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Abstract. Many functions, such as square root, are approximated and
sped up with lookup tables containing pre-calculated values.
We introduce an approach using genetic algorithms to evolve such lookup
tables for any smooth function. It provides double precision and calcu-
lates most values to the closest bit, and outperforms reference implemen-
tations in most cases with competitive run-time performance.
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1 Introduction

Newton-Raphson [11] is a widely applied method to approximate smooth math-
ematical functions. We present an approach that allows the fully automated
generation of a lookup table for any given mathematical function, across a de-
fined range. Newton-Raphson requires a known approximation and its derivative.
Our approach is more accurate than comparable approximation methods and,
except where hardware acceleration is provided, e.g. square root, it is also faster.

To validate the method we compare our approach to several reference im-
plementations, including square root and cube root, in C, C++, Java. We give
a detailed overview of the design of the fitness function and influencing factors,
such as algorithm design and the occurrence of inflection points in the functions
to be approximated.

The approach improves the performance of Newton-Raphson by reducing the
amount of iterations required, and provides:

– High precision function approximation - all functions are calculated with
double precision accuracy, and are more accurate than reference implemen-
tations in most cases.

– Auto generated lookup tables - Lookup tables are automatically generated
without the need for configuration.

– Fast run-time performance compared to algorithms that are not hardware
accelerated.
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The approach can be directly applied to various domains. Gauss-Newton, a
modification of the original Newton-Raphson algorithm, is used in Genetic Pro-
gramming [6] to guide the search through the search space [14]. Lookup tables are
also used in Genetic Programming as function lookups [2,9]. Newton-Raphson
is used in distributed optimization to drive the consensus between the different
agents on a shared optimization problem, both synchronously [12] and asyn-
chronously [1]. It is also used in Data Science to solve equations to categorize,
group or predict data. In the case of Yap et al. [13], it is used for parameter es-
timation to fit the Lee-Carter numerical forecasting algorithm. When hardware
architectures do not offer hardware acceleration, the square root and division op-
erations as defined in the IEEE Standard for Floating-Point Arithmetic [10,5] are
often implemented using Newton-Raphson in reference implementations. To fur-
ther speed up these implementations reference implementations provide lookup
tables to reduce the amount of Newton-Raphson iterations needed.

Previously Langdon and Petke [8] introduced a way to automatically generate
the cube root function 3

√
x (cbrt) into the C Math library and automatically

generate the lookup table required for it by using CMA-ES. We expand on their
work, and show a way to generate a lookup table for any given mathematical
function, within a predefined range. The goal is to provide a speedup for functions
that need to be solved often during algorithmic evaluations and do not have
hardware acceleration.

2 Background

2.1 Covariance Matrix Adaption - Evolution Strategy (CMA-ES)

The CMA-ES algorithm can be used to solve n-dimensional continuous numeri-
cal problems. It has been proven to work for local [4] and global [3] optimization.
At the core of the algorithm is the covariance matrix of which a centroid is calcu-
lated that guides the search over several iterations of new population-generations
by evolving a probability distribution. The essential operators in CMA-ES are
mutation and crossover. Mutation happens around a standard deviation that is
continuously updated during the run. Crossover is done by combining several in-
dividuals in the population to new points. Crossover and mutator are CMA-ES
internal functions that are closely tied to the core covariance matrix, and were
not adapted for our approach [4].

CMA-ES also does not require parameter tuning, as all values are calculated,
and updated in regular intervals, internally around the core centroid [4]. Several
parameters can be set, such as the initial standard deviation, an initial search
position (centroid), but they only serve to speed up the algorithm by moving
closer to an already known, or at least assumed, good global optimum, and an
appropriate mutation size around it. Parameters relevant to the approach of this
article will be discussed in the next section.
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2.2 Evolving better Software Parameters

The publication of Langdon and Petke [8] discusses the need to automatically
evolve software parameters, and emphasizes on applications in the domains of
automated bug-fixing, maintenance of legacy code as applications in the field of
Genetic Improvement [7]. As a proof of concept that software parameters can
be improved automatically their publication shows how to generate the cube
root (cbrt) function for the GNU C library (glibc) which does not implement
it. The cbrt algorithm itself was not generated, but rather copied and modified
from the IEEE square root implementation as is provided in glibc. CMA-ES was
used to generate the lookup table that cbrt used with only three iterations of
Newton-Raphson. The goal was to achieve IEEE 754 double precision accuracy
(1 sign bit, 11 bit exponent, 52 bit fractional [5]).

