

Dynamic Modelling Using Genetic Programming

Mark Hinchliffe

A thesis submitted to the Faculty of Engineering at the University of Newcastle upon

Tyne in partial fulfilment of the requirements for the degree of Doctor of Philosophy.

Department of Chemical and Process Engineering

University of Newcastle upon Tyne

September 2001

Preface

 i

Abstract

Genetic programming (GP) is an evolutionary algorithm that attempts to evolve

solutions to a problem by using concepts taken from the naturally occurring

evolutionary process. This thesis introduces the concepts of GP model development

by applying the technique to steady-state model evolution. A variation of the

algorithm known as the multiple basis function GP (MBF-GP) algorithm is described

and its performance compared with the standard algorithm. Results show that the

MBF-GP algorithm requires significantly less computational effort to evolve models

of comparable accuracy to the standard algorithm. The steady-state algorithm is then

modified to enable the evolution of dynamic process models. Three case studies are

used to demonstrate algorithm performance and show how the MBF-GP algorithm

produces performance benefits similar to those observed in the steady-state modelling

work. A comparison with neural networks reveals that GP is able to match the

accuracy of the network predictions but is more expensive computationally. However,

a significant advantage of the GP algorithm is that it can automatically evolve the

time history of model terms required to account for process characteristics such as the

system time delay.

The model development process is not simply a case of reducing the error between the

predicted and actual process output. The parallel nature of GP means that it is ideally

suited to solving multi-objective problems. The MBF-GP algorithm is modified to

incorporate a Pareto based ranking scheme that allows models to be compared using

multiple performance criteria. The ranking scheme allows preference information in

the form of goals and priorities to be specified in order to guide the search towards the

desired region of the search space. Two case studies are used to demonstrate the

performance of this technique. The first example uses the multi-objective algorithm to

improve the parsimony of the evolved model structures. The second example

demonstrates how a set residual correlation tests can be combined and used as an

additional performance measure. In each case, the multi-objective algorithm performs

significantly better than the single objective version. In addition, the inclusion of

preference information overcomes some of the difficulties associated with

conventional Pareto ranking and produces a greater number of acceptable solutions.

Preface

 ii

Acknowledgements

There are a number of people to whom I am grateful for their contributions made to

this thesis. Thanks must be given to friends and colleagues, whether for technical

advice, programming ‘expertise’ or moral support. In particular, I would like to

mention Mark Willis, Hugo Hiden, Ben McKay, Dominic Searson and Lindsay

Parker.

Preface

 iii

Publications

Some of the work presented in this thesis has appeared or is due to appear in the

following publications,

Hinchliffe, M., Hiden, H., Willis, M., McKay, B., Barton, G.W. (1996) ‘Chemical

Process Systems Modelling Using a Multi-gene Genetic Programming Algorithm’.

Late Breaking Papers, GP ’96, Stanford, USA.

Willis, M., Hiden, H., Hinchliffe, M., McKay, B., Barton, G. W. (1997) ‘Systems

Modelling Using Genetic Programming’. Computers and Chemical Engineering, 21,

Suppl., pp. S1161-S1166, Elsevier Science Ltd.

Hinchliffe, M., Tham, M., Willis, M. (1998) ‘Chemical Process Systems Modelling

Using Multi-Objective Genetic Programming’. Genetic Programming 1998:

Proceedings of the Third Annual Conference, University of Wisconsin, Madison,

Wisconsin, USA.

Hinchliffe, M., Tham, M., Willis, M. (1999) ‘Dynamic Chemical Process Modelling

Using a Multiple Basis Function Genetic Programming Algorithm’. GECCO-99:

Proceedings of the Genetic and Evolutionary Computation Conference, Orlando,

Florida, USA.

Hinchliffe, M., Willis, M., Tham, M., Montague, G. (2000) ‘Dynamic Chemical

Process Modelling Using a Multiple Basis Function Genetic Programming

Algorithm’. Nineteenth IASTED International Conference, Modelling, Identification

and Control, February 14-17, 2000, Innsbruck, Austria

Hinchliffe, M., Willis, M. (2002) ‘Dynamic Modelling Using Genetic Programming’.

Proceedings of the 15th IFAC World Congress, Barcelona, Spain.

