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 i 

Abstract 

 

Genetic programming (GP) is an evolutionary algorithm that attempts to evolve 

solutions to a problem by using concepts taken from the naturally occurring 

evolutionary process. This thesis introduces the concepts of GP model development 

by applying the technique to steady-state model evolution. A variation of the 

algorithm known as the multiple basis function GP (MBF-GP) algorithm is described 

and its performance compared with the standard algorithm. Results show that the 

MBF-GP algorithm requires significantly less computational effort to evolve models 

of comparable accuracy to the standard algorithm. The steady-state algorithm is then 

modified to enable the evolution of dynamic process models. Three case studies are 

used to demonstrate algorithm performance and show how the MBF-GP algorithm 

produces performance benefits similar to those observed in the steady-state modelling 

work. A comparison with neural networks reveals that GP is able to match the 

accuracy of the network predictions but is more expensive computationally. However, 

a significant advantage of the GP algorithm is that it can automatically evolve the 

time history of model terms required to account for process characteristics such as the 

system time delay. 

The model development process is not simply a case of reducing the error between the 

predicted and actual process output. The parallel nature of GP means that it is ideally 

suited to solving multi-objective problems. The MBF-GP algorithm is modified to 

incorporate a Pareto based ranking scheme that allows models to be compared using 

multiple performance criteria. The ranking scheme allows preference information in 

the form of goals and priorities to be specified in order to guide the search towards the 

desired region of the search space. Two case studies are used to demonstrate the 

performance of this technique. The first example uses the multi-objective algorithm to 

improve the parsimony of the evolved model structures. The second example 

demonstrates how a set residual correlation tests can be combined and used as an 

additional performance measure. In each case, the multi-objective algorithm performs 

significantly better than the single objective version. In addition, the inclusion of 

preference information overcomes some of the difficulties associated with 

conventional Pareto ranking and produces a greater number of acceptable solutions.  
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1 Introduction 

 

There are many applications across a range of scientific and engineering disciplines 

that rely on the development of a model of some form. The process industries are no 

exception, where applications such as inferential estimation, optimisation, process 

simulation, and process control all depend on accurate models in order to realise their 

full potential. Two distinct directions can be taken when building a model. The 

traditional approach is to construct a mechanistic model based on knowledge of the 

underlying physical and chemical processes. Unfortunately, the system may be 

extremely complex, making it difficult to derive a model from first principles. In 

addition, as some aspects of the process may be poorly understood or rely on 

empirical relationships, the resulting model may not be able to achieve the desired 

level of accuracy. As a result, the development costs may outweigh any of the benefits 

to be gained by implementing a model of this type.  

 

The alternative is to develop a data-based model. This technique does not attempt to 

derive the differential and/or algebraic equations that describe the underlying system. 

Instead, use is made of available process data to develop a model that relates the 

target variable (or output) to other process variables (the model inputs). For some 

applications, a linear model may adequately perform this task. However, the complex 

and non-linear nature of chemical processes means that more advanced techniques are 

often needed. A commonly used example of such an approach is the artificial neural 

network. The use of neural networks has been widespread in recent years due to an 

abundance of process data and an increase in the availability of relatively low cost 

computer hardware. The resulting models are more cost effective than mechanistic 

models as development times are greatly reduced. In addition, data-based approaches 

are more flexible as the same set of basic tools can generally be applied across a wider 

range of processes. The conventional approach to empirical model development 

follows the general path shown in Figure 1-1 (adapted from Söderström and Stoica, 

1989).  
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Figure 1-1 – Empirical model building 

 

It can be seen that this is a sequential process with the parameter estimation stage 

occurring after the model structure has been specified. If the resulting model does not 

meet the desired performance criteria, the process must be repeated until an adequate 

model structure is found. Genetic programming (GP) (Koza, 1992) is an evolutionary 

algorithm that attempts to evolve a set or population of solutions to a problem by 

using the Darwinian concept of natural selection. One of the strengths of GP is its 

ability to perform optimisation on a structural level. This is an attractive prospect as 

the algorithm can simultaneously evolve a model’s functional form and numerical 

parameter values. This means that GP has the potential to function as an automatic 

model building tool. An advantage of this approach is that fewer assumptions have to 

be made regarding the final form of the model as the algorithm can evolve the model 

structure from elementary building blocks.  
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The next stage of the model development process is known as model validation. This 

process can use a range of different criteria to measure the adequacy of the model. A 

potential drawback is that the validation criteria are usually applied after the model’s 

structure and parameters have been determined. An area of research that has received 

a great deal of attention in recent years is that of multi-objective problem solving. The 

parallel nature of population based algorithms such as GP means that they are ideally 

suited to this type of problem. One of the potential benefits of using a multi-objective 

GP algorithm for model development is that additional modelling criteria can be 

included during the evolutionary process. This approach is different from the 

traditional method as the three main stages (3,4 and 5 in Figure 1-1) can be dealt with 

in parallel. Unfortunately, some aspects of model validation (such as the use of 

unseen data) must be performed after model development and cannot be incorporated 

into this scheme. However, this approach still has the potential to improve model 

performance as more design criteria can be considered during the model evolution 

stage. 

 

The main aims of this thesis are, 

 

• To demonstrate how the modelling performance of the standard GP algorithm can 

be enhanced by incorporating techniques borrowed from existing system 

identification theory. 

 

• To describe how GP can be used to automatically develop models of dynamic 

processes, whilst making few a priori assumptions regarding the final model 

structure. 

 

• To compare the steady state and dynamic modelling ability of GP with a more 

established data-based modelling technique. Neural networks were chosen for this 

purpose, as their use has been widespread in the process industries 

 

• To develop a multi-objective GP algorithm that is able to account for additional 

performance criteria during model evolution. 
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1.1 Thesis Layout 

 

This thesis is arranged as follows, 

 

• Chapter 2 introduces the main aspects of the GP algorithm, placing particular 

emphasis on model development. The chapter begins by describing the genetic 

algorithm (GA) from which GP was originally derived. Chapter 2 also outlines 

some of the specific features of the algorithm used in this thesis and discusses the 

rationale behind the main algorithm settings and parameters. 

 

• Chapter 3 demonstrates how GP can be used to develop steady-state models. 

Aspects of the algorithm that make it different from the standard algorithm 

described by Koza (1992) are discussed. A different form of the algorithm, known 

as the multiple basis function (MBF) GP algorithm is introduced and its 

performance compared with the ‘standard’ version. This chapter also includes an 

explanation of the procedures used to compare algorithm performance.  

 

• Chapter 4 Compares the steady-state modelling ability of the MBF-GP algorithm 

with that of neural networks. This chapter includes an introduction to neural 

networks and their application to process modelling. 

 

• Chapter 5 describes how the steady-state modelling algorithms can be modified in 

order to generate and evolve dynamic models. Three case studies are used to 

compare the MBF-GP and standard GP algorithms. Comparison is also made with 

filter based neural networks.  

 

• Chapter 6 introduces the relevant aspects of multi-objective evolutionary 

algorithms, including the benefits of using Pareto methods. The main features of 

the multi-objective GP (MOGP) algorithm used in this work are described. 

 

• Chapter 7 applies the MOGP algorithm to two dynamic modelling case studies 

involving additional model performance criteria. The first case study demonstrates 

how the algorithm can be used to account for the parsimony of the evolved 
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solutions. The second study uses a set of residual correlation tests as a more 

complex measure of model performance. Comparisons are made between the 

single objective and MOGP algorithms. The study also highlights the performance 

gains that can be achieved by using a goal based ranking scheme. 

 

• Chapter 8 summarises the main conclusions resulting from this study and offers 

some recommendations for future work. 

 

1.2 Thesis Contributions 

 

The main contributions made by this thesis are, 

 

• A detailed assessment of GP algorithm performance on steady-state systems. This 

includes a comparison between MBF-GP and ‘standard’ GP algorithms.  

 

• The development of a GP algorithm capable of evolving discrete time models of 

dynamic systems. 

 

• Dynamic models are represented using a flexible technique that enables the 

algorithm to identify process characteristics such as the system time delay. 

 

• Comparison is made between GP and artificial neural networks for dynamic and 

steady-state modelling.  

 

• Algorithm comparisons account for the computational complexity of each 

approach in addition to the prediction accuracy of the resulting models. 

 

• It is demonstrated how multi-objective GP can be used to account for additional 

measures of model performance that would normally be considered after the 

model building process.  
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• Comparisons are made between the performance of the single and multi-objective 

algorithms.  

 

• It is shown how preference information in the form of goals and priorities can be 

used to overcome some of the deficiencies associated with conventional Pareto 

ranking. 
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2 Introduction to Genetic Programming 

 

2.1 Introduction 

 

Genetic programming (GP) is an evolutionary algorithm that uses concepts taken 

from the naturally occurring evolutionary process. The algorithm attempts to evolve 

solutions by using the Darwinian principle of survival and reproduction of the fittest 

and genetic operators analogous to those occurring in biological species. GP is a 

member of a broader class of search and optimisation algorithms inspired by 

evolution in nature. These algorithms include evolutionary strategies (Rechenberg 

1972, Schwefel 1995), evolutionary programming (Fogel et al., 1966, Fogel 1995) 

and genetic algorithms (Holland 1975, Goldberg 1989). The development of GP was 

motivated by the desire to enable computers to automatically generate programs. This 

objective had already been achieved to a limited extent using genetic algorithms. For 

example, Cramer (1985) described how a genetic algorithm (GA) could be used to 

evolve simple sequential programs, represented in tree structure form. Fujiki and 

Dickinson (1987) extended these concepts, describing how LISP source code could be 

evolved using a GA.  

 

However, Koza (1992) was the first to fully exploit the potential of this approach by 

developing an algorithm that represents solutions as tree structures using a problem 

specific syntax. This makes for an extremely flexible technique as the solutions can 

take a variety of forms. For example, the solutions could be computer programs, 

mathematical expressions or induction rules. This means that GP has advantages over 

other algorithms as it can perform optimisation at a structural level. This enabled 

Koza to demonstrate the application of his GP algorithm to a number of problem 

domains, including regression, control and classification. Since then, research in this 

area has grown rapidly and encompassed a wide range of problems. Engineering 

applications include signal processing (Sharman et al., 1995), electrical circuit design 

(Koza et al., 1999) and scheduling  (Montana and Czerwinski, 1996). Applications 

with particular relevance to chemical engineering include polymer design (Porter, et 
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al., 1996), process controller evolution (Searson et al., 1998) and modelling of both 

steady-state and dynamic processes (McKay et al., 1997, Bettenhausen et al., 1995). 

The GP algorithm is an extension of the basic GA, which is described in the next 

section. 

 

2.2 Genetic algorithms 

 

Holland (1975) described a technique, now known as the GA, that used concepts 

taken from the naturally occurring evolutionary process to solve problems by 

performing a highly parallel search. The GA begins by randomly generating an initial 

set or population of candidate solutions. Every population member is allocated a 

value that is a measure of its performance, known as the individual’s fitness. A new 

population is then generated by applying the Darwinian principle of survival and 

reproduction of the fittest, making use of operators that are analogous to naturally 

occurring genetic operators such as sexual recombination (crossover) and mutation. 

The process is repeated over a number of iterations or generations in an attempt to 

evolve increasingly accurate solutions. As the individuals in the GA population are 

typically stored as fixed length character strings, a suitable encoding scheme must be 

devised before the algorithm can be applied to a problem. This procedure is outlined 

in the next section 

 

2.2.1 Problem encoding 

 

An encoding scheme must be developed to provide the algorithm with a way of 

mapping the points in the problem search space to a character string or other suitable 

data structure. There must be a way of inverting this transformation, i.e. being able to 

find the point in solution space that corresponds to a given character string. The most 

commonly used representation scheme is the fixed length character string inspired by 

naturally occurring chromosomes. The basic GA uses chromosomes encoded in 

binary so that individuals consist entirely of strings containing only 1’s and 0’s. 

Although this representation is the most common, more advanced schemes can also 
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be used. Examples include the messy GA (Goldberg et al., 1989) and the real-coded 

or floating point GA (Goldberg, 1990). 

 

The concept of the binary GA string can be illustrated using a function optimisation 

example. It is assumed that the GA is being applied to a problem involving the 

optimisation of four numerical parameters,  

 

Parameter values: �1 �2 �3 �4 

 

Each parameter is converted into a binary number. In this case, the numerical 

parameters have been encoded into five digit binary numbers, 

 

Individual genes: 01001 01010 10110 01111 

 

The chromosome is then constructed by concatenating the four subsections or ‘genes’ 

to produce a bit-string of 20 characters in length, 

 

Chromosome:  01001010101011001111 

 

The number of bits in each section of the chromosome must be chosen so that the 

corresponding regression parameter can be represented to the required level of 

accuracy and vary over the desired range. For example, if a parameter is to be 

adjusted over the range [-10 10] with a minimum increment of 0.01, the binary string 

must be able to represent 2000 (20/0.01) distinct numbers. This can be achieved using 

an 11-bit string, capable of representing 2048 (211) individual values. The genes do 

not necessarily have to encode the parameter values in the same way. For example, 

another gene may use an 11-bit string to represent a number in the range [-1 1] with 

increments of 0.001. This example highlights the importance of careful problem 

formulation before attempting to apply the GA. If insufficient thought is not given to 

the encoding scheme, the GA may have no chance of finding a suitable solution. The 

application of GAs does not have to be restricted to parameter optimisation problems, 

with more ingenious encoding schemes allowing the algorithm to tackle a range of 

problems. 
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The initial GA population is made from a set of randomly generated individuals by 

applying a coding strategy similar to that described above. The number of individuals 

required in the population will depend on the difficulty of the problem and is one of a 

number of parameters that must be specified at the beginning of the algorithm run. 

Typical population sizes may be as small as 50 or 100 individuals but harder problems 

may require larger population sizes to achieve a successful result. The improvement 

in performance achieved by using larger populations will be at the expense of 

increased computational effort and a balance between the two must be found.  

 

2.2.2 Fitness Assignment and Selection 

 

The next task performed by the GA is to measure the performance of each population 

member. This is carried out using a ‘fitness’ function that assigns numerical values to 

each of the members in the population. This function will be problem dependent and 

must be carefully chosen so that it provides an accurate measure of performance for 

all of the possible solutions that may be encountered during the algorithm run. It is 

common, although not imperative, to select a function that returns larger values as 

performance increases so that more ‘fit’ individuals are assigned greater fitness 

values. These values are then used to select individuals for breeding in accordance 

with the principle of survival and reproduction of the fittest. There are a number of 

possible selection methods, but they all conform to the same general principles, 

 

• Individuals displaying a higher level of performance are more likely to be selected. 

If it is assumed that fitter individuals are more likely to contain genetic material 

required to produce a successful solution, it follows that these solutions can be 

used to generate even fitter solutions. 

• The selection method is probabilistic. This means that although the selection 

procedure is biased towards fitter individuals, there is still a chance that individuals 

with low fitness values may be selected. This enables the GA to explore parts of 

the solution space that would otherwise be inaccessible to a hill-climbing 

approach.  
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• Reselection is permitted. This is beneficial as it allows fitter population members 

to be selected more times than less fit individuals, thus promoting the discovery of 

even fitter solutions. 

 

One example is fitness proportionate selection (FPS) where individuals are selected 

with a probability that is directly proportional to their fitness, such that, 

 
 2-1 

 
Where PS,i is the probability of selection for population member i, F is the fitness and 

M is the population size. This procedure is sometimes referred to as roulette wheel 

selection. Other approaches such as tournament and ranking selection will be 

discussed in section 2.3.3. The selection technique is used to extract individuals from 

the population, which are then modified using genetic operators to create the next 

population. The most commonly used genetic operators are described in the next 

section. 

 

2.2.3 Application of Genetic Operators 

 

Three basic operators are commonly applied to the selected individuals in order to 

generate the next population of candidate solutions - direct reproduction, crossover 

and mutation. The operator is chosen on a probabilistic basis, with each having a 

different probability of being selected. For example, if the probability of mutation is 

Pm and the probability of crossover is Pc, the probability of direct reproduction is 

given by 1-(Pm+Pc). Direct reproduction is the simplest of the genetic operators. The 

selected individual is left unchanged and is passed straight through to the next 

population. This provides the algorithm with the ability to preserve fit individuals 

from one generation to the next. 

 

The crossover operator allows new individuals to be created, with the aim of 

producing fitter individuals from the genetic material present in existing population 

members. The process is illustrated using the following parent individuals. 

 

��������� =iSP , population of Sum
Fitness
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Parent1: 10101011110000 
 
Parent2: 11111100110011 
 

A crossover point (indicated by a vertical line) on each chromosome is randomly 

chosen using a uniform probability distribution, 

 
Parent 1: 101010�11110000 
 
Parent 2: 111111�00110011 
 

Two new offspring are then formed by transferring genetic material between the two 

chromosomes. 

 
Offspring 1: 10101000110011 

 
Offspring 2: 11111111110000 

 
These new individuals are then placed in the new population to take part in the next 

iteration of the algorithm. This recombination operation means that the algorithm is 

not only able to breed fit individuals together in the hope of producing even fitter 

solutions, but is also capable of exploring new points in the search space. The form of 

crossover demonstrated above is referred to as single point crossover. Other forms of 

crossover are also possible. For example, multi-point crossover transfers several 

sections of genetic material between individuals. 

 

In the special case where the two parents are identical, the two offspring are also the 

same, regardless of the chosen crossover point. This occurrence may become a 

problem if the selection procedure regularly selects the same highly fit members from 

a population. This may lead to the population becoming dominated by the same 

individual. If the solution represented by this dominant individual does not meet the 

necessary solution criteria premature convergence is said to have occurred. This 

phenomenon is an example of how it can be a disadvantage to rely entirely on 

crossover. Although the crossover operator usually produces individuals that are 

different from each other and their parents, the process only makes use of the genetic 

material present in the current population. One method used to promote diversity and 

improve the algorithm’s ability to exploit different regions of the search space, is to 

use the mutation operator.  
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The mutation operator makes a random change to the selected population member. 

For example, with reference to the following population member, 

 
Parent:  1010100010101 

 
The first stage of the operation is to randomly select a mutation point (↑) along the 

chromosome using a uniform probability distribution, 

 
Parent: 1010100010101 

 ↑ 
 
The character at the mutation point is then altered, in this case, a ‘0’ is changed to a 

‘1’. 

 
Offspring: 1010101010101 

 
Once mutation has been carried out, the individual enters the new population ready 

for the next iteration of the algorithm. Typically, the mutation operator is used 

sparingly, as high mutation rates can have a detrimental effect on algorithm 

performance. The probability of a mutation operation occurring is sometimes 

specified on a bit-wise basis. This means that each individual ‘0’ or ‘1’ has a 

probability, Pm of being mutated. This strategy means that more than one mutation 

can be applied to any given binary string and can be applied to strings that have been 

created by crossover. When specified in this way, care must be taken to ensure that Pm 

is low enough to ensure that mutation is not applied to too many population members. 

The value will depend on the length of the chromosomes being used, but a typical 

value would be in the range [0.001 0.01]. 

 

The next step taken by the algorithm is to determine which members of the existing 

population ‘survive’ and are carried on from one generation to the next. The simplest 

approach is to generate an entirely new population without preserving any individuals 

from the previous generation (apart from those selected for direct reproduction). 
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Figure 2-1 – Genetic algorithm flowchart 
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An alternative is to adopt what is known as an elitist strategy where the best members 

of the current population are copied straight over to the next generation. For example, 

the top 10% of the individuals could be copied over, leaving the remaining 90% of the 

new population to be created by applying genetic operators. This percentage of new 

individuals (in this case 90%) is referred to as the generation gap.  

 

Once the new population has been created, the processes of fitness evaluation, 

selection and the application of genetic operators are repeated until some termination 

criterion is met. This may be a certain fitness level representing a successful solution 

or a maximum number of generations to be performed. Figure 2-1 is a flowchart of 

the basic GA algorithm. 

 

2.2.4 Advantages of Using Genetic Algorithms 

 

There are fundamental differences between GAs and traditional optimisation 

techniques that make them attractive when applied to a wide range of problems. 

Firstly, the GA can perform a highly parallel search of the solution space. This is only 

partly explained by the fact that the algorithm uses a population of candidate 

solutions. Holland’s schema theorem (Holland, 1975) shows that the GA exhibits a 

high degree of implicit parallelism by processing sets of unseen individuals similar to 

those in the current population. This enables the algorithm to discover a wide range of 

solutions and means that it is less likely to converge around local optima. 

Additionally, the probabilistic nature of the GA means that the algorithm is not as 

dependent on the initial starting points. This is in contrast to purely deterministic 

optimisation algorithms that are much more vulnerable to a poor choice of initial 

starting conditions. Unlike other optimisation algorithms, the GA does not require any 

additional problem information such as derivative values as it relies solely on the 

values provided by the fitness function. This makes the algorithm an ideal choice for 

problems that prove to be problematic for traditional gradient-based methods due to 

highly complex or irregular search spaces. 
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The GA has proven to be a useful tool when applied to a variety of practical 

engineering problems, including model development. Tan et al. (1995) used a GA to 

develop polynomial ARMAX (Auto Regressive Moving Average with eXogenous 

inputs) model structures. The technique was rather limited, as the model structure was 

predetermined, with the GA being used to optimise the model parameters and the 

maximum time shift of the input. A more general approach was described by Fonseca 

and Fleming (1996a) who evolved NARMAX (Non-linear ARMAX) model structures 

using a multi-objective GA. Their algorithm had more influence over the structure of 

the model, being able to determine features such as the number of model terms, 

degree of non-linearity and number of lags for the input and output terms. Other 

process engineering applications include the optimisation of heat exchanger networks 

(Androulakis and Venkatasubramanian, 1991), process control (Nordvik and Renders, 

1991), data analysis (South, 1994) and scheduling (Löhl et al., 1998). An excellent 

introduction to GAs and their application to a variety of problems is given by 

Goldberg (1989). The next section introduces the fundamental aspects of GP, 

highlighting the differences between the basic GA and GP algorithms. 

 

2.3 Genetic Programming 

 

Unlike the GA outlined earlier, the GP algorithm uses population members that have 

chromosomes encoded as tree structures that can vary in size and shape. This 

approach means that population members can be represented in a form that is specific 

to the problem being solved. For example, to tackle a regression problem, the 

population members can be represented as tree structured mathematical expressions. 

GAs do not have this flexibility as individuals are usually coded as fixed length 

character strings, meaning elaborate encoding schemes are required to allow their 

application to a wider range of problems.  

 

Koza (1992) first demonstrated how GP could be applied to regression problems. 

Traditionally, this task requires the specification of a model structure, followed by the 

optimisation of the associated numerical parameters in order to achieve the best 

possible fit. An interesting feature of GP is its ability to perform optimisation on a 
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structural level by evolving populations of tree structured model expressions. This 

means that GP can be used to optimise the model’s functional form and numerical 

parameters simultaneously. This process is referred to as symbolic regression. Two of 

the most important aspects of the GP algorithm are the function and terminal sets that 

contain the building blocks used to construct the tree structured population members. 

These concepts are discussed below, with particular emphasis placed on the 

application of GP to process modelling. 

 

2.3.1 Terminal and Function Sets 

 

The terminal set contains the elements or variables that are the inputs to the problem. 

For modelling purposes, the terminal set may simply consist of the process input 

variables (u1, u2,...,un). An important part of all regression techniques is the 

determination of the appropriate numerical parameters that fit the chosen model 

structure to the output data. One way to enable GP to evolve regression constants is to 

include a terminal that represents a randomly generated real number. Koza (1992) 

described these values as ephemeral random constants and indicated their presence in 

the terminal set by the symbol ‘ℜ’. If this terminal is selected during tree generation, 

a new numerical constant is generated and placed in the model equation. The function 

set is made up of a number of domain-specific functions that, combined with the 

terminal set, enable the algorithm to construct potential solutions to the problem. For 

regression, the function set may contain any number of mathematical functions 

ranging from the basic plus, minus, times and divide operators to functions such as 

square root, logarithm and exponential. A priori knowledge of the problem may be 

included at this stage by the addition of functions that the engineer thinks may help 

the algorithm formulate a solution. Figure 2-2 demonstrates how process input 

terminals can be combined with the mathematical operators in the function set to 

generate a tree structured model equation ( ŷ is the predicted process output). 
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Model equation: 213 )log(ˆ uuuy +=  

u3

log

u1

+

u2

sqrt

*

 

Figure 2-2 – Tree representation of a mathematical expression 

 

The functions must be able to accept values that may be returned by any possible 

combination of the functions and terminals. This means that the algorithm may have 

to be supplied with protected versions of some functions. For example, to prevent 

square roots of negative numbers, the absolute value of the input can be taken, i.e. 

SQRT(x)= x . Different applications may require more specialised function sets. For 

example, the function set may contain functions that perform Boolean operations 

(e.g., AND, OR, NOT) and conditional statements (e.g., if-then-else). 

 

2.3.2 Fitness function 

 

As with the simple GA described earlier, fitness is a numerical value assigned to each 

population member in order to measure the performance of each individual. The basic 

measure of model accuracy used throughout this thesis is the root mean square (RMS) 

error between the actual (y) and predicted ( ŷ ) process output, and is calculated using 

the following relationship, 
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2-2 

 

Where N is the number of data samples. This differs from Koza’s approach, which 

measures fitness by counting the number of data points that have residual errors 
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below a certain tolerance. This number of ‘hits’ increases as the prediction accuracy 

increases and can be used to measure the performance of each candidate solution. A 

major drawback of this approach is that each data point is simply classified as a ‘hit’ 

or a ‘miss’ and it is possible for one model to be much more inaccurate than another 

but still have the same fitness value. Furthermore, data from real processes may often 

contain noise and/or outliers, making it difficult to choose the tolerance that 

corresponds to a successful result.  

 

Other error measures such as the sum of the square errors could also be used, 

however, RMS error has the useful property of being scaled in order to produce 

values that are easier to interpret. For example, if the data is scaled in the range [0 1], 

a RMS error of 0.01 corresponds to an average error of one percent. Although it 

would be convenient to use a fitness measure that increases as model performance 

improves, this is not the case with RMS error, which decreases as the model accuracy 

improves. A possible solution is to scale the RMS values using the following 

relationship (Hiden, 1998), 

 

 2-3 

 

The application of equation 2-3 results in fitness values scaled in the range [0 1] with 

higher values corresponding to models with a lower prediction error. However, 

further investigation reveals that this approach may be a poor choice when combined 

with FPS. The disadvantages of this method and the possible alternatives are 

discussed in the next section. 

 

2.3.3 Selection methods 

 

As the selection method acts only on the fitness of each population member, the GP 

algorithm can use the same selection methods as the GA. One method, FPS, was 

outlined in section 2.2.2. Unfortunately, there are number of drawbacks associated 

with this technique. For example, if one population member has a particularly high 

level of fitness compared with the rest of the population, it will be much more likely 

���������
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to be selected for reproduction. If the difference in fitness is large, the probability of 

selection will be so great that the same individual will be repeatedly selected and the 

population will become dominated by a single individual. This will lead to a loss of 

diversity and possibly premature convergence. This could occur, for example, at the 

start of a GP run when the majority of the solutions perform poorly due to the 

probabilistic manner in which they were generated. If, by pure chance, one individual 

performs reasonably well, it is likely to be over-selected by FPS. 

 

Another problem that can be encountered when using FPS occurs when the population 

is saturated with individuals that have very similar fitness levels. This would be 

especially likely to occur if equation 2-3 is used to scale certain RMS error values. 

For example, if the RMS errors lie in the range [0.001 0.01] (equivalent to prediction 

errors of between 0.1% and 1% for output data scaled in the interval [0 1]), equation 

2-3 produces fitness values in the range [0.99 0.999]. The result is that there is little 

difference between the probability of selection for the best and worst individuals in 

the population and the selection process will be almost random. Because of these 

shortcomings, linear ranking was used throughout this work as a method of assigning 

fitness. This method was first introduced by Baker (1985) in order to overcome the 

deficiencies associated with FPS. In linear ranking, the individuals are sorted in order 

of their fitness. The best individual is assigned a rank of N (where N is the number of 

individuals) and rank 1 to the worst. A probability of selection is then assigned 

linearly to the individuals according to their rank. 

 

 

An additional reason for using linear ranking is that Chapters 6 and 7 study a multi-

objective GP algorithm that employs a ranking based selection scheme. In order to 

compare the algorithm with the single objective version, it is necessary to use ranking 

for both algorithms. Other selection schemes could provide similar performance to 

linear ranking. For example, tournament selection is another possible technique. This 

involves the random selection of a group of individuals that take place in a 

‘tournament’ with the fittest individual being selected. The process is repeated until 

enough individuals have been selected to generate the next population. This technique 

requires less processing than linear ranking, as the entire population does not have to 
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be sorted. A detailed comparison of selection methods can be found in Blickle and 

Thiele (1995).  

