
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 

A tunable deceptive problem to challenge Genetic 

and Evolutionary Computation and other A.I. 
 

 

  

 

Daniel Howard 

Howard Science Ltd,  

Malvern, UK 

dr.daniel.howard@gmail.com 

 

 

 

 

 
Abstract— A deceptive problem with known analytical 

solution is introduced.  Arguably its solution search landscape 

is such that heuristic methods will find it difficult to search for 

the solution.  The problem is tunable offering a test bed by 

which to examine the performance of different methods of 

heuristic and evolutionary search. 

Keywords— deceptive problem, Genetic Programming, 

Evolutionary Computation, A.I, solution landscape, heuristic 

method, tunable problem, analytical solution, toy problem. 

I. PROBLEM DESCRIPTION 

A sequential computer program consisting of a set of 
instructions with some inter-dependencies between 
instructions is to be run on a parallel computer.  No 
instruction or underlying algorithm is modified but the 
instructions must be distributed optimally among a 
potentially unlimited number of parallel processors, 
respecting the dependencies, such that the program is run in 
minimum time, essentially carries out the same computation 
and outputs the similar results as its sequential version. 

In attempting to parallelize the code by exploiting all 
opportunities and respecting the dependencies, assume that 
all processors are of the same computational memory 
capacity and speed, and that all code blocks take the exact 
same amount of compute time on these processors.   

TABLE 1 SIMPLE EXAMPLE WITH SOLUTION 

Code Blocks  Dependency Matrix Solution 

1.) A = 5 
 3 4 5 6 

1    raw 

2 raw waw rar  

3  war   

4   rar  

5     

 

(1,6);(2,3);(2,4);(2,5);(3,4);(4,5) 

P P 

1 2 

6 3 

 4 

 5 

 

 

2.) B = 6 

3.) F = B - 7 

4.) B = 80 

5.) D = B*B 

6.) E = 2*A 

II. ANALYTICAL SOLUTION 

Table 1 presents a small but illustrative instance of this 
class of problem. Ignoring whether true or false it has all 
three types: Read After Write (raw) or flow data 
dependencies, e.g. code block 1.) must write the value of A 
before code 6.) uses it.  Also, with B for code blocks 2.) and 
3.); and 2.) and 5.). The Write After Write (waw) or output 
dependence exists as code block 2.) cannot finish after code 
block 4.) to change the value of B. Write After Read (war) 
also known as anti-dependence exists since code block 3.) 
must finish reading B before code block 4.) can overwrite B. 

The analytical solution is obtained by considering each 
row of the dependency matrix in turn, as in Table 2, and 

assigning to processors P either sequentially or when there is 
no dependency for the code block then in parallel. 

TABLE 2 OBTAINING THE ANALYTICAL SOLUTION 

(1,6) (2,3) (2,4) (2,5) (3,4) (4,5) 

P P P P 

1    

6    

    

    
 

P P P P 

1 2   

6 3 4 5 

    

    
 

P P P P 

1 2   

6 3 5  

 4   

    
 

P P P P 

1 2   

6 3   

 4   

 5   
 

III. HEURISTIC SEARCH SOLUTION REPRESENTATION 

The search for the analytical solution by heuristic means is 
difficult if adopting the following representation using two 
types of functions only:   PI

J which stands for “parallelize” 
and SI

J which stands for “keep sequential”.  These take the 
original sequential code block instructions in order, 
manipulating them and assigning them to processors.   

The subscript J indicates how many instructions are in 
function input and the superscript I indicates how many 
instructions will go one way (left) and the remainder go the 
other way.  For example, if ten instructions should be 
processed then for P3

10 three instructions are run in parallel 
with the other seven, whereas if for S3

10 then three 
instructions are split sequentially to the other seven.   

Consider a candidate solution in this representation, for 
example: 

S2
6 P1

2 P3
4 S1

3 S1
2 

with a tree representation as in Figure 1.  Table 3 shows how 
to execute it to obtain an overall time equivalent parallel 
computation (though involving one more processor). 

TABLE 3 CODE EXECUTION WORKED OUT EXAMPLE 

 Result 

Input Code For: 1,2,3,4,5,6 

6 S2
6 

1,2 

3,4,5,6 

2 P1
2     

1 

3.4.5.6 

2 

 

4 P3
4 

1 

3.4.5 

2 

 

 

6 

3 S1
3 

1 

3 

4,5 

2 

 

 

6 

2 S1
2 

1 

3 

4 

5 

2 

 

 

 

6 

 

 

mailto:dr.daniel.howard@gmail.com


As all processors are identical and all code blocks are 
assumed to take the same compute time, this parallelization 
takes four clock cycles.  Only the first processor is fully 
occupied sequentially computing code blocks 1, 2, 4, 5.  It is 
a solution equivalent to that shown in the last column of 
Table 1.  The evaluation produces a schedule of the code 
blocks running sequentially or in parallel with respect to one 
another on different processors.   

