and contrast radically different optimi-
sation techniques. These and future results may be useful in
increasing our understanding of the capabilities and weak-
nesses of both PSOs and competing search techniques, lead-
ing to improved and extended particle swarms (XPS).

Acknowledgements

This research is funded by EPSRC grant GR/T11234/01
“XPS: Extended Particle Swarms”.

7. REFERENCES

[1] M. Clerc and J. Kennedy. The particle swarm - ex-
plosion, stability, and convergence in a multidimen-
sional complex space.IEEE Transaction on Evolution-
ary Computation, 6(1), February 2002.

[2] J. Kennedy. The behavior of particles. InEvolutionary
Programming VII: Proceedings of the Seventh Annual
Conference on evolutionary programming, pages 581–
589, San Diego, USA, 1998.

[3] J. Kennedy and R. C. Eberhart.Swarm Intelligence.
Morgan Kaufmann, 2001.

[4] J. R. Koza. Genetic Programming: On the Program-
ming of Computers by Means of Natural Selection. MIT
Press, 1992.

[5] W. B. Langdon and R. Poli.Foundations of Genetic
Programming. Springer-Verlag, 2002.

[6] E. Ozcan and C. K. Mohan. Particle swarm op-
timization: Surfing the waves. In P. J. Angeline,
Z. Michalewicz, M. Schoenauer, X. Yao, and A. Za-
lzala, editors,Proceedings of the Congress on Evo-
lutionary Computation, volume 3, pages 1939–1944,
Mayflower Hotel, Washington D.C., USA, 6-9 July
1999. IEEE Press.

[7] R. Poli. TinyGP. See TinyGP GECCO 2004 compe-
tition at http://cswww.essex.ac.uk/staff/
sml/gecco/TinyGP.html , 2004.

[8] G. Syswerda. A study of reproduction in generational
and steady state genetic algorithms. In G. J. E. Rawl-
ings, editor,Foundations of genetic algorithms, pages
94–101. Morgan Kaufmann, Indiana University, 15-18
July 1990. Published 1991.

37

http://gow.epsrc.ac.uk/ViewGrant.ASPx?Grant=GR/T11234/01&bannerlink=Programme%20support
http://cswww.essex.ac.uk/staff/sml/gecco/TinyGP.html
http://cswww.essex.ac.uk/staff/sml/gecco/TinyGP.html

	 Introduction
	 Approach and Method
	 Optimisers
	 Genetic Programming
	 Partical Swarm Optimiser
	 Newton-Raphson Optimiser

	 Results
	 PSO v. Gradient Search
	 Small Swarms beat Big Swarms
	 Big Swarms beat Small Swarms
	 Constriction Wins
	 Constriction Fails

	 Discussion
	 Conclusions
	 References