 

2.3.4 Application of Genetic Operators 

 

This section describes the application of the standard genetic operators to tree 

structured GP model expressions. The direct reproduction operator is the same as that 

used by the basic GA and simply passes the chosen population member through to the 

next generation without alteration. The mutation and crossover operators are modified 

to account for the domain-specific syntax that governs the way that genetic material 

can be combined to produce feasible population members. For regression problems, 

this means that certain rules must be obeyed in order to create meaningful 

mathematical expressions from constants, mathematical operators and parentheses. 

For example, functions such as plus and minus must have two input arguments, 

whereas logarithm and exponential only require a single argument. The following 

example demonstrates how crossover is applied to two model expressions. With 

reference to the following parent tree structures, 

 

Parent 1: ( ) 213logˆ uuuy +=  Parent 2: ( ) ( )132expˆ uuuy +−=  
 

u3

log

u1

+

u2

sqrt

*

 

 

u2

exp

-

u2

+

u1u3  

 

A crossover point is randomly selected on each parent (marked by a dashed line). The 

subtrees below these points are then exchanged to produce new individuals. In this 

example the ‘sqrt(u2)’ subtree from the first parent is exchanged with the ‘u3+u1’ 

subtree from the second parent to produce the following offspring, 
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Offspring 1: ( ) ( )1313logˆ uuuuy ++=  Offspring 2: ( ) 22expˆ uuy −=  

u3

log

u1

+

*

u2

+

u1u3  

u2

exp

-

sqrt

u2  

 

In GP the mutation operator deletes an existing subtree and replaces it with a newly 

generated expression. This process is illustrated using the following parent 

expression,  

 

Parent: ( ) ( )1313logˆ uuuuy ++=  New subtree: 21 uu −  

u3

log

u1

+

*

u2

+

u1u3  

 

u 2 

- 

u 2 u 1  

A mutation point (dashed line) is randomly selected in the parent model tree and a 

new subtree is generated to take the place of the removed subtree.  

 

Offspring: ( ) ( )2113logˆ uuuuy −+=  

u3

log

u1

+

*

u2

-

u2u1  

In this case, the ‘u3+u1’ subtree in the parent equation is replaced by a ‘u1-u2’ term to 

create a new model equation. Although the GP algorithm used in this thesis is 
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restricted to the basic crossover and mutation operators described in this section, other 

operators are also possible. For example, crossover does not have to be based on two 

parents that have been taken from the existing population. A possible variation 

involves the use of one randomly generated parent tree, which is combined with a 

parent selected from the current population. The resulting operation has been referred 

to as headless chicken crossover and was first used in GP by Angeline (1997). 

 

2.3.5 Algorithm control parameters 

 

The GP algorithm requires the specification of the same basic parameters as the GA 

described in section 2.2, namely population size, generation gap and the probabilities 

of crossover, mutation and direct reproduction. Previous work concerning chemical 

process modelling by McKay et al. (1997) and Hiden (1998) has shown that 

population sizes as small as 50 or 100 individuals are usually sufficient to obtain 

accurate predictions. However, the choice of population size is clearly dependent on 

the problem being tackled, with some problems requiring hundreds of thousands of 

population members (Koza 1999). Although it is unlikely that such enormous 

population sizes will be required for the applications discussed in this work, it is 

possible that the use of larger population sizes may give more accurate model 

predictions and the choice of population size will be dependent on the level of 

accuracy required by a particular application. The population sizes selected for the 

runs conducted in this thesis were chosen heuristically, taking into consideration both 

the accuracy of model fit and the computing time available. 

 

The correct choice of values for the probabilities of crossover and mutation has been a 

subject of some debate by GP researchers. Experience gained from work with GAs 

led many to believe that crossover was the driving force behind the evolutionary 

process with mutation performing a minor role. These ideas were adopted by early GP 

practitioners who made little or no use of mutation (for example, Koza 1992). 

However, as interest in the underlying mechanisms of GP increased, some researchers 

began to question the existing theories regarding the relative importance of crossover 

and mutation (Angeline, 1997). It is beyond the scope of this study to attempt to 
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determine the optimal settings of such parameters due to the large number of runs that 

would be required to cover all of the possible combinations. As a result, the crossover 

and mutation probabilities were held constant at 0.7 and 0.2 respectively with a 

generation gap of 90%. These values are similar to those used in other process 

modelling applications (McKay et al., 1997, and Willis et al., 1997). Although 

workers such as Koza (1992) do not the use mutation or a generation gap, it was 

thought that their inclusion would be more beneficial in this study due to the relatively 

small population sizes used. In addition, Hiden (1998) performed an extensive study 

into the effects of using different crossover and mutation probabilities, concluding 

that GP appeared to be insensitive to small deviations from the values referred to 

above. 

 

2.4 Conclusions 

 

This chapter has outlined the basic underlying concepts of the GA and the possible 

advantages to be gained over traditional optimisation methods. The main aspects of 

the basic GP algorithm have been described, making particular reference to the 

evolution of mathematical model expressions. The next chapter outlines the 

modifications made to the algorithm in order to generate models of steady-state 

chemical processes. 
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3 Steady-state modelling 

 

3.1 Introduction 

 

The application of GP to symbolic regression problems was first demonstrated by 

Koza (1992). A number of problems were studied, including the modelling of 

polynomial systems, the discovery of trigonometric identities and econometric 

forecasting. Jiang and Wright (1992) described an equivalent approach that used a GA 

to evolve tree structured model expressions. The algorithm used a Levenberg-

Marquardt routine to optimise the values of the numerical constants appearing in each 

model expression. Iba et al. (1994) described a GP algorithm called STROGANOFF 

(STructured Representation On Genetic Algorithms for NOn-linear Function Fitting) 

that was designed specifically for solving non-linear regression problems. Unlike the 

simple mathematical functions employed by Koza’s algorithm, the functional nodes in 

STROGANOFF generated polynomial expansions of the inputs. The polynomial 

coefficients were then optimised using a regression algorithm. A possible drawback of 

this method is that the functional relationship is restricted and poor performance may 

result when the algorithm is applied to a wider range of problems.  

 

Since then, GP has been applied to steady-state and dynamic modelling problems in a 

range of research areas, including chemical engineering. For example, McKay et al. 

(1997) demonstrated how GP could be used to develop steady-state models of 

chemical processes including a vacuum distillation column and a system containing 

two CSTRs arranged in series. Other engineering applications of GP to steady-state 

modelling include fluid systems identification  (Watson and Parmee, 1996), the 

determination of heat flux correlations (Lee et al., 1997) and the evolution of 

hydrometallurgical system models (Greeff and Aldrich, 1998). An interesting 

approach involves the use of GP in combination with linear data analysis techniques. 

For example, Hiden (1998) demonstrated how GP could be used in conjunction with 

principal components analysis (PCA) and partial least squares (PLS) to generate 

steady-state models of non-linear processes. The rest of this chapter demonstrates how 
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GP can be used to evolve models of steady-state chemical processes. A modified form 

of the algorithm, known as the multiple basis function (MBF) GP algorithm 

(Hinchliffe et al., 1996, Hiden, 1998) is described and its performance compared to a 

more ‘standard’ algorithm.  

 

3.2 Standard GP algorithm details 

 

Symbolic regression involves the use of GP to develop a model by simultaneously 

evolving a functional relationship and the associated numerical parameters. In this 

work, the aim is to use GP to generate steady-state models of the form, 

 
),(ˆ Θ= ϕgy  3-1 

 

Where y�  is the estimated output, g is a non-linear function, ϕ are the regressors (in 

this case, the process inputs u1, u2,…, un) and Θ are the model parameters. The 

functional form of the approximation, g, can be generated using a GP algorithm 

provided with the appropriate terminal and functional sets. In this chapter, the 

function set (F) contains the standard mathematical operators - plus, minus, divide, 

multiply, power (‘^’), square root (‘SQRT’), square (‘SQR’), natural logarithm 

(‘LOG’) and exponential (‘EXP’), 

 
F = {+,-,/,*,^,SQRT,SQR,LOG,EXP} 3-2 

 

The function set is restricted to basic mathematical operators but can be extended if 

model performance is inadequate. Possible additions include Koza’s automatically 

defined functions (Koza, 1994) and functions borrowed from other modelling 

techniques such as the hyperbolic tangent found in feedforward neural networks. The 

terminal set contains the process inputs and randomly generated numerical constants. 

 
} , ,..., ,{ 21 ℜ= nuuuT  3-3 

 

The floating-point random constants (ℜ) were generated uniformly in the range [-10 

10]. Even with the inclusion of random constants, a weakness of GP is its inability to 

evolve numerical parameters efficiently. This is because the majority of the constants 
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are generated during the creation of the initial population with only a small amount of 

new constants being produced during evolution by the mutation operator. Although 

the application of genetic operators on this initial set of constants can theoretically 

enable the algorithm to evolve any numerical value, the process is extremely 

inefficient. 

 

In order to overcome this problem and maximise the performance of the evolved 

model structures, an optimisation routine was used to fit the numerical constants 

present in each model. A study of the literature reveals that a number of optimisation 

techniques have been used in conjunction with GP to achieve this aim. Gray et al. 

(1998) suggest that gradient-based techniques are unsuitable as they lack the 

robustness required to deal with the wide range of model structures produced by GP. 

As a result, the authors use a combination of simulated annealing (SA) and the 

simplex method. Cao et al. (1999) described an algorithm called HEMA (hybrid 

evolutionary modelling algorithm) that used a GA to carry out constant optimisation. 

Although there are benefits to be gained by using a GA, the main disadvantage is the 

high computational cost of applying the algorithm to every population member. The 

authors do not cite this as a factor in their work, but it is likely that a combined 

GA/GP approach would increase solution times unacceptably. A much simpler 

method is to use a special mutation operator to adjust the constant values. Evett and 

Fernandez (1998) claim that this technique is easy to implement and can improve the 

ability of GP to evolve numerical constants without significantly increasing 

computational requirements. 

 

Bettenhausen, et al. (1995) argue that any conventional optimisation procedure is 

valid, and use a gradient descent algorithm to determine constant values. In this work, 

the Levenberg-Marquardt (L-M) non-linear least squares routine was used to optimise 

the parameter values present in each population member. The L-M algorithm (see 

appendix) is a commonly used non-linear optimisation routine and has been used in 

conjunction with GP for other modelling applications (for example, Jiang and Wright, 

1992, McKay et al., 1997). Hiden (1998) used a number of systems to demonstrate 

how a GP algorithm using L-M optimisation was able to generate models that gave 

more accurate predictions than those evolved without using parameter optimisation. 
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The important features and settings of the standard GP algorithm are summarised in 

Table 3-1. The algorithms developed in this thesis were all implemented using the 

MATLAB programming language. Although this means that execution times may be 

longer than would be achieved using languages such as C or FORTRAN, MATLAB’s 

range of built-in mathematical and graphical functions lead to a significant reduction 

in algorithm development time. The population members were stored and 

manipulated in the form of variable length character strings. In order to prevent 

individuals from occupying excessive computational resources, a hard constraint of 

500 characters was placed on the length of the models strings. Justification for the 

choice of selection method and the probabilities of mutation and crossover were given 

in section 2.3.5. From here on, this algorithm will be referred to as the ‘standard GP’ 

algorithm. 

 

Table 3-1 – Summary of algorithm settings and parameters 

Function set +, -, /, *, ^, SQRT, SQR, LOG, EXP 

Terminal set Process inputs, nuu ,...1  scaled in range [0 1] 
ℜ generated uniformly in range [-10 10] 

Crossover probability (pc) 0.7 

Mutation probability (pm) 0.2 

Direct reproduction probability (pr) 0.1 

Generation gap 90% 

Parameter optimisation Levenberg-Marquardt 

Fitness measure RMS error 

Selection method Linear ranking 

Maximum tree size 500 characters 

 

The units used to measure process variables mean that recorded values can typically 

vary by several orders of magnitude. To prevent the search being biased towards one 

particular process variable, the input-output data was scaled in the range [0 1]. It is 

important to note that all of the RMS error values quoted throughout this thesis are 

calculated on the scaled data. 
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3.3 Multiple Basis Function GP Algorithm 

 

The GP algorithm described in the previous section was restricted to the development 

of models consisting of a single tree structure. However, some of the more established 

system identification methods use models constructed from a number of functions 

which combine to produce the overall model output. The non-linear function in 

equation 3-1 can be represented as a series of separate functions, often referred to as 

basis functions, 
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Where m is the number of basis functions, gi represents the individual functions and θi 

the model parameters. Ljung (1999) shows how this expansion can be used to 

represent and analyse virtually any non-linear modelling technique. Examples include 

Fourier series, wavelets and the single-layer feedforward neural network. Most well 

known non-linear black-box modelling techniques use multiple instances of the same 

basis function. Ljung refers to this as the mother basis function, an obvious example 

being the feedforward neural network, which uses a number of log-sigmoid or 

hyperbolic tangent functions. Another network architecture commonly used for 

modelling purposes is the radial basis function (RBF) network (Chen et al., 1990a), 

which uses Gaussian basis functions. Although the modelling capabilities of such 

techniques have been proven over a wide range of problems, a possible weakness is 

that they are restricted to using a particular type of basis function. A potential 

advantage of GP is its ability to evolve different types of basis functions and combine 

them to form novel model architectures. Another disadvantage of existing techniques 

is that the overall model structure (for example the network architecture) is fixed 

before the parameter optimisation stage takes place. If the resulting model does not 

provide an accurate solution, more candidate structures will have to be evaluated 

before a successful result is obtained. An attractive aspect of the GP algorithm is that 

the model structure is not fixed in this way as the number of basis functions can be 

varied during the evolutionary process. 
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The incorporation of the model structure outlined by equation 3-4 within a GP 

framework is similar to an approach proposed by Altenberg (1994), who suggested 

that the limitations of a fixed GA representation could be overcome by allowing the 

algorithm to increase the number of genes present in each population member. This 

‘multi-gene’ algorithm was able to expand the length of the genome in order to 

improve performance. Although these concepts were demonstrated using a GA, 

Altenberg mentions that a GP algorithm could be modified in a similar fashion. The 

standard GP algorithm described earlier can be easily modified to evolve models that 

are constructed from a number of separate functions, hopefully improving model 

performance by varying the number of functions as the algorithm run proceeds. 

Fröhlich and Hafner (1996) also described a GP algorithm that used population 

members made from linear combinations of separate basis functions. The algorithm 

used a simplex method to optimise the model parameters and was successfully applied 

to a number of function approximation problems. More recently, Raidl (1998) 

proposed a technique where standard GP trees are pre-processed in order to transform 

them into a linear model structure. The first stage of the transformation requires a 

search for the locations of the ‘+’ and ‘-’ nodes in each model tree. The positions of 

these nodes are then used to divide the parent tree into separate basis functions. The 

basis functions are then assigned weighting coefficients, which are optimised using a 

least-squares algorithm.  

 

The MBF-GP algorithm used in this work generates models of the following form, 
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Where U is a matrix of process inputs and θ0 is a bias or offset term. As the model 

structure given by equation 3-5 is linear in the parameters, the values of θ0,…,θm can 

be found using the method of least squares. The probabilistic nature of GP model 

generation may cause the standard least squares algorithm to suffer numerical 

problems due to ill-conditioning and/or linear correlations between basis functions. 

To overcome these difficulties, the Moore-Penrose pseudo-inverse (Press et al., 1992) 

based on the method of singular value decomposition (SVD), was used to carry out 

the least squares optimisation. The individual basis functions were generated using the 



Steady-state Modelling 

 31 

same function and terminal sets used by the standard GP algorithm. The number of 

basis functions used to construct the model expressions in the initial population was 

chosen in the range [1 10] using a uniform probability distribution.  

 

3.3.1 Modification of Genetic Operators 

 

Apart from crossover, which comprises two separate procedures, the MBF-GP 

algorithm uses the same genetic operators as the standard GP algorithm. The MBF-

GP algorithm uses modified crossover operators, referred to as high and low level 

crossover. This technique provides a mechanism for useful material to be exchanged 

in the form of entire basis functions or basis function subtrees. These operators will be 

described with reference to the following parent expressions, each constructed from 

three basis functions, 

 

Parent 1: 321 / uuu +  )exp(46.1 1u+ 13 )log( uu +  
 

Parent 2: 21 uu +  )log( 23 uu −  24/1 uu −  
 

An important aspect of the algorithm implementation is that the regression parameters 

(θ0,…,θm) are not stored explicitly. These values are calculated at the fitness 

evaluation stage and are not affected by the genetic operators. However, as the 

terminal set contains real numbers, numerical constants can appear inside basis 

functions. These constants are not optimised, but can be subjected to crossover or 

mutation. With low-level crossover, crossover takes place between basis function 

subtrees in the conventional manner. Two possible offspring created from applying 

low-level crossover are as follows, 

 

Offspring 1: 32 )log( uu +  )exp(46.1 1u+  
13 )log( uu +  

 

Offspring 2: 21 uu +  213 / uuu −  24/1 uu −  
 

Where the ‘u1/u2’ subtree from the first basis function of parent 1 has been exchanged 

with the ‘log(u2)’ term in the second basis function of parent 2. High-level crossover 
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involves the transfer of complete basis functions between parents. For example, using 

the same parent models as before, 

 

Parent 1: 321 / uuu +  )exp(46.1 1u+  
13 )log( uu +  

 

Parent 2: 21 uu +  )log( 23 uu −  24/1 uu −  
 

Two crossover points (indicated by dashed lines) are selected using a uniform 

probability distribution, 

 

Parent 1: 321 / uuu +  )exp(46.1 1u+  
13 )log( uu +  

 

Parent 2: 21 uu +  )log( 23 uu −  24/1 uu −  
 

Basis functions are then exchanged, producing the following offspring, 

 

Offspring 1: 321 / uuu +  )exp(46.1 1u+  )log( 23 uu − 24/1 uu −  
 

Offspring 2: 21 uu +  13 )log( uu +   
 

In this example, the third basis function in parent 1 has been exchanged with the 

second and third basis functions in parent 2. The resulting offspring now have 

different numbers of basis functions, demonstrating how this mechanism enables the 

algorithm to adjust the number of basis functions during model evolution. This is 

beneficial as the number of basis functions is not restricted to a pre-specified value 

and the algorithm can explore more complex model structures if required. 

 

Hiden (1998) described a MBF-GP algorithm and demonstrated how the technique 

was often able to generate models that gave more accurate predictions than a standard 

GP algorithm. The high-level crossover operator described by Hiden only allows 

single basis functions to be transferred between population members. In addition, the 

algorithm used a fixed number of basis functions to build the models in the initial 

population, with a modified mutation operator being responsible for increasing or 

decreasing the number of basis functions during evolution. The approach used here is 
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more flexible as the high-level crossover operator allows greater increases in model 

size to occur. The MBF-GP algorithm uses the same crossover probability as the 

standard algorithm, divided equally between the high and low-level variants.  

 

3.4 Comparison of results 

 

The first part of this section outlines the techniques used to compare the performance 

of the standard and MBF-GP algorithms. The algorithms are then compared using 

three case studies. The first case study uses data generated by a simple test function. 

The other two case studies are based on process engineering systems - a vacuum 

distillation column and an industrial cooking extruder. The input-output data and 

linear models for each case study are contained in the appendix. 

 

3.4.1 Analysis Procedure 

 

The stochastic nature of GP means that results will vary from one run to the next. As a 

result, multiple runs must be performed in order to give a more accurate indication of 

the performance of each algorithm. In this work, sets of twenty algorithm runs were 

carried out for each of the systems studied. Although a greater number of runs may 

add greater statistical significance to the results, run time is also a consideration for 

evolutionary algorithms such as GP and it was thought that this number provided a 

reasonable compromise.  

 

Before the sets of runs can be compared, the ‘best’ model from each run must be 

selected. Since we are interested in developing models that have the ability to 

generalise (fit unseen data well), an additional set of data points was used for model 

validation. However, models with a high level of performance on the validation data 

set may not necessarily meet the same standard on the training data. Also, models that 

fit the training data accurately may perform unacceptably on the validation data due to 

over-training. As a result, a compromise was found by using the sum of the RMS 

values over both data sets to determine the best model from each run. This model will 

not necessarily be taken from the final generation, as over-training may mean that 



Steady-state Modelling 

 34 

these models perform poorly on the validation data. This means that the training and 

validation RMS errors for the whole population from every generation must be 

considered when choosing the best model. Once the RMS values for the best models 

have been collected, their distributions can be compared for different algorithms using 

histograms. This allows for a more detailed comparison than can be made by merely 

comparing statistics such as the mean, minimum and maximum error values. The 

validation errors for the set of ‘best’ models were used to construct the histograms in 

order to emphasise the models’ ability to generalise.  

 

Since the error distributions obtained from each set of runs may be different and not 

normally distributed, a non-parametric statistical test was used to compare results. In 

this work the Kolmogorov-Smirnov (K-S) test was use to determine whether two 

distributions of prediction errors were significantly different. Fonseca and Fleming 

(1996b) and Hiden (1998) have previously used this technique to make comparisons 

between different GA, GP and neural network algorithms. An advantage of this 

approach is that no assumptions have to be made about the distributions being 

compared (for example, that the distributions are normal). The K-S test is described in 

more detail below. 

 

The K-S test can be formulated as a one or two-sided test. The test compares the 

cumulative probability distributions (F1 and F2) of two samples of an independent 

variable, x. The null hypothesis, H0, is that the two samples are drawn from the same 

parent distribution. This hypothesis is tested and rejected in favour of the alternative 

hypothesis H1 (the distributions are drawn from different population distributions), 

i.e., 

 

Null hypothesis: ( ) ( )xFxFH 210 : =  for all x 

Alternative hypothesis: )()(: 211 xFxFH ≠  for some x 

 
The first stage of the test requires the samples to be pooled to form a single array and 

then sorted so that the empirical distribution function, S(x) can be calculated for each 

sample, 
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S1(x) = (number of observations in sample one that are less than or equal to x)/m 

S2(x) = (number of observations in sample two that are less than or equal to x)/n 

 

Where m and n are the sample sizes. If the population distributions are the same, 

corresponding values of the empirical distribution functions should agree reasonably 

well and the differences between S1 and S2 should be small. The K-S test statistic is 

defined as the maximum value, for all values of x, of the absolute values of the 

difference between S1(x) and S2(x), 

 
)()(max 21 xSxSD −=  3-6 

 
The corresponding P-value can then be found from tables that match the product mnD 

to a range of confidence limits  (Gibbons, 1985). A one-sided K-S test can be used in 

order to detect a directional shift between two samples. The null hypothesis is the 

same, i.e. that the distributions are taken from the same population distribution. There 

are two alternative hypotheses to detect shifts in different directions, 

 
Null hypothesis: ( ) ( )xFxFH 210 : =   for all x 

)()(: 211 xFxFH >+   

or for some x 

Alternative hypotheses: 

)()(: 211 xFxFH <−   

 

The one-sided K-S tests statistics are then defined as follows: 

 

[ ](x)S(x)SD 21max −=+  3-7 

[ ](x)S(x)SD 12max −=−  3-8 

 

As with the two-sided test, tables are available that compare values for mnD+/mnD- at 

a selection of confidence intervals. 

 

Another important aspect of algorithm performance is the computational cost required 

to generate an acceptable solution. One method that can be used to compare the 

efficiency of GP algorithms is to construct performance curves (Koza, 1992). This 



Steady-state Modelling 

 36 

technique was used by Hinchliffe et al. (1996) to demonstrate how a MBF-GP 

algorithm was able to develop models of the same accuracy as a standard GP 

algorithm by processing fewer individuals. The main disadvantage of using 

performance curves is that an RMS error tolerance must be specified in order to 

define the prediction accuracy that corresponds to a ‘successful’ solution. Different 

tolerance values may produce vastly different performance curves, making it difficult 

to compare algorithms objectively. Also, the technique is designed to measure GP 

algorithm performance and is not suitable for comparing GP with other algorithms 

(such as neural networks).  

 

An alternative measure of computational effort is the number of floating-point 

operations (FLOPs) that have been performed. Operations such as addition, 

subtraction and simple function evaluations (e.g. logarithm) each represent a single 

FLOP. The MATLAB programming environment conveniently provides a means of 

estimating the number of FLOPs performed during an algorithm run. The MBF-GP 

and standard GP algorithms can therefore be compared using plots of the estimated 

number of FLOPs against the prediction error achieved. This technique will provide a 

fairer comparison than can be achieved by simply counting the number of individuals 

processed, as longer GP strings will register more FLOPs in keeping with their longer 

execution time. In addition, this metric is machine-independent, unlike measures such 

as the time taken for an algorithm run. The remainder of this section uses the 

techniques described above to compare the MBF and standard GP algorithms using 

three case studies. 

 

3.4.2 Test system 

 

The following non-linear test system was used to assess the performance of the two 

GP algorithms when applied to steady-state model development, 

 

1
3
2

5
1 2 uuuy +−=  3-9 

 

Three input vectors (u1, u2, u3) consisting of 200 data points were generated as 

uniformly random numbers in the range [0 1]. Equation 3-9 is similar to the 
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polynomial systems used by Koza (1992) to demonstrate the application of GP to 

symbolic regression problems. However, this system has more in common with a real 

process, as there are multiple inputs, with only two out of the three inputs having an 

influence on the process output. This case study will provide a demonstration of the 

algorithm’s ability to correctly select the relevant inputs from those provided in the 

terminal set. Twenty runs of the MBF and standard GP algorithms were performed 

with a population size of 25 for 25 generations. A set of 100 data points was used for 

training purposes, with the remaining 100 samples being used for model validation. 

 

A summary of the validation RMS errors from each set of runs is shown in Table 3-2 

and Figure 3-1. The results show that the models generated by the MBF-GP algorithm 

are significantly more accurate than the standard GP algorithm. A one-sided K-S test 

performed at the 95% confidence level supports this conclusion.  

 

Table 3-2 - Comparison of validation RMS values for test system 

 Minimum Mean Maximum 

MBF-GP 4.86×10-5 0.0037 0.0247 

Standard GP 0.0159 0.0773 0.1441 

 

The difference is highlighted by Figure 3-1 which shows that all but one of the MBF-

GP runs have generated models with validation RMS values lower than the best result 

obtained by the standard algorithm. The histograms also show how the MBF-GP 

algorithm has produced a much narrower error distribution than the standard 

algorithm. The model with the lowest validation RMS error evolved by the standard 

GP algorithm is shown below. 

2
2
2

2
1

22
2

1

2982.0769.0)08113.06772.0                      

)6826.04652.0(08113.0)773.11396.0(08113.0(ˆ

uuu

uuuy

+−−−

−−−=
 3-10 

Equation 3-10 contains no instances of the input u3, meaning that the algorithm has 

managed to successfully select the inputs required to develop an accurate prediction. 
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Figure 3-1 - Validation RMS distributions for test system 

 

Table 3-3 shows the model with the best performance on the validation data evolved 

by the MBF-GP algorithm. The model has been displayed as a set of separate basis 

functions in order to give an idea of the size and form of the models developed using 

this algorithm. The individual basis functions have been simplified. 

 

Table 3-3 – MBF-GP model with lowest validation RMS (test system) 

Basis Function Parameter 

12 uu −  1.615 
)1exp(

1 395.1 uu +  2.510 
23676.0 u  3.405 

6352.0)exp(127.1 2 +u  -0.9733 

2/2134.0 u  -3.024×10-6 

1u  -0.04260 
-0.2099 10.44 

4/1
1 )696.1( u+−  10.19 

)3404.0357.3exp( 2u−−  -558.4 
)2log( 1u  0.001652 

23848.0 u+−  -3.734 
2
33203.0 u  2.042×10-4 

31 918.3 uu −−  6.788×10-5 
2
13848.0 u−  -0.06439 

2
103878.0 u  1.978 

 Bias 4.224 
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The model is constructed from 15 relatively simple basis functions. This demonstrates 

how the algorithm is able to generate population members that have a greater number 

of basis functions than the maximum allowed in the initial population. Unlike 

equation 3-10, the model shown in Table 3-3 contains some u3 terminals (in basis 

functions 12 and 13). However, the model parameters associated with these terms are 

relatively small, which may indicate that they do not make a significant contribution 

towards the overall model prediction. Although it is beneficial for the algorithm to 

have the flexibility to adjust the number of basis function in each model, the MBF-GP 

model is rather complex in comparison to the actual system equation. 

 

3.4.3 Distillation Column 

 

This case study uses data obtained from a mechanistic model of a vacuum distillation 

column. The column is equipped with 48 trays, a steam-heated reboiler and a total 

condenser (see Figure 3-2). The control objective is to maintain the quality of the 

bottom product stream (xB). While composition analysers may be used to measure 

product quality, investment and maintenance costs often restrict their use. Thus, a 

reliable inferential estimator can provide a cheap alternative to direct measurement 

and allow tighter control of product composition. 