Algorithmic Implementation of Cube Root - Langdon and Petke [8]
adapted the existing cube root function of glibc, which does not perform a pure
Newton-Raphson approximation, but does several refinements to extend the lim-
ited range of the lookup table (between 0.5 and 2) to the entire range of values
double can take. This includes splitting the double value into two 32 bit com-
ponents and performing bitwise operations on them. Three Newton-Raphson
iterations are taken, and finally the values last bit is modified to ensure the
closest possible rounding [10].

CMA-ES parameters - All parameters were left as default except the
following. The problem size in [8] was of N = 2 as they selected values for both
32 bit components in cbrt. All stopping conditions in [8] were set to 0 to ensure
the algorithm would only stop when it found the exact values required for the
lookup table. The seed for the random number generation was set externally for
reproducibility.

Restarting Strategies - CMA-ES can have several reasons why it fails to
produce an exact result. The primary reason when generating lookup tables is
that the fitness landscape becomes too flat in the area it is searching for, as all
individuals in the population come close to perfect accuracy, but will not reach
it, due to bitwise imprecision, or due to not randomly mutating to the final
correct bit. [8] opted for a restart in this case with a different seed. In all cases
of their function it was enough to run CMA-ES no more than 3 times to reach
the closest possible answer.

Fitness function - When generating a lookup table for cube root every value
in the lookup table represents a sub-range of the range the table was generated
for. The fitness function in [8] used three test points, the lower end, the higher
end and the middle of the range, for each table entry. The fitness function was
evaluated by calling the cube-root with the spot in the lookup table initialized
with the values in the evaluated individual of the CMA-ES population.

The fitness function did a logarithm conversion. All values except 0 had the
absolute logarithm of DBL EPSILON added to it. DBL EPSILON in C is the
minimal difference when added to 1 changes results in a different double value.
All values below 1 had the logarithm taken as well. This essentially ‘zooms‘ into
the fitness when values extremely close to zero are dealt with.
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Table 1: Analysis of Langdon and Petkes fitness function [8]. Modifying the
fitness function with a logarithm has no effect. Their method is more accurate
than the Java and C++ reference implementations. Total Error is the difference
between x and cbrt(x)3 over 512 test values.

Implementation Distribution Total Error × 10−10

C - with log
even 3.1451
random 3.3231

C - without log
even 3.1451
random 3.3231

Java
even 3.3322
random 3.6071

C++
even 6.2851
random 7.2275

Listing 1.1: Conversion of qualities close to 0.

i f ( q u a l i t y ==0.0) return q u a l i t y ;
i f ( qua l i ty< 1 . 0 ) return (− l og (DBL EPSILON))+ log ( q u a l i t y ) ;
return (− l og (DBL EPSILON))+ q u a l i t y ;

2.3 Investigating Evolving better Software Parameters

As the CMA-ES stopping condition is targeted towards 0 already, and the stan-
dard deviation does reduce its size to a DBL EPSILON during runs, this adap-
tion to the fitness function should not impact the algorithm. To check this as-
sumption we compared two different versions of Langdon and Petkes code. One
of them was modified to not apply the logarithm in their fitness function. A
batch file then applied this compilation process:

1. Compilation of the entire project, to ensure the CMA-ES algorithm runs no
old versions.

2. Running the original Genetic Improvement script with a seed that the com-
pilation script takes as input.

3. A script then created the new lookup table from the compilation results.
4. Recompilation of the project with the new lookup table.

A test harness generated values ranged between 0.5 and 10000. The amount
of positions in the lookup table, 512 values, were evenly spaced inside the range
(e.g. 0.5, 20, 30.5, ..., 9980.5, 10000). An additional 512 values were randomly
selected inside the range. The test harness then randomly created 1000 seeds
between 1 and 1000000. The compilation batch file was run with every seed,
and all 1024 values were tested on that seed. The measurement was done by
taking the result values given by the implementation and cubing them again.
The difference between the original value and the re-cubed cube root values was
calculated as the error. The total error is the sum of these over all test-values as
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shown in Table 1. On all executed tests the results were equivalent, with every
single seed, and in both versions of the code. This means that neither applying
a log, nor selecting a seed has an impact in their approach.