Contents

 iv

Contents

Abstract i

Acknowledgements ii

Publications iii

Nomenclature viii

1 Introduction 1

1.1 Thesis Layout 4

1.2 Thesis Contributions 5

2 Introduction to Genetic Programming 7

2.1 Introduction 7

2.2 Genetic algorithms 8

2.2.1 Problem encoding 8

2.2.2 Fitness Assignment and Selection 10

2.2.3 Application of Genetic Operators 11

2.2.4 Advantages of Using Genetic Algorithms 15

2.3 Genetic Programming 16

2.3.1 Terminal and Function Sets 17

2.3.2 Fitness function 18

2.3.3 Selection methods 19

2.3.4 Application of Genetic Operators 21

2.3.5 Algorithm control parameters 23

2.4 Conclusions 24

3 Steady-state modelling 25

3.1 Introduction 25

3.2 Standard GP algorithm details 26

3.3 Multiple Basis Function GP Algorithm 29

3.3.1 Modification of Genetic Operators 31

Contents

 v

3.4 Comparison of results 33

3.4.1 Analysis Procedure 33

3.4.2 Test system 36

3.4.3 Distillation Column 39

3.4.4 Cooking Extruder 43

3.5 Conclusions 48

4 Comparison of GP and Neural Networks 51

4.1 Introduction 51

4.2 Feedforward Artificial Neural Networks 52

4.3 Network Training 55

4.3.1 Back-Propagation 55

4.3.2 Enhanced Back-Propagation 56

4.3.3 Alternative training algorithms 58

4.3.4 Network Parameter Initialisation 59

4.3.5 Network Parsimony and Generalisation 60

4.4 Comparison of GP and Neural Networks on Steady-State Systems 61

4.4.1 Experimental procedure 61

4.4.2 Test System 62

4.4.3 Distillation Column 64

4.4.4 Cooking Extruder 66

4.5 Conclusions 69

5 Dynamic Modelling 71

5.1 Introduction 71

5.2 Modelling Process Dynamics using GP 71

5.3 Dynamic GP Algorithm Details 77

5.3.1 Dynamic Model Representation 77

5.3.2 Multiple Basis Function GP Algorithm 82

5.4 Comparison of Results 83

5.4.1 Case Study 1 – Test System 83

5.4.2 Case study 2 – Test System with Time Delay 85

Contents

 vi

5.4.3 Case Study 3 – Cooking Extruder 88

5.5 Comparison with Neural Networks 92

5.5.1 Dynamic Modelling Using Neural Networks 92

5.5.2 Test System 94

5.5.3 Test System with Time Delay 96

5.5.4 Cooking extruder 98

5.6 Conclusions 100

6 Multi-objective Genetic Programming 103

6.1 Introduction 103

6.2 Multi-objective Evolutionary Algorithms 103

6.2.1 Non-Pareto approaches 106

6.2.2 Pareto-based Approaches 107

6.2.3 Multi-Objective GP Algorithm Details 114

7 Dynamic Modelling Using Multi-objective GP 123

7.1 Introduction 123

7.1.1 Measures of MOEA Performance 123

7.1.2 Analysis procedure 124

7.2 Model parsimony 126

7.2.1 Analysis of Results 130

7.2.2 Discussion 138

7.3 Residual analysis 139

7.3.1 Analysis of Results 143

7.3.2 Discussion 154

7.4 Conclusions 154

8 Conclusions and Future Work 157

Bibliography 164

Appendix 179

A.1 Levenberg-Marquardt Optimisation 179

A.2 Steady-state Process Data 180

Contents

 vii

A.2.1 Test System 180

A.2.2 Vacuum Distillation Column 182

A.2.3 Cooking Extruder 184

A.3 Linear Models of Steady-state Systems 187

A.3.1 Test System 187

A.3.2 Distillation Column 188

A.3.3 Cooking Extruder 188

A.4 Recursive Least Squares Optimisation 189

A.4.1 U-D Factorisation 191

A.5 Dynamic Process Data 191

A.5.1 Test system 191

A.5.2 Cooking Extruder 192

A.6 Linear Models of Dynamic Systems 194

A.6.1 Test System 194

A.6.2 Cooking Extruder 195

Nomenclature

 viii

Nomenclature

a Model parameter

b Neural network bias parameter

A(.) Output back-shift polynomial

B(.) Input back-shift polynomial

C(.) Noise back-shift polynomial

d Distance between two population members

D Kolmogorov-Smirnov test statistic

e Model residual/noise term

f(.) Function

Fi Fitness of population member

F Cumulative probability distribution or Function set

H0 Null hypothesis

H1 Alternative hypothesis

H Hessian matrix

j Jacobian matrix

k Current time sample

K Process gain

g(.) Non-linear function

g Vector of goal values

G Number of generations

m Niche count, number of basis functions

M Population size

n Number of process inputs

N Number of data points

pc Probability of crossover

p(.) Parsimony function

pm Probability of mutation

pr Probability of reproduction

Pi Performance of population member

q Back-shift operator

u Process input variable

s Laplace operator

Nomenclature

 ix

si Size of population member

S(.) Empirical cumulative distribution function

Sh(.) Sharing function

t Generation

T Terminal set

u Vector of objective values

 �
u

u Components in u that violate their goals

 �
u

u Components in u that satisfy their goals

U Matrix of process inputs

v Vector of objective values
u
 v �

Components in v corresponding to the components in u that violate
their goals

 �
u

v Components in v corresponding to the components in u that satisfy
their goals

w Cost function or neural network weight parameter

y Process output variable

ŷ Predicted process output

x Population member, lagged model term or independent variable

α Learning rate for a neural network

� Weighting parameter

δ(.) Kronecker delta function

ε Model residual

φ Correlation test

Φ Correlation test objective value

η Neural network momentum term

ϕ Regessors

� Number of model terms

θ Model parameter

Θ Vector of model parameters

τ Time shift

τp Process time constant

σshare Fitness sharing parameter

ℜ Ephemeral random constants

Introduction

 1

1 Introduction

There are many applications across a range of scientific and engineering disciplines

that rely on the development of a model of some form. The process industries are no

exception, where applications such as inferential estimation, optimisation, process

simulation, and process control all depend on accurate models in order to realise their

full potential. Two distinct directions can be taken when building a model. The

traditional approach is to construct a mechanistic model based on knowledge of the

underlying physical and chemical processes. Unfortunately, the system may be

extremely complex, making it difficult to derive a model from first principles. In

addition, as some aspects of the process may be poorly understood or rely on

empirical relationships, the resulting model may not be able to achieve the desired

level of accuracy. As a result, the development costs may outweigh any of the benefits

to be gained by implementing a model of this type.

The alternative is to develop a data-based model. This technique does not attempt to

derive the differential and/or algebraic equations that describe the underlying system.