 

Feed

Reflux

Condenser

Distillate

Boil-up

Reboiler

Bottom Product

x12

x27

x42

D, xD

B, xB  

Figure 3-2- Vacuum distillation column 
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The column design specifications and operating data are summarised in McKay et al. 

(1997). Since the system is essentially binary, compositions can be estimated based on 

temperature and pressure measurements. Unfortunately, the necessary sensors are 

only installed on trays 12, 27 and 42 and reliable composition estimates from 

temperatures and pressures can only be obtained for these three trays. The objective of 

this exercise is to develop a model to infer the bottom product composition given the 

available measurements. The control system on the column ensures that it operates 

close to steady-state, allowing the dynamics between the tray and the product 

compositions to be neglected.  

 

Input-output data was generated from a mechanistic model of the column consisting 

of several hundred differential and algebraic equations (Gani et al. 1986). One 

hundred and fifty steady-state composition estimates from trays 12, 27 and 42 (x12, 

x27, x42) together with the corresponding values of xB were used for model 

development. An additional set of 50 data records was used for model validation. Due 

to the increased complexity of this system in comparison to the previous case study, 

the number of generations and population size were increased. Twenty runs of each 

algorithm were performed with a population size of 50 for 50 generations. The results 

are summarised in Table 3-4 and Figure 3-3. 

 

Table 3-4 - Comparison of validation RMS values (column data) 

 Minimum Mean Maximum 

MBF-GP 0.0166 0.0227 0.0341 

Standard GP 0.0231 0.0329 0.0503 

 

The results show that the MBF-GP algorithm has outperformed the standard GP 

algorithm on this system. The visible shift between the distributions is supported by a 

one sided K-S test at the 95% confidence level. As before, the errors achieved by the 

standard algorithm cover a wider range of values. However, the difference between 

the error distributions is not as exaggerated as in the previous example. 
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Figure 3-3 - Validation RMS distributions for distillation column data 

 

The MBF model that produced the lowest RMS error on the validation data is shown 

in Table 3-5. Again, the model is rather complex, containing thirteen basis functions. 

 

Table 3-5 – MBF-GP model with lowest validation RMS  

Basis function Parameter value 

)440.102915.0log( 27
12 +− xx  0.1725 

2
27

12
xx  6.335 

4227 xx +  0.5648 
27

27
xx  0.8651 

5596.0/1799.0/ 1212
2
4242 −+− xxxx  -0.2511 

2
27

42
xx  1.502 

5596.0/)2932.0)981.8(( 271242 −+− xxx  -1.441×10-4 

274227 xxx −  4.443 
5596.02

12
27)( −xx  -0.1361 

422742 )log(/)log( xxx  1.798 
)log(411.3 42x−  0.04516 

548.4
12

1466.0
12 xx +−  0.02381 

27
42
xx  -3.243 

 Bias -6.010 
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Figure 3-4 – Bottom product prediction (MBF-GP) 

 

 

Figure 3-5 – Bottom product prediction (Standard GP) 

The standard GP model that gave the best prediction for bottom product composition 

on the validation data is shown below in simplified form, 

 

))199.2)643.5(/()434.1/()  

045.1)234.1(/()388.0/()562.1log((/132.0

124242422742

124242271227

−+−−−−
−+−+−=

xxxxxx

xxxxxxxB  3-11 

 

Figure 3-4 and Figure 3-5 compare the predictions obtained by the most accurate 

MBF and standard GP models. 
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Figure 3-6 compares the mean validation RMS errors achieved by the standard and 

MBF-GP algorithms for a given number of FLOPs. The error bars indicate +/- one 

standard deviation from the mean.  
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Figure 3-6 – Comparison of computational effort (distillation column) 

 

It can be seen how the standard GP algorithm requires a greater amount of 

computational effort to achieve a given validation RMS error. In addition, the 

standard deviation error bars indicate that there is a more variation in the accuracy of 

fit achieved by the standard algorithm. The standard deviations are greater towards 

the beginning of the algorithm run in both cases. This would be anticipated as the 

initial population is made from a set of randomly generated model expressions. 

 

 

3.4.4 Cooking Extruder 

 

Cooking extruders have become increasingly popular in the process industry as they 

provide an efficient means of processing a wide range of foodstuffs. Extrusion 

provides a more cost efficient alternative to traditional cooking methods due to the 

high throughput and energy efficiency of the process. One drawback is that current 

knowledge of cooking extruder behaviour is largely reliant on empirical correlations 

and operator experience. Sensitivity to different screw and die geometries, fluid 

properties and complex flow patterns all combine to ensure that mechanistic models 
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are difficult to develop. The objective of this study is to develop a model that can be 

used to infer the degree of gelatinisation (g) of the extruded product. Gelatinisation is 

an irreversible process that takes place when starch is heated to a sufficiently high 

temperature to destroy the crystalline structure of the granules. An accurate model for 

the degree of gelatinsation would provide a measure of the quality of the extruded 

starch. 

 

A typical extruder consists of a barrel, inside which one or more helical screws rotate 

to convey the feed material towards a die at one end, as illustrated in Figure 3-7. The 

section nearest the feed point is referred to as the solids conveying zone, where the 

screw channels are only partially filled and there is no pressure build-up. At some 

point along the extruder, the channels become completely filled and the temperature 

and pressure increase considerably as a result of viscous heat dissipation and material 

transport. This section is referred to as the melt zone. Heating or cooling sections 

along the barrel may provide additional temperature control. 

 

 
 
 

Screw 
Speed,  ω 

Barrel Temperature, Tb 

Die 
Temperature, Td 

Melt 
Zone 

Solids Conveying Zone 

Feed 
Temperature, Tf 
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Figure 3-7 – A typical cooking extruder 

 

The input-output data used in this study was generated using a mechanistic model of 

an industrial cooking extruder. The model is based on the steady-state cooking 

extruder model proposed by Kulshreshtha (1991) with a number of modifications and 

extensions made by Elsey et al., (1997). The inputs available for model development 

were screw speed (ω), feed rate (Qf), feed moisture content (Mf) and feed temperature 

(Tf). One hundred steady state records of these values along with the corresponding 

values of g were used for model development. A second set of 100 data records was 
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used for model validation. The standard and MBF-GP algorithms were run twenty 

times with a population of 100 individuals for 100 generations. Table 3-6 and Figure 

3-8 compare the validation RMS errors for the best models from each run. 

 

Table 3-6 - Comparison of validation RMS values (extruder data) 

 Minimum Mean Maximum 

MBF-GP 0.0344 0.0462 0.0645 

Standard GP 0.0195 0.0418 0.0762 

 

In this case study, the most accurate model prediction on the validation data was 

generated using the standard GP algorithm. Figure 3-8 shows that the standard GP 

algorithm does not perform as consistently as the MBF-GP algorithm, producing a 

wider distribution of error values. Although there is an apparent dissimilarity between 

the error distributions, a two-sided K-S test (at the 95% confidence level) does not 

indicate that the difference is significant. 

 

 
Figure 3-8 –Validation RMS distributions for extruder data 
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The standard GP model with the best performance on the validation data is shown 

below in simplified form, 

 

)))()2480.0(1365.0()  
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 3-12 

 

The MBF-GP model with the lowest validation RMS error is shown in Table 3-2. The 

model is constructed from fifteen basis functions. Significantly, there are no instances 

of Tf in either model, indicating that the feed temperature is not required to develop an 

accurate prediction for the degree of starch gelatinsation.  

 

Table 3-7 - MBF-GP model with best performace on extruder data 

Basis Function Parameter Value 
)/log( ff MM ωω +−   0.05689 

fM  0.3737 

ω−160.6  0.5055 

( )1exp +ωω fM  2.118 
ω

fM  1.030 

ff MQ −  1.278 

fM/ω  0.005855 

ω−fQ  -1.374 
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( )151.0506.0 +fM  -2.741 
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M
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A similarity between the MBF and standard GP models is that both structures are 

complex and difficult to interpret. Although the models give accurate predictions, 

they do not provide any additional insight into the underlying physical process (apart 

from the exclusion of Tf). The predictions generated using these models are compared 

in Figure 3-9 and Figure 3-10. 

 

  

Figure 3-9 - Prediction for degree of gelatinisation (MBF-GP) 

 

 

Figure 3-10 – Prediction for degree of gelatinisation (Standard GP) 

 

Figure 3-11 shows that, as in the previous example, the standard GP algorithm 

requires a greater number of FLOPs in order to achieve a given validation RMS error. 

The difference is greater towards the beginning of the algorithm runs with the 
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standard GP algorithm performing approximately one hundred times more FLOPs 

than the MBF-GP algorithm.  
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Figure 3-11 – Comparison of computational effort (extruder data) 

 

The difference between the algorithms gradually decreases as the validation RMS 

error reduces. However, the computational effort is still an order of magnitude higher 

for the standard GP algorithm when the lowest RMS values are achieved. As was 

observed in the previous case study, shorter error bars emphasise the greater 

consistency achieved by the MBF-GP algorithm. 

 

3.5 Conclusions 

 

The results presented in this chapter have demonstrated the ability of both GP 

algorithms to generate accurate steady-state process models. The difference in model 

accuracy was greatest for the test system, with the MBF-GP algorithm clearly 

outperforming the standard GP algorithm. However, the difference was less 

noticeable for the two process systems, with the standard GP algorithm generating the 

most accurate model on the extruder data. This could be because the algorithm uses a 

non-linear optimisation routine to fit all of the constants in each model string whereas 

the MBF-GP algorithm only optimises the parameters associated with each basis 

function. This may enhance the standard algorithm’s ability to evolve accurate models 
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of more complex processes. The MBF-GP algorithm is at a disadvantage in the sense 

that it does not optimise constant values appearing inside basis functions, which could 

explain its tendency to construct models from a number of relatively parsimonious 

basis functions. In all three case studies, the MBF-GP algorithm produced narrower 

error distributions, indicating that it produces more consistent results than the standard 

algorithm. 

 

The greatest advantage of using the MBF-GP algorithm is that it requires substantially 

less computational effort to achieve the same model accuracy as the standard 

algorithm. The L-M optimisation routine performs a relatively large number of 

function evaluations in order to estimate the derivatives of the prediction error with 

respect to each model parameter. This becomes particularly significant during the 

latter stages of an algorithm run when the population contains complex model strings 

that have a large number of numerical parameters. The least squares routine used by 

the MBF-GP algorithm does not have this burden and execution times are reduced 

considerably. This means that, although the standard algorithm was able to generate 

the most accurate prediction on the extruder data, MBF-GP algorithm performance 

could be improved by carrying out longer runs with larger populations and still 

require less computational effort. As mentioned earlier, a variety of optimisation 

techniques can be used in combination with GP, with each striking a different balance 

between computational complexity and the accuracy of the resulting model fit. An 

interesting approach would be to allow the GP algorithm to call upon an array of 

different optimisation methods. Each routine could be selected on a probabilistic 

basis, with more computationally expensive techniques having a lower chance of 

being employed.  

 

The functional form of the models developed by GP has been cited as an advantage 

by some researchers when compared to other ‘black-box’ techniques such as neural 

networks. For example, Lee et al. (1997) found that GP was able to evolve models 

that performed as well as neural networks and preferred the functional form of the GP 

solutions. Conversely, Greeff and Aldrich (1998) suggested that GP model structures 

were difficult to interpret and offered no significant advantage over other methods. 

The work carried out in this chapter seems to support this view, as the evolved 
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models, particularly in the case of the MBF-GP algorithm, were rather complex. 

Unfortunately, some of the features that are intended to improve the flexibility of the 

algorithm (for example, high-level crossover) may intensify this problem.  

 

It may be possible to simplify the MBF-GP models further, perhaps by discarding 

basis functions that do not contribute significantly towards the accuracy of the model. 

The remaining functions could then be combined to form a single expression that may 

yield to further simplification. A more attractive approach would be for the algorithm 

to account for model complexity during evolution, only allowing an increase in model 

size to take place if an improvement in prediction accuracy is observed. The issue of 

model parsimony will be tackled using a multi-objective GP algorithm in chapters 6 

and 7. The next chapter compares the MBF-GP algorithm with a more established 

data-based modelling technique - artificial neural networks. 
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4 Comparison of GP and Neural Networks 

 

4.1 Introduction 

 

The previous chapter demonstrated how GP could be used to develop accurate models 

of steady-state chemical processes. However, for GP to be considered as a serious 

alternative to more established data-based modelling techniques, the algorithm must 

be able to generate models of a similar accuracy without experiencing an excessive 

increase in computational requirements. This chapter examines this possibility by 

comparing the MBF-GP algorithm with artificial neural networks. An increase in low 

cost computing power combined with an abundance of process data has meant that the 

use of neural networks has increased rapidly over the last decade. Process engineering 

applications include fault diagnosis (Frank and Köppen-Seliger, 1997), process 

control (Turner et al., 1996) and modelling (Lennox, 1996). Neural networks provide 

a means of generating accurate data-based models whilst keeping development times 

to a minimum. Consequently, they provide a cost effective alternative to mechanistic 

modelling techniques and have been applied to a wide range of steady-state and 

dynamic modelling problems. Another benefit is that the generic nature of neural 

network models means that it is relatively straightforward to incorporate them into 

established model–based control schemes (Henson and Seborg, 1997). This is 

especially relevant to the chemical industry where non-linear control methods can 

help to improve product quality and reduce running costs. 

 

Previous studies (Willis et al., 1997 and Hiden, 1998) have suggested that GP is 

capable of competing with neural networks in terms of the prediction accuracy of the 

evolved models. However, such comparisons tend to place little or no emphasis on the 

computational requirements, thus making it is difficult to draw any conclusions 

regarding the practicality of GP. This study aims to address this issue by comparing 

the performance of the two techniques in terms of the computational cost as well as 

the prediction accuracy achieved. The commonest network architectures used for 

modelling purposes are radial basis function and feedforward neural networks, 
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otherwise known as multi-layer perceptrons. Although it may be possible to develop 

accurate models using either of these network architectures an assessment of both 

techniques is beyond the scope of this thesis. As a result, this work is restricted to the 

development of feedforward neural network models. The rest of this chapter 

introduces the fundamental concepts of feedforward neural networks and their 

application to steady-state modelling. Comparison is then made with GP using the 

case studies described in the previous chapter. Aspects of the neural network 

architectures and training methods used for dynamic modelling will be covered in the 

next chapter. 

 

4.2 Feedforward Artificial Neural Networks 

 

The feedforward neural network consists of a number of layers of simple processing 

nodes known as neurons. The output signal of each neuron is a function of the inputs 

to the neuron. These functions are referred to as activation or basis functions. While 

there is a range of possible linear and non-linear functions, the most common are the 

log-sigmoid and hyperbolic tangent functions, described by equations 4-1 and 4-2 

respectively. 

 

logsig( )x
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+ −

1
1
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tanh( )x
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x x= −
+

−
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Plots of these functions are shown in Figure 4-1. The output of each neuron is then 

passed to all of the neurons in the next network layer. Each of the connections in the 

network has an associated regression parameter, or weight, which modifies the 

strength of the signal that is passed along the connection to the next neuron. The 

adjustment of these parameters enables the network to produce the desired output 

value for a given set of inputs. 
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Log sigmoid Hyperbolic tangent  

Figure 4-1 Activation functions 

 

Figure 4-2 is a diagram of an artificial neuron, where u1,...,un are the n inputs, w1,...,wn 

are the weights, y is the output and f  is the activation function. An additional input 

provides a bias or offset and has an associated parameter, b. This term is analogous to 

the bias term used in linear regression problems and allows the activation functions to 

approximate a wider range of function types (Wray and Green, 1991). The summation 

function is sometimes referred to as the combination function of the neuron. Other 

types of networks, such as RBF networks use different types of combination function. 
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Figure 4-2 – An artificial neuron 

 

The output of the neuron is given by equation 4-3,  
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The outputs of each node in a network layer provide the inputs to each of the neurons 

in the next layer. Information flows through the network in only one direction, from 

the input to the output layer, hence the term feedforward network. The structure of a 

typical feedforward network containing a single hidden layer of neurons is shown in 

Figure 4-3. The input and output layers have linear activation functions, which means 

that they play no role in modelling any non-linearities associated with the input-output 

data. Although it is possible to use networks that have more than one hidden layer, the 

network architecture shown in Figure 4-3 has been successfully applied to a range of 

process engineering problems (for example, Willis et al., 1991, Turner et al., 1996 

and Lennox, 1996). 
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Figure 4-3 - The feedforward artificial neural network 

 

The process of modifying the network parameters to minimise the error between the 

actual and predicted process output is known as network training. There are a number 

of algorithms that can be used for this purpose, the most important of which are 

described in the next section.  
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4.3 Network Training  

 

The non-linear, highly interconnected structure of neural networks means that it is 

necessary to use some form of non-linear optimisation algorithm. During training, the 

goal is to find the values of the weights and biases that minimise the network 

prediction error, ε. The objective function usually takes the form of a quadratic error 

function, where the aim is to minimise the sum of the squared error between the 

predicted and actual values of the output, 
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Where Θ is a vector of network parameters, ϕ contains the input data samples and N 

is the number of data points. The method traditionally used for neural network 

training is known as back-propagation (Rumelhart et al., 1986) and is described in the 

next section.  

 

4.3.1 Back-Propagation 

 

Back-propagation is a steepest descent algorithm that makes use of analytical 

gradients of the error surface. The term ‘back-propagation’ comes from the fact that 

the derivation of the gradient equations begins at the output layer and propagates back 

through the network. Training proceeds by calculating the partial derivatives of the 

prediction error with respect to each of the network weights and biases. These values 

can then be used to take a step in the direction of the steepest gradient. The basic 

parameter update rule uses a step length proportional to the magnitude of the gradient 

and is given by, 

 
iii jα−Θ=Θ +1  4-5 

 

Where ΘΘΘΘi is a vector of network parameters at iteration i, ji is a vector containing the 

partial derivatives of the prediction error with respect to ΘΘΘΘi (the Jacobian), and α is 

the step length or learning-rate. In the most basic implementation of the back-
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propagation algorithm the learning rate remains constant, but in practice, faster 

convergence is achieved by changing the value from one iteration to the next. 

 

An additional term, known as momentum can be included in order to increase the 

speed of the search. This also enables the algorithm to pass smoothly over small 

undulations in the error surface, making it less likely to become trapped in local 

minima. The parameter update equation then becomes, 

 
)( 11 −+ Θ−Θ+−Θ=Θ iiiii ηαj  4-6 

 

Where η is the momentum term. Although back-propagation is easy to implement, a 

number of disadvantages must be addressed in order to achieve faster and more 

accurate solutions. For example, convergence can be extremely slow as the algorithm 

approaches a minimum point. In addition, since the algorithm always searches in the 

‘downhill’ direction, it has no way of avoiding local minima. Because of these 

deficiencies, numerous variations on the standard back-propagation algorithm have 

been suggested. Some of the most useful of these enhancements are discussed in the 

next section. 

 

4.3.2 Enhanced Back-Propagation 

 

It is common for gradient descent algorithms to vary their step length from one 

iteration to the next. This is usually achieved by performing a line minimisation in 

order to determine the size of the optimal step length in the direction of steepest 

gradient. This approach has been omitted from the back-propagation algorithm due to 

the high degree of computational effort that is required for the additional function 

evaluations. An alternative method is to use an adaptive learning rate. 

 

The basic back-propagation algorithm described above makes use of a constant 

learning rate, meaning that the step length is proportional to the gradient. This may 

lead to problems when there are large differences between the gradients of different 

parameter values. For example, if the learning rate is low and the gradient is very 

gentle, the algorithm may take a considerable length of time to reach the minimum. 
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Using a higher learning rate could solve this problem, but this could cause difficulties 

if other parameters have steep gradients. A high learning rate coupled with a steep 

gradient could make the algorithm take very large steps and continually step over the 

minimum. 

 

One solution is to use individual learning rates for each network parameter (Jacobs, 

1988). This approach leads to the following parameter update rule, 

 
)( 11 −+ Θ−Θ+−Θ=Θ iii

T
iii ηIj�  4-7 

 

Where ααααi is a vector of learning rates for each parameter at iteration i. This modified 

update rule enables the learning rate for each parameter to be adjusted independently. 

This is carried out using successive gradient values to determine whether an increase 

or decrease in learning rate would be beneficial. For example, if the gradient does not 

change sign from one iteration to the next, it can be assumed that the algorithm is 

making progress ‘downhill’ and an increase in learning rate may lead to faster 

convergence. However, if the sign of the gradient alternates between positive and 

negative values, it is likely that the algorithm is stepping over the minimum and a 

reduction in the learning rate is required. A simple learning rate update rule is given 

by, 

 
α α( ), , ,i j i j i jK+ =1  4-8 

 

Where αi,j is the learning rate for the parameter j at iteration i. An adaptive learning 

rate update rule can then be implemented by using the following heuristic for 

determining the value for Ki,j, 
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K i j, = 1     otherwise   
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Where K1 is a parameter that controls the increase of learning rate and K2 is a 

parameter used to decrease learning rate. Numerous methods have been proposed to 

improve the performance of the standard back-propagation algorithm. For example, 

Minai and Williams (1990) extended Jacobs’ work and suggested that individual 

momentum terms could be adapted in a similar way to the learning rate. The RPROP 

(resilient back-propagation, Riedmiller and Braun, 1993) and Quickprop (Fahlman, 

1989) algorithms are other examples of training methods intended to improve 

convergence times. 

 

4.3.3 Alternative training algorithms 

 

A number of optimisation algorithms have been developed in order to overcome some 

of the deficiencies of steepest descent algorithms such as back-propagation. One of 

these is the Levenberg-Marquardt (L-M) algorithm. Hagan and Menhaj (1994) first 

described how the algorithm could be used to train feedforward neural networks. A 

disadvantage of using the L-M algorithm is that it is more computationally expensive 

than the back-propagation algorithm. This factor becomes increasingly important 

when tackling problems that require complex network structures. However, for 

reasonable network sizes, this drawback may be offset by the greater efficiency that 

the algorithm has when compared to the basic steepest descent algorithm, with 

convergence usually being achieved in fewer iterations. Another advantage is that the 

algorithm has become a widely used method of non-linear optimisation meaning that 

the necessary software routines are widely available. The L-M algorithm is used to 

train the neural networks used for dynamic modelling in chapter 5. 

 

As mentioned previously, network training is essentially a parameter optimisation 

problem. This means that virtually any optimisation algorithm can potentially be used 

for network training. For example, the conjugate gradient algorithm is one alternative 

(Charalambous, 1992), and is not as computationally expensive as the L-M algorithm. 

A problem associated with all of the gradient-based methods discussed so far is their 

potential to become trapped in local minima. An approach intended to avoid this 

problem is the chemotaxis algorithm (Bremermann and Anderson, 1989). The 
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algorithm adjusts the network weights by perturbing them with random values taken 

from a Gaussian distribution. Weight changes that lead to an improvement in network 

performance are accepted and the process is repeated until the convergence criteria 

are satisfied. Another optimisation technique that avoids the use of gradient 

information is the GA. The GA does not necessarily have to be used as a simple 

parameter optimisation algorithm and can be used to simultaneously evolve the 

network architecture and weights (Schaffer et al., 1990). Some of the coding 

difficulties connected with this approach can be avoided by using a GP algorithm to 

evolve the network topology. For example, Esparcia-Alcázar and Sharman (1997) 

used a GP algorithm to evolve recurrent neural networks for signal processing. A 

major disadvantage of chemotaxis, GA and GP techniques is that they are more time 

consuming than gradient-based methods. 

 

4.3.4 Network Parameter Initialisation 

 

The choice of the initial values for the network parameters can strongly influence the 

performance of the final solution and the time required to train the network. The use 

of random parameter values helps to break the symmetry of the network and prevent 

the convergence to the same point in parameter space for every algorithm run. Care 

must also be taken to avoid activation function saturation, which occurs when a 

neuron’s output is forced to one of the flat regions of the log-sigmoid or hyperbolic 

tangent function. This is undesirable, as the associated gradient will be very close to 

zero, making it difficult for gradient-based training algorithms to optimise the 

parameters associated with that neuron. One solution is to choose small initial values 

for the network parameters. However, all of the network basis functions will be 

grouped closely around the ‘origin’ of the search space. This may result in 

unacceptably long training times as a large amount of shifting and resizing of the 

basis functions will be required. 

 

An alternative method of network initialisation, first proposed by Nguyen and 

Widrow (1990), ensures that the basis functions are initially spread more evenly over 

the input space. The principal behind this method is to suppose that each hidden layer 
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neuron can be considered responsible for approximating the output for a small range 

of output values, so that the network output is actually a piece-wise linear 

approximation of the desired output. The subject of weight initialisation is an 

important area of research as the correct choice of initial parameters can vastly 

improve training times. For example, Yam and Chow (2000) recently proposed a new 

weight initialisation scheme, claimed to greatly reduce the number of training 

iterations required. As a detailed evaluation of these techniques is beyond the scope of 

this thesis, the method of Nguyen and Widrow (N-W) was adopted. McKay (1997) 

demonstrated how this technique resulted in more accurate network predictions when 

compared to random weight initialisation. In addition, training times were improved, 

with fewer iterations being required to achieve a given prediction error. 

 

4.3.5 Network Parsimony and Generalisation 

 

When developing neural network models of chemical processes the ultimate aim is to 

produce models that provide accurate predictions on unseen data. This raises the 

problem of deciding when to stop the network training process. If training is carried 

out for too long, the network may model the training data very accurately but be too 

specialised to perform well on unseen data. This phenomenon is known as over-fitting 

and is more likely to occur for large networks. Networks with a large number of 

parameters are more likely to model characteristics of the data that are not 

representative of the underlying process (for example, process noise).  

 

One procedure that attempts to prevent over-fitting is known as early stopping (see 

for example, Sarle, 1995). The technique works by stopping training when the 

validation RMS error begins to increase. However, this approach is not valid for GP 

algorithms as they are constantly evolving new model structures. As a result, the 

validation RMS error may increase or decrease from one generation to the next and 

the best overall model may be produced at any stage of the algorithm run. This means 

that a different approach is required to find the best model generated by a GP 

algorithm. The same method must also be used to select the best neural network 

model, so that a fair comparison can be made between the two approaches. In the 
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previous chapter, models were chosen from GP algorithm runs based on the sum of 

the training and validation RMS values. Consequently, the sum of these values was 

calculated throughout network training, with the minimum value being used to 

designate the ‘best’ neural network result. 

 

An alternative technique designed to improve generalisation is referred to as weight 

elimination. This involves the removal of unnecessary network connections to reduce 

the effective number of network parameters. This is achieved by giving each network 

parameter the tendency to decay towards zero. The simplest way of implementing 

such a strategy is to modify the parameter update rule as follows  

 
iiwd Θ−=Θ )1(, ξ  4-10 

 

Where Θwd,i is a vector of modified network parameters and ξ, is a small value (for 

example, 0.001). The drawback of this method is that all parameters are penalised 

when the real aim is to drive small weights to zero. This problem can be overcome by 

making ξ a function of the network parameters, so that only small weights are 

affected (Weigend et al., 1991).  

 
A number of techniques have been proposed for reducing network complexity. Details 

of these methods, known as pruning algorithms, can be found in Reed (1993). 

Another method designed to improve network generalisation is weight decay, (Krogh 

and Hertz, 1992) which works by preventing very large weight values. As a detailed 

assessment of these techniques is beyond the scope of this thesis, the algorithm used 

in this study adopts the weight elimination scheme discussed earlier. 

 

 

4.4 Comparison of GP and Neural Networks on Steady-State Systems  

 

4.4.1 Experimental procedure 

 

The networks used in this study were restricted to a single hidden layer of neurons 

containing hyperbolic tangent activation functions. In order to determine the network 
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structure that gave the best performance on each data set, batches of twenty runs were 

performed with networks containing a variety of hidden layer neurons (3, 5, 7, 9, 11, 

13, 15). Training was carried out using an enhanced back-propagation algorithm with 

individual adaptive learning rates and weight elimination. Initial values for the 

network parameters were determined using the N-W method described in section 

4.3.4. Further details of this algorithm can be found in McKay (1997). Although there 

are a number of possibly more efficient training algorithms available, back-

propagation is an established technique and has been used quite recently by some 

researchers (for example, Doherty et al., 1997). McKay (1997) demonstrated how 

networks trained using this algorithm were able to achieve the same prediction 

accuracy as networks trained using the L-M algorithm but required less computational 

effort.  