Accuracy of the results - One noteworthy finding that is not mentioned
in [8] is that their generated cube root function outperforms implementations
of other programming languages as shown in Table 1 with Java and C++. We
compared their algorithm not only to our adaption, but to the Java and C++
implementations of cbrt as well, and [8] outperforms all implementations.

3 Methods

We extended the original approach of [8], to be used for any function that can
be approximated with the Newton-Raphson method. The method generates only
the lookup table for a function defined by a developer. Our method can generate
a lookup table with the parameters:

– Range - from a lower end to a higher end. The range restricts the space in
the double values the lookup table is being generated for. This is necessary
as not all functions can benefit from refinements such as the cube root.

– Table Size - The number of entries in the table essentially splits the range
into sub-ranges. By increasing the size of the table precision in a smaller
range can be improved. Alternatively a larger range can be covered with no
loss of precision.

– User Function - the user function allows the user to define an entry point to
handle operations in addition to the Newton-Raphson approach.

– Approximation function and its derivative - are required by the approach.
They are used both in the fitness function of CMA-ES to generate the lookup
table, and in the Newton-Raphson approach that uses the lookup table.

– Iterations - the number of iterations in the Newton-Rapson approach. In-
creasing the number of iterations can improve the range the lookup table
can be used for, and improve upon the precision.

3.1 CMA-ES Settings

Listing 1.2: Cube Root implementation.

// Function f o r Newton−Raphson
double fn ( const double approx ) {

return approx * approx * approx ;
}

// Der i va t i v e o f fn
double der ivat iveFn ( const double approx ) {

return 3 * approx * approx ;
}
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Table 2: Analysis of the strategy to restart the algorithm if no exact value is
found. Not restarting has a higher (better) mean. Restarting is not relevant.

Mean Std. deviation Median Min. exact values Max. exact values

No Restarts 496.33 1.9646 496 491 502

3 Restarts 495.87 1.7271 496 492 499

// Function t ha t a l l ow s user to modify input and r e s u l t
double userFunct ion ( const double x ) {

// accept nega t i v e numbers in cube root
i f ( x < 0) return approximate ( 0 . 0 − x ) ;
i f ( x > 0) return approximate ( x ) ;
return x ;

}

Algorithmic Implementation - The algorithmic implementation was done
with only Newton-Raphson. An example of the approximation function for cube
root can be seen in listing 1.2.

CMA-ES parameters - Similar to [8] we did not change any of the default
parameters of CMA-ES except the stopping conditions, which were set to 0 for
the fitness as well. The seed is provided externally as well. Our method takes a
problem size of 1 instead of 2, as the values will be selected for the entire double
value instead of its 32 bit components.

Restarting Strategies - Langdon and Petke [8] opted to apply a restart
in case the CMA-ES run did not find an exact value according to their fitness
function. Their results showed that no more than 3 restarts were necessary and
in most cases the first seed was acceptable. To check if this option impacts the
results we compared 100 different runs without restarting, and 100 runs with
restarting.

As Table 2 shows, the runs without any restarting have a higher mean and
a higher maximum in the amount of exact numbers found. An analysis of the
medians over 100 runs (same values used for no restarts / 3 restarts) showed
that the differences are not statistically significant (expecting 5 out of 100 - p
of 0.05). Shapiro Wilk shows (p 0.0023) which means the data is not normally
distributed, Mann-Whitney-U for two independent samples shows a normalized
(p 0.0566). Repeating the test multiple times with different sets of 100 runs
showed similar behavior, sometimes even with statistical significance, with both
no-restarts and 3 restarts having the better mean. This lets us assume that the
restarts have less impact on the run than the random seed values. While restarts
can positively impact the results due to choosing a new seed, omitting them
greatly improves the runtime of the approach.