Instead, use is made of available process data to develop a model that relates the

target variable (or output) to other process variables (the model inputs). For some

applications, a linear model may adequately perform this task. However, the complex

and non-linear nature of chemical processes means that more advanced techniques are

often needed. A commonly used example of such an approach is the artificial neural

network. The use of neural networks has been widespread in recent years due to an

abundance of process data and an increase in the availability of relatively low cost

computer hardware. The resulting models are more cost effective than mechanistic

models as development times are greatly reduced. In addition, data-based approaches

are more flexible as the same set of basic tools can generally be applied across a wider

range of processes. The conventional approach to empirical model development

follows the general path shown in Figure 1-1 (adapted from Söderström and Stoica,

1989).

Introduction

 2

Start

End

Accept?

Structure determination

Parameter estimation

Validation

Data collection

Experimental design

N

Y

Additional data

Figure 1-1 – Empirical model building

It can be seen that this is a sequential process with the parameter estimation stage

occurring after the model structure has been specified. If the resulting model does not

meet the desired performance criteria, the process must be repeated until an adequate

model structure is found. Genetic programming (GP) (Koza, 1992) is an evolutionary

algorithm that attempts to evolve a set or population of solutions to a problem by

using the Darwinian concept of natural selection. One of the strengths of GP is its

ability to perform optimisation on a structural level. This is an attractive prospect as

the algorithm can simultaneously evolve a model’s functional form and numerical

parameter values. This means that GP has the potential to function as an automatic

model building tool. An advantage of this approach is that fewer assumptions have to

be made regarding the final form of the model as the algorithm can evolve the model

structure from elementary building blocks.

Introduction

 3

The next stage of the model development process is known as model validation. This

process can use a range of different criteria to measure the adequacy of the model. A

potential drawback is that the validation criteria are usually applied after the model’s

structure and parameters have been determined. An area of research that has received

a great deal of attention in recent years is that of multi-objective problem solving. The

parallel nature of population based algorithms such as GP means that they are ideally

suited to this type of problem. One of the potential benefits of using a multi-objective

GP algorithm for model development is that additional modelling criteria can be

included during the evolutionary process. This approach is different from the

traditional method as the three main stages (3,4 and 5 in Figure 1-1) can be dealt with

in parallel. Unfortunately, some aspects of model validation (such as the use of

unseen data) must be performed after model development and cannot be incorporated

into this scheme. However, this approach still has the potential to improve model

performance as more design criteria can be considered during the model evolution

stage.

The main aims of this thesis are,

• To demonstrate how the modelling performance of the standard GP algorithm can

be enhanced by incorporating techniques borrowed from existing system

identification theory.

• To describe how GP can be used to automatically develop models of dynamic

processes, whilst making few a priori assumptions regarding the final model

structure.

• To compare the steady state and dynamic modelling ability of GP with a more

established data-based modelling technique. Neural networks were chosen for this

purpose, as their use has been widespread in the process industries

• To develop a multi-objective GP algorithm that is able to account for additional

performance criteria during model evolution.

Introduction

 4

1.1 Thesis Layout

This thesis is arranged as follows,

• Chapter 2 introduces the main aspects of the GP algorithm, placing particular

emphasis on model development. The chapter begins by describing the genetic

algorithm (GA) from which GP was originally derived. Chapter 2 also outlines

some of the specific features of the algorithm used in this thesis and discusses the

rationale behind the main algorithm settings and parameters.

• Chapter 3 demonstrates how GP can be used to develop steady-state models.

Aspects of the algorithm that make it different from the standard algorithm

described by Koza (1992) are discussed. A different form of the algorithm, known

as the multiple basis function (MBF) GP algorithm is introduced and its

performance compared with the ‘standard’ version. This chapter also includes an

explanation of the procedures used to compare algorithm performance.

• Chapter 4 Compares the steady-state modelling ability of the MBF-GP algorithm

with that of neural networks. This chapter includes an introduction to neural

networks and their application to process modelling.

• Chapter 5 describes how the steady-state modelling algorithms can be modified in

order to generate and evolve dynamic models. Three case studies are used to

compare the MBF-GP and standard GP algorithms. Comparison is also made with

filter based neural networks.

• Chapter 6 introduces the relevant aspects of multi-objective evolutionary

algorithms, including the benefits of using Pareto methods. The main features of

the multi-objective GP (MOGP) algorithm used in this work are described.

• Chapter 7 applies the MOGP algorithm to two dynamic modelling case studies

involving additional model performance criteria. The first case study demonstrates

how the algorithm can be used to account for the parsimony of the evolved

Introduction

 5

solutions. The second study uses a set of residual correlation tests as a more

complex measure of model performance. Comparisons are made between the

single objective and MOGP algorithms. The study also highlights the performance

gains that can be achieved by using a goal based ranking scheme.

• Chapter 8 summarises the main conclusions resulting from this study and offers

some recommendations for future work.

1.2 Thesis Contributions

The main contributions made by this thesis are,

• A detailed assessment of GP algorithm performance on steady-state systems. This

includes a comparison between MBF-GP and ‘standard’ GP algorithms.

• The development of a GP algorithm capable of evolving discrete time models of

dynamic systems.

• Dynamic models are represented using a flexible technique that enables the

algorithm to identify process characteristics such as the system time delay.

• Comparison is made between GP and artificial neural networks for dynamic and

steady-state modelling.

• Algorithm comparisons account for the computational complexity of each

approach in addition to the prediction accuracy of the resulting models.

• It is demonstrated how multi-objective GP can be used to account for additional

measures of model performance that would normally be considered after the

model building process.

Introduction

 6

• Comparisons are made between the performance of the single and multi-objective

algorithms.