 

The rest of this chapter uses the three case studies used in the previous chapter to 

compare the steady-state modelling performance of the neural network and GP 

algorithms. The comparison focuses on the MBF-GP algorithm due to the advantages 

that the algorithm has over the standard algorithm. Histograms are used to compare 

the validation RMS errors obtained using the algorithms and K-S tests are used to 

determine the significance of any observed differences. The computational 

complexity of each algorithm is also considered in order to determine whether GP 

provides a practical alternative to neural networks. 

 

4.4.2 Test System 

 

The results obtained using the different network architectures are summarised in 

Table 4-1. The results show how the validation errors decrease as the number of 

hidden layer neurons is increased to five neurons. Above this number, the errors begin 

to increase and the largest errors correspond to the most complex networks. This 

would be expected, as they are more likely to over-fit the training data and generalise 

poorly. As a result of these observations, the network with five hidden layer neurons 

was chosen for comparison with GP. Table 4-2 compares the performance of the 

neural network with the standard and MBF-GP algorithms. 
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Table 4-1 – Neural network validation RMS errors (test system) 

Hidden layer neurons Minimum Mean Maximum 

1 0.0740 0.0763 0.0769 

3 0.0019 0.0081 0.0582 

5 0.0013 0.0036 0.0084 

7 0.0017 0.0039 0.0071 

9 0.0017 0.0039 0.0071 

11 0.0023 0.0042 0.0088 

13 0.0023 0.0047 0.0089 

15 0.0019 0.0047 0.0074 

 

Table 4-2 - Comparison of validation RMS errors (test system) 

 Standard GP MBF-GP Neural Network 
(3-5-1) 

Minimum 0.0159 4.86x10-5 0.0013 

Mean 0.0773 0.0037 0.0036 

Maximum 0.1441 0.0247 0.0084 

 

Figure 4-4 compares the distributions of the validation RMS errors achieved using the 

neural network and MBF-GP algorithms, and shows that the GP algorithm generated 

the most accurate models for this system.  

 

 

Figure 4-4- Comparison of validation RMS distributions for test system 
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It is possible that the GP algorithm is at an advantage in this case as its function set 

contains the mathematical operators that make up the system equation, whereas the 

neural network must approximate the function using hyperbolic tangents. A 

shortcoming of the GP algorithm is that it generated a handful of models with 

relatively poor RMS errors. The neural network does not suffer from this problem and 

is the more consistent of the two algorithms. A two-sided K-S test performed at the 

95% confidence level indicates that the difference between the two distributions is 

significant.  

 

4.4.3 Distillation Column 

 

The network architectures used in the previous section were applied to the distillation 

column data. The performance of the various networks on the validation data is 

summarised in Table 4-3. 

 

Table 4-3 – Summary of neural network validation RMS errors (distillation column) 

Hidden layer neurons Minimum Mean Maximum 

1 0.0362 0.0775 0.1051 

3 0.0166 0.0463 0.0900 

5 0.0147 0.0318 0.0507 

7 0.0147 0.0302 0.0565 

9 0.0148 0.0291 0.0411 

11 0.0143 0.0285 0.0523 

13 0.0162 0.0292 0.0580 

15 0.0190 0.0293 0.0511 

 

The network containing eleven hidden layer neurons produced the lowest mean and 

minimum validation RMS. This distribution of validation RMS errors achieved using 

this network is compared to the distribution obtained by the MBF-GP algorithm in 

Figure 4-5. In this example, the GP algorithm has produced the narrower distribution, 

indicating that the algorithm’s performance is more consistent when applied to the 

validation data set. The neural network is less consistent but was able to develop the 

most accurate model overall. 
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Table 4-4 - Comparison of validation RMS errors (distillation column) 

 Standard GP MBF-GP Neural Network 
(3-11-1) 

Minimum 0.0231 0.0166 0.0143 

Mean 0.0329 0.0227 0.0285 

Maximum 0.0503 0.0341 0.0523 

 

A two-sided K-S test at the 95% confidence level verifies that the two error 

distributions are significantly different. 

 

 
Figure 4-5 - Validation RMS distributions for distillation column data 

 

The fixed architecture used by the neural network would perhaps be expected to 

produce a narrower error distribution than the GP algorithm, which explores a wide 

range of model structures. A possible explanation is that the neural network has a 

relatively large number of parameters, which means that the training algorithm is 

presented with a complex error surface. This will increase the number of local minima 

in which the training algorithm may become trapped. 
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Figure 4-6 – Comparison of computational effort for distillation column 

 

Figure 4-6 shows that the initial neural network prediction error is substantially higher 

than that of the GP algorithm. This could be due to the probabilistic manner in which 

the initial weights are chosen. Although the MBF-GP algorithm uses an initial 

population of randomly generated model structures, the model parameters are 

optimised in order to achieve the best possible prediction. This process is relatively 

economical in terms of computational effort and allows the algorithm to obtain a 

reasonably good fit early in the algorithm run. As the number of FLOPs increases, the 

neural network errors decrease more rapidly than the MBF-GP algorithm and the 

difference between the algorithms becomes less significant. The network has a 

relatively large number of parameters, which may explain why the GP algorithm can 

compete in terms of computational effort. It is also likely that the difference in 

algorithm performance is system dependent. The function set supplied to the GP 

algorithm may be suited to developing accurate models of this particular system, but 

may lead to inferior performance on other systems. 

 

4.4.4 Cooking Extruder 

 

The validation RMS error values obtained by various neural network architectures are 

summarised in Table 4-5. The network containing seven hidden layer neurons was 

selected for comparison with GP, as the mean validation RMS is the lowest for this 

network. 
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Table 4-5 – Summary of neural network validation RMS errors (cooking extruder) 

Hidden layer neurons Minimum Mean Maximum 

3 0.0177 0.0225 0.0273 

5 0.0119 0.0192 0.0278 

7 0.0128 0.0186 0.0275 

9 0.0128 0.0197 0.0263 

11 0.0168 0.0208 0.0280 

13 0.0153 0.0201 0.0245 

15 0.0157 0.0216 0.0302 

 

The neural network results were initially compared with a GP algorithm using a 

population size of 100 individuals run for 100 generations. The model errors are 

compared in Table 4-6 and Figure 4-7. The results show how the neural network 

produced predictions of a significantly higher accuracy than those evolved by the GP 

algorithm (this observation is supported by a one-sided K-S test at the 95% 

confidence level). Hiden (1998) reported similar results for this system, suggesting 

that a sigmoidal relationship in the data set meant that neural networks are ideally 

suited to modelling this system.  

 

Table 4-6 - Comparison of validation RMS values (cooking extruder) 

 Neural network 
(4-7-1) 

MBF-GP 
(M=100, G=100) 

MBF-GP 
(M=500, G=500) 

MBF-GP + tanh 
(M=500, G=500) 

Minimum 0.0128 0.0344 0.0192 0.0096 

Mean 0.0186 0.0462 0.0293 0.0239 

Maximum 0.0275 0.0645 0.0434 0.0359 

 

To discover if it was possible for the MBF-GP algorithm to achieve the same level of 

accuracy as the neural network, an additional set of twenty runs was performed with a 

population size of 500 individuals for 500 generations. To investigate whether the 

neural network’s use of hyperbolic tangent functions was a contributing factor, 

another set of runs was carried out with this function added to the GP algorithm’s 
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function set. The results of the additional runs are included in Table 4-6 and Figure 

4-7. 

 

Figure 4-7 shows how the validation RMS errors are reduced by increasing the 

population size and number of generations (a one-sided K-S test at the 95% 

confidence level indicates that the difference between the distributions is significant). 

Although the inclusion of the hyperbolic tangent function appears to have further 

improved model performance, a one-sided K-S test reveals that the improvement is 

only significant at the 90% confidence level. The resulting error distribution covers a 

wider range of values than the neural network distribution. The most accurate model 

was evolved by the GP algorithm, with a validation RMS of 0.0096 compared to 

0.0128 for the neural network. 

 
Figure 4-7 – Comparison of validation RMS distributions (extruder data) 

 

Although the MBF-GP algorithm was eventually able to match the performance of the 

neural network in terms of the prediction accuracy, the resulting increase in 

computational effort is extremely large.  
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Figure 4-8 – Comparison of computational effort required for extruder modelling 

 

Figure 4-8 demonstrates how the MBF-GP algorithm requires substantial increases in 

processing power to evolve models with progressively lower validation RMS values. 

When the lowest RMS errors are achieved, the computational cost of using the GP 

algorithm is more than two orders of magnitude higher than required for the neural 

network. 

 

4.5 Conclusions 

 

The work carried out in this chapter has shown that neither algorithm consistently 

outperformed the other, with the relative performance of the two techniques appearing 

to vary from one case study to the next. The GP algorithm was able to generate the 

most accurate models for the test system and had a slight advantage in terms of 

computational cost on the distillation column data. The neural network produced more 

compact error distributions for the test system and extruder case study, but was less 

consistent on the distillation column. The biggest difference was seen on the cooking 

extruder data, where a large increase in computational effort was required to enable 

GP to match the accuracy of the neural network models. 

 

It is difficult to make fair comparisons between the GP and neural network algorithms 

for a number of reasons. Firstly, the computational cost profiles only compare the 
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‘best’ neural network architecture with the MBF-GP algorithm. This does not account 

for the fact that batches of runs must be carried out in order to determine this 

architecture. This can be rather time consuming, as a range of network structures must 

be considered. Advocates of both techniques would argue that the efficiency of each 

algorithm could be improved. For example, algorithms such as L-M or conjugate 

gradients may reduce network training times in certain cases. GP algorithm 

performance could be enhanced by fine-tuning control parameters or using a different 

function set. The performance of both algorithms may have improved if redundant 

process variables had been omitted from the input data sets. Although the case studies 

suggest that GP is able to automatically select the relevant input variables, a more 

detailed study is required to fully assess how performance is affected by varying 

degrees of redundancy in the input data. 

 

It is also important to remember that FLOP counts are only an estimate of the 

computational burden. This is particularly relevant in the case of the GP algorithms, 

which store model expressions in the form of character strings. As string operations 

do not register as FLOPs, the counts do not measure the processing required to 

generate the initial populations of individuals or apply the crossover and mutation 

operators. Fortunately, these operations do not account for a significant proportion of 

the overall processing requirements. The most computationally expensive part of the 

algorithm is the fitness evaluation stage, which is responsible for more than 95% of 

the total processing time.  

 

The main conclusion to be drawn from this study is that the modifications made to the 

standard GP algorithm have resulted in a modelling technique that is more 

competitive with neural networks. In this respect, the results presented in this chapter 

provide sufficient motivation for continued research into the benefits of using GP as a 

model development tool. The next section builds on the work presented so far and 

describes how the standard and MBF-GP algorithms can be used to evolve models of 

dynamic systems. 
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5 Dynamic Modelling 

 

5.1 Introduction 

 

In chapter 3 it was demonstrated how GP can be used generate accurate steady-state 

models of chemical processes. It was shown how a MBF-GP algorithm could be used 

to develop steady-state models and comparison was made with a ‘standard’ GP 

algorithm. Although steady-state models are sometimes useful for solving process 

engineering problems, applications such as process simulation and control require a 

model that accurately describes the dynamic behaviour of the system. 

 

For steady state systems, the process output is uncorrelated with time and individual 

data records are independent of each other. This is not the case with a dynamic 

system, where the process output is related to previous values of the inputs and/or 

outputs. Consequently, the GP algorithm used for steady-state modelling cannot be 

applied to dynamic processes without alteration. This chapter describes how GP can 

be modified in order to evolve models of dynamic systems. It is shown how the MBF-

GP algorithm can be applied to dynamic model development and its performance 

compared with the standard GP algorithm. 

 

5.2 Modelling Process Dynamics using GP 

 

Although it is possible to model dynamic systems mechanistically, the process can be 

difficult and time consuming due to the large number of equations that may be 

required to describe the system. In addition, if some of the chemical or physical 

processes are poorly understood, the resulting model may be prone to inaccuracies. A 

possible solution is to use a GP algorithm to automatically generate and evolve the 

necessary differential and algebraic equations. This method was used by Gray et al. 

(1998) to evolve expressions that were incorporated into a set of ordinary differential 

equations (ODEs) representing the flow of water in a coupled tank system. The 

authors suggested that this approach may yield a more ‘meaningful physical model’ 



Dynamic Modelling 

 72 

than using a discrete time approximation. Similarly, Cao et al. (1999) used a GP 

algorithm to evolve sets of ODEs in order to model the kinetics of chemical reactions. 

The main disadvantage of this method is that a set of ODEs must be integrated in 

order to evaluate the fitness of each population member. This will be computationally 

expensive, especially for systems that require more than a couple of ODEs. It was 

shown in chapter 3 that, even for a simple test case, GP is unable to generate an exact 

representation of the underlying system. This is not unexpected, as GP evolves 

models probabilistically, meaning that the final solution is always likely to 

approximate the actual system. Although the GP derived model may give good 

predictions, its structural form may be relatively complex and difficult to interpret. It 

follows that it is unlikely that GP will be able to evolve ODEs that provide any insight 

into the underlying physical processes of a dynamic system. Consequently, there are 

no benefits to offset the potentially large computational cost of using GP within an 

ODE framework.  

 

A method often used by process engineers is to apply the Laplace operator (s) to 

represent the problem in the s-domain. This approach is convenient as ODEs in the 

time domain are transformed into linear equations in the s-domain. For example, a 

first order ODE is transformed into a first order transfer function. One of the simplest 

approaches used by process engineers is to use a first-order plus dead-time transfer 

function model. For a single input-single output (SISO) system, the estimated process 

output ( ŷ ) is given by, 
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Where, u is the input, s is the Laplace operator, pτ  is the process time constant, Kp is 

the process gain and td is a time delay term. McKay et al. (1996) described a 

technique for dynamic model development using a combination of first-order transfer 

functions and GP. The first step involved the fitting of a dynamic model of the form, 
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Where u1,…,un are the process inputs. The GP algorithm is then used to develop a 

model of the residuals produced by equation 5-2 instead of the original data. A 

disadvantage of this technique is that the dynamic characteristics of the process are 

fixed before the evolutionary stage of model development takes place. Another 

drawback is that the method assumes a first order relationship between the model 

input(s) and output. This assumption may be adequate for some applications, but it is 

unlikely to be suitable for a wider range of chemical process systems, which tend to 

be highly non-linear. The methodology does not include a means of compensating for 

process dead time, so any substantial time delays will have to be identified and 

removed from the data before the algorithm is applied. 

 

Hiden (1998) improved on this approach by using a MBF-GP algorithm to build 

models containing first order transfer functions.  This resulted in the following model 

form, 
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Where τi  is the time constant associated with the ith  basis function, a0,…,am are model 

parameters, g1,…,gm are basis functions determined by the GP algorithm and U is a 

matrix containing the inputs u1,…,un. The parameters a0,…,am were found using the 

method of least squares, while the values for the time constants, τi, were found by 

using a modified mutation operator. This approach has several advantages over that 

outlined by McKay et al. (1996). Firstly, the time constants are modified as the 

evolutionary process proceeds, instead of being fixed by a separate modelling step. In 

addition, the GP algorithm is now responsible for the development of the dynamic 

model terms. This means that the model can be constructed from non-linear 

expressions, giving it the potential to describe more complex systems. Finally, each 

basis function can be a function of more than one input enabling the model to account 

for interactions between process variables. Despite these improvements, Hiden’s 

approach still relies on the use of first order transfer functions and does not provide a 

method for time delay identification. If the aim is to develop an automated model 

building tool, the GP algorithm must be able to identify the relevant process time 

delays and higher order dynamics. 
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Gray et al. (1998) also used GP to develop transfer function models, extending the 

methodology to include higher order transfer functions and time delay terms. The 

models were represented in block diagram form using the SIMULINK (Checkoway 

and Kirk, 1992) toolbox for MATLAB.  In a similar approach, Bettenhausen et al. 

(1995) used a GP algorithm with a function set containing feedback loops and 

recursive nodes to build models of a biotechnology process, also in block diagram 

form. Although this approach proved successful in terms of model accuracy, a major 

disadvantage was that the procedure was computationally intensive, requiring a 

network of workstations to achieve a solution within an acceptable timeframe. This is 

also likely to be a problem with the method outlined by Gray et al. as a separate 

SIMULINK block diagram will have to be executed to calculate the fitness of every 

population member. 

 

An alternative method, used for modelling dynamic processes is to use a time series 

approach, where the output is modelled as a function of past values of the input(s) and 

output, 

 

),...,,...,,...,,,...,(ˆ ,1,,11,11 τττ −−−−−−= knknkkkkk uuuuyyfy  5-4 
 

Where k is the current time and τ is the maximum time shift. Introducing the back-

shift operator, q-1 (for example, q-1yk=yk-1), equation 5-4 may be written, 
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The function f can easily be developed using a GP algorithm with a terminal set 

containing lagged values of the input and output variables. The simplest form of the 

time series model is to predict the output based solely on past values of the input(s). 

This is sometimes referred to as the finite impulse response (FIR) model (Söderström 

and Stoica, 1989),  

 
),...,,...,,...,(ˆ ,1,,11,1 ττ −−−−= knknkkk uuuufy  5-6 

 

A disadvantage of this model form is that it may be necessary to use a large time 

history of process inputs to accurately capture the dynamic characteristics of the 



Dynamic Modelling 

 75 

process. This may be especially problematic when using a GP algorithm, as the 

terminal set would have to be very large. This would increase the likelihood of 

redundant information being present in the terminal set, leading to a degradation of 

algorithm performance. An increase in model parsimony can be achieved by using 

past output values of the process. A common linear example of equation 5-4 is the 

Auto-Regressive Moving Average with eXogenous inputs (ARMAX) model 

(Söderström and Stoica, 1989). For a SISO system, 
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Or in simplified form, 
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Where A, B, and C are polynomials in the back-shift operator and ek is a noise term, 
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a, b and c are sets of model parameters that must be determined and na, nb and nc are 

the maximum time-shifts for y, u and e respectively. In reality, the noise term is not 

measurable and is not available for model development. 

 

The non-linear form of this model is known as the polynomial NARMAX (Non-linear 

ARMAX) model (Chen and Billings, 1989) and consists of polynomials made from 

linear and non-linear combinations of past values of y, u and e. The polynomial 

NARMAX model may be written as follows. 
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Where ai are the model parameters, n is the sum of the maximum number of lags for 

y, u and e, xi are the lagged terms in y, u and e, and l is the degree of the polynomial. 
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If no terms containing e are used, the model becomes a NARX (Non-linear Auto-

Regressive with eXongenous inputs) model. For example, for a SISO system, a 

NARX model limited to a second order polynomial and a single process lag for the 

input and output is as follows, 
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Although this model structure has been used in a number of practical applications, one 

of the difficulties associated with NARMAX model development is that the number 

of possible model structures can be very large. This will be especially true for non-

linear chemical processes that may have multiple inputs and require higher order 

polynomials with a large time history of input(s) and outputs. It will be difficult to 

select the appropriate terms from all of the possible combinations described by 

equation 5-9 as there may be hundreds or even thousands of candidate models from 

which to choose.  

 

This problem can be addressed by applying techniques such as forward and backward 

regression, which allow model terms to be added or removed systematically. In 

forward regression, (Draper and Smith, 1981) model terms are added one at a time, 

based on their degree of correlation with the process output. This method does not 

account for the fact that newly added model terms may render some of the existing 

terms unnecessary. Consequently, the resulting model will not necessarily provide the 

most parsimonious solution to the problem. Backward regression (Smillie, 1966, 

Draper and Smith, 1981) initially estimates the parameters for a model containing all 

of the possible model terms. Terms are then removed and the parameters are re-

estimated in order to eliminate unnecessary terms. One of the problems of this 

approach is that the initial parameter estimates for the model containing all of the 

possible terms may be ill-conditioned and produce inaccurate estimates. More 

efficient methods have been proposed for NARMAX model development, for 

example, Billings and Voon (1986a) described a stepwise regression algorithm, which 

uses a combination of forward and backward regression methods. More recently, Mao 

and Billings (1997) developed the minimal model structure detection (MMSD) 
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algorithm, which uses a GA to determine the order in which terms are added to the 

overall model.  

 

An alternative to these methods is to use a GP algorithm to determine the necessary 

combinations of inputs, outputs and process lags. GP has been used to develop time 

series models in a number of research areas. Applications include the prediction of 

financial markets (Chen and Yeh, 1997, Kaboudan, 1999), sunspot prediction (Jaske, 

1996), modelling of hydrological systems (Babovic, 1998) and the identification of 

chaotic time systems (Howard and Oakley, 1995). Rodríguez-Vázquez and Fleming 

(1998) applied GP to the development of NARMAX models for gas turbine engine 

identification. More recently, Kulkarni et al. (1999) used GP to develop ARX models 

of industrial processes including a CSTR and a heat exchanger. This form of model 

structure is attractive in terms of its implementation within a GP framework, as few 

modifications have to be made to the steady-state algorithm. In addition, solution 

times should be more manageable than those achieved using methods based on block-

diagram representations or that require sets of differential equations to be solved. The 

next section outlines the modifications that must be made to the standard GP 

algorithm to allow the development of models of this form. 

 

5.3 Dynamic GP Algorithm Details 

 

The standard GP algorithm is almost identical to the algorithm used for steady-state 

model development in chapter 3. The main difference is that modified terminal and 

function sets must be used to allow the algorithm to generate models in time series 

form. The method used to represent this type of model structure is outlined in the next 

section. 

 

5.3.1 Dynamic Model Representation 

 

In order to develop models that can be used for long-term prediction, we must assume 

that the actual process output values ),...,( 1 τ−− kk yy  are unknown and cannot be used 
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as model inputs. The predicted output values )ˆ,...,ˆ( 1 τ−− kk yy  generated by the model 

must therefore be used instead. The general model form given by equation 5-5 then 

becomes, 

 
),,...,,ˆ(ˆ 1

,,1
−= quuyfy knkkk  5-11 

 

This form of prediction is sometimes referred to as ‘pure’ prediction (Henson and 

Seborg, 1997) as the method only requires the process inputs in order to predict the 

output over the entire data set. This is especially important if the model is to be used 

for carrying out process simulations, as the output must be assumed unknown. In 

addition, if GP is to be developed into a useful dynamic modelling tool it must be able 

to produce models that have the same level of performance and range of application 

as existing artificial intelligence techniques. Since established techniques such as 

globally and locally recurrent artificial neural networks are able to generate long-term 

predictions, it follows that it would be more appropriate to apply GP to the same 

problem. The simplest way to enable GP to construct dynamic models of the form 

shown by equation 5-11 is to provide a terminal set that consists of time shifted 

process input(s) and the model output, 
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Where n is the number of process inputs and τu and τy are the maximum time-shifts 

for the inputs and output respectively. An important aspect of this method is that the 

maximum number of process lags must be chosen before the algorithm run. If this 

number is chosen incorrectly, the algorithm will be unable to evolve accurate models 

and additional sets of runs will have to be performed. Although this problem will arise 

if τ is less than the required value, poor performance could also result if the value is 

too high, as the algorithm may have to work with a large number of superfluous 

terminals. It is possible that the input-output data could be analysed before any runs 

were undertaken in order to estimate process time constants and time delays, but this 

would mean that GP was no longer operating as an automated modelling tool with no 

a priori assumptions. 
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A more elegant solution is to provide the algorithm with building blocks that allow 

the number of process lags to be adjusted as the run proceeds. This can be 

accomplished by including the back-shift operator, q-1, in the function set. Dynamic 

models can then be created from a smaller terminal set consisting solely of the process 

input(s) and model output shifted by a single time sample, i.e., 
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For example, consider the following model equation, 
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The model described by equation 5-14 can also be represented by applying the 

appropriate back-shift operators to uk-1 and yk-1 terms, 
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It should be noted that equation 5-15 makes use of back-shift operators that shift the 

terminals back by multiple time samples, for example q-3 shifts uk-1 by three samples 

resulting in a uk-4 term. The same result could be achieved by repeatedly applying 

single sample back-shifts but it would be impractical for the algorithm to identify 

large process time delays in this manner. Consequently, it is necessary to specify a 

maximum number of time samples (�max) for the back-shift operators in the function 

set. This approach is extremely flexible as the crossover operator allows the GP 

algorithm to evolve models that contain time-shifts of greater than �max samples. This 

is illustrated by the following example.  

 

Figure 5-1 depicts two dynamic model trees constructed from back-shift operators, 

input and output terminals. Each input or output terminal has been paired with a back-

shift operator. The maximum time-shift of the back-shift operators is three time 

samples, which means that the maximum possible process lag is equal to four 

samples. For example, parent 2 contains a uk-4 term resulting from the combination of 

a q-3 operator and a uk-1 terminal. 
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Parent 1: 323 ˆˆ −−− += kkkk uyuy  Parent 2: 24 ˆˆ −− −= kkk yuy  
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ŷ
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q-3

-

q-1

uk-1 ŷ k-1  

 

Figure 5-1 – Parent model trees 

 

The dashed lines represent two randomly chosen crossover points. In this example, 

the crossover operation exchanges the ‘q-2uk-1’ subtree from parent 1 with the ‘uk-1’ 

term from parent 2. The resulting offspring are shown in Figure 5-2. Offspring 2 

contains a ‘uk-6’ term due to the application of two back-shift operators (q-3 and q-2) on 

a uk-1 terminal. 

 

Offspring 1: 123 ˆˆ −−− += kkkk uyuy  Offspring 2: 26 ˆˆ −− −= kkk yuy  
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-
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Figure 5-2 – Offspring model trees 

 

This nesting of back-shift operators enables the algorithm to build the necessary time-

shifted input and output terms without having to precisely define the number of lags at 

the start of the run. Offspring 1 now contains a uk-1 terminal without a back-shift 

operator. This emphasises the reason for using uk-1 and 1ˆ −ky  terminals instead of uk 

and kŷ  – the terminals must be valid model terms if they appear without a back-shift 
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operator. The GP algorithm would represent the model equation for offspring 2 as 

follows, 

 
Model equation: 26 ˆˆ −− −= kkk yuy   
 
GP representation: (q3(q2(u)))-(q1(y)) 
 
Where, q1, q2 and q3 represent the back-shift operators q-1, q-2 and q-3 and u and y 

are the input and output terminals, uk-1 and 1ˆ −ky  respectively. As it is convenient to 

simply assign a back-shift operator to every input/output terminal appearing in a 

newly generated model equation, it is necessary to include an operator that does not 

perform a time-shift. This ensures that there is a uniform distribution of time-shifts in 

the initial population and allows model terms with a single process lag to be produced 

(e.g. q0(u1)=uk-1). The GP algorithm settings and parameters are summarised in 

Table 5-1. 

Table 5-1 – Algorithm settings and parameters 

Function set +, -, /, *, ^, SQRT,SQR,EXP,LOG 

Back-shift operators: q0,q1,q2,q3 

Terminal set Process inputs, 1,1,1 ,..., −− knk uu  scaled in range [0 1] 

Model output, 1ˆ −ky ,ℜ uniformly in range [-10 10]  

Crossover probability 0.7 

Mutation probability 0.2 

Direct reproduction probability 0.1 

Generation gap 90% 

Fitness measure RMS error 

Selection method Linear ranking 

Maximum tree size 500 characters 

 

The function set contains primitives such as logarithm and exponential, meaning that 

the models will not be restricted to a particular type of NARX model such as the 

polynomial form. Apart from the terminal and function sets, the other algorithm 

features and settings are the same as those used for steady-state modelling. This 

includes the Levenberg-Marquardt non-linear least squares routine used to obtain the 

best possible fit for each evolved model.  
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5.3.2 Multiple Basis Function GP Algorithm 

 

The MBF-GP model structure is very similar to that used for steady-state modelling. 

As before, each population member is a linear sum of a number of non-linear basis 

functions, 
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Where m is the number of basis functions (m was chosen as a uniformly random 

integer in the range [1 10]), aj are constants and a0 is a bias or offset term. The model 

structure given by equation 5-16 is the same as that used by the steady-state MBF-GP 

algorithm apart from inclusion of the back-shift operator and time-shifted inputs and 

model output. 

 

As equation 5-16 is linear in the parameters, the constants (a0,…,am) can be optimised 

using the method of recursive least squares (RLS). As the auto-regressive model 

terms are predicted values of the output ( ŷ ), models must be evaluated recursively, 

meaning that batch least squares methods are not suitable for parameter optimisation. 

RLS is the recursive form of the method of ordinary least squares and is derived in the 

appendix. A weakness of the standard RLS algorithm is its sensitivity to computer 

round-off errors due to ill conditioning of the covariance matrix update. However, the 

numerical stability and robustness of the algorithm can be significantly improved by 

using the method of U-D factorisation described by Bierman (1977). Further details of 

the standard RLS algorithm and the modifications required for performing the U-D 

covariance measurement update can be found in Kanjilal, (1995).  