3.2 Test Setup and Measurements

To enable a better comparability over all tested root functions, as well as the
different applied fitness functions, the range of the lookup table was set from 0.5
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to 2. For all tests the table size was set to 512. All functions depend only upon
the approximation and its derivative, with no additional steps taken to improve
or change the results. To enable comparability with reference approaches the
iterations of Newton-Raphson were fixed at 3. The tests in subsection 3.3 are
conducted with 3 restarts, while the tests in section 4 were done with no restarts
as the runs with inflection points proved to be too time-consuming.

The tests were always conducted over two separate sets of 512 values. One
set was evenly spaced in the given range of 0.5 to 2, the second set was generated
randomly using a uniform distribution. These two sets were always generated
for one group of tests. The only thing changing when repeating the tests was the
random seed value which was randomly selected between 1 and 1000000.

The tests show two different quality measurements:

– Total Error - which is calculated from applying the approximation function
fn to the approximated value of a given input, and then subtracting that
input from it. The error value is always summed over all test-values to
produce the total error.

err = abs(fn(approximation)− input)

– Exact Values - Which are the amount of values that were met exactly by
Newton-Raphson using the fitness function. In the double range not all con-
tinuous numbers can be represented, so this measure takes into account if
the approximation is the closest that could be represented with double. This
is done by comparing the error of the approximation, as well as one bit
lower and one bit higher. The bit addition and substraction are conducted
by copying the value into a long with memcpy adding or removing 1, and
conducting another memcpy back to double.

exact = err(appr.) ≤ err(appr.− 1bit)&&err(appr.) ≤ err(appr. + 1bit)

3.3 Fitness function design

In subsection 2.2 we showed that applying a log to the fitness function had no
impact. To check if this depends on the implementation of the algorithm we
redid the test with our implementation of cube root as shown in listing 1.2.

The results (see Table 3) show that applying the logarithm not only has an
effect, but that effect is statistically significant, with the logarithm application
achieving better results. The fact that there is a deviation from the mean as well,
means that the seed also seems to have an impact. We assume that this is due to
the additional steps that the algorithm implements, which allows finding exact
values with different initial seed values, making the algorithm more robust.

As applying a logarithm to CMA-ES does significantly impact the results we
chose to compare several other methods of modifying the fitness function:

– No mod. - the fitness function without any modification.
– Log. - as was done in [8] adding log(quality) + log(DBL EPSILON).



8 O. Krauss and W. B. Langdon

– Inc. Log. - it stands to reason that if the fitness function does benefit
from applying a log that increasing the log value (== getting the value
closer to zero) should provide more benefit. Thus, we applied log(quality)
+ log(DBL EPSILON × DBL EPSILON ×DBL EPSILON) instead of just
log(DBL EPSILON).

– Mul. - Adding a logarithm has the benefit of representing smaller changes
in the fitness function. A multiplication log(quality) ∗1000 should have the
same effect.

– Bitwise - The actual double fitness value is copied into a long with memcpy,
and then cast back to double. This sets the value equal to all bits that
were off from zero. This modification brings the largest transformation, and
ensures that all values that are just one bit off will result in a fitness of 1,
while all exact values will have a fitness of 0.

In their original work Langdon and Petke decided on a fitness function that
takes three values for every value in the lookup table. Those three values were the
lower end, the upper end and the center of the range an entry in the lookup table
represented (see a in Figure 1) [8]. The lookup table for Newton-Raphson does
require a good staring point for all values covered in the range. Selecting both
ends and the center of the sub-range, that one individual position represents,
ensure a good starting position for the entire range.

There are other ways to represent the fitness function, and arguments to be
made for each of them. We selected several options for comparison:

(a) Outer - The outer points - upper and lower end - and center of the range,
which is the original from [8] (see a in Figure 1

(b) Inner - 1⁄3, the center and 2⁄3 of the range (see b in Figure 1). The argument
for this option is that the points are more evenly distributed over the entire
range, than a).

(c) Center - Only the center of the range (see c in Figure 1). To verify that there
is cause in the assumptions of a) and b) that multiple points per lookup table
entry make a difference.

Table 3: Analysis of the influence of applying log in our approach. Log improves
the accuracy and makes a significant difference in most cases (bold).