• It is shown how preference information in the form of goals and priorities can be

used to overcome some of the deficiencies associated with conventional Pareto

ranking.

Introduction to Genetic Programming

 7

2 Introduction to Genetic Programming

2.1 Introduction

Genetic programming (GP) is an evolutionary algorithm that uses concepts taken

from the naturally occurring evolutionary process. The algorithm attempts to evolve

solutions by using the Darwinian principle of survival and reproduction of the fittest

and genetic operators analogous to those occurring in biological species. GP is a

member of a broader class of search and optimisation algorithms inspired by

evolution in nature. These algorithms include evolutionary strategies (Rechenberg

1972, Schwefel 1995), evolutionary programming (Fogel et al., 1966, Fogel 1995)

and genetic algorithms (Holland 1975, Goldberg 1989). The development of GP was

motivated by the desire to enable computers to automatically generate programs. This

objective had already been achieved to a limited extent using genetic algorithms. For

example, Cramer (1985) described how a genetic algorithm (GA) could be used to

evolve simple sequential programs, represented in tree structure form. Fujiki and

Dickinson (1987) extended these concepts, describing how LISP source code could be

evolved using a GA.

However, Koza (1992) was the first to fully exploit the potential of this approach by

developing an algorithm that represents solutions as tree structures using a problem

specific syntax. This makes for an extremely flexible technique as the solutions can

take a variety of forms. For example, the solutions could be computer programs,

mathematical expressions or induction rules. This means that GP has advantages over

other algorithms as it can perform optimisation at a structural level. This enabled

Koza to demonstrate the application of his GP algorithm to a number of problem

domains, including regression, control and classification. Since then, research in this

area has grown rapidly and encompassed a wide range of problems. Engineering

applications include signal processing (Sharman et al., 1995), electrical circuit design

(Koza et al., 1999) and scheduling (Montana and Czerwinski, 1996). Applications

with particular relevance to chemical engineering include polymer design (Porter, et

Introduction to Genetic Programming

 8

al., 1996), process controller evolution (Searson et al., 1998) and modelling of both

steady-state and dynamic processes (McKay et al., 1997, Bettenhausen et al., 1995).

The GP algorithm is an extension of the basic GA, which is described in the next

section.

2.2 Genetic algorithms

Holland (1975) described a technique, now known as the GA, that used concepts

taken from the naturally occurring evolutionary process to solve problems by

performing a highly parallel search. The GA begins by randomly generating an initial

set or population of candidate solutions. Every population member is allocated a

value that is a measure of its performance, known as the individual’s fitness. A new

population is then generated by applying the Darwinian principle of survival and

reproduction of the fittest, making use of operators that are analogous to naturally

occurring genetic operators such as sexual recombination (crossover) and mutation.

The process is repeated over a number of iterations or generations in an attempt to

evolve increasingly accurate solutions. As the individuals in the GA population are

typically stored as fixed length character strings, a suitable encoding scheme must be

devised before the algorithm can be applied to a problem. This procedure is outlined

in the next section

2.2.1 Problem encoding

An encoding scheme must be developed to provide the algorithm with a way of

mapping the points in the problem search space to a character string or other suitable

data structure. There must be a way of inverting this transformation, i.e. being able to

find the point in solution space that corresponds to a given character string. The most

commonly used representation scheme is the fixed length character string inspired by

naturally occurring chromosomes. The basic GA uses chromosomes encoded in

binary so that individuals consist entirely of strings containing only 1’s and 0’s.

Although this representation is the most common, more advanced schemes can also

Introduction to Genetic Programming

 9

be used. Examples include the messy GA (Goldberg et al., 1989) and the real-coded

or floating point GA (Goldberg, 1990).

The concept of the binary GA string can be illustrated using a function optimisation

example. It is assumed that the GA is being applied to a problem involving the

optimisation of four numerical parameters,

Parameter values: �1 �2 �3 �4

Each parameter is converted into a binary number. In this case, the numerical

parameters have been encoded into five digit binary numbers,

Individual genes: 01001 01010 10110 01111

The chromosome is then constructed by concatenating the four subsections or ‘genes’

to produce a bit-string of 20 characters in length,

Chromosome: 01001010101011001111

The number of bits in each section of the chromosome must be chosen so that the

corresponding regression parameter can be represented to the required level of

accuracy and vary over the desired range. For example, if a parameter is to be

adjusted over the range [-10 10] with a minimum increment of 0.01, the binary string

must be able to represent 2000 (20/0.01) distinct numbers. This can be achieved using

an 11-bit string, capable of representing 2048 (211) individual values. The genes do

not necessarily have to encode the parameter values in the same way. For example,

another gene may use an 11-bit string to represent a number in the range [-1 1] with

increments of 0.001. This example highlights the importance of careful problem

formulation before attempting to apply the GA. If insufficient thought is not given to

the encoding scheme, the GA may have no chance of finding a suitable solution. The

application of GAs does not have to be restricted to parameter optimisation problems,

with more ingenious encoding schemes allowing the algorithm to tackle a range of

problems.

Introduction to Genetic Programming

 10

The initial GA population is made from a set of randomly generated individuals by

applying a coding strategy similar to that described above. The number of individuals

required in the population will depend on the difficulty of the problem and is one of a

number of parameters that must be specified at the beginning of the algorithm run.

Typical population sizes may be as small as 50 or 100 individuals but harder problems

may require larger population sizes to achieve a successful result. The improvement

in performance achieved by using larger populations will be at the expense of

increased computational effort and a balance between the two must be found.