 

As with the MBF-GP algorithm used for steady-state modelling, the dynamic version 

of the algorithm uses both high and low-level crossover. High-level crossover enables 

the algorithm to exchange whole basis functions and adapt the total number of 

functions present in each population member. Low-level crossover provides a 

mechanism for subtrees to be transferred between individuals.  
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5.4 Comparison of Results 

 

Three case studies were used to compare the performance of the standard and MBF-

GP dynamic modelling algorithms – a test system with and without a time delay and 

an industrial cooking extruder. Plots of the input-output data and linear models for 

these systems are contained in the appendix. The results are compared using the 

analysis procedure used in the steady-state modelling case studies. 

 

5.4.1 Case Study 1 – Test System 

 

The following single-input single-output non-linear test system (Narendra and 

Parthasarathy, 1990) was used to compare the ability of the standard and MBF-GP 

algorithms to evolve accurate time series predictions, 
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The input signal, u, was generated as a multi-level step response in the range [0 5]. 

Two hundred data points were used for training and a further 200 samples were used 

for model validation. Both algorithms were run 20 times with a population size of 25 

for 25 generations. The results are summarised in Table 5-2. 

 

Table 5-2 - Summary of validation RMS error values for test system 

 Minimum Mean Maximum 

 MBF-GP 0.0028 0.0090 0.0332 

 Standard GP 0.0030 0.0177 0.0329 

 

Figure 5-3 compares the validation RMS error distributions for both algorithms. 

Although there is only a small difference between the best models evolved by each 

algorithm, the MBF-GP algorithm was able generate the more accurate models 

overall. A one-sided K-S test performed at the 95% confidence level confirms that 

this difference is significant. It can be seen that the majority of the MBF-GP errors lie 
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below 0.015 (17 of the 20 runs), whereas the standard GP errors are more evenly 

distributed around this value.  

 

 
Figure 5-3 – Comparison of validation RMS error distributions (Test system). 

 

The MBF-GP model expression with the lowest RMS error on the validation set is 

shown in Table 5-3. The model is presented as a set of separate basis functions to give 

an idea of the typical size and number of functions present in this type of model. The 

individual basis functions have been simplified.  

 

Table 5-3 - Model structure with lowest RMS error on validation data set 

Basis functions Parameter values 
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The model with the lowest validation RMS generated using the standard GP algorithm 

is shown below in simplified form, 
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Although the basis functions in Table 5-3 could be combined in order to allow further 

simplification of the model equation, the resulting model would still be more complex 

than the model evolved by the standard GP algorithm.  

 

5.4.2 Case study 2 – Test System with Time Delay 

 

This case study uses the same system equation as the first case study with the addition 

of a time delay of ten sample instances, 
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The system described by equation 5-19 will demonstrate the algorithms’ ability to 

generate models that contain process lags greater than those provided by the back-

shift operators in the function set. As it is likely to be more difficult for GP to develop 

an accurate model of this system, the population size and number of generations were 

increased. Each algorithm was run 20 times with a population size of 50 for 50 

generations. Table 5-4 shows a summary of the results on the validation data set. 

 

Table 5-4 – Comparison of validation RMS error values for case study 2. 

 Minimum Mean Maximum 

MBF-GP 0.0047 0.0238 0.0622 

Standard GP 0.0045 0.0225 0.0505 

 

Figure 5-4 shows the distribution of the best validation RMS values for both 

algorithms. It can be seen that there is no significant improvement in model accuracy 

to be gained by using the MBF-GP algorithm. A two-sided K-S test performed at the 

95% confidence level supports this observation.  
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Figure 5-4 - Comparison of validation RMS values (test system with time delay) 

 

The most accurate model on the validation data developed using the standard GP 

algorithm is shown below. 
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Equation 5-20 only makes use of the ‘+’, ‘-‘ and ‘*’ mathematical operators and is 

therefore a polynomial NARX model. It should also be noted that the model contains 

a greater number of process lags than the system equation; the model output and input 

have maximum lags of nine and fifteen samples respectively. 

 

The MBF-GP model with the lowest validation RMS error is shown in Table 5-5. The 

basis functions have been included in the form that they are stored by the GP 

algorithm (with some simplification to improve readability). Table 5-5 illustrates how 

the algorithm has combined a series of back-shift operators in order to model the 

system time delay. For example, the first basis function contains a uk-11 term 

constructed from a combination of six back-shift operators. 
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Table 5-5 – MBF-GP model with lowest validation RMS error 

Basis Functions GP Representation Parameters 

698.34848.0 11 −− −ku  -0.4848*q1(q2(q1(q2(q1(q3(u) 

+q0(-9.3343e-2))))+3.8604))-1.871 
-1.068 

562.54848.0 12 −− −ku  -0.4848*q1(q2(q1(q1(q2(q1(q3(u)+ 

q0(-9.334e-2))))+7.7208+ 

q0(-1.427e-2))))-1.871 

-0.3091 

))ˆˆ)exp((

ˆ)(ˆˆ(

3234

221

−−−−

−−−

−−
−+

kkkk

kkk

yyuu

yyy  
(q0(y)+q1(y))*(q1(y)-exp((q0(q3 

(u))-q2(q0(u)))*q1(y)-q2(y))) 

-0.01907 

12 ˆ4848.0ˆ4848.0 −− +− kk yy  -0.4848*q1(y)+0.4848*y 0.3091 

860.3ˆ 2 −−ky  q1(y)+q3(-3.8604) 0.2659 

32 ˆˆ −− + kk yy  q1(y)+q2(y) 0.04660 

 0.1482 q1(0.3849*q0(0.3849)) -2.549 

 Bias 1 -4.259 

 

Although there appears to be no advantage gained by using the MBF-GP algorithm in 

terms of model accuracy, the algorithm requires considerably less computational 

effort than the standard GP algorithm. This is illustrated by Figure 5-5, which 

compares model accuracy obtained with the number of FLOPs performed by each 

algorithm. It can be seen that, for a given RMS error, the standard GP performs a 

substantially greater number of calculations than the MBF-GP algorithm.  
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Figure 5-5 – Comparison of computational cost (test system with time delay) 
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This difference is a consequence of the optimisation method employed by each 

algorithm. The standard GP algorithm uses L-M optimisation, which requires a large 

number of function evaluations in order to calculate gradient information for each 

model parameter. On the other hand, the RLS algorithm optimises model parameters 

in a single pass of the data set, giving the MBF-GP algorithm an advantage in terms 

of computational effort.  

 

5.4.3 Case Study 3 – Cooking Extruder 

 

The industrial cooking extruder was described in detail in chapter 3. A data set 

containing 595 records of the degree of starch gelatinisation (g) together with the 

corresponding inputs was generated for dynamic model development. The following 

inputs were used - feed flowrate (Qf), feed moisture content (Mf), screw speed (ω), 

and the feed temperature (Tf). A set of 400 data points was used for model training 

and the remaining 195 data points were used for model validation. Each algorithm 

was run 20 times with a population of 50 for 50 generations. The resulting validation 

RMS error distributions are shown in Figure 5-6. 

 

Table 5-6 – Comparison of validation RMS error values for extruder 

 Minimum Mean Maximum 

MBF-GP 0.0348 0.0401 0.0496 

Standard GP 0.0412 0.0607 0.0780 

 

The results show that the models developed by the MBF-GP algorithm are more 

accurate than those obtained using the standard algorithm. All of the MBF-GP runs 

produced models with a validation RMS error of less than 0.05, whereas only five 

standard GP runs were able to achieve a similar level of performance. This conclusion 

is supported by one-sided K-S test (95% confidence level)  
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Figure 5-6 – Comparison of validation RMS distributions (extruder data). 

 

The MBF-GP model that produced the most accurate prediction on the validation data 

is shown in Table 5-7. The model is constructed from nine basis functions, although 

each of the individual functions is relatively parsimonious. 

 

Table 5-7 – MBF-GP model structure with lowest validation RMS 

Basis functions Parameter values 
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The model with the lowest validation RMS generated by the standard GP algorithm is 

shown in simplified form below, 

 

2

32
2/1

3

313

/)4125.1(2681.04519.0                

)216.1ˆ248.106713.04425.0log(ˆ

−−−

−−−

−−+

−−−+=

kfkkf

kkfkfk

QeQ

gMQg

ω
 5-21 

 

The predictions for the degree of starch gelatinisation generated using these models 

are shown in Figure 5-7 and Figure 5-8. The plots show that both models accurately 

represent the dynamics of the process, however, as would be expected with a more 

complex application, are subject to a higher degree of inaccuracy than the test systems 

studied earlier. It can also be seen that the MBF-GP model gives a more accurate 

prediction on the validation data, having an RMS error of 0.0301 compared to 0.0412 

for the standard GP model. 

 

 

Figure 5-7 - Prediction for degree of starch gelatinisation (Standard GP) 

 

The models described by equation 5-21 and Table 5-7 make little or no reference to 

the extruder feed temperature (Tf). This was also a feature of the steady-state extruder 

models developed in chapter 3. This can be explained by the fact that the fluctuations 

in feed temperature cover a relatively small range (27.5-32.5 C) and are insignificant 

when compared to the temperature increase that takes place inside the extruder. 
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Figure 5-8 –Prediction for degree of starch gelatinisation (MBF-GP) 
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Figure 5-9 – Comparison of computational cost (extruder data) 

 

Figure 5-9 shows that, in terms of computational cost, the MBF-GP algorithm is much 

more economical than the standard algorithm. The narrower error bars support the 

observation that the MBF-GP algorithm produces more consistent results than the 

standard GP algorithm. 
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5.5 Comparison with Neural Networks 

 

In the previous chapter it was demonstrated how neural networks could be used for 

steady-state process modelling and the results were compared to those obtained using 

the MBF-GP algorithm. The same network structure can be modified in a number of 

ways in order to allow the development of dynamic process models. 

 

5.5.1 Dynamic Modelling Using Neural Networks 

 

The simplest approach is to use a time history of input variables ( τ−−− kkk uuu ,...,, 21 ) as 

inputs to the network, so that each network input consists of a process input shifted 

back in time (Bhat and McAvoy, 1989). This is similar to the FIR approach (equation 

5-6) and has the disadvantage that a long time history of inputs may be required to 

enable the network to accurately capture the dynamics of the process. This means that 

the network will have a large number of inputs, giving rise to a complex model with a 

large number of parameters to be optimised. This will increase network training times 

and mean that there is a higher probability of the network converging around local 

minima. 

 

A possible solution is to configure the network in the form of a NARX model by 

assigning inputs that are past values of the process input(s) and output 

( ),...,,,,...,, 2121 yu kkkkkk yyyuuu ττ −−−−−− . This approach has been applied to system 

identification problems using conventional feedforward  (Chen et al., 1990b) and 

radial basis function networks (Chen et al., 1990a). In order to enable the network to 

predict the output for more than a single time step in the future, the process output 

must be replaced by the network output, ŷ . The resulting network structure is known 

as a globally recurrent network. One of the drawbacks of this approach is that training 

times can be high (Turner et al., 1996). 

 

An alternative approach is the filter based neural network (FBNN) (Willis et al., 

1992), where the hidden layer neurons of the conventional feedforward network are 
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augmented with simple linear dynamic processing capabilities. Although it may be 

possible to include neurons with any dynamic characteristic, Willis et al. (1992) 

suggest that simple first order transfer functions or ‘filters’ should be sufficient for 

most applications. The structure of a typical filter-based neural network is shown in 

Figure 5-10 (in practice, the filters are implemented in discrete time using difference 

equations). 
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Figure 5-10 – Filter based neural network architecture 

 

The process of training filter-based neural networks requires the optimisation of the 

filter constants ),...,,( 21 fτττ  as well as the weights and bias values. This means that 

the back-propagation training algorithm used in chapter 4 cannot be used for FBNN 

training without modification. Consequently, a L-M algorithm was used for network 

training. Lennox  (1996) used this technique to develop models of several chemical 

processes and found that the FBNN outperformed globally recurrent and RBF 

network structures in terms of the predication accuracy of the resulting models. 

Another advantage was that the FBNN did not need to be presented with a time 

history of inputs or the network output. 
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In order to find the network configuration giving the highest performance for each of 

the test cases, multiple runs were performed using different neural network 

architectures. The search was limited to networks consisting of a single hidden layer 

of 3, 5, 7, 9, 11, 13 and 15 neurons, with each network being trained 20 times. Further 

runs were performed if there was evidence that the minimum prediction error could be 

provided using a network with a different number of hidden layer neurons. To enable 

a fair comparison with GP to be made, the ‘best’ model was found by using the sum 

of the training and validation RMS values. 

 

5.5.2 Test System 

 

The results of the runs performed with various FBNN architectures on the test system 

data are summarised in Table 5-8. 

 

Table 5-8 – Summary of neural network validation RMS errors 

Hidden layer neurons Minimum Mean Maximum 

3 0.003212 0.008470 0.020129 

5 0.002408 0.003389 0.019932 

7 0.002405 0.002509 0.002703 

9 0.002424 0.002522 0.002665 

11 0.002439 0.002536 0.002712 

13 0.002418 0.002533 0.002736 

15 0.002426 0.002535 0.002742 

 

Table 5-8 shows how the accuracy of the predictions improves as the network size is 

increased from three to seven hidden layer neurons. However, larger networks do not 

produce any further improvement in model accuracy. Consequently, the network with 

seven hidden layer neurons was selected for comparison with GP. As the GP 

algorithm runs performed with a population of 25 individuals for 25 generations (see 

section 5.4.1) failed to generate models that matched the accuracy of the neural 

networks, the population size was increased to 50 and the duration of the runs was 
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extended to 50 generations. Table 5-9 and Figure 5-11 compare the RMS values 

obtained using the neural network and MBF-GP algorithms. 

 

Table 5-9 – Comparison of validation RMS values (test system) 

 Minimum Mean Maximum 

MBF-GP 0.0018 0.0028 0.0046 

FBNN (1-7-1) 0.0024 0.0025 0.0027 

 

The results show that the RMS errors produced by the neural network form a 

narrower distribution than those obtained using the MBF-GP algorithm. This means 

that, although the most accurate model was produced by the MBF-GP algorithm, the 

neural network appears to be the more consistent of the two approaches. A two-sided 

K-S test performed at the 95% confidence level confirms that the difference between 

the distributions is significant. 

 

 
Figure 5-11 – Comparison of validation RMS values (test system) 

 

Although several of the GP algorithm runs produced RMS errors that were inferior to 

the FBNN results, the accuracy of the predictions is still very high.  
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5.5.3 Test System with Time Delay 

 

In this case study, it is difficult to make an unbiased comparison between the neural 

network and MBF-GP algorithms. The FBNN does not have the ability to model the 

system time delay and will be at a disadvantage when compared to the GP algorithm. 

The easiest way to overcome this problem is to present the network with input data 

that has the time delay removed. However, this will hand the advantage to the neural 

network, as the GP algorithm has to use a combination of back-shift operators and uk-1 

terminals to identify the time delay. One solution is to carry out two batches of 

network runs, with and without the time delay removed, and observe the relative 

performance of the GP algorithm. The results of these runs are summarised in Table 

5-10 and Table 5-11 

 

Table 5-10 – Summary of FBNN results (no time delay compensation) 

Hidden layer neurons Minimum Mean Maximum 

3 0.0451 0.0509 0.0589 

5 0.0442 0.0525 0.0551 

7 0.0387 0.0494 0.0549 

9 0.0390 0.0477 0.0549 

11 0.0410 0.0486 0.0538 

13 0.0473 0.0488 0.0538 

15 0.0417 0.0480 0.0524 

 

Table 5-11 –Summary of FBNN results (time delay removed) 

Hidden layer neurons Minimum Mean Maximum 

3 0.00913 0.01079 0.01601 

5 0.00399 0.00993 0.01403 

7 0.00313 0.00746 0.01404 

9 0.00232 0.00732 0.01443 

11 0.00206 0.00702 0.01404 

13 0.00332 0.00642 0.01057 

15 0.00281 0.00813 0.01540 
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In each case, the ‘best’ network architecture was selected using the mean validation 

RMS values. Although other architectures may provide ‘one-off’ results that 

outperform these networks, it was thought that networks with the lowest mean RMS 

provided the best compromise. The neural network and GP algorithm results are 

compared in Table 5-12 and Figure 5-12. 

 

Table 5-12 – Comparison of validation RMS values 

 Minimum Mean Maximum 

MBF-GP 0.0047 0.0238 0.0622 

FBNN#1 (1-9-1) 0.0390 0.0477 0.0549 

FBNN#2 (1-13-1) 0.0033 0.0064 0.0106 

 

As expected, the neural network with time delay compensation (FBNN#2) easily 

outperforms the network that does not have the time delay removed (FBNN#1). This 

observation is supported by a one-sided K-S test conducted at the 95% confidence 

level. The GP algorithm produced a wide range of prediction errors, with the worst 

values lying in the same region as those generated by FBNN#1 and the lowest errors 

approaching the accuracy of FBNN#2. 

 
Figure 5-12 – Validation RMS error distributions (test system with time delay) 



Dynamic Modelling 

 98 

 

Although the GP algorithm was able to achieve performance comparable to FBNN#2 

in a fraction of the runs, the algorithm also produced unacceptably poor results. This 

should be expected, as the algorithm has the difficult task of evolving a suitable 

model structure from elementary building blocks. The fact that the process time delay 

does not have to be explicitly accounted for gives the GP algorithm a distinct 

advantage over neural networks in this case study.  

 

5.5.4 Cooking extruder 

 

The validation RMS errors obtained using a range of different FBNN architectures on 

the extruder data are summarised in Table 5-13. The network containing four hidden 

layer neurons was selected for comparison with the MBF-GP algorithm as it produced 

the lowest mean RMS error. 

 

Table 5-13 – Summary of neural network validation RMS errors 

Hidden layer neurons Minimum Mean Maximum 

3 0.0349 0.0409 0.0565 

4 0.0345 0.0382 0.0455 

5 0.0338 0.0393 0.0560 

7 0.0344 0.0415 0.0560 

9 0.0361 0.0440 0.0571 

10 0.0353 0.0406 0.0563 

11 0.0367 0.0445 0.0584 

13 0.0338 0.0415 0.0530 

15 0.0328 0.0445 0.0692 

 

The validation RMS values obtained using the neural network and MBF-GP 

algorithms are compared in Table 5-14. 
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Table 5-14 – Comparison of validation RMS error values for extruder. 

 Minimum Mean Maximum 

MBF-GP 0.0348 0.0401 0.0496 

Neural Network (1-4-1) 0.0345 0.0382 0.0455 

 

Figure 5-13 shows validation RMS error distributions obtained using the neural 

network and MBF-GP algorithms. Although the minimum, mean and maximum RMS 

values are slightly lower for the neural network, a one-sided (at the 95% confidence 

level) indicates that the difference is not significant.  

 
Figure 5-13 – Validation RMS error distributions (extruder data) 

 

Figure 5-14 compares the performance of the neural network and MBF-GP algorithms 

in terms of the computational effort required to achieve a given validation RMS error. 

At higher RMS error values, the MBF-GP algorithm outperforms the neural network. 

This could be because the RLS optimisation routine enables the MBF-GP algorithm to 

raise the performance of the initial population members to a reasonable level without 

consuming a particularly large amount of processing power. The neural network may 

initially produce poor predictions due the large number of model parameters, which 

all have to be initialised probabilistically. 
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Figure 5-14 – Comparison of computational effort required by FBNN and MBF-GP 

algorithms (extruder data) 

 

As the validation RMS error decreases, the neural network begins to outperform the 

MBF-GP algorithm, requiring fewer FLOPs to achieve the same RMS error. The 

difference between the algorithms continues to increase as the validation RMS errors 

are reduced. This could be because neural network training is essentially a parameter 

optimisation exercise. The GP algorithm has to explore a wide range of different 

model structures, performing parameter optimisation on each candidate solution, and 

is therefore unlikely to be as efficient as the neural network. One of the disadvantages 

of using neural networks is that a wide range of network architectures has to be 

investigated in order to obtain the best set of model predictions. If the computational 

effort required to carry out these additional runs is taken into consideration, the 

difference between the algorithms is less significant and GP becomes a more 

attractive possibility.  

 

5.6 Conclusions 

 

In this chapter, it was shown how the standard and MBF-GP algorithms could be used 

to evolve discrete-time models of dynamic systems. As was observed in the steady-

state modelling comparison, the MBF-GP algorithm was generally able to generate 

models that gave more accurate predictions than the standard algorithm and required 
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less computational effort. An interesting feature of this technique is that the algorithm 

can make use of past values of model terms that are not specified explicitly by the 

function and terminal sets. This was demonstrated in the second case study, where the 

algorithm combined a number of back-shift operators in order to model the system 

time delay. The model structures are relatively complex but do not appear to be as 

unwieldy as those evolved by the steady-state modelling algorithms. This may be 

because back-shift operators occupy a considerable proportion of each model string. 

These sections are easily simplified, leading to a greater reduction in model size. 

 

The results also revealed that the performance of GP compared to neural networks 

was system dependent. The neural network produced the more consistent results on 

the first test system, although the GP algorithm evolved the most accurate prediction. 

On the second test system, the neural network was only able to outperform GP once 

the system time delay has been manually removed from the input data. There was 

little difference between the two techniques in terms of model accuracy on the 

extruder case study. However, the GP algorithm required more computational effort 

to achieve the same accuracy as the neural network. 

 

For real problems, additional factors must be taken into account when assessing the 

suitability of a model derived using GP. Different applications may raise issues that 

make a neural network the more desirable option. For example, a reason offered by 

some researchers (Chen et al., 1990b) as justification for choosing a neural network 

model is that the network output is bounded. This is beneficial, as the network will 

behave less erratically when applied to data lying outside of the range used for 

training. The complexity of GP models and the probabilistic nature of model 

evolution mean that a GP model cannot be expected to behave as predictably. 

However, Hernandez and Yarkun (1993) describe a possible solution to this problem, 

which involves the use of a NARMAX model combined with a sigmoid function. The 

GP algorithm could be modified in a similar way, if this model property was thought 

to be desirable. 

 

Another important aspect of neural network and GP models is their robustness to 

process noise. Noise was not added to any of the data sets used in this work, as the 
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aim was to concentrate on the differences in prediction accuracy achieved by each 

modelling technique. However, in practice, data sets typically contain noisy process 

measurements and it would be useful to carry out a comparison between the 

algorithms when subjected to these conditions. Possible issues concerning the MBF-

GP algorithm include the robustness of the RLS routine, which may produce biased 

parameter estimates under certain conditions.  

 

Finally, the use of neural networks for non-linear modelling is well established and 

supported by research into a wide range of theoretical and practical applications. This 

cannot be said for GP, although the number of applications to engineering problems 

has increased in recent years. Also, unlike neural networks, which have a generic 

model structure, GP models vary greatly from one algorithm run to the next and are 

more of an unknown quantity. These factors, combined with the fact that the tools 

required to develop neural network models are more widely available, mean that most 

engineers will turn to neural networks before considering GP for model development. 

However, one area in which evolutionary algorithms such as GP are being used 

extensively is that of multi-objective problem solving. The steps that must be taken to 

apply the GP algorithm to this type of problem are described in the next chapter 
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6 Multi-objective Genetic Programming 

 

6.1 Introduction 

 

In the previous chapter, it was shown how a MBF-GP algorithm could be used to 

evolve models of dynamic chemical processes. Comparison with a ‘standard’ GP 

algorithm revealed that the MBF-GP algorithm produced a higher level of 

performance in terms of model accuracy and computational effort required. All of the 

GP runs in previous chapters were concerned solely with the minimisation of the 

RMS error between the actual and predicted process output. However, process model 

development is a task that may require a number of other factors or ‘objectives’ to be 

considered before the final solution is reached. Some examples of possible objectives 

are, 

 

• Measures of model parsimony, for example, the number of model parameters and 

the maximum number of process lags. 

• Additional or alternative measures of prediction error such as residual variance, 

one-step ahead and long term prediction errors. 

• Model validation criteria such as residual correlation tests and statistical 

information criteria. 

 

This chapter demonstrates how the MBF-GP algorithm can be modified to incorporate 

additional measures of model performance. The next chapter compares the algorithm 

with the single objective algorithm to assess the advantages gained by considering 

extra objectives during the process of model evolution.  

 

6.2 Multi-objective Evolutionary Algorithms 

 

Although the first notable work on multi-objective evolutionary algorithms (MOEAs) 

was published by Schaffer in the mid 1980s (Schaffer, 1985), it was not until a decade 

later that there was a substantial increase in the number of applications of such 



 Multi-objective Genetic Programming  

 104 

algorithms to engineering problems. Applications including controller design 

(Chipperfield and Fleming, 1995), system identification  (Fonseca and Fleming, 

1996a), process optimisation (Garg and Gupta, 1999) and scheduling (Shaw et al., 

1999) have all received attention in recent years. While the majority of these 

applications are essentially optimisation problems using multi-objective genetic 

algorithms (MOGAs), the fundamental concepts are also applicable to other 

evolutionary algorithms including GP.  

 

Rodríguez-Vázquez and Fleming (1998) used a multi-objective genetic programming 

(MOGP) approach to system identification, making use of additional model 

performance measures such as the number of process lags and linear correlation 

criteria.  The MOGP algorithm used the same multi-objective ranking and fitness 

assignment scheme employed by the MOGA used in the authors’ previous work. An 

overview of the important features and applications of MOEAs can be found in 

Fonseca and Fleming (1995), Coello (1999), and Van Veldhuizen and Lamont (2000). 

The remainder of this section outlines the aspects of MOEAs relevant to the MOGP 

algorithm used in this thesis. 

 

The practice of solving multi-objective engineering problems can prove to be a 

difficult and time-consuming task. Whereas single objective problems may have 

unique optimal solutions, multi-objective problems often have a large number of 

possible solutions. This is because the different performance measures that 

characterise the multi-objective problem may conflict with each other, meaning that 

only a partial ordering of the search space is possible. The solution will therefore be in 

the form of a set of individuals representing a trade-off between different levels of 

performance in each objective domain.  

 

The final solution generated by a MOEA can be seen as the result of both an 

evolutionary and a decision process. The evolutionary aspect of the algorithm enables 

the search to cover a diverse range of possible solutions with the aim of achieving 

improved performance relative to the objectives under consideration. However, the 

nature of the multi-objective problem means that the algorithm is likely to produce a 

set of candidate solutions. The final solution must then be chosen from this set of 



 Multi-objective Genetic Programming  

 105 

individuals. This decision process can take place at different stages in the algorithm 

run. Hwang and Masud (1979) suggested the following categories, 

 

A priori preference articulation. The multi-objective problem is effectively 

transformed into a single objective problem. The weighted sum approach (section 

6.2.1.2) is an example of this technique.  

 

Progressive preference articulation. Decision-making takes place as the 

evolutionary process proceeds. Each generation presents a new set of candidate 

individuals to be considered. For example, Fonseca and Fleming (1998) proposed a 

method for progressive articulation of preferences within a MOGA framework (see 

section 6.2.2). 

 

A posteriori preference articulation. At the end of the search, the algorithm presents 

a set of candidate solutions from which the desired solution is chosen. 

 

A disadvantage of a priori preference articulation is that an inappropriate choice of 

parameters (e.g. cost function weights) can lead to the discovery of an unsuitable 

solution. Additional algorithm runs will then have to be performed using different 

parameters values. This is in contrast to the a posteriori method, which will ideally 

lead to a Pareto optimal (see section 6.2.2) set of solutions from which to choose. This 

can be advantageous as no possible solutions are discarded until the final decision 

stage. However, for real life problems, the trade-off surface between the objectives 

can be extremely complex and it may be beneficial for the search to be directed 

towards the region that it of most interest. In this case, progressively articulating 

preferences may yield better results. 

 

A wide range of methods has been used to apply evolutionary algorithms to the task 

of multi-objective problem solving. The most significant are outlined below, along 

with their comparative advantages and disadvantages. The techniques are grouped 

into two categories – Pareto and non-Pareto approaches. 
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6.2.1 Non-Pareto approaches 

 

6.2.1.1 The Vector Evaluated Genetic Algorithm 

 

It is widely recognized that Schaffer (1985), was the first to demonstrate the potential 

of evolutionary algorithms to discover a set of non-dominated solutions in a single 

algorithm run. The resulting algorithm, known as the vector evaluated genetic 

algorithm (VEGA), considered each of the objectives separately by dividing the 

population into separate parts, each corresponding to a different objective. Individuals 

were then chosen from each section of the population based on their performance with 

respect to only one objective. These where then shuffled and the genetic operators 

used to create the next population in the usual manner. One of the drawbacks of this 

method was that the algorithm tended to produce individuals that performed 

extremely well in a single objective and poorly in all of the others. This phenomenon 

is known as speciation and is a direct result of the selection process being based on an 

individual’s performance with respect to a single objective. 