 

Figure 1  Tree representation of candidate solution. 

 
Before proceeding any further, it is very important to 

verity that all possible block code distributions are attainable 
using this solution representation, i.e., through combinations 
of functions PI

J and SI
J. any valid combination may be 

obtained. A mathematical proof is needed but for the 
purpose of this short paper it suffices to give a logical 
argument why this is so:   

Operator SI
J: Given n input instructions, instruction 

[i+1] depends on prior execution of instruction [i] and never 
vice-versa.  Operator SI

J always acts on a list of input 
instructions that is ascending, so its output can never place a 
prior instruction after a subsequent instruction on a 
processor.  

Operator PI
J: The operator splits instructions which are 

allegedly independent.  Hence, under the assumption that 
the number of available processors is equal to the number of 
instructions, n, it is immaterial whether the instruction could 
have been undertaken earlier on the target processor. If so, 
then the splitting should have taken place earlier.   

For these reasons, if n processors are available then 
relying solely on this two-operator algebra, a version of the 
parallelization which is equivalent to the analytical solution 
or most compute-time-efficient available can always be 
represented. 

IV. IMPLEMENTATION WITH GENETIC PROGRAMMING 

A method such as Genetic Programming [1] is ideally 
suited to work with this algebra. For this presentation, the 
implementation used is the Attribute Grammar Genetic 
Programming method [2]. This method originated in [3] and 
was developed in [4-5].  It uses standard Genetic 
Programming [1] to algebraically manipulate a set of input 
constants.  Uniquely, the evaluation of the GP tree produces 
as its output a variable length vector of constants.   

Next, these constants are in turn consulted by a grammar 
to obtain the parallelization instruction.  Bachus-Naur Form 
of this grammar can be (see [2]) as in Figure 2. 

 

Figure 2 Grammar applied to the output of GP, see [2]. 

 
One advantage of this scheme over others, such as 
Grammatical Evolution [6], is that all the tools that are 
available to GP including standard crossover, working 
memories, ADFs [7] and Subtree Encapsulation [8], can be 
used without modification.  Therefore, all the findings of the 
GP method literature to date can be exploited. 

The objective is not solely to distribute the code statements 
or blocks among the processors to minimize total elapsed 
time but also to not violate the dependencies as in Table 1.  
Once GP evaluates the individual to produce the variable 
vector of real numbers, once these are consulted using the 
grammar of Figure 2 to obtain an expression solely in terms 
of functions PI

J and SI
J., once this expression is evaluated to 

obtain a putative parallelization strategy as in Table 3 and 
Figure 1, then this is examined for code dependency 
violations NV.  A fitness of solution measure f is computed 
by punishing for a longer computation NCC (loosely 
speaking the number of “clock cycles”): 

f = - Pw NV - NCC. 

The constant Pw controls the importance of one term over 
the other. In practice, a value of Pw = 100 appears useful. 

V. PRELIMINARY NUMERICAL EXPERIMENTS 

Consider four tests in Table 4, each a version of the 
problem. Four test problems: input instructions are 
numbered sequentially and for example (20,38) denotes the 
dependency between code block 38 on 20.   

 

TABLE 4 THE TEST PROBLEMS FOR THE EXPERIMENTS 

Analytical solutions can be obtained easily. 
Dependencies complicate the parallelization.  For example, 
the case 3m can use two or more processors in parallel 
provided it runs sequentially code blocks 1-4 on some 
processors and sequentially runs code blocks 5-6 in on some 
others but code block 5 running in parallel with code block 
3 as it is sequential to process 2. 

The experiments of Table 4 differ by the extent and 
nature of their instruction inter-dependency (making for 
innately more or less complex search spaces) but also and 
importantly by the number of instructions that are involved 
in the computations.  

Problems ID=1, ID=2 and ID=3, involve n = 40 
instructions. Yet for ID=1 only two instructions, nI = 2, are 



in a dependency relation! Often in versions of this problem 
nI < n. In such cases, two test problem experiments are 
possible: one involving all n instructions, and another 
involving only participating nI instructions.  

The former problem is presumably a bit harder to solve 
because the search space is complicated by the presence of 
more instructions that play no role, but which must be 
allocate to a processor and clock cycle, although these could 
ab-initio be assigned to any clock cycle on another 
processor. Instructions get in the way and PI

J and SI
J must 

work at moving them about and away from the ‘critical 
path’ in searching for the scheduling that minimizes clock 
cycles while avoiding violations. Such a problem, therefore, 
admits numerous equivalent solutions.  

Trial runs reveal that the power of GP at discovering 
solutions is rather insensitive to the fitness penalty number 
PW even for small values. Very quickly (within one or two 
generations depending on the population size and the nature 
of the constraints) compliant solutions emerge and dominate 
from then on. The penalty has a threshold nature, either it 
has the desired effect or it does not. Thus, it was considered 
not interesting to vary this penalty number further in 
experiments. The target fitness is determined easily for each 
of problem. 