2.2.2 Fitness Assignment and Selection

The next task performed by the GA is to measure the performance of each population

member. This is carried out using a ‘fitness’ function that assigns numerical values to

each of the members in the population. This function will be problem dependent and

must be carefully chosen so that it provides an accurate measure of performance for

all of the possible solutions that may be encountered during the algorithm run. It is

common, although not imperative, to select a function that returns larger values as

performance increases so that more ‘fit’ individuals are assigned greater fitness

values. These values are then used to select individuals for breeding in accordance

with the principle of survival and reproduction of the fittest. There are a number of

possible selection methods, but they all conform to the same general principles,

• Individuals displaying a higher level of performance are more likely to be selected.

If it is assumed that fitter individuals are more likely to contain genetic material

required to produce a successful solution, it follows that these solutions can be

used to generate even fitter solutions.

• The selection method is probabilistic. This means that although the selection

procedure is biased towards fitter individuals, there is still a chance that individuals

with low fitness values may be selected. This enables the GA to explore parts of

the solution space that would otherwise be inaccessible to a hill-climbing

approach.

Introduction to Genetic Programming

 11

• Reselection is permitted. This is beneficial as it allows fitter population members

to be selected more times than less fit individuals, thus promoting the discovery of

even fitter solutions.

One example is fitness proportionate selection (FPS) where individuals are selected

with a probability that is directly proportional to their fitness, such that,

 2-1

Where PS,i is the probability of selection for population member i, F is the fitness and

M is the population size. This procedure is sometimes referred to as roulette wheel

selection. Other approaches such as tournament and ranking selection will be

discussed in section 2.3.3. The selection technique is used to extract individuals from

the population, which are then modified using genetic operators to create the next

population. The most commonly used genetic operators are described in the next

section.

2.2.3 Application of Genetic Operators

Three basic operators are commonly applied to the selected individuals in order to

generate the next population of candidate solutions - direct reproduction, crossover

and mutation. The operator is chosen on a probabilistic basis, with each having a

different probability of being selected. For example, if the probability of mutation is

Pm and the probability of crossover is Pc, the probability of direct reproduction is

given by 1-(Pm+Pc). Direct reproduction is the simplest of the genetic operators. The

selected individual is left unchanged and is passed straight through to the next

population. This provides the algorithm with the ability to preserve fit individuals

from one generation to the next.

The crossover operator allows new individuals to be created, with the aim of

producing fitter individuals from the genetic material present in existing population

members. The process is illustrated using the following parent individuals.

��������� =iSP , population of Sum
Fitness

Introduction to Genetic Programming

 12

Parent1: 10101011110000

Parent2: 11111100110011

A crossover point (indicated by a vertical line) on each chromosome is randomly

chosen using a uniform probability distribution,

Parent 1: 101010�11110000

Parent 2: 111111�00110011

Two new offspring are then formed by transferring genetic material between the two

chromosomes.

Offspring 1: 10101000110011

Offspring 2: 11111111110000

These new individuals are then placed in the new population to take part in the next

iteration of the algorithm. This recombination operation means that the algorithm is

not only able to breed fit individuals together in the hope of producing even fitter

solutions, but is also capable of exploring new points in the search space. The form of

crossover demonstrated above is referred to as single point crossover. Other forms of

crossover are also possible. For example, multi-point crossover transfers several

sections of genetic material between individuals.

In the special case where the two parents are identical, the two offspring are also the

same, regardless of the chosen crossover point. This occurrence may become a

problem if the selection procedure regularly selects the same highly fit members from

a population. This may lead to the population becoming dominated by the same

individual. If the solution represented by this dominant individual does not meet the

necessary solution criteria premature convergence is said to have occurred. This

phenomenon is an example of how it can be a disadvantage to rely entirely on

crossover. Although the crossover operator usually produces individuals that are

different from each other and their parents, the process only makes use of the genetic

material present in the current population. One method used to promote diversity and

improve the algorithm’s ability to exploit different regions of the search space, is to

use the mutation operator.

Introduction to Genetic Programming

 13

The mutation operator makes a random change to the selected population member.

For example, with reference to the following population member,

Parent: 1010100010101

The first stage of the operation is to randomly select a mutation point (↑) along the

chromosome using a uniform probability distribution,

Parent: 1010100010101

 ↑

The character at the mutation point is then altered, in this case, a ‘0’ is changed to a

‘1’.

Offspring: 1010101010101

Once mutation has been carried out, the individual enters the new population ready

for the next iteration of the algorithm. Typically, the mutation operator is used

sparingly, as high mutation rates can have a detrimental effect on algorithm

performance. The probability of a mutation operation occurring is sometimes

specified on a bit-wise basis. This means that each individual ‘0’ or ‘1’ has a

probability, Pm of being mutated. This strategy means that more than one mutation

can be applied to any given binary string and can be applied to strings that have been

created by crossover. When specified in this way, care must be taken to ensure that Pm

is low enough to ensure that mutation is not applied to too many population members.

The value will depend on the length of the chromosomes being used, but a typical

value would be in the range [0.001 0.01].

The next step taken by the algorithm is to determine which members of the existing

population ‘survive’ and are carried on from one generation to the next. The simplest

approach is to generate an entirely new population without preserving any individuals

from the previous generation (apart from those selected for direct reproduction).