 

6.2.1.2 Aggregating approaches 

 

Another technique used to handle multiple objectives is to combine the individual 

objectives using a weighted cost function of the form, 

 

�
=

=
n

j
ijji xfwF

1

)(  6-1 

 

Where Fi is the fitness of population member xi, wj are the weighting coefficients 

representing the relative importance of each of the n objectives and fj are the functions 

used to generate the objective values. This approach can be problematic for a number 

of reasons. For instance, insufficient knowledge of the problem may make it difficult 

to assess the relative importance of each objective. This will make it difficult to select 

appropriate values for the weighting coefficients in the cost function. If algorithm 

performance is deemed unsatisfactory, the weightings must be adjusted and more runs 
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performed until a satisfactory solution is achieved. This may prove to be time 

consuming, especially if algorithm performance is very sensitive to small changes in 

these parameters. In addition, objective values must be appropriately scaled before 

they can be combined to form the cost function. The method of scaling may alter the 

shape of the trade-off surface and make it more difficult or even impossible to find a 

suitable balance (Fonseca and Fleming, 1995).  

 

Examples of MOGAs making use of the weighted sum approach include Hajela and 

Lin (1992), and Ishibuchi and Murata (1996). Hajela and Lin’s Genetic Algorithm 

(HLGA) addresses some of the drawbacks of the weighted sum technique by 

adaptively changing the cost function weightings as the run proceeds. This is achieved 

by encoding the weight values as part of the genotype. Although Fonseca and Fleming 

(1997) reported that linear fitness combination was the most popular MOEA 

technique, Pareto-based techniques have become increasingly popular in recent years. 

This is especially true for real world scientific and engineering applications to which 

90% of Pareto based MOEA applications are applied (Van Veldhuizen and Lamont, 

2000). Pareto based methods are discussed in the next section. 

  

6.2.2 Pareto-based Approaches 

 

Some of the problems associated with non-Pareto methods may be avoided by 

comparing individuals using the concept of Pareto dominance, defined as follows, 

 

Assuming a minimisation problem, a vector [ ]nvv ,...1=v  is said to dominate vector 

[ ]nuu ,...1=u  if it is partially less than u, i.e. the following criteria must be satisfied, 

 
{ } { } iiii uvni uvni <∈∃∧∈∀ ≤  ,,...,1       ,,...,1  6-2 

 

The family of solutions to a multi-objective optimisation problem is said to be Pareto-

optimal if, for each individual, an improvement in performance in one objective 

dimension cannot be achieved without degrading performance with respect to other 

objectives. Pareto based fitness assignment was first proposed by Goldberg (1989) as 
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a means of assigning equal probabilities of selection to all non-dominated individuals 

in the current population.  

 

An important aspect of Pareto based ranking is that credit is given to an individual 

that has a high level of performance in one objective, even if it performs badly with 

respect to all other objectives. Also, unlike methods such as the weighted sum 

approach, Pareto based ranking is independent of the scaling of the objectives since 

raw objective values may be used when comparing the performance of individual 

population members.  

 

6.2.2.1 Preference information 

 

The set of Pareto-optimal solutions for a particular problem may be very large and it 

will therefore be difficult to effectively sample all regions of the trade-off surface 

using a GP algorithm that has a relatively small population size. As the number of 

objectives increases, the trade-off surface becomes more complex and it becomes less 

likely that the algorithm will be able to find solutions that perform acceptably with 

respect to each objective. 

 

In addition, some objectives may be much easier to minimise (or maximise) than 

others and this may cause the population to become saturated with individuals that 

perform acceptably in only these objectives. Applying genetic operators to these 

individuals is likely to create even more individuals that have a high level of 

performance in only one objective. As the evolutionary process continues, the 

population may converge to a set of solutions that perform extremely well in one 

objective and poorly in all of the others. These problems can be counteracted by using 

the goal based Pareto ranking method proposed by Fonseca and Fleming (1998). This 

enables the user to specify desired levels of performance in each objective domain 

and direct the search towards the required region of the trade-off surface. 

 

This approach requires goal values to be specified for each of the objectives being 

considered. These values are then used to selectively eliminate objectives that have 
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reached a certain level of performance from the comparison procedure. For example, 

if two population members satisfy the same goals, only objectives that do not satisfy 

their goals are used to determine which individual dominates. This concentrates the 

search in the direction of the objectives that have not achieved the desired level of 

performance and prevents the algorithm from attempting to further minimise 

objectives that have already attained acceptable values. Alternatively, if objectives are 

allocated goals that are unattainable, those objectives will always be included in the 

comparison process. In the special case that all goals are unattainable, the ranking 

procedure becomes equivalent to conventional Pareto ranking. The method described 

by Fonseca and Fleming ranks populations of individuals by comparing them using 

the preferability relationship defined below. 

 

Consider two objective vectors [ ]nuuu ,...,, 21=u  and [ ]nvvv ,...,, 21=v , and a goal 

vector g containing goal values for each objective, [ ]nggg ,...,, 21=g . 

 

If  �
u

u refers to the components of u that satisfy their goals and  �
u

u  refers to the 

components of u that violate their goals, a vector u is said to be preferable to another 

vector v given a goal vector g if, 
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Where u� v denotes that u dominates v. 
u
 v �  refers to the components in v that 

correspond to the objectives in u that violate their goals. For example if u1 and u2 

violate their goals, 
u
 v �  refers to v1 and v2. 

 

It is important to note that the inequalities in equation 6-3 apply to the individual 

components of the vectors. For example, we can refer to the components of u that 

satisfy their goals by using the following inequality, 

 
uu

gu   
�� ≤  6-4 
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This can be re-written in terms of the individual vector components, i.e., 

 

ii gui ≤∈∀    , 
u

u �  6-5 

 

Equation 6-3 describes three possible conditions, one of which must be satisfied for u 

to dominate v, 

 

• The components of u that do not satisfy their goals dominate the corresponding 

components of v: ) v (u
uu �

�
� . 

• The components of u that do not satisfy their goals are equal to the corresponding 

components of v, but v has at least one other component that does not satisfy its 

goal:  )  (   )  
uuuu

gvv(u ���� ≤/∧= . 

• The components of u that do not satisfy their goals are equal to the corresponding 

components of v, but u dominates v as a whole:  )  (  )   
uuuu

vuv(u �
�

��� ∧= . 

 

Note that equation 6-3 assumes that the aim is to minimise all of the objectives. 

Therefore, the components of a vector must be less than the corresponding goal values 

in order to satisfy them. 

 

6.2.2.2 Fitness assignment 

 

After all individuals have been compared with each other using the preferability 

relationship described by equation 6-3, Fonseca and Fleming (1998) propose the 

following ranking and fitness assignment scheme. Ranking is assigned according to 

the number of individuals that dominate each population member. Consequently, all 

non-dominated individuals are given an equal ranking. If the set of non-dominated 

individuals is assigned rank 0, the ranking of population member xi dominated by pi
t 

individuals at generation t is given by, 

 
t
ii ptxrank =),(  6-6 
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The individuals are then sorted by rank and fitness allocated by interpolating linearly 

between the best and the worst individuals. Fitness values must be averaged for 

equally ranked individuals to ensure that they are given equal chance of reproduction 

and maintain a constant level of selection pressure across the population. 

 

Figure 6-1 and Figure 6-2 demonstrate how (for a bi-objective problem) the ranking 

assigned to population members is affected by the inclusion of goal values. Figure 6-1 

shows how a small population of individuals would be ranked using Pareto ranking 

(non-dominated individuals are circled). The non-dominated individuals are assigned 

a rank of zero and all other individuals are ranked according to the number of 

population members that dominate them. 

 

 

Figure 6-1 – Pareto ranking 

 

Figure 6-2 shows the ranks assigned to the same individuals by performing Pareto 

based ranking with goals using the preferability relation described earlier. As only one 

individual satisfies both goals, this individual is said to be preferable to the others and 

is assigned a rank of zero. The figure shows how the solutions in the area marked ‘A’ 

are ranked in terms of objective 2 only, since they have all attained the desired level 

of performance with respect to objective 1 (g1).  
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Figure 6-2 – Pareto ranking with goals. 

 

In the region marked ‘B’, all individuals have satisfied the goal g2 and are ranked 

using their objective 1 values only. This is beneficial, as search effort is not wasted by 

attempting to minimise objectives that have already reached the required level of 

performance. 

 

6.2.2.3 Priority levels 

 

The goal-based ranking strategy also provides a means of assigning different priority 

levels to each of the objectives. This enables the user to incorporate preferences 

concerning the relative importance of the objectives into the search process. The goal 

values for objectives with the highest priority level must be satisfied before the 

objectives and goal values at the next priority level are considered. The process is 

repeated until the lowest priority goals are satisfied. 

 

Figure 6-3 demonstrates how the ranking given to population members is modified by 

the addition of priority levels. Here, the goal value for objective 1 has been given a 

higher priority than objective 2 goal. Individuals that do not satisfy g1 are ranked in 

terms of objective 1 only. Once individuals have achieved the desired level of 

A 

B 
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performance with respect to objective 1, ranking is carried using objective 2 values 

only. 

 

Figure 6-3 – Population ranking with goals and priorities 

(g1 has priority over g2) 

 

The techniques outlined above can be used in conjunction with a MOEA that uses 

progressive preference articulation. This allows the user to interact with the algorithm 

at each generation to modify goals and/or priorities in an attempt to guide the search 

towards a desirable solution. For example, Rodríguez-Vázquez and Fleming (1998) 

used this technique to evolve polynomial NARMAX models of dynamic systems 

using a GP algorithm. The main disadvantage of this method is that the operator must 

be present for the duration of the algorithm run. This is particularly relevant to the 

experimental procedure used in this thesis, which involves the use of multiple runs in 

order to make a fair comparison between algorithms. In addition, frequent user 

interaction is undesirable if the aim is to use GP to automatically generate model 

structures.  

 

As a result, progressive preference articulation was not used in this thesis and each set 

of algorithm runs was carried out using goal/priority information fixed for the entire 

run length. Although goal and priority information must be specified before the 

algorithm run commences, this method should not necessarily suffer the same 
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drawbacks as other methods that use a priori parameter specification (such as the 

weighted cost function approach). The algorithm will still produce a non-dominated 

or preferable set of solutions from which to choose. Ideally, these solutions will be 

more densely concentrated around the desired region of the objective space than 

solutions that are evolved using conventional Pareto ranking. 

 

6.2.3 Multi-Objective GP Algorithm Details 

 

The MOGP algorithm used in this thesis is based on the MBF-GP algorithm described 

in chapter 5. It was shown how the algorithm could be used to evolve accurate time 

series predictions of dynamic processes, requiring less computational effort than a 

‘standard’ GP algorithm. The ranking and fitness assignment techniques are described 

in sections 6.2.2.1-6.2.2.3. The remaining differences between the MOGP and SOGP 

algorithms are outlined below. 

 

6.2.3.1 Fitness sharing 

 

Although evolutionary algorithms such as GP are capable of simultaneously exploring 

different regions of the solution space, genetic drift will cause the algorithm to 

eventually converge around one region of the trade-off surface. To counteract the 

effects of this phenomenon and promote diversity, niche induction methods may be 

used. One such method is that of fitness sharing and is analogous to biological species 

competing for resources in a natural environment. Individuals that are closer to each 

other mutually decrease each other’s fitness and consequently individuals that are 

more isolated are given a greater chance of reproducing. 

 

For each individual in the population, a niche count is calculated to determine the 

degree of crowding around each population member. An individual’s niche count is 

initially set to zero and then increased by a certain amount for every individual in the 

population including itself. This amount is calculated using a sharing function, which 

is a function of the distance between two individuals. This distance can be measured 

in relation to the genotype (the individual population members) or the phenotype (the 
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objective vectors). The niche counts are then used to scale the individuals’ fitness 

values in favour of those that are more isolated.  

 

In this work, fitness sharing is carried out in the objective domain since the aim is to 

promote diversity with respect to the actual objective values. The following sharing 

function, often referred to as the triangular sharing function (Goldberg and 

Richardson, 1987), is used, 
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Where d is the distance between population members and σshare is the sharing 

parameter and dictates how close two individuals must be to each other in order to 

begin decreasing each other’s fitness.  
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Figure 6-4 – Fitness sharing parameter, σshare 

 
The example shown in Figure 6-4 shows the distance σshare in relation to two non-

dominated individuals. It can be seen that there are two individuals within the distance 

σshare for population member A, while there a no other individuals within the same 

distance of B. Consequently, the fitness of A will be reduced relative to that of B as it 

is deemed to be in a more crowded region of the trade-off surface. This will hopefully 
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enable the algorithm to sample the non-dominated front more evenly, as opposed to 

converging around particular regions of the search space. 

 

Following Fonseca and Fleming, 1998 the distance, d, was measured using the ∞-

norm. An alternative, and perhaps more obvious method, would be to use the 2-norm. 

However, since the values of the different objectives are non-commensurable, the 2-

norm measure of distance between does not have any significant meaning. The ∞-

norm is therefore more appropriate and has the advantage of being easier to compute. 

 

The niche count, m, for population member i is then given by: 
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Where N is the number of individuals and ijd  is the distance between individuals i 

and j. Fitness sharing is only carried out between sets of equally ranked individuals. 

This ensures that additional selective pressure is given to the more isolated individuals 

while still maintaining the ordering imposed by the original ranking process. This 

technique was first proposed by Horn et al. (1994) who referred to it as ‘equivalence 

class sharing’.  
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Figure 6-5 – Niche size determination 
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Since the case studies in this thesis will deal with problems consisting of only two 

objectives, the method used for determining the sharing parameter �share, is outlined 

below with reference to a bi-objective example. Figure 6-5 shows an example Pareto 

front, AC , for two objectives scaled in the range [0 1]. 

 

An estimate for the parameter �share can be calculated by considering the maximum 

possible length of the Pareto front. It can be seen from Figure 6-5 that, the length of 

the Pareto front can be no greater than the distance ABC . If ABC  is populated with N 

evenly spaced individuals, the distance between each individual is given by, 
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This result is the same as that obtained using the method of Fonseca and Fleming 

(1998), who proposed a more general approach, applicable to niche size determination 

in higher dimensional objective space.  

 

Unlike the Pareto-based ranking scheme outlined earlier, the fitness sharing procedure 

outlined above requires objective values to be scaled in the range [0 1]. The maximum 

and minimum values used to carry out the scaling must be chosen carefully, so that all 

objectives are compared equally. Possible values include the known global maximum 

and minimum or the maximum and minimum discovered so far in the algorithm run. 

However, these options were thought to be inappropriate for the problems under 

investigation in this thesis due to RMS error being used as one of the objectives. The 

RMS errors associated with models generated by a GP algorithm can vary by many 

orders of magnitude. Although this is most likely to be the case at the start of the 

algorithm run when the population consists of randomly generated model strings, one 

cannot guarantee that some highly unfit offspring will be created in subsequent 

generations, even if a large proportion of the population has a high level of fitness. 
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Therefore, it was decided to use the maximum and minimum values associated with 

the equally ranked individuals taking part in fitness sharing. This approach reduces 

the probability of the scaled RMS values becoming bunched together by the presence 

of a few very unfit population members. 

 

There are a number of other sharing methods that could be used in conjunction with 

the MOGP algorithm. For example, the non-dominated sorting genetic algorithm 

(NSGA) proposed by Srinivas and Deb (1994) uses a quadratic sharing function and 

requires the number of niches to be specified at the start of the algorithm run in order 

to determine σshare. There is, however, little evidence to suggest that one method 

provides substantially better performance. Although comparisons have been 

performed, they tend to concentrate on relatively simple test problems using GAs, 

meaning the results may not translate directly to the work in this thesis (see for 

example, Watson, 1999). 

 

6.2.3.2 Mating Restriction 

 

The use of mating restriction was first proposed by Goldberg (1989) as a method of 

preventing the production of highly unfit individuals known as lethals. Mating 

restriction works by only allowing an individual to mate with other individuals that 

are within a certain distance, σmate. This approach is intended to prevent the 

production of highly unfit individuals by preventing mating between individuals that 

have vastly different objective values. 

 

Although some studies have revealed that improved performance can be achieved by 

incorporating mating restriction schemes (Hajela and Lin, 1992), others have found 

no evidence to suggest that such a scheme is necessary and consequently make no use 

of mating restriction. For example, the strength Pareto evolutionary algorithm (SPEA) 

outlined by Zitzler and Thiele (1999) makes use of fitness sharing but does not use 

mating restriction. The MOGP algorithm used in this work does not have a restricted 

mating scheme. 
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6.2.3.3 Secondary Populations 

 

The stochastic nature of GP means that there is no guarantee that desirable solutions 

will be preserved from generation to generation and be present in the population when 

the algorithm terminates. This is especially important in the case of a MOGP 

algorithm that may be applied to a problem where the solution set may consist of an 

extremely large number of non-dominated solutions. In this case, it is impossible for 

the relatively small population to be able to preserve all non-dominated individuals 

from one generation to the next while also attempting to exploit new regions of the 

search space. For this reason, MOEAs often make use of an additional or secondary 

population in which to store all of the non-dominated or preferable individuals found 

so far. Some practitioners, for example Zitzler and Thiele (1999), make use of 

secondary populations that are integrated with the EA and actively take part in the 

evolutionary process by providing members to take part in generating the next 

population.  

 

Although there are advantages in using this approach, for example increased diversity 

may be achieved, a study of such methods was thought to be beyond the scope of this 

thesis. In addition, the use of a secondary population would make comparison with 

the SOGP algorithm more difficult as the MOGP algorithm would effectively be 

working with a larger population size. A simpler method, implemented by the MOGP 

algorithm used in this work is to simply find the current non-dominated set of 

individuals at each generation and copy them to the secondary population. The aim of 

the secondary population is to store a record of all the known non-dominated 

solutions found so far. As some of the newly added members may dominate some of 

the existing members, the secondary population will have to be periodically trimmed 

by ranking the individuals and removing any dominated solutions. 

 

The use of the non-dominated set of individuals taken from every generation of a run 

is sometimes referred to as the offline algorithm performance. In contrast, online 

performance only considers the non-dominated individuals that are present in the 

population at the end of each run. 
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6.2.3.4 Summary of MOGP algorithm settings 

 

Figure 6-6 shows a flowchart of the MOGP algorithm used in this thesis. The most 

significant difference between this MOGP and SOGP algorithms is that the former 

makes use of a Pareto based ranking scheme with fitness sharing. A secondary 

population of individuals is also maintained in order to preserve all non-

dominated/preferable models along with their objective values. This population is 

updated at each generation by adding the latest set of preferable individuals. Ranking 

is then performed in order to remove any individuals that are dominated by the 

addition of these new population members. 

 

Table 6-1 - MOGP Algorithm details 

Model structure m basis functions. m generated as a uniformly 
random integer in range [1 10] 

Function set +, -, /, *, ^, ^2, ^3, q0, q1, q2, q3  

Terminal set Process input(s), 1,1,1 ,..., −− knk uu  scaled in range [0 1] 

Model output, 1ˆ −ky  
ℜ generated uniformly in range [-10 10] 

Crossover probability 0.7 

Mutation probability 0.2 

Direct reproduction probability 0.1 

Generation gap 90% 

Fitness assignment RMS error 
+ additional 
objectives 

→ 
Pareto ranking 

using preference 
information 

→ Fitness 
sharing 

 

A number of other MOEA techniques have been proposed, making use of alternative 

ranking, sharing and fitness assignment methods to those described earlier. Examples 

include the niched Pareto genetic algorithm (NPGA, Horn et al., 1994), NSGA 

(Srinivas and Deb, 1994) and SPEA (Zitzler and Thiele, 1999). Although Zitzler et al. 

(2000) have shown how these algorithms can outperform Fonseca and Fleming’s 

MOGA, the comparison is restricted to a group of test functions. In addition, each 

algorithm’s performance is assessed in terms of its ability to discover solutions along 

the entire length of the Pareto optimal front. 
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Figure 6-6 – Flowchart for MOGP algorithm 
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Unfortunately, the objective space associated with real-world engineering problems is 

much more complicated than that of a simple test function. Consequently, the greatest 

difficulty is that of being able to direct the search towards the required region of the 

trade-off surface. As the specification of preference information provides a higher 

level of control over the algorithm search, this was an important reason for selecting 

the ranking method used in this thesis. The important settings and features of the 

MOGP algorithm are outline in Table 6-1. 
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7 Dynamic Modelling Using Multi-objective GP 

 

7.1 Introduction 

 

The previous chapter outlined the modifications necessary to apply the MBF-GP 

algorithm to multi-objective problems. This chapter demonstrates the application of 

the algorithm to dynamic model development. Since the notion of algorithm 

performance is more complex than for the single objective problem, the first part of 

this chapter describes the methods used to compare MOGP algorithm results. The 

algorithm is then applied to two problems, each involving the incorporation of one 

additional measure of model performance. The first example uses the MOGP 

algorithm to improve the parsimony of the evolved model structures. The second 

example demonstrates how residual correlation tests can be used as an additional 

objective. In each case, the algorithm is applied to an artificial test system and a 

process engineering case study. 

 

7.1.1 Measures of MOEA Performance 

 

The performance of a MOGP algorithm is more difficult to quantify than the single 

objective case. For example, Zitzler et al. (2000) outlined the following criteria for 

measuring the performance of MOEA runs, 

 

• The distance of the non-dominated solutions from the known Pareto optimal set 

should be minimised. 

• A uniform distribution of the solutions over the front is desirable. 

• The extent of the non-dominated front should be maximised, so that the solutions 

cover a wide range of values in each objective domain. 

 

However, these criteria were used to compare the performance of various MOGA 

implementations when applied to a set of synthetic test functions and there are a 

several reasons why they may be unsuitable for real-world applications. Firstly, in this 
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work the objective values for the global Pareto optimal solutions are not known, 

meaning that it is impossible to measure the distance of the evolved Pareto front from 

the actual solutions. Secondly, test studies often compare the range of values covered 

by the Pareto optimal set to measure the algorithms ability to find a diverse set of 

candidate solutions. This may not necessarily be the best approach for a complex 

engineering problem as only a small region of the trade-off surface may contain 

solutions that provide a useful compromise between the different performance 

criteria. For example, an engineer may require a model that is both parsimonious and 

accurate and will not want the algorithm to discover solutions that perform very well 

in only one of the criteria. 

 

Zitzler et al. (2000) made a comparative study of the most popular MOGA 

implementations found in the literature. The results ranked the method of Fonseca and 

Fleming (FFGA) behind the Pareto based algorithms SPEA, NSGA, NPGA and even 

the non-Pareto methods of VEGA and HLGA. However, as mentioned previously, the 

main reason for choosing a method based on FFGA is its successful application to real 

engineering problems where the aim is to use preference information to guide the 

algorithm towards the relevant part of a complex search space. In addition, in MOGA 

performance studies, the GA is concerned solely with the evolution of the parameters 

belonging to a fixed functional relationship. The problem is more complicated for the 

MOGP case, as the algorithm is also responsible for evolving the model structure. 

This is further justification for concentrating the search towards the desired region of 

the non-dominated front instead of stretching algorithm resources by trying to 

discover solutions along the entire length of the front. The method used to compare 

algorithm performance in this thesis is described in the next section. 

 

7.1.2 Analysis procedure 

 

Although the SOGP algorithm only uses RMS error to measure the fitness of each 

population member, additional measures of model performance can be calculated for 

the final population at the end of the algorithm run. These objective values can be 

used in conjunction with Pareto ranking to find a non-dominated set of solutions 

describing the trade-off between the different objectives. These solutions can then be 



Dynamic Modelling Using Multi-objective GP 

 125 

compared with those obtained using the MOGP algorithm to determine the benefits of 

using multi-objective techniques during model evolution. 

 

The first stage of the experimental procedure is to compare the MOGP algorithm 

using conventional Pareto ranking with the SOGP algorithm. Comparison is made by 

comparing the non-dominated set of individuals obtained from a set of twenty 

algorithm runs. This set is found by combining the non-dominated solutions from 

each run and then re-ranking the individuals to find the non-dominated members. The 

non-dominated individual’s objective values can then be plotted to illustrate the trade-

off between the different measures of algorithm performance.  

 

One of the most common techniques for comparing non-dominated fronts produced 

by MOEAs is to use visual inspection. Additional approaches have been proposed that 

use specially designed metrics to quantify the differences between certain aspects of 

the non-dominated front. One of the drawbacks of these methods is that it is 

extremely difficult to define a single metric that allows all of the desired performance 

criteria to be combined in a meaningful way. The results of such analyses have to be 

interpreted with care as each performance measure has its advantages and 

disadvantages. For example, Zitzler et al. (2000) describe a metric used to calculate 

the fraction of individuals produced by one algorithm that dominate those generated 

using another algorithm. One of the disadvantages of this technique is that it does not 

consider the magnitude of the difference between the objective values. In contrast, 

with visual inspection it is easy to observe whether one front dominates another by a 

very large or small margin. In this thesis, no performance metrics have been used to 

characterise the non-dominated fronts produced by different algorithms and all 

observations were made by visual examination. 

 

As some regions of the objective space (and consequently the non-dominated front) 

may be sampled more densely, histograms are used to compare the distribution of the 

final population members’ objective values. These distributions along with the non-

dominated fronts provide information that can be used to determine how preference 

information can be used to enhance algorithm performance. For example, the 

distribution of the final population members may indicate that an algorithm has 

tended to bias its search in favour of one of the objectives. Additional sets of runs can 
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then be carried out with preference information and the results compared to those 

achieved using Pareto ranking. 

 

7.2 Model parsimony 

 

The results in previous chapters showed that, although GP is able to develop accurate 

models of steady-state and dynamic processes, the resulting structures are rather 

complex. Even for simple test systems, the MBF-GP model expressions contained a 

relatively large number of basis functions. Although the models produced accurate 

predictions when applied to the validation data, parsimonious representations are 

more desirable as it is generally thought that they are more likely to generalise well. 

Complex models may include superfluous model terms that lead to overfitting of the 

training data resulting in poor performance when applied to unseen data. During any 

model development process, a balance must be reached between model accuracy and 

complexity, as there is little benefit in greatly increasing model complexity if the 

relative improvement in accuracy is not significant. From a practical point of view, it 

is preferable to work with a parsimonious model structure rather than a highly 

complex representation with the same prediction accuracy. In addition, a population 

of unnecessarily large model expressions will require a greater amount of processing 

time and reduce the efficiency of the algorithm. 

 

Conventional model development procedures often result in a set of candidate models 

with varying levels of accuracy and complexity. One way to select the most 

appropriate solution is to apply statistical information criteria such as the Akaike 

information criterion (AIC) and the final prediction error (FPE), which attempt to 

strike a balance between the prediction accuracy and complexity of the model. The 

AIC and FPE for a particular model are given by the following relationships, 
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Where  )(ˆ)()( kykyk −=ε  is the residual at time sample k, )(ky  is the measurement, 

)(ˆ ky  is the model prediction, � is the total number of terms included in the model and 

N is the number of data points. It can be seen from equations 7-1 and 7-2 that both 

criteria consist of two terms, one for prediction error and one for model order. The 

first term is a measure of how well the model fits the data and the second is a measure 

of the complexity of the model required to achieve the fit. AIC and FPE therefore 

attempt to find a compromise between low residual variance and an excessive number 

of model parameters with smaller values indicating more desirable model structures. 

  

Ideally, if AIC is statistically consistent, it will obtain a minimum value for the correct 

number of model parameters. However, it can be demonstrated that the AIC is 

statistically inconsistent and tends to overestimate the model order (Johansson, 1993). 

Similar problems can be encountered when using FPE, which has been found to 

underestimate the correct order of the system. Consequently, a number of other 

criteria have been proposed, such as the Bayesian information criterion (BIC), law of 

iterated logarithms criterion (LILC) and the minimum description length (MDL) 

principle. Iba et al. (1994) proposed a MDL based fitness function in order to control 

the size of the models produced by their GP algorithm (STROGANOFF). 

 

A disadvantage of using such criteria in conjunction with a GP algorithm is that GP 

models can be very complex yet may not necessarily have a large number of 

numerical parameters. Consequently, the algorithm may evolve models that have 

relatively low AIC values by generating models consisting of a few extremely 

complex basis functions. This will defeat the overall aim of evolving parsimonious 

model structures. This is not an issue with STROGANOFF as the functional nodes are 

restricted to linear polynomials, each with a fixed number of parameters. 