Distribution Value Fitness Mean Min Max Significance (p)

Even

Total Error

× 10−14

No log 9.02 8.93 9.13 1.5× 10−133

(yes)Log 8.62 8.49 8.73

Exact Values
No log 472.64 467 478 3.7× 10−124

(yes)Log 493.06 487 501

Random

Total Error

× 10−14

No log 9.03 8.78 9.16 5.58× 10−7

(yes)Log 8.97 8.8 9.15

Exact Values
No log 480.79 473 492 0.8929

(no)Log 480.86 471 489
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Fig. 1: Sampling point options (a-c) used in the fitness functions when generating
a cell in the lookup table.

In these fitness functions there are several approaches as to what can be used
to calculate the target for the lookup table positions. In all of them the goal is
to set the currently searched lookup table position with the individual in the
population to be evaluated and check that value for accuracy by applying it to
the test-positions:

1. Approx - By comparing the result of the Newton-Raphson approximation,
exactly as how the error in the tables is calculated

2. Rem.Err - By taking the last error after applying Newton-Raphson, essen-
tially returning the difference instead of the desired result

3. Direct - By simply taking the individual of the population and applying the
error function without applying Newton-Raphson at all. This is the most
run-time efficient way to calculate a lookup table position as it requires only
one call to fn(x) instead of three iterations, it is only viable when applying
it to the center of the range.

When creating all valid combinations of the options above from the fitness
function adaptions, test points and evaluation options a total of 35 functions
have to be considered.

4 Results

To evaluate and validate our approach we selected these functions for testing:

– Square Root - as this has a reference implementation available in all lan-
guages (C, C++, Java)
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– Cube Root - to offer a comparison with the work in [8]

– Super Root ( 4
√
x) - to provide new functionality in a similar area

– A polynomial with inflection point - to test how the lookup table behaves
with an inflection point, which have difficulties for Newton-Raphson

– A function with many inflection points - to test what happens with multiple
inflection points

Figure 2 shows the mathematical definitions of the above function and provides
plots for them. For the polynomial with only one inflection point the lookup
table range is outside of where the inflection occurs (around 0).

The results show that the approach is best suited for smooth functions, as the
single inflection point influences the outcome. While most results can provide
acceptable results (Error ≤ 1.5E-8) some runs fail to produce a valid lookup
table. This happens even though the inflection is outside of the generated range
for the lookup table. With multiple inflections inside the range not a single
attempt generated an acceptable solution.

With the smooth square- cube- and super- root functions the fitness functions
only taking the center point, and applying fn(x) instead of Newton-Raphson
continuously provided good results in the random range. Using the outer test
points and Newton-Raphson tended to produce better results in the even range.
The fitness function continuously providing the worst results was using the center
point and applying Newton-Raphson with the logarithm.

We attempted to test all algorithms with all fitness functions. This was
achievable for square-, cube-, and super root. All results except the multiple
inflection were calculated from 100 repeats. For the single inflection function we
were only able to test 23 of the 35 defined fitness functions, as several took mul-
tiple hours per run to finish. For the multiple inflection function we were only
able to test 15 repeats for all fitness functions.

The results for square root (see Table 4) cannot compete with the existing
square root functions of all reference languages (C, C++ and Java). They do
however show a trend that in the even distribution fitness functions that use
the outer test values and approximate produce perfect results in the evenly
distributed test set. This is similar over all functions without an inflection (see
Table 5 and Table 6).

The results of Cube root (see Table 5) show the same trend as square root
concerning the even distribution. Similar to the super root the fitness functions
which only use the center point and apply the value of the approximation func-
tion directly instead of Newton-Raphson produce much better results in the
randomly distributed set. Unlike the square root our approach is more accurate
than C++ and Java in both test distributions.

The super root function behaves nearly exactly the same as the cube root
concerning which fitness function works. The functions that used only the center
test point and directly applied the approximation instead of Newton-Raphson
had nearly the same results. This indicates that the smoother the function, the
more consistent the approach becomes. The accuracy of the reference implemen-
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Table 4: Square root - comparison of lookup tables generated with different
fitness functions. Our approach is less accurate than C, C++ and Java.