Introduction to Genetic Programming

 14

Evaluate fitness of each
population member

Generation loop
i=1

Generation loop
loop until i>G

Start

Stop

Generate initial population of
solutions

Reproduction loop
j=0

Reproduction loop
loop until

j=M*(Pgap/100)

Select
Prand

Select two population
members based on fitness

and perfrom crossover

Select single population
member based on fitness

Select single population
member based on fitness

and perform mutation

Add offspring to new
population

Add fittest
(100-Pgap)% individuals

Prand<Pm

Pm<Prand<(Pm+Pc)

1-Pr<Prand<1

j=j+1

i=i+1

j=j+1 j=j+2

Figure 2-1 – Genetic algorithm flowchart

Introduction to Genetic Programming

 15

An alternative is to adopt what is known as an elitist strategy where the best members

of the current population are copied straight over to the next generation. For example,

the top 10% of the individuals could be copied over, leaving the remaining 90% of the

new population to be created by applying genetic operators. This percentage of new

individuals (in this case 90%) is referred to as the generation gap.

Once the new population has been created, the processes of fitness evaluation,

selection and the application of genetic operators are repeated until some termination

criterion is met. This may be a certain fitness level representing a successful solution

or a maximum number of generations to be performed. Figure 2-1 is a flowchart of

the basic GA algorithm.

2.2.4 Advantages of Using Genetic Algorithms

There are fundamental differences between GAs and traditional optimisation

techniques that make them attractive when applied to a wide range of problems.

Firstly, the GA can perform a highly parallel search of the solution space. This is only

partly explained by the fact that the algorithm uses a population of candidate

solutions. Holland’s schema theorem (Holland, 1975) shows that the GA exhibits a

high degree of implicit parallelism by processing sets of unseen individuals similar to

those in the current population. This enables the algorithm to discover a wide range of

solutions and means that it is less likely to converge around local optima.

Additionally, the probabilistic nature of the GA means that the algorithm is not as

dependent on the initial starting points. This is in contrast to purely deterministic

optimisation algorithms that are much more vulnerable to a poor choice of initial

starting conditions. Unlike other optimisation algorithms, the GA does not require any

additional problem information such as derivative values as it relies solely on the

values provided by the fitness function. This makes the algorithm an ideal choice for

problems that prove to be problematic for traditional gradient-based methods due to

highly complex or irregular search spaces.

Introduction to Genetic Programming

 16

The GA has proven to be a useful tool when applied to a variety of practical

engineering problems, including model development. Tan et al. (1995) used a GA to

develop polynomial ARMAX (Auto Regressive Moving Average with eXogenous

inputs) model structures. The technique was rather limited, as the model structure was

predetermined, with the GA being used to optimise the model parameters and the

maximum time shift of the input. A more general approach was described by Fonseca

and Fleming (1996a) who evolved NARMAX (Non-linear ARMAX) model structures

using a multi-objective GA. Their algorithm had more influence over the structure of

the model, being able to determine features such as the number of model terms,

degree of non-linearity and number of lags for the input and output terms. Other

process engineering applications include the optimisation of heat exchanger networks

(Androulakis and Venkatasubramanian, 1991), process control (Nordvik and Renders,

1991), data analysis (South, 1994) and scheduling (Löhl et al., 1998). An excellent

introduction to GAs and their application to a variety of problems is given by

Goldberg (1989). The next section introduces the fundamental aspects of GP,

highlighting the differences between the basic GA and GP algorithms.

2.3 Genetic Programming

Unlike the GA outlined earlier, the GP algorithm uses population members that have

chromosomes encoded as tree structures that can vary in size and shape. This

approach means that population members can be represented in a form that is specific

to the problem being solved. For example, to tackle a regression problem, the

population members can be represented as tree structured mathematical expressions.

GAs do not have this flexibility as individuals are usually coded as fixed length

character strings, meaning elaborate encoding schemes are required to allow their

application to a wider range of problems.

Koza (1992) first demonstrated how GP could be applied to regression problems.

Traditionally, this task requires the specification of a model structure, followed by the

optimisation of the associated numerical parameters in order to achieve the best

possible fit. An interesting feature of GP is its ability to perform optimisation on a

Introduction to Genetic Programming

 17

structural level by evolving populations of tree structured model expressions. This

means that GP can be used to optimise the model’s functional form and numerical

parameters simultaneously. This process is referred to as symbolic regression. Two of

the most important aspects of the GP algorithm are the function and terminal sets that

contain the building blocks used to construct the tree structured population members.

These concepts are discussed below, with particular emphasis placed on the

application of GP to process modelling.

2.3.1 Terminal and Function Sets

The terminal set contains the elements or variables that are the inputs to the problem.

For modelling purposes, the terminal set may simply consist of the process input

variables (u1, u2,...,un). An important part of all regression techniques is the

determination of the appropriate numerical parameters that fit the chosen model

structure to the output data. One way to enable GP to evolve regression constants is to

include a terminal that represents a randomly generated real number. Koza (1992)

described these values as ephemeral random constants and indicated their presence in

the terminal set by the symbol ‘ℜ’. If this terminal is selected during tree generation,

a new numerical constant is generated and placed in the model equation. The function

set is made up of a number of domain-specific functions that, combined with the

terminal set, enable the algorithm to construct potential solutions to the problem. For

regression, the function set may contain any number of mathematical functions

ranging from the basic plus, minus, times and divide operators to functions such as

square root, logarithm and exponential. A priori knowledge of the problem may be

included at this stage by the addition of functions that the engineer thinks may help

the algorithm formulate a solution. Figure 2-2 demonstrates how process input

terminals can be combined with the mathematical operators in the function set to

generate a tree structured model equation (ŷ is the predicted process output).