 

It is well documented in the GP literature that program trees expand as the 

evolutionary process proceeds. This process, known as ‘bloat’, has been widely 

reported by a number of researchers, and it is common that such increases in program 

size occur without any significant improvement in performance (Koza, 1992, Blickle 

and Thiele, 1994, Nordin and Banzhaf, 1995). Consequently, the performance of the 
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GP algorithm may be compromised if model trees expand to the maximum allowable 

size 

 

It has been suggested that code growth occurs in GP algorithms as a means of 

protecting solutions from destructive crossover operations (Blickle and Thiele, 1994, 

Nordin and Banzhaf, 1995). This is due to the fact that large GP programs will often 

contain sections of code that serve no useful purpose and when executed do not 

contribute to the individual’s fitness. These sections, known as introns, may help to 

prevent the creation of unfit solutions by providing sites for crossover to take place 

non-destructively. Nordin et al. (1996) used a symbolic regression problem to 

demonstrate how the inclusion of explicitly defined introns (EDIs) could lead to 

improved generalisation and reduced processing time. 

 

Another method used by GP practitioners to evolve parsimonious solutions is to 

directly limit the growth of the program trees. This can be done by setting a maximum 

program size that must not be exceeded by new offspring if they are to be allowed to 

take part in the next generation. However, this approach is not very flexible, as the 

maximum program size must be set at the start of the run. If unsuccessful results are 

obtained, the program size will have to be increased and more algorithm runs 

performed until a successful solution is generated. 

 

Another commonly used way of implementing parsimony pressure is to use a fitness 

term that incorporates a penalty function based on program size. The fitness of 

individual i is then given by, 

 
)( iii spPF −=  7-3 

 

Where Pi is a measure of how individual i actually performs, si is the size of i and p is 

a function used to apply parsimony pressure. If p is chosen to be a simple linear 

function, the fitness function becomes, 

 
iii sPF β−=  7-4 
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Where � is a weighting parameter used to adjust the strength of the parsimony 

pressure to be applied. Although some researchers have reported successful 

applications of parsimony pressure (Soule et al., 1996, Blickle, 1996), others have 

experienced less favourable results  (Koza, 1992, Nordin and Banzhaf 1995), 

reporting that increased parsimony lead to a reduction in the performance of the 

evolved solutions. A possible disadvantage is that it may be difficult to find the value 

of � in equation 7-4 that enables the algorithm to evolve parsimonious solutions 

without degrading their performance.  

 

The aim of this work is to investigate whether the MOGP algorithm can provide a 

more flexible approach. By applying the concepts of Pareto dominance, the algorithm 

can be used to generate a set of candidate solutions from which to choose the final 

model.  This means that fewer decisions have to be made (e.g. setting cost function 

weightings) before the end of the algorithm run, thus avoiding some of the drawbacks 

of other methods. Preference information can be used to enhance performance by 

directing the search towards the desired region of the non-dominated front. 

 

It has been shown (Hinchliffe et al., 1998) how the MOGP algorithm described in the 

previous chapter can be used to generate parsimonious models of steady-state 

processes without compromising model accuracy. Rodríguez-Vázquez and Fleming 

(1998) used a number of model attributes such as the maximum process lag and 

polynomial order when evolving NARX models using a similar algorithm. However, 

if GP is to be used to automatically develop dynamic models, it must be assumed that 

aspects of the final model structure such as the maximum process lag are unknown. It 

is therefore difficult to specify goals for such objectives before the algorithm run 

commences. This was not a disadvantage for Rodríguez-Vázquez and Fleming as their 

approach allows preference information to be adjusted during model evolution.  

 

Following Hinchliffe et al. (1998), the string length of a GP model expression is used 

in this thesis to measure model parsimony. This value is easy to calculate and does not 

require a significant amount of additional processing. Another advantage is that the 

GP algorithm is still responsible for model characteristics such as the number of lags 

and degree of non-linearity as no restrictions (i.e. preference information) have to be 

placed on these criteria. 
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7.2.1 Analysis of Results 

 

7.2.1.1 Test System with Time Delay 

 

Initial algorithm runs were performed to compare the SOGP algorithm with the 

MOGP algorithm using Pareto ranking (MOGP-P). An additional set of MOGP-P 

runs was carried out without fitness sharing (FS) to demonstrate its effect on 

algorithm performance. Each algorithm was run 20 times with a population size of 50 

for 50 generations. The non-dominated sets of individuals obtained from each set of 

runs are compared in Figure 7-1 (RMS errors are on the training data set). 
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Figure 7-1- Comparison of non-dominated fronts achieved by SOGP and MOGP-P 

algorithms 

 

The non-dominated fronts contain sets of solutions that represent a trade-off in 

performance between the two objectives. The solutions range from parsimonious 

models with high RMS errors to increasingly complex solutions with lower prediction 

errors. Figure 7-1 shows that the MOGP-P algorithm evolved the more parsimonious 

solutions with 8 of the 14 non-dominated individuals having a string length of fewer 

than 50 characters. Unfortunately, the reduction in complexity has been achieved at 
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the expense of accuracy, with the most accurate of these models having an RMS of 

0.0152 compared to the most accurate SOGP model, which has an RMS of 0.00429. 

As the accuracy of the MOGP-P models improve, there is a sharp increase in model 

complexity. The MOGP-P model with the lowest prediction error has an RMS error of 

0.00839. Without fitness sharing, the MOGP-P algorithm can only manage to 

generate a set of relatively inaccurate models that are all under 50 characters in 

length. 

 

Although the SOGP and MOGP-P algorithms have evolved non-dominated sets of 

solutions covering a wide range of objective values, the distributions of the final 

population members must be studied to examine how evenly the individuals are 

scattered along the non-dominated front. The distributions of the final population 

members’ objective values for the SOGP and MOGP-P algorithms are shown in 

Figure 7-2. Figure 7-2a shows how the majority of the individuals produced by the 

SOGP algorithm have expanded towards the maximum permissible string length of 

500 characters. The resulting models provide accurate predictions but are rather 

complex.  

 

The effect of including the string length objective during model evolution is 

demonstrated by Figure 7-2b. The MOGP-P algorithm has produced a large number 

of parsimonious model structures, with only a fraction having RMS errors as low as 

the models produced by the SOGP algorithm. This is probably because it is easier for 

the algorithm to generate parsimonious models than it is to evolve models that give 

accurate predictions. Whereas the algorithm may require a considerable number of 

generations to evolve models with low RMS errors, parsimonious models will be 

present in the initial population. These models will be selected to take part in 

reproduction due to their high level of performance in one objective dimension. The 

action of genetic operators on these models is more likely to produce parsimonious 

solutions instead of ones that have low RMS errors. As the population becomes 

saturated with simple model structures, it will become increasingly difficult for the 

algorithm to evolve accurate models via crossover and mutation. Although the fitness 

sharing scheme is intended to promote diversity, it is unable (in this case) to prevent 

the population members from becoming unevenly distributed along the non-

dominated front. 
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(a) Single objective (b) MOGP-P algorithm 

Figure 7-2 – Distributions of final population members’ objective values 

 

Figure 7-3 shows that the bias towards the string length objective is more pronounced 

when fitness sharing is not included. In this case, the algorithm produces an extremely 

large number of solutions with very short string lengths and relatively high RMS error 

values. The lack of a fitness sharing scheme means that additional fitness is not 

allocated to diverse individuals (in this case, more accurate but more complex 

solutions). Consequently, the population becomes saturated with parsimonious 

solutions that perform poorly in terms of RMS error. Without sharing, the tendency of 

the algorithm to favour model parsimony is so exaggerated that virtually all of the 

models are constructed from a single input terminal. 

 

Although the MOGP-P algorithm has discovered a large number of parsimonious 

solutions, model accuracy has been compromised. This problem can be addressed by 

using preference information to guide the search towards the desired region of the 

non-dominated front. The MOGP-P algorithm can be prevented from biasing its 

search in favour of string length minimisation by setting a goal value for that 

objective. The preferability relationship outlined in section 6.2.2.1 selectively omits 

objectives from the ranking process once they have satisfied their goals. 

Consequently, goals can be used to prevent the algorithm from attempting to 

minimise an objective that has already reached a desirable level of performance. 
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Figure 7-3 –Distribution of objective values for MOGP-P algorithm without fitness 

sharing 

 

An additional set of runs was performed with the MOGP algorithm using Pareto 

ranking with preference information (this algorithm will be referred to as MOGP-FF 

due to its use of Fonseca and Fleming’s preferability relation). The RMS error goal 

was set to an ‘ideal’ value of zero and the model string length goal was arbitrarily set 

to 100 characters. This means that population members with string lengths below this 

value are compared using their RMS values alone. With this approach, the algorithm 

will not try to minimise the string length below 100 characters and avoids the 

evolution of overly parsimonious solutions. Figure 7-4 compares the non-dominated 

front obtained using the MOGP-FF algorithm with the fronts achieved by the SOGP 

and MOGP-P algorithms. 
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Figure 7-4 – Comparison of non-dominated fronts 
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The plots show how the non-dominated solutions evolved by the MOGP-FF algorithm 

are grouped closely around the 100 character goal value. The corresponding RMS 

error values are lower than those achieved by all of the MOGP-P solutions. The most 

accurate model produced by the MOGP-FF algorithm has an RMS value of 0.00433 

compared to a value of 0.00429 for the most accurate SOGP model. The 

corresponding string length is considerably shorter (125 compared to 414 characters), 

meaning that the MOGP-FF algorithm has been able to reduce model complexity 

without a significant loss of prediction accuracy. The distribution of the individuals 

from the final populations of the MOGP-FF runs is shown in Figure 7-5. The 

inclusion of preference information has enabled the algorithm to develop accurate and 

parsimonious process models, with the greatest concentration of models located 

around the 100 character goal value. This is in contrast to the SOGP results, which 

demonstrate how ‘bloat’ leads to the generation of solutions that occupy the 

maximum allowable program size. 

 

Figure 7-5 - Distribution of objective values for MOGP-FF algorithm 

 

The non-dominated set of solutions provides the engineer with a trade-off between 

model parsimony and accuracy. Before the final model is chosen, the validation RMS 

of each model must also be considered. Table 7-1 shows the validation RMS values of 

the six non-dominated solutions generated using the MOGP-FF algorithm along with 

their training RMS errors and model string lengths.  
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Table 7-1- Comparison of non-dominated solutions 

Model no. RMS String length Validation RMS 

1 0.0043296 125 0.007287 

2 0.0043297 124 0.007287 

3 0.0043333 121 0.007293 

4 0.0043465 120 0.007312 

5 0.0043959 114 0.006619 

6 0.0044174 100 0.008632 

 

The fifth model in Table 7-1 has the lowest RMS error on the validation data set. The 

model is constructed from a single basis function and is shown in simplified form 

below, 

 
( ) 0451.0894.0ˆ512.5ˆ5114.0ˆ 111191 −+++= −−−− kkkkk uuyyy  7-5 

 

The model is ranked second in terms of parsimony and probably provides the best 

overall solution to the problem (in terms of a compromise between the chosen 

performance criteria). The lowest validation RMS achieved by the SOGP algorithm is 

slightly lower (0.00606 compared to 0.00662) but the model is more complex, 

containing 13 basis functions.  

 

7.2.1.2 Cooking extruder 

 

As in the previous section, SOGP, MOGP-P and MOGP-FF algorithm runs were 

carried out in order to compare algorithm performance. Twenty runs of each 

algorithm were performed using a population size of 50 individuals for 50 

generations. As before, the MOGP-FF algorithm RMS and string length goals were 

set to values of 0 and 100 respectively. The non-dominated fronts obtained are shown 

in Figure 7-6 
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Figure 7-6 – Comparison of non-dominated fronts achieved by SOGP and MOGP 

algorithms 

 

The non-dominated set of solutions evolved by the MOGP-P algorithm covers a wide 

range of objective values. The most accurate MOGP-P model has an RMS error of 

0.0197 and a string length of 463 characters. At the opposite end of the front, the most 

parsimonious solution is only seven characters long and has an RMS of 0.146. 

Although the SOGP algorithm was able to evolve a number of relatively simple 

solutions, models of fewer than 200 characters in length have substantially higher 

RMS errors than MOGP-P models of the same size. The SOGP algorithm evolved the 

model with the lowest training RMS (0.0158 compared to 0.0197 for the MOGP-P 

algorithm). This would be expected, as all SOGP algorithm resources are 

concentrated on the task of evolving models that perform well in terms of this 

objective. 

 

The distributions of the end-of-run objective values are compared in Figure 7-7. 

Figure 7-7a demonstrates how the SOGP models have expanded to fill the maximum 

available string size of 500 characters. Figure 7-7b shows that there is a relatively 

even distribution of individuals along the non-dominated front evolved by the MOGP-

P algorithm. This is in contrast to the distribution that is achieved by the same 

algorithm without fitness sharing (Figure 7-7c). It can also be seen that the MOGP-P 

algorithm has produced a large cluster of individuals that have short string lengths and 
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RMS error values of approximately 0.12. The bias towards the string length objective 

was much greater for the test system studied in the previous section.  

 

 
(a) Single objective (b) MOGP-P algorithm 

 

 
 

(c) MOGP-P algorithm without fitness sharing (d) MOGP-FF algorithm 

Figure 7-7 – Distribution of objective values for final generation 

 population members 

 

The non-dominated set of solutions obtained using the MOGP-FF algorithm does not 

contain the highly parsimonious but inaccurate models that are found in the MOGP-P 

set. In the test system case study, the MOGP-FF algorithm was able to evolve models 

that were more parsimonious and had lower RMS errors than the other algorithms. 

This is not the case in this example, as the non-dominated front evolved by the 

MOGP-FF algorithm closely follows that evolved by the MOGP-P algorithm. 



Dynamic Modelling Using Multi-objective GP 

 138 

However, Figure 7-7d shows that the MOGP-FF produced fewer models with 

extremely short string lengths and high RMS errors, indicating an improvement in 

terms of the consistency of individual algorithm runs. 

 

Table 7-2 – MOGP model with lowest validation RMS 

Basis function Parameter 

4ˆ −kg  0.29736 

2−kω  0.49312 
3

2 −kfM  -0.039973 

4 −kfQ  -0.27842 

4−kω  0.054084 
2

4 −kfT  -0.073058 

57363.04
3 −−kfQ  0.18924 

Bias 0.1441 

 

The validation RMS must also be considered before the final model structure can be 

selected. The SOGP model with the best performance when applied to the validation 

data had a validation RMS error of 0.0399 and a string length of 492 characters. The 

best MOGP-FF model had a slightly lower validation RMS error of 0.0385 and a 

string length of only 131 characters. The MOGP model contains seven parsimonious 

basis functions, compared to the sixteen basis functions of the SOGP model. The 

MOGP model is shown in Table 7-2 in simplified form. 

 

7.2.2 Discussion 

 

Both case studies showed how the MOGP-P algorithm was able to generate a set of 

non-dominated solutions that possessed varied levels of performance in each 

objective. The main disadvantage of this technique is that many of the solutions do 

not have a high enough level of performance with respect to both objectives. In this 

example, the algorithm tended to generate a large number of models that had short 

string lengths but higher RMS errors than the SOGP algorithm. The MOGP-P results 

are useful, however, as they highlight the regions of objective space that are being 
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over exploited by the algorithm. This information can then be used to help select 

suitable goal values to be supplied to the MOGP-FF algorithm.  

 

This MOGP-FF runs illustrated how preference information can be used to 

concentrate the search towards the desired region of the objective space. The benefits 

of using the MOGP-FF algorithm were greater for the test system, where the 

algorithm was able to generate concise solutions that provided more accurate 

predictions than the SOGP and MOGP-P algorithms. A smaller improvement was 

seen with the extruder data, but this would be expected for a more complex system. 

The work carried out in this section also emphasised the importance of the fitness 

sharing scheme. Without fitness sharing, all of the MOGP-P solutions converged 

closely around round the same region of the search space. This was undesirable, as the 

solutions were overly parsimonious and produced very poor predictions. 

 

7.3 Residual analysis 

 

The residuals of a model represent the difference between the predicted and actual 

values of the process output. Consequently, the presence of any information 

remaining in the residuals is an indication that the proposed model may be inadequate 

in some way. The existence of such information can be investigated by using a 

number of techniques that take into account factors such as (Johansson, 1993), 

 

• Correlations between residuals and the inputs(s) or output. 

• The autocorrelation of the residuals 

• Normal distribution of residuals 

• Zero crossings (changes of sign) of the residual sequence 

 

These techniques are usually applied after the model structure and associated 

parameters have been identified. A potential advantage of using a MOGP approach is 

that performance with respect to the tests could be taken into account throughout the 

model evolution process. 
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Although any combination of these criteria could be used as objectives within a 

MOGP framework, the correlation tests outlined by Billings and Voon (1986b) are 

used in this thesis. The tests were designed to determine whether a proposed model 

captures the dynamics of the underlying process as opposed to simply fitting the 

available data. These tests have been applied to a number of non-linear dynamic 

systems including real and simulated processes (Doherty et al., 1997, Arkov et al., 

2000). In addition, it has been shown how the test results can be used to identify 

process lags that are missing from the input sequence. Similarly, providing the GP 

algorithm with the same measure of model performance may increase the algorithm’s 

ability to discover the correct combinations of inputs and process lags required to 

evolve an accurate model. 

 

For linear systems, the auto-correlation function of the residuals and the cross-

correlation between the residuals and the input(s) are sufficient model validation tests 

(Söderström and Stoica, 1989). However, for non-linear systems, additional higher 

order tests are required to detect the presence of unmodelled linear and non-linear 

terms. In total, the following five tests have been proposed (Billings and Voon, 

1986b), 

 

(a) 0)( =τφ εu   τ∀  
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(c) 0)( =τφεεu   τ∀  

(d) 0)(
)'( 2 =τφ εu

  τ∀  
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7-6 

 

Where τ is the time-shift and δ is the Kronecker delta function. The necessary 

expressions for obtaining the correlation estimates are as follows: 

 

� �

�

= =

=

−−

−−−
=

N

k

N

k

N

k
xy

ykyxkx

ykyxkx

1 1

22 ))(())((

))()()((
)( τ

τ
τφ  7-7 

 



Dynamic Modelling Using Multi-objective GP 

 141 

� �

�

= =

=

−

−−−
=

N

k

N

k

N

k
u

ukuk

ukukkN

1 1

22 ))(()(

))()(1()(
)(

ε

τεε
τφ τ

εε  7-8 

 

The first two tests are the standard autocorrelation and cross correlation functions 

used in linear system identification. The remaining higher order tests are designed to 

detect missing non-linear terms by examining the correlations between odd and even 

powers of the inputs and residuals. 

 

Rodríguez-Vázquez and Fleming (1998) used the linear autocorrelation and 

correlation tests as objectives during the evolution of NARMAX models using a 

MOGP algorithm. Later, Arkov et al. (2000) extended the work by including the 

additional tests for non-linear systems. Although the authors describe how the 

technique can be used to develop accurate models, the results were not compared with 

algorithms that did not use multi-objective techniques. In contrast, the aim of this 

work is to emphasise the advantages of using the MOGP-FF algorithm in place of the 

MOGP-P and SOGP algorithms. 

 

The correlation tests are usually performed at the 95% confidence level. This means 

that the residuals will contain no linear or non-linear structure if the absolute value of 

each test statistic is not greater than N/96.1 . The correlation test objective value 

(Φ) for a MOGP model can then be found by taking the sum of the test values that 

exceed the 95% confidence limit, 
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uεεφφ =3  maxτ = Maximum time shift 
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For a process with multiple inputs, the test values for each input can be combined to 

produce a single objective value, 
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Where n is the number of process inputs. Combining 7-10 with equation 7-9 yields, 
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Where 

kui ,φ refers to correlation test i using the kth process input. Note that the first test 

is based on the residuals only and does not have to be evaluated for each process 

input.  

 

If all of the correlation values for time shifts in the range [0 �max] fall within the 95% 

confidence region, equation 7-11 produces an objective value of zero. This is 

convenient as the required performance level for this objective will always be the 

same, regardless of the maximum lag and number inputs. Another approach would be 

to use the individual tests as separate objectives. An advantage of this method is that 

more information is given to the MOGP algorithm in terms of which correlation tests 

have been satisfied. However, the resulting problem will have a relatively large 

number of objectives, especially if processes with more than a single input are 

considered. This may lead to a large number of non-dominated solutions and larger 

population sizes may be required to enable the algorithm to carry out an effective 

search. Another reason for combining the tests into a single objective value is that the 

overall problem has only two objectives, making the trade-off between the objective 

values of candidate solutions easier to visualise. 

 

The maximum time-shift, maxτ , was set to twenty process lags for all of the 

correlation tests carried out in this work. This is a commonly used value (Doherty et 

al., 1997, Arkov et al., 2000) and exceeds the maximum time delay encountered 

during both of the case studies used in this work. In practice, the results of the tests 

must be analysed carefully to ensure that maxτ  is not less than the maximum lag 

required for an accurate model. 
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7.3.1 Analysis of Results 

 

7.3.1.1 Test System with time delay 

 

Initially, two sets of runs were performed to compare the performance of the MOGP 

algorithm using Pareto ranking with that of the SOGP algorithm. As with the model 

string length objective, correlation tests can be performed at the end of each SOGP 

algorithm run and the values used to rank the population members and find a non-

dominated set of solutions to be compared with the MOGP results 

 

Preliminary results indicated that, after 50 generations of the MOGP algorithm run, 

few models had correlation test values close to zero and consequently all sets of runs 

were allowed to run for 100 generations. Twenty runs of each algorithm were 

performed with a population size of 50. Figure 7-8 compares the non-dominated 

solutions obtained by both algorithms.  
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Figure 7-8- Non-dominated fronts obtained using SOGP and MOGP-P algorithms 

 

Figure 7-8 demonstrates the advantage of including the correlation test objective 

during model evolution. The MOGP-P algorithm has improved performance with 

respect to both objectives. The most accurate model obtained using the MOGP 
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algorithm has a lower RMS (0.00250 compared with 0.0336) and a lower correlation 

test value (5.798 compare with 9.665). At the opposite end of the non-dominated 

front, there are individuals with better performance in terms of correlation test values 

but degraded performance in terms of RMS error. The MOGP algorithm has 

outperformed the SOGP algorithm as the model with the best correlation test value for 

the MOGP algorithm has an RMS error of 0.0508 and a correlation test value of zero 

compared to values of 0.1591 and 0.0232 for the SOGP algorithm. It can be seen, for 

any given RMS error, the corresponding correlation test value is lower for the MOGP 

algorithm and vice versa. 

 

 
(a) Single objective (b) MOGP-P algorithm 

Figure 7-9 –Distribution of final generation objective values for  

SOGP and MOGP-P algorithms 
 

Despite this improvement, preference information can still be used to evolve a greater 

number of solutions with increased performance with respect to both objectives. 

Figure 7-9 reveals that the MOGP-P algorithm appears to have biased its search in 

favour of the correlation tests, with a substantial number of individuals performing 

well at the tests but having higher RMS values in the range [0.01 0.03]. This means 

that although the non-dominated front shows improved performance, individual runs 

may fail due to their convergence around regions with RMS errors in this range.  

 

A possible solution is to only include the correlation tests when prediction errors have 

reached a certain level of accuracy (for example an RMS error of 0.01). This can be 

accomplished by setting goals of 0.01 and ∞ for the RMS and correlation objectives 
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respectively. Setting a value of ∞ means that all population members will satisfy the 

goal for that particular objective. Consequently, the correlation tests are omitted from 

the ranking process and individuals are compared using their RMS values only. This 

will be the case until individuals are encountered that have RMS errors that satisfy the 

RMS goal (0.01). At this stage, all goal values will be satisfied and the corresponding 

individuals will be compared in the conventional Pareto manner, meaning that both 

objectives are taken into consideration. An additional set of twenty runs was 

performed using the MOGP-FF algorithm with the goal values described above. The 

non-dominated front achieved by the algorithm is shown in Figure 7-10 compared to 

the fronts evolved by the SOGP and MOGP-P algorithms. 

 

0

1

2

3

4

5

6

7

8

9

10

0 0.005 0.01 0.015

RMS error

C
or

re
la

tio
n

SOGP

MOGP-P

MOGP-FF

 

Figure 7-10 – Comparison of non-dominated fronts achieved using SOGP, 

MOGP-P and MOGP-FF algorithms 

 

Figure 7-10 illustrates how the MOGP-FF algorithm was able to evolve a set of 

solutions with improved performance with respect to both objectives. For example, 

the most accurate MOGP-FF model has an RMS error of 0.00231 and a correlation 

test value of 3.371 compared to values of 0.00250 and 5.798 for the corresponding 

MOGP-P model. At the opposite end of the non-dominated front, the MOGP-FF and 

MOGP-P algorithms have both discovered models that have correlation values equal 

to zero. However, the MOGP-FF algorithm gives a more accurate prediction, with an 

RMS of 0.00394 compared to a value of 0.00508 for the MOGP-P algorithm. The 
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distribution of the objective values taken from the final generation of each run is 

shown in Figure 7-11. The addition of preference information has prevented the 

algorithm from evolving models with low correlation scores and RMS errors greater 

than 0.01. Without these solutions occupying algorithm resources, more solutions 

have been evolved with RMS errors in the range [0.005 0.01]. 

 

 

Figure 7-11 – Distribution of final population objective values obtained 

using the MOGP-FF algorithm 

 

Before the ‘best’ model of these preferable models can be chosen, the performance of 

the models on the validation data must also be taken into consideration. Table 7-3 

contains the objective values and validation RMS errors belonging to the non-

dominated solutions evolved using the MOGP-FF algorithm. Table 7-3 shows how 

low RMS errors can be obtained on the training and validation data sets, by the 

models that have the higher correlation values.  

 

Model 3 provides the most accurate prediction on the validation data, with an RMS 

error of 0.00323 (compared to the best validation RMS of 0.00475 for SOGP). 

Arguably, model 4 provides a better compromise solution. The model has slightly 

higher training and validation RMS error values than model 3, but has a significantly 

lower correlation test score. Figure 7-12 shows the results of the five correlation tests 

for this model (+/- 95% confidence limits are shown as horizontal dashed lines). 
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Table 7-3 – Preferable individuals obtained using MOGP-FF algorithm 

Model no. RMS Correlation tests Validation RMS 

1 0.002309 3.3707 0.003507 

2 0.002353 3.1662 0.003579 

3 0.002388 1.3484 0.003234 

4 0.002423 0.7742 0.003450 

5 0.002720 0.6392 0.003447 

6 0.002825 0.4598 0.003691 

7 0.002859 0.2848 0.003645 

8 0.002908 0.1603 0.003838 

9 0.003434 0.0667 0.004079 

10 0.003468 0.0158 0.004172 

11 0.003938 0 0.004588 

 

 

Figure 7-12 – Correlation test plot for model 4 (RMS=0.00242, �=0.774) 

 

7.3.1.2 Cooking extruder 

 

Twenty runs of the SOGP and MOGP-P algorithms were performed with a population 

size of 100 individuals for 100 generations. The non-dominated fronts evolved by the 

algorithms are compared in Figure 7-13. The plots show that the MOGP-P algorithm 
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was able to produce models with lower correlation values, although some of the 

prediction errors are rather high. 
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Figure 7-13- Non-dominated fronts achieved by SOGP and MOGP-P algorithms 

 

The distributions of the final generation population members’ objective values are 

shown in Figure 7-14. The distributions reveal that the individuals evolved by the 

MOGP-P algorithm are all grouped along one half of the non-dominated front. The 

MOGP-P distribution is wider along the RMS error axis than the SOGP distribution 

as model accuracy has been reduced at the expense of improved residual test 

performance. Figure 7-14 also shows that the solutions generated by both algorithms 

have correlation tests values that are much higher than those achieved in the previous 

test system example (see Figure 7-9b). This would be expected, as this case study is 

based on a more complex system. In addition, the correlation objective value is the 

sum of a larger number of tests as the process has multiple inputs.  

 

In the previous example, the MOGP-P algorithm was able to generate a large number 

of solutions that performed well in terms of the correlation tests but relatively poorly 

with respect to RMS error. Consequently, preference information was needed to 

prevent the algorithm from carrying out a search that was biased towards the residual 

tests. In this example, preference information is not required for this reason. However, 

the non-dominated front does contain a number of solutions that have poor RMS 

values and preference information can be used to ensure that these individuals are 
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discarded and do not form part of the final set of candidate solutions. Another 

requirement is to improve performance with respect to the residual tests. One possible 

approach is to set an RMS error goal to force the algorithm to concentrate solely on 

the correlation tests once a certain level of prediction accuracy has been achieved. 

Although this means that model accuracy may have to compromised at the expense of 

the residual tests, it is important to note that the most accurate models on the training 

data do not necessarily have the best performance on the validation data.  

 

 

 
(a) Single objective (b) MOGP-P algorithm 

Figure 7-14 – Distributions of final population objective values 

 

An attempt can be made to accomplish both of these aims by setting preference 

information at two different priority levels. The goal values for each objective and 

priority are shown in Table 7-4. 
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When ranking the population, the MOGP algorithm uses the highest priority goals 

first (priority 2 in this case). At this priority, the correlation objective has been given 

an infinite value which means that that every population member will satisfy this goal. 