Distribution Value Fitness Median Min Max

Even

Total Error

× 10−14

C Comparison 5.31 - -
C++ Comparison 5.31 - -
Java Comparison 5.31 - -
(Bitwise- Inc. Log.-
Mul.- NoLog.-)
Outer Approx

5.31 5.31 5.31

Log Center Approx 6.58 5.55 12.5

Exact Value

(Bitwise- Inc. Log.-
Mul.- NoLog.-)
Outer Approx

512 512 512

Log Center Approx 465 284 500

Random

Total Error

× 10−14

C Comparison 5.27 - -
C++ Comparison 5.27 - -
Java Comparison 5.27 - -
(Bitwise- Inc. Log-
Log- Mul.- No Mod.-)
Center Direct

5.37 5.37 5.37

Log Inner Approx 6.55 5.50 9.63

Exact Value
Log Center Rem. Err. 506.5 499 511
Log Center Approx 466.5 352 501

tation is not a valid comparison as we simulated the super root by applying the
square root twice which results in a consequential error.

Table 7 shows that the approach can still work with a single inflection point.
While the margin of error becomes considerable, several runs still managed to
provide accurate results. Considering the amount of exactly calculated values
it seems that points influenced by the inflection point can be problematic. A
results table for the multi-inflection function is not provided as not a single run
produced any value below a total error of 100 over 512 test values. Between
150-250 values still are calculated exactly, so this supports the assumption that
points influenced by the inflection(s) are the source of the problem.

4.1 Run-Time Performance

The Run-Time performance of our approach is faster than Java, and slightly
slower than the approach of Langdon and Petke. It is slower than approaches
that are hardware accelerated. To enable a comparison we tested the cube root
approximation of the approach against the C cube root of [8], and the native
C++ and Java implementations. To have a baseline comparison for hardware
accelerated functions in C we tested against the C square root as well.

Table 8 shows the run-time comparison from the total time taken when calling
the respective functions 1,000,000 times. The benchmark was repeated 1000
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Table 5: Cube root - comparison of lookup tables generated with different fitness
functions. Our approach is more accurate than C++ and Java.

Distribution Value Fitness Median Min Max

Even

Total Error

× 10−14

Langdon and Petkes cbrt 8.33 - -
C++ Comparison 14.5 - -
Java Comparison 8.72 - -
(Bitwise- Inc. Log.-
Mul.- NoLog.-)
Outer Approx

8.33 8.33 8.33

Log Center Approx 10 9.07 14

Exact Value

(Bitwise- Inc. Log.-
Mul.- NoLog.-)
Outer Approx

512 512 512

Log Center Approx 449 361 480

Random

Total Error

× 10−14

Langdon and Petkes cbrt 8.78 - -
C++ Comparison 17.0 - -
Java Comparison 9.34 - -
(Bitwise- Inc. Log-
Log- No Mod.-)
Center Direct

9.13 9.1 9.17

Log Center Approx 10.6 9.69 14

Exact Value

(Bitwise- Inc. Log-
Log- No Mod.-)
Center Direct

492 491 493

Log Center Approx 448 369 474

times, and the means over all tests is reported. For all executions the same
argument was provided, and the function signature is the same, fn(double val).

Our approach is slightly slower than [8]. The difference is likely due to the
number of multiplications, which is higher in our approach. It can not compete
with the hardware accelerated functions of C and C++. All approaches for cube
root perform better than Java. The approach was designed to enable generation
of lookup tables for user provided functions, such as trust regions in Genetic
Programming [14]. Hardware acceleration is not likely to exist for these cases.

4.2 Limitations

The greatest limitation of our approach is that it will not work on the entire range
that the double data type can provide, but rather only for the range generated.
As discussed in 2.2, reference implementations contain additional logic to ensure
that algorithms like square root work over the entire double range. Our work
concentrates on generating lookup tables for any given function, so these steps
cannot be implemented since they would reduce the accuracy of the results when
applied to a different function than intended.



14 O. Krauss and W. B. Langdon

Table 6: Super root - comparison of lookup tables generated with different fitness
functions. Our approach is more accurate than C, C++ and Java, possibly due
to the consequential error introduced by applying square root twice. This had
to be done as the languages do not implement super root.