Introduction to Genetic Programming

 18

Model equation: 213)log(ˆ uuuy +=

u3

log

u1

+

u2

sqrt

*

Figure 2-2 – Tree representation of a mathematical expression

The functions must be able to accept values that may be returned by any possible

combination of the functions and terminals. This means that the algorithm may have

to be supplied with protected versions of some functions. For example, to prevent

square roots of negative numbers, the absolute value of the input can be taken, i.e.

SQRT(x)= x . Different applications may require more specialised function sets. For

example, the function set may contain functions that perform Boolean operations

(e.g., AND, OR, NOT) and conditional statements (e.g., if-then-else).

2.3.2 Fitness function

As with the simple GA described earlier, fitness is a numerical value assigned to each

population member in order to measure the performance of each individual. The basic

measure of model accuracy used throughout this thesis is the root mean square (RMS)

error between the actual (y) and predicted (ŷ) process output, and is calculated using

the following relationship,

()
N

yy
RMS

N

i
ii�

=

−
= 1

ˆ

2-2

Where N is the number of data samples. This differs from Koza’s approach, which

measures fitness by counting the number of data points that have residual errors

Introduction to Genetic Programming

 19

below a certain tolerance. This number of ‘hits’ increases as the prediction accuracy

increases and can be used to measure the performance of each candidate solution. A

major drawback of this approach is that each data point is simply classified as a ‘hit’

or a ‘miss’ and it is possible for one model to be much more inaccurate than another

but still have the same fitness value. Furthermore, data from real processes may often

contain noise and/or outliers, making it difficult to choose the tolerance that

corresponds to a successful result.

Other error measures such as the sum of the square errors could also be used,

however, RMS error has the useful property of being scaled in order to produce

values that are easier to interpret. For example, if the data is scaled in the range [0 1],

a RMS error of 0.01 corresponds to an average error of one percent. Although it

would be convenient to use a fitness measure that increases as model performance

improves, this is not the case with RMS error, which decreases as the model accuracy

improves. A possible solution is to scale the RMS values using the following

relationship (Hiden, 1998),

 2-3

The application of equation 2-3 results in fitness values scaled in the range [0 1] with

higher values corresponding to models with a lower prediction error. However,

further investigation reveals that this approach may be a poor choice when combined

with FPS. The disadvantages of this method and the possible alternatives are

discussed in the next section.

2.3.3 Selection methods

As the selection method acts only on the fitness of each population member, the GP

algorithm can use the same selection methods as the GA. One method, FPS, was

outlined in section 2.2.2. Unfortunately, there are number of drawbacks associated

with this technique. For example, if one population member has a particularly high

level of fitness compared with the rest of the population, it will be much more likely

���������

RMS
F

+
=

1
1

Introduction to Genetic Programming

 20

to be selected for reproduction. If the difference in fitness is large, the probability of

selection will be so great that the same individual will be repeatedly selected and the

population will become dominated by a single individual. This will lead to a loss of

diversity and possibly premature convergence. This could occur, for example, at the

start of a GP run when the majority of the solutions perform poorly due to the

probabilistic manner in which they were generated. If, by pure chance, one individual

performs reasonably well, it is likely to be over-selected by FPS.

Another problem that can be encountered when using FPS occurs when the population

is saturated with individuals that have very similar fitness levels. This would be

especially likely to occur if equation 2-3 is used to scale certain RMS error values.

For example, if the RMS errors lie in the range [0.001 0.01] (equivalent to prediction

errors of between 0.1% and 1% for output data scaled in the interval [0 1]), equation

2-3 produces fitness values in the range [0.99 0.999]. The result is that there is little

difference between the probability of selection for the best and worst individuals in

the population and the selection process will be almost random. Because of these

shortcomings, linear ranking was used throughout this work as a method of assigning

fitness. This method was first introduced by Baker (1985) in order to overcome the

deficiencies associated with FPS. In linear ranking, the individuals are sorted in order

of their fitness. The best individual is assigned a rank of N (where N is the number of

individuals) and rank 1 to the worst. A probability of selection is then assigned

linearly to the individuals according to their rank.

An additional reason for using linear ranking is that Chapters 6 and 7 study a multi-

objective GP algorithm that employs a ranking based selection scheme. In order to

compare the algorithm with the single objective version, it is necessary to use ranking

for both algorithms. Other selection schemes could provide similar performance to

linear ranking. For example, tournament selection is another possible technique. This

involves the random selection of a group of individuals that take place in a

‘tournament’ with the fittest individual being selected. The process is repeated until

enough individuals have been selected to generate the next population. This technique

requires less processing than linear ranking, as the entire population does not have to

Introduction to Genetic Programming

 21

be sorted. A detailed comparison of selection methods can be found in Blickle and

Thiele (1995).

2.3.4 Application of Genetic Operators

This section describes the application of the standard genetic operators to tree

structured GP model expressions. The direct reproduction operator is the same as that

used by the basic GA and simply passes the chosen population member through to the

next generation without alteration. The mutation and crossover operators are modified

to account for the domain-specific syntax that governs the way that genetic material

can be combined to produce feasible population members. For regression problems,

this means that certain rules must be obeyed in order to create meaningful

mathematical expressions from constants, mathematical operators and parentheses.