As a result, the population will be ranked using their RMS values alone. This strategy 

is intended to prevent the survival of solutions that pass the correlation tests but have 

higher RMS values.  

 

Table 7-4- MOGP preference information 

Priority level RMS goal Correlation test goal 

2 0.03 ∞ 

1 0.02 0 

 

Ranking will be based solely on RMS values unless comparison is made between two 

individuals that both satisfy the RMS goal of 0.03. When this occurs, both members 

satisfy all priority 2 goals and the ranking algorithm moves down to the next priority 

level. At priority level 1, the correlation goal is zero and is therefore unsatisfied. This 

means that the correlation test results are now included in the ranking process. 

Ranking will continue to use both objectives unless two members meet the RMS goal 

of 0.02, in which case ranking will be performed using correlation values alone. Here, 

the aim is to force the algorithm to evolve more models that perform well in terms of 

the correlation tests instead of continuing to evolve models with RMS errors below 

the 0.02 value. This technique assumes that the models with RMS errors in the range 

[0.02 0.03] provide an adequate level of prediction accuracy and further reduction in 

model accuracy can be sacrificed in exchange for improved performance with respect 

to the residual tests. The choice of RMS goal values is not as arbitrary as may first 

appear as work carried out in chapter 5 showed that the lowest validation RMS errors 

were achieved by models that had training errors in this range. 

 

An additional set of twenty runs was performed using the MOGP-FF algorithm using 

the preference information outline in Table 7-4. Figure 7-15 shows how the evolved 

non-dominated front compares with the results obtained using the SOGP and MOGP-

P algorithms. 
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Figure 7-15 – Comparison of non-dominated fronts achieved using MOGP-FF, 

MOGP-P and SOGP algorithms 
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Figure 7-16 – Non-dominated individuals with RMS errors between 0.02 and 0.03 

 

The MOGP-FF non-dominated front covers a much smaller region than those 

obtained using the SOGP and MOGP-P algorithms. An equally small subset of 

individuals could be obtained by re-ranking the SOGP and MOGP-P non-dominated 

individuals using the preference information described in Table 7-4. This process 

would effectively discard individuals with RMS errors outside the range [0.02 0.03]. 

Figure 7-16 highlights the non-dominated fronts in this range of RMS values. It can 
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be seen that the MOGP-FF front has lower correlation values than those produced by 

the MOGP-P algorithm. Although the difference is small, this example still illustrates 

how the goal based ranking scheme can be used to channel the algorithm’s search 

effort towards the chosen area of the objective space. 

 

 

Figure 7-17 – Distribution of final population objective values for MOGP-FF 

algorithm runs 

 

The distribution of the final population members taken from each MOGP-FF run is 

shown in Figure 7-17. The inclusion of preference information has resulted in a 

narrower distribution with the majority of the individuals lying between the two RMS 

goal lines, with an especially high concentration along the 0.02 line. This is because 

the search is being targeted towards the correlation test values once this level of 

prediction accuracy has been achieved. The distribution has also shifted slightly in the 

direction of lower correlation values.  

 

The correlation test plots for the non-dominated MOGP-FF model with the highest 

correlation objective value are shown in Figure 7-18. The tests that include the four 

process inputs all have values that fall with in the 95% confidence limits. This 

indicates that the relevant information present in the input data has been used to 

develop the model. The correlation objective value is greater than zero because of the 

first test, which tests for the presence of autocorrelated residuals. This may be due to 

the fact that the information available in the inputs is not sufficient to completely 

model the process. The remaining unmodelled dynamics may be the cause of the 
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autocorrelated residuals. Another reason could be that the model contains past outputs 

of the model and not past process outputs. This approach may introduce correlations 

in the residuals and make it more difficult to completely satisfy all of the tests.  

 

 
a) Autocorrelation 

 
b) Input 1 c) Input 2 

 
d) Input 3 e) Input 4 

Figure 7-18 – Example correlation test results (RMS=0.0198, �=1.916)  
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7.3.2 Discussion 

 

A disadvantage of using the correlation tests is that the additional processing time 

becomes significant as the number of process inputs increases. This is because the 

four cross correlation tests have to be repeated for each process input. One alternative 

is to use tests based only on the residuals and the process output. Billings and Zhu  

(1994) demonstrated how such tests could be used to reduce the number of 

correlations that have to be evaluated. More recently, Mao and Billings (2000) 

introduced a new set of model validation tests designed to overcome some of the 

deficiencies associated with the tests described earlier. It was demonstrated how, 

under certain conditions, models could pass the original tests, even when the residuals 

contained predictable information. Consequently, a set of new ‘multi-directional’ 

model validity tests was devised in order to overcome this problem. It is possible that 

these tests could be used within a MOGP framework, the main drawback being an 

increase in computational effort.  

 

7.4 Conclusions 

 

This chapter has demonstrated, using two test cases, how performance with respect to 

additional modelling criteria can be improved using a MOGP algorithm. It was found 

that preliminary algorithm runs using Pareto ranking were useful in order to obtain 

information regarding the trade-off between the different objectives. This information 

could then be used to help determine appropriate preference information for the 

MOGP-FF algorithm. In this respect, the algorithm cannot be considered as an 

automatic modelling tool as the technique relies heavily on information supplied by 

the engineer. At this moment in time this may be the best approach as human decision 

makers have the ability to assess the trade off between the performance measures 

associated with solutions to complex real-world problems.  

 

Although a Pareto based technique was chosen due to its advantages when compared 

to methods such as the weighted sum approach, there are still issues that must be 

addressed to ensure that successful solutions are obtained. The process of setting goal 

values can be a somewhat arbitrary process, and it is likely that performing additional 
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sets of runs with slightly different values could have yielded further increases in 

performance. It is possible that an interactive approach with progressive preference 

articulation would produce a greater number of desirable solutions. However, the 

process of examining objective information to fine-tune the preference information at 

the end of every generation would be time consuming. This concern would become 

more significant for problems that have more objectives and require larger 

populations sizes.  

 

The work in this thesis has been restricted to case studies consisting of only two-

objectives. A number of issues will arise when the algorithm is applied to problems 

that have a greater number of performance criteria. For example, how does the 

increased number of performance criteria affect the required population size and 

number of generations? In addition, it will more difficult to visualise the objective 

space, making it harder to set goal/priority information effectively. There is a wide 

range of additional modelling criteria that could be included in the MOGP framework. 

In terms of residual analysis, there are the additional tests based on the process output 

and the more recently developed multi-directional tests. Other factors such as the 

distribution of the residuals could also be considered. In terms of model structure, the 

maximum lag, degree of non-linearity and the number of model terms have been used 

by other researchers. Although additional objectives may provide the algorithm with 

more information about evolved models, a balance must be struck as a large number 

of objectives may make it difficult to find a suitable compromise solution. Also, 

objectives based on traditional modelling techniques may not be directly applicable to 

models generated by a GP algorithm and unexpected results may be achieved. 

 

Another consideration is the extra processing required to evaluate the additional 

model attributes. Whereas the evaluation of the model string length uses an 

insignificant amount of processing time, objectives such as correlation tests (which 

have to be calculated for each input over a number of process lags) carry a greater 

overhead. A significant amount of the algorithm run time is allocated to the 

optimisation of the numerical parameters present in each model. One concern is that 

this process favours the RMS error objective. Results without optimisation and larger 

population sizes may produce different distributions of individuals and could make it 

easier to minimise the other objectives. 
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Another important aspect of this work is that no statistical techniques were used to 

compare the non-dominated sets of individuals. This means that it is difficult to 

determine the significance of any differences between two non-dominated fronts. 

Although there may be difficulties associated with some of the techniques designed to 

make such comparisons, future work should perhaps investigate the application of 

statistical MOEA performance measures. 

 

While GP does not provide a significant increase in model accuracy when compared 

to more established techniques such as neural networks, the algorithm has more of an 

advantage when applied to multi-objective problems. The parallel nature of GP means 

that it can evolve a set of candidate solutions with varying levels of performance in 

each objective. Real world engineering problems typically involve a number of 

criteria that must be satisfied before a successful solution can be achieved. 

Consequently, there has been a large increase in the application of MOEAs to 

engineering problems and it is likely that this trend will continue. 
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8 Conclusions and Future Work 

 

This thesis has examined a number of aspects of both steady-state and dynamic model 

development using GP. Chapter 2 discussed how GP could be used to carry out 

symbolic regression, where models are evolved in the form of tree structured 

mathematical expressions. Chapter 3 showed how this technique could be applied to 

the modelling of steady-state chemical processes. The first aim of this thesis was to 

demonstrate how the modelling capabilities of the standard GP algorithm could be 

improved. This was achieved using a MBF-GP algorithm, which uses a model 

structure shared by many existing system identification techniques. Chapter 3 showed 

that the MBF-GP algorithm was able to generate models of a higher accuracy on the 

first two case studies, with the standard GP algorithm evolving the best models on the 

extruder data. The most revealing aspect of the comparison was the difference in the 

computational cost of each approach. The MBF-GP algorithm required less 

computational effort to evolve models of the same accuracy as the standard algorithm.  

 

Although the MBF-GP algorithm was generally able to outperform the standard 

algorithm, it was not able to generate the most accurate models in the extruder case 

study. It was suggested that the use of a non-linear optimisation routine might give the 

standard GP algorithm an advantage in some cases. However, the major drawback is 

that the computational burden is greater than that required by the linear least squares 

routine used by the MBF-GP algorithm. An important consideration for future 

algorithm development is the trade-off between the computational complexity and the 

effectiveness of the available parameter optimisation routines. The MBF-GP 

algorithm could call on a variety of different techniques, perhaps selected on a 

probabilistic basis. For example, the L-M algorithm could be used sparingly (not 

necessarily operating on all of the constants present in a model expression) to provide 

the ability to fit constants appearing inside basis functions. Simpler operations such as 

constant mutation could be applied more frequently as they only carry a small 

processing penalty. 

 

Chapter 4 continued the steady-state modelling work by comparing the performance 

of the MBF-GP algorithm with neural networks. The results showed that, in terms of 
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prediction error, GP was able to compete in the test system and distillation column 

case studies, but was outperformed on the extruder data. This shortcoming was 

addressed by modifying the function set and increasing the population size and 

number of generations. Although this strategy enabled the algorithm to match the 

accuracy of the neural network, the additional computational burden was excessively 

large.  

 

One would perhaps expect GP to require more computational effort than neural 

networks. Neural network training is essentially a parameter estimation exercise, 

whereas the GP algorithm performs a search through the space of possible model 

structures. One of the drawbacks of neural network model development is that a 

variety of architectures must be examined before arriving at the final model structure. 

This additional computational effort is not reflected in the FLOPs profiles presented 

in Chapter 4. If this processing is considered, the difference between the GP and 

neural network algorithms becomes less significant. 

 

As with any algorithm comparison, it would be beneficial to apply the steady-state 

modelling algorithms to a wider range of case studies. Future work should include 

systems that exhibit characteristics typical of those encountered in real industrial 

applications. For example, data sets collected from a real process may be corrupted 

with measurement noise and outliers. Another problem encountered in industrial 

processes is the sheer number of available process variables. It would be interesting to 

study the performance of GP in response to a large number of inputs. In such a case, 

the major problem is often one of determining the relevant input variables from a 

highly correlated data set. In this event, the study may have to be extended to 

encompass hybrid techniques. For example, a combination of GP and PLS may be 

better suited to solving this type of problem. 

 

The second aim of this thesis was to demonstrate how GP could be used to evolve 

models of dynamic processes. Chapter 5 described how the steady-state modelling 

algorithm could be modified in order to achieve this aim. The most innovative feature 

of the dynamic version of the algorithm is its ability to automatically discover the 

appropriate process lags required to build an accurate model. Although discrete-time 

models have been developed in previous GP applications, the time-shifted model 
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inputs had to be specified explicitly in the terminal set. The aim of this thesis was to 

develop a more flexible approach so that the final model form is not restricted by 

assumptions made before the algorithm run. The second case study demonstrated how 

the GP algorithm was able to combine a number of back-shift operators in order to 

model the system time delay. This is a significant result, as neural network modelling 

techniques do not have the ability to perform this task automatically. In practice, this 

limitation can be overcome by using some form of correlation analysis to identify and 

remove the time delay before network training. Nevertheless, it is encouraging to 

discover that GP was able match the accuracy of the neural network that had the 

benefit of time delay compensation. The GP algorithm also produced some models 

that gave poor predictions. This should have been anticipated, as the algorithm has to 

construct the time delay term by nesting a number of back-shift operators. This means 

that the algorithm has to perform a more difficult task than the neural network and the 

probabilistic nature of GP means that it is likely to fail on some occasions.  

 

As was found in the steady-state modelling study, the dynamic MBF-GP algorithm 

required less computational effort to develop models of the same accuracy as the 

standard algorithm. This is again the result of being able to use a linear optimisation 

technique (RLS) instead of the more complex non-linear L-M routine used by the 

standard GP algorithm. The MBF-GP algorithm was able to compete with neural 

networks in terms of prediction accuracy but was more expensive in terms of 

computational effort. While this is an important consideration, it should be 

remembered that computer technology is rapidly improving and today’s PCs are 

capable of tasks that would have previously required access to high-end workstations. 

The work carried out in this thesis required a relatively modest amount of processing 

power when compared to other applications of GP. This can be put into context by 

comparing the single desktop computer used for this work with the network of a 

thousand PCs employed by Bennett et al. (2000) to design electrical circuits. 

 

One of the concerns when attempting to compare GP with neural networks is that it is 

difficult to carry out an objective study. A number of approaches could improve the 

performance of both algorithms. In the case of neural networks, examples include 

alternative training algorithms, weight initialisation techniques and additional 

methods for improving generalisation. GP practitioners would argue that 
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enhancements could also be made to the GP algorithm. Changes could be as simple as 

adjustments to the algorithm control parameters or involve the use of alternative 

genetic operators and parameter estimation techniques. One of the main conclusions 

to be drawn from the work conducted in thesis is that the relative accuracy of the two 

techniques appears to be system dependent. 

 

As with all modelling studies, it would have been beneficial to apply the dynamic GP 

algorithm to a wider range of systems. Future work should ideally study more 

demanding problems that require the identification of more substantial and/or variable 

time delays. As with the steady-state modelling algorithm, the dynamic version 

should be tested on data that is corrupted with noise and outliers. The algorithm could 

also be used to generate different forms of time series models. For example, the 

algorithm could be used to generate one-step ahead predictors that could be used to 

track time varying processes. Future work could also compare the algorithm with 

other techniques, such as those that use GP to evolve transfer function models. 

 

Despite the encouraging performance of the GP algorithm, the results do not provide 

sufficient evidence to suggest that GP will become as widely used as neural network 

modelling techniques. This is largely because neural networks are well established, 

meaning that the necessary software tools are well developed and widely available. In 

addition, neural networks have been applied to a wide range of industrial applications 

and have been the subject of detailed theoretical studies. Although the number of 

applications of GP is increasing, more work is required in order to study the 

suitability of GP derived models for real applications. For example, it has been shown 

that neural networks can be incorporated into a variety of model-based control 

schemes. It would be interesting to investigate the possibility of using GP models in a 

similar fashion.  

 

Some researchers have adopted the GP approach to modelling as models are 

generated in the form of mathematical expressions. Although this model form may be 

more ‘transparent’ than a neural network, this study has shown how GP can generate 

models that are rather cumbersome and do not appear to offer any additional process 

insight. The generic structure of neural network models can be seen as an advantage 

as the engineer knows that the final model will possess certain properties. For 
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example, an interesting characteristic of RBF networks is that they do not extrapolate 

into regions outside the range of the training data. In addition, hardware and software 

implementation of neural network models is aided by the repetitive structure of the 

network. GP generated models are more unpredictable in the sense that a different 

model structure is generated by each algorithm run. 

 

One of the key features of the GP algorithm is its ability to perform a highly parallel, 

population-based search, making it well suited to multi-objective problem solving. 

The algorithm is able to maintain and evolve a set of candidate solutions that offer 

different levels of performance with respect to each objective domain. Chapter 7 

showed how a MOGP algorithm could account for additional modelling criteria that 

would usually be considered at the end of the algorithm run. Two case studies were 

used to make comparisons between the MOGP and SOGP algorithms. The first case 

study demonstrated how model parsimony could be improved by using the MOGP 

algorithm. The second case study showed how more complex performance criteria 

can be included. This was demonstrated using model residual tests, where a number 

of correlation tests were combined to form a single objective function. 

 

Although Pareto ranking enabled the MOGP algorithm to improve performance with 

respect to the additional performance criteria, model accuracy was also compromised. 

This failing was overcome by using a goal-based ranking scheme to guide the 

algorithm towards the desired region of the search space. This technique is not as 

straightforward as it first seems, as the need for goal values cannot be envisaged until 

preliminary runs have been undertaken. For example, initial runs with conventional 

Pareto ranking revealed that the model string length tended to be minimised at the 

expense of the prediction error. While this occurrence could easily be explained with 

hindsight, it is an indication that unexpected results may be achieved when greater 

numbers of objectives are considered. It may be the case that progressive preference 

articulation is required, as goal and priority information can be adapted during 

evolution. The overriding concern with this approach is that it would be time 

consuming and tedious to carry out multiple algorithm runs. It is also interesting to 

note how this approach conflicts with the original notion of using GP as a completely 

automated modelling tool. 
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Future work with the MOGP algorithm should move on to problems with more than 

two performance criteria. It would be advisable to begin by including the string length 

and correlation tests together with RMS error to create a three dimensional problem. 

This would be a logical starting point as the bi-objective problems concerning these 

objectives have already been studied in detail. One consideration is the extra 

processing required to evaluate additional performance measures. Larger population 

sizes may also be required to compensate for the increased difficulty of the problem. 

Visualisation of the non-dominated set of individuals will be more difficult, making it 

harder to configure goal and priority information. It is also important to try to adopt 

more rigorous techniques designed to compare non-dominated sets of solutions. 

Again, the difficulties associated with these approaches may be amplified if more than 

two objectives are being considered. Possible modelling criteria that could be used 

within a MOGP framework were discussed in chapters 6 and 7.  

 

Multi-objective evolutionary computation is an expanding field of research. While the 

number of applications is rapidly increasing, so is the need for more theoretical 

studies to explain the underlying mechanisms associated with this type of algorithm. 

Research in the GP community has followed a similar path, with a number of recent 

contributions on the subject of a schema theory for GP (see for example, Poli, 2000). 

A similar course will have to be taken by researchers in the field of multi-objective 

problem solving. Although there is empirical evidence to suggest that certain 

techniques may outperform others, the work tends to concentrate on test cases that do 

not necessarily imitate the difficulties encountered when tackling complex problems. 

Also, the metrics used to compare results may not necessarily measure features of 

algorithm performance that are relevant to real problems.  

 

Recent work has attempted to carry out a more theoretical analysis of MOEA 

performance. For example, Deb (1999) tackles the problem of comparing MOGAs 

and describes how test problems can be designed in order to assess certain aspects of 

algorithm performance. More recently, Laummans et al. (2000) provided a model for 

the role of elitism in MOEAs. There is still a need to formulate methods to analyse 

different Pareto ranking schemes, fitness sharing and niching methods to provide 

guidance to engineers wishing to tackle multi-objective problems in this way. 

Although much of the current work is MOGA based, it is likely that multi-objective 
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GP will also have an important role to play in solving engineering problems such as 

process optimisation, control, identification and scheduling which often have multiple 

design considerations. 

 

A feature of GP that attracts many researchers is that the algorithm can be applied to a 

diverse range of problem domains with little or no modification to the basic 

algorithm. While an algorithm that can be used to automatically generate solutions to 

problems is an attractive prospect, it also encourages the tendency to replace scientific 

judgement with ever increasing amounts of processing power. This thesis has 

attempted to demonstrate a more measured approach to problem solving. This is 

especially significant in the case of multi-objective problems, as a human decision 

maker is able to influence the evolutionary process. This is an important consideration 

for future work, which should not rely on the hope that an excessive amount of 

computing power can be a substitute for engineering insight. 
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Appendix 

 

A.1 Levenberg-Marquardt Optimisation 

 

A recognised drawback of gradient descent algorithms is that they can make 

extremely slow progress as they approach the minimum. One method that can be used 

to overcome this problem is to perform a search in the direction given by Newton’s 

method. The basic assumption of Newton’s method is that when the search is 

sufficiently close to the minimum, a second order Taylor series expansion can be used 

to approximate the error surface, 
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Where ε̂  is the estimated error, ε is the actual error, Θ is a vector of parameters 

(model or network parameters) and Θi is a particular set of values for those 

parameters. j is a vector of partial derivatives of the error with respect to each of the 

parameters (the Jacobian) and H is a matrix of second derivatives of the error with 

respect to the parameters (the Hessian).  

 

Calculation of these derivatives enables the parameters that minimise A-1 (�m) to be 

found. Hopefully, the same parameters will minimise the real function that the 

quadratic approximates, thus enabling the algorithm to ‘jump’ directly to the solution. 

The additional computational effort required to calculate the second derivatives is 

avoided by using an approximation to the Hessian, ( Ĥ ). The Gauss-Newton search 

direction is then given by, 

 

0)(ˆ
2
1ˆ

=Θ−Θ+−=
Θ miii Hj

∂
ε∂

 

iiim jH 1ˆ2 −−Θ=Θ  

A-2 
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The Levenberg-Marquardt(L-M) algorithm varies smoothly between the extremes of 

the Gauss-Newton method and steepest descent. Far from the minimum, it is likely 

that the error surface is not well approximated by a quadratic and steepest decent is 

used. However, as the algorithm approaches the minimum the Gauss-Newton search 

direction begins to dominate. The L-M parameter update rule can be represented as, 

 

iiiii jIH 1
1 )ˆ( −

+ +−Θ=Θ λ  A-3 
 

Where a large value of λ gives a step in the steepest gradient direction and a small 

(approaching zero) λ gives a Gauss-Newton step. A simple heuristic is generally used 

to adjust the value of λ dynamically during a run. This procedure has been found to 

work well in practice and L-M has effectively become the standard non-linear least-

squares optimisation algorithm (Press et al., 1992). 

 

A.2 Steady-state Process Data 

 

A.2.1 Test System 

 

Plots of the input and output variables for this system are shown below. 

 

 

Figure A-1 - Output 
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Figure A-2 – Input 1 

 

Figure A-3 – Input 2 

 

Figure A-4 – Input 3 
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Table A-1 shows the linear correlations between the input and output variables. 

 

Table A-1– Correlation coefficients for test system 

 y u1 u2 u3 

y 1.00 0.60 -0.70 0.03 

u1 0.60 1.00 0.01 0.13 

u2 -0.70 0.01 1.00 0.05 

u3 0.03 0.13 0.05 1.00 

 

 

A.2.2 Vacuum Distillation Column 

 

Plots of the input and output variables are shown below, 

 

 

Figure A-5 – Bottom product composition 
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Figure A-6 –composition at tray 12 

 

Figure A-7 – composition at tray 27 

 

Figure A-8 –composition at tray 42 
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The linear correlations between the input-and output variables are displayed in Table 

A-2 

 

Table A-2 – Correlation coefficients for distillation column 

 xB x12 x27 x42 

xB 1.00 0.12 0.83 0.29 

x12 0.12 1.00 0.30 0.79 

x27 0.83 0.30 1.00 0.55 

x42 0.29 0.79 0.55 1.00 

 

 

A.2.3 Cooking Extruder 

 

Plots of the input and output variables used in the cooking extruder case study are 

shown below, 

 

Figure A-9 – Degree of gelatinisation (mass fraction) 
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Figure A-10 – Screw speed (rpm) 

 

Figure A-11 – Feed flowrate (Kg/s) 

 

Figure A-12 – Feed moisture content (mass fraction) 
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Figure A-13 – Feed temperature (C) 

 

Table A-3 - Correlation coefficients for cooking extruder variables 

 g ω Qf Mf Tf 

g 1.00 0.69 -0.19 -0.60 0.05 

ω 0.69 1.00 0.02 0.00 0.14 

Qf -0.19 0.02 1.00 0.08 0.23 

Mf -0.60 0.00 0.08 1.00 -0.03 

Tf 0.05 0.14 0.23 -0.03 1.00 
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A.3 Linear Models of Steady-state Systems 

 

Linear models were developed for each steady-state data set using batch least squares 

to determine the regression parameters. RMS values are for the data scaled in the 

range [0 1]. 

 

A.3.1 Test System 

 

A linear model for the test system is shown below. The model has a training RMS of 

0.0789 and a validation RMS of 0.0730. 

 

5730.00164.05122.04217.0ˆ 321 +−−= uuuy  A-4 
 

The prediction obtained using this model is shown in Figure A-14. 
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Figure A-14 - Linear model prediction for test system 
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A.3.2 Distillation Column 

 

A linear model for bottom product composition is shown below, 

 

1458.03647.08289.00217.0 422712 +−+= xxxxB  A-5 
 

The model has a Training RMS of 0.1093 and a Validation RMS of 0.0890. The 

model prediction is shown in Figure A-15. 
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Figure A-15 – Linear model prediction for bottom composition, xB 

 

A.3.3 Cooking Extruder 

 

Equation A-6 is a linear model for the degree of starch gelatinisation. 

 

6375.00066.05995.0036.28651.0ˆ +−−−= fff TMQg ω  A-6 
 

The model has a Training RMS of 0.1278 and a Validation RMS of 0.1237. The 

model prediction is shown in Figure A-16. 
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Figure A-16 – Linear model prediction for degree of starch gelatinisation 

 

A.4 Recursive Least Squares Optimisation 

 

This recursive least squares algorithm can be derived from the ordinary least squares 

estimate as follows (Johansson, 1993), 

 

Consider the regressor φi and the observations yi in the following matrices, 
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 A-7 

 

The least squares criterion based on k samples is, 
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The ordinary least squares estimate is given by, 
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Introducing the matrix, 
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A recursive update is given by, 
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A-12 
 

It is also possible to calculate the matrix Pk instead of its inverse, 
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kkP φφ  A-13 

 

In practice it is often difficult and computationally expensive to perform matrix 

inversion. However, the problem can be reformulated using the following 

relationship, 

 
111111 )()( −−−−−− +−=+ CABCAIBAABCA  A-14 

 

If A-14 is applied to A-13, the following relationship results, 
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The following three equations are required to carry out RLS optimisation, 

 

kkkkk P εφθθ += −1
ˆˆ  A-16 
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kθ̂  is the parameter estimate based on the prediction error (εk), the regression vector 

(φk) and the covariance matrix (Pk). 

 

A.4.1 U-D Factorisation 

 

The matrix P can be expressed as (Kanjilal, 1995), 

 

[ ][ ]TT UDUDUDUP 2121  ==  A-19 
 

Where D is a diagonal matrix, U is an upper triangular matrix with 1’s on the diagonal 

and UD1/2 is the square root of P. The factorisation is referred to as U-D factorisation 

of the covariance matrix. Instead of updating P, its factors U and D can be updated 

and propagated through the recursions. This approach reduces round-off errors and 

increases numerical stability.  

 

A.5 Dynamic Process Data 

 

This section contains plots of the input-output data used for in the dynamic modelling 

case studies. 

 

A.5.1 Test system 

 

The input-output data for the test system is shown below. The data has been scaled in 

the range [0 1]. 
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Figure A-17 - Output 

 

Figure A-18 - Input 

A.5.2 Cooking Extruder 

 

The input-output data for the extruder case study is shown in below.  

 

 

Figure A-19 – Degree of gelatinisation (mass fraction) 
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Figure A-20 – Screw speed (rpm) 

 

Figure A-21 – Feed flowrate (Kg/s) 

 

Figure A-22 – Feed moisture content (mass fraction) 
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Figure A-23 – Feed temperature (C) 

 

A.6 Linear Models of Dynamic Systems 

 

Linear models were developed using a single time shift for each input/output term. In 

order to develop models capable of long-term prediction over the entire data set, the 

model output was used instead of the process output. Model parameters were 

estimated using the RLS algorithm. 

 

A.6.1 Test System 

 

The following linear model has a training of 0.0173 and a validation RMS of 0.0178, 

 

0140.06790.0ˆ3282.0ˆ 11 ++= −− kkk uyy  A-20 
 

The prediction generated by this model is shown in Figure A-24. 

 



Appendix 

 195 

0 50 100 150 200 250 300 350 400
0

0.2

0.4

0.6

0.8

1

Sample number

O
ut

pu
t (

y)

Training                                                Validation

Actual
Predicted

 
Figure A-24 - Linear model prediction for test system 

 

A.6.2 Cooking Extruder 

 

The following model for the degree of gelatinisation has a training RMS of 0.0659 

and a validation RMS of 0.0702 
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Figure A-25 shows the accuracy of the prediction obtained using this model. 
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Figure A-25 – Linear model prediction for degree of starch gelatinisation. 