Distribution Value Fitness Median Min Max

Even

Total Error

× 10−13

C Comparison 1.32 - -
C++ Comparison 1.32 - -
Java Comparison 1.32 - -
(Bitwise- Inc. Log.-
Mul.- NoLog.-)
Outer Approx

1.18 1.18 1.18

Log Center Approx 1.37 1.23 1.79

Exact Value

(Bitwise- Inc. Log.-
Mul.- NoLog.-)
Outer Approx

512 512 512

Log Center Approx 459 371 490

Random

Total Error

× 10−13

C Comparison 1.30 - -
C++ Comparison 1.30 - -
Java Comparison 1.30 - -
Log Outer Rem. Error 1.19 1.17 1.21
Log Center Approx 1.42 1.28 1.68

Exact Value
Log Outer Rem. Error 490 482 496
Log Center Approx 451.5 400 480

Table 7: Single Inflection function - comparison of lookup tables generated with
different fitness functions. Our approach can still produce satisfying results
though the inflection, which is outside of the lookup table range, has a neg-
ative impact on the achieved accuracy as shown by the large medians (1027).

Distr. Value Fitness Median Min Max

Even

Total
Error

Mul. Outer Rem. Error 1.38× 10−8 7.14× 10−14 1.78
(Mul.- No Mod.-)
Center Direct

2.2 × 1028 3.26× 1025 1.65× 1033

Exact
Value

(Mul.- No Mod.-)
Outer Appprox.

510.5 488 512

Log Center Approx 242 228 301

Random

Total
Error

Mul. Outer Rem. Error 1.9 × 10−11 7.51× 10−14 19.36
(Mul.- No Mod.-)
Center Direct

6.15× 1027 3.11× 1024 3.75× 1031

Exact
Value

(Mul. Center- No Mod.-)
Center Rem. Error

435 410 451

(Bitwise- Mul.- No Mod.-)
Center Direct

239 229 295
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Table 8: Run-time performance of root functions (average of 1,000,000 calls).
Our approach is faster Java and nearly matches Langdon and Petkes approach,
but can not compete with hardware acceleration.

Mean (in nanoseconds per call)

Language sqrt cbrt surt

Hardware Accelerated C 0.88 0.88 0.88*

Hardware Accelerated C++ 4.10 21.35 8.10*

Langdon and Petkes cbrt

Our approach 25.33 27.46 29.58

Java 1.02 69.51 1.03*

*surt implemented as sqrt(sqrt(x))

The only currently known workarounds are increasing the size of the gen-
erated lookup table with the range allows keeping precision intact, while also
increasing memory consumption. Alternatively increasing the allowed amount
of Newton-Raphson iterations increases the range the lookup table can be gen-
erated for, at the cost of run-time performance.

The second limitation of the approach is that, due to Newton-Raphson, it
cannot deal with functions that have inflections. While a single inflection point
has a strong negative impact on result quality and the time it takes CMA-ES
to generate the lookup table, a valid table can still be generated. With multiple
inflection points generating a lookup table is not possible anymore.

5 Conclusions and Outlook

Automatically generating lookup tables works well with smooth functions and
can achieve double precision accuracy. Nearly all values can be approximated
to the closest bit of a double. The run-time performance is in some instances
faster than comparable software solutions, but can not compete with hardware
accelerated functions.

That it is not able to equal [8] still shows that a well considered algorithm is
more important than a good generation of constants with CMA-ES. The com-
bination of robust algorithms with CMA-ES does provide the best results. In
smooth functions however the approach consistently provides more accuracy
than the reference implementation of C++ and to a lesser extent Java.

The results support the original findings of [8], that the application of ge-
netic improvement techniques can be applied to create or update constants in
programs. CMA-ES is especially a good fit as it manages its experiment param-
eters internally, and can deal with small (1× 10−14) differences in the search
space. It is not robust against functions with inflection points. Even a single
inflection in the function can hinder the approach.

The approach may also be applicable to any approximation function, such
Gauss Newton (a specialization of Newton-Raphson) Aitken Extrapolation or
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Gradient Descent. Additionally, specializations to the resulting function (such
as [10]) should be considered to reduce the range limitation. In the future we
also intend to use CMA-ES in Genetic Improvement as an operator to improve
constant values in the population.

The source code, scripts and full results for tables 4-7 are available via https:

//github.com/oliver-krauss/EuroGP2020-LookupTables
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