Table 5 compares experimental results for problem cases 
1, 2, 3 and 3m for various population sizes and sets of 
parallel independent runs (PIRs). PIRs are needed to 
successfully explore a solution using GP [1]. A PIR stops 
when a GP discovered solution matches the analytical 
solution. It also shows what percentage of the PIRs were 
able to discover the analytical solution within 200,000 
generates of steady-state GP (Koza [2] has always preferred 
use of “generational” GP but this and past work by the 
author of this paper, e.g. [2-4] always uses “steady-state” 
GP).  

Experiment 3m is a minimalist version of experiment 3. 
It is apparent that the search space is less complicated 
because most of the parallel independent runs of experiment 
3m attain the target fitness. The table also seems to indicate 
that the constraints that define problems 1 and 2 make for an 
easier search space than what defines problem 3.  

For the problems that involve all 40 input instructions, 
GP produces a set of different ‘fitness equivalent’ solutions, 
i.e., different possible assignments of input instructions to 
processors and clock cycles at the same level of fitness. 

In Table 5, various GP population sizes, e.g., 200, 500, 
3000, 5000 are investigated and results must achieve the 
analytical solutions: f = −2.00 (case 1); f = −21.00 (case 2); 
f = −4.00 (cases 3 and 3m). PIRs are the total number of 
parallel independent runs in the experiment, each starting 
with a different random seed.  The last column gives the 
success or percentage of runs that find the analytical 
solution inside of 200,000 generates of steady-state GP (to 
the nearest percent).  Not all runs are successful making this 
problem a candidate test bed for the relative performance of 
different heuristic methods. 

 

TABLE 5 EXEPERIMENTS: NOT ALL PIR SOLVE THE PROBLEM. 

VI. CONCLUSIONS 

A heuristic search problem with known analytical solution is 
introduced in this paper. Heuristic methods found it difficult 
to discover solutions as evidenced in Table 5.  The problem 
requires more analysis.  It is tunable thus offering a test by 
which to examine the performance of different methods of 
Artificial Intelligence, heuristic solution search, Genetic and 
Evolutionary Computation. 

REFERENCES 

[1] Koza J. (1992), Genetic Programming: On the Programming of 
Computers by Means of Natural Selection: v. 1 (Complex Adaptive 
Systems), MIT Press, Cambridge. 

[2] Howard D., Ryan C., Collins J.J. (2011) Attribute Grammar Genetic 
Programming Algorithm for Automatic Code Parallelization. In: Lee 
G., Howard D., Ślęzak D. (eds) Convergence and Hybrid Information 
Technology. ICHIT 2011. Lecture Notes in Computer Science, vol 
6935. Springer, Berlin, Heidelberg. 

[3] Howard D., Roberts S.C. (2001), Genetic Programming solution of 
the convection-diffusion equation. In: Spector L. et al (eds), 
Proceedings of the Genetic and Evolutionary Computation 
Conference (GECCO 2001), pp. 24-41. Morgan Kauffman, San 
Francisco. 

[4] Howard D. (2009), Bio-inspired simulation tool for PERT, 
Proceedings of the 2009 International Conference on Hybrid 
Information Technology.  Pages 537-540, Daejeon, Korea — August 
27 - 29, 2009, ISBN: 978-1-60558-662-5. 

[5] Baber C., Stanton N., Howard D., Houghton R.J. (2009): paper 15 – 
Predicting the structure of covert networks using Genetic 
Programmingm, Cognitive Work Analysis and Social Network 
Analysis. Paper presented at the NATO RTO Modelling and 
Simulation Work Group Symposium, Brussels, Oct 15-16, 2009. 
ISBN 978-92-837-0200-2. 

[6] Ryan C., Collins J. J. and O’Neill M., Grammatical Evolution: 
Evolving Programs for an Arbitrary Language. In Wolfgang Banzhaf 
and Riccardo Poli and Marc Schoenauer and Terence C. Fogarty 
editors, Proceedings of the First European Workshop on Genetic 
Programming, LNCS 1391, 83–95, Paris, (1998). 

[7] Koza J. (1994), “Genetic Programming II: Automatic Discovery of 
Reusable Subprograms”, MIT Press. 

[8] Roberts S.C., Howard D., Koza J.R. (2001), “Evolving modules in 
Genetic Programming by subtree encapsulation”. In Julian F. Miller 
and Marco Tomassini and Pier Luca Lanzi and Conor Ryan and 
Andrea G. B. Tettamanzi and William B. Langdon editors, Genetic 
Programming, Proceedings of EuroGP'2001, volume 2038, pages 
160-175, Lake Como, Italy, 2001. Springer-Verlag. 

 

 

 

 