For example, functions such as plus and minus must have two input arguments,

whereas logarithm and exponential only require a single argument. The following

example demonstrates how crossover is applied to two model expressions. With

reference to the following parent tree structures,

Parent 1: () 213logˆ uuuy += Parent 2: () ()132expˆ uuuy +−=

u3

log

u1

+

u2

sqrt

*

u2

exp

-

u2

+

u1u3

A crossover point is randomly selected on each parent (marked by a dashed line). The

subtrees below these points are then exchanged to produce new individuals. In this

example the ‘sqrt(u2)’ subtree from the first parent is exchanged with the ‘u3+u1’

subtree from the second parent to produce the following offspring,

Introduction to Genetic Programming

 22

Offspring 1: () ()1313logˆ uuuuy ++= Offspring 2: () 22expˆ uuy −=

u3

log

u1

+

*

u2

+

u1u3

u2

exp

-

sqrt

u2

In GP the mutation operator deletes an existing subtree and replaces it with a newly

generated expression. This process is illustrated using the following parent

expression,

Parent: () ()1313logˆ uuuuy ++= New subtree: 21 uu −

u3

log

u1

+

*

u2

+

u1u3

u 2

-

u 2 u 1

A mutation point (dashed line) is randomly selected in the parent model tree and a

new subtree is generated to take the place of the removed subtree.

Offspring: () ()2113logˆ uuuuy −+=

u3

log

u1

+

*

u2

-

u2u1

In this case, the ‘u3+u1’ subtree in the parent equation is replaced by a ‘u1-u2’ term to

create a new model equation. Although the GP algorithm used in this thesis is

Introduction to Genetic Programming

 23

restricted to the basic crossover and mutation operators described in this section, other

operators are also possible. For example, crossover does not have to be based on two

parents that have been taken from the existing population. A possible variation

involves the use of one randomly generated parent tree, which is combined with a

parent selected from the current population. The resulting operation has been referred

to as headless chicken crossover and was first used in GP by Angeline (1997).

2.3.5 Algorithm control parameters

The GP algorithm requires the specification of the same basic parameters as the GA

described in section 2.2, namely population size, generation gap and the probabilities

of crossover, mutation and direct reproduction. Previous work concerning chemical

process modelling by McKay et al. (1997) and Hiden (1998) has shown that

population sizes as small as 50 or 100 individuals are usually sufficient to obtain

accurate predictions. However, the choice of population size is clearly dependent on

the problem being tackled, with some problems requiring hundreds of thousands of

population members (Koza 1999). Although it is unlikely that such enormous

population sizes will be required for the applications discussed in this work, it is

possible that the use of larger population sizes may give more accurate model

predictions and the choice of population size will be dependent on the level of

accuracy required by a particular application. The population sizes selected for the

runs conducted in this thesis were chosen heuristically, taking into consideration both

the accuracy of model fit and the computing time available.

The correct choice of values for the probabilities of crossover and mutation has been a

subject of some debate by GP researchers. Experience gained from work with GAs

led many to believe that crossover was the driving force behind the evolutionary

process with mutation performing a minor role. These ideas were adopted by early GP

practitioners who made little or no use of mutation (for example, Koza 1992).

However, as interest in the underlying mechanisms of GP increased, some researchers

began to question the existing theories regarding the relative importance of crossover

and mutation (Angeline, 1997). It is beyond the scope of this study to attempt to

Introduction to Genetic Programming

 24

determine the optimal settings of such parameters due to the large number of runs that

would be required to cover all of the possible combinations. As a result, the crossover

and mutation probabilities were held constant at 0.7 and 0.2 respectively with a

generation gap of 90%. These values are similar to those used in other process

modelling applications (McKay et al., 1997, and Willis et al., 1997). Although

workers such as Koza (1992) do not the use mutation or a generation gap, it was

thought that their inclusion would be more beneficial in this study due to the relatively

small population sizes used. In addition, Hiden (1998) performed an extensive study

into the effects of using different crossover and mutation probabilities, concluding

that GP appeared to be insensitive to small deviations from the values referred to

above.

2.4 Conclusions

This chapter has outlined the basic underlying concepts of the GA and the possible

advantages to be gained over traditional optimisation methods. The main aspects of

the basic GP algorithm have been described, making particular reference to the

evolution of mathematical model expressions. The next chapter outlines the

modifications made to the algorithm in order to generate models of steady-state

chemical processes.

Steady-state Modelling

 25

3 Steady-state modelling

3.1 Introduction

The application of GP to symbolic regression problems was first demonstrated by

Koza (1992). A number of problems were studied, including the modelling of

polynomial systems, the discovery of trigonometric identities and econometric

forecasting. Jiang and Wright (1992) described an equivalent approach that used a GA

to evolve tree structured model expressions. The algorithm used a Levenberg-

Marquardt routine to optimise the values of the numerical constants appearing in each

model expression. Iba et al. (1994) described a GP algorithm called STROGANOFF

(STructured Representation On Genetic Algorithms for NOn-linear Function Fitting)

that was designed specifically for solving non-linear regression problems. Unlike the

simple mathematical functions employed by Koza’s algorithm, the functional nodes in

STROGANOFF generated polynomial expansions of the inputs. The polynomial

coefficients were then optimised using a regression algorithm. A possible drawback of

this method is that the functional relationship is restricted and poor performance may

result when the algorithm is applied to a wider range of problems.

Since then, GP has been applied to steady-state and dynamic modelling problems in a

range of research areas, including chemical engineering. For example, McKay et al.

(1997) demonstrated how GP could be used to develop steady-state models of

chemical processes including a vacuum distillation column and a system containing

two CSTRs arranged in series. Other engineering applications of GP to steady-state

modelling include fluid systems identification (Watson and Parmee, 1996), the

determination of heat flux correlations (Lee et al., 1997) and the evolution of

hydrometallurgical system models (Greeff and Aldrich, 1998). An interesting

approach involves the use of GP in combination with linear data analysis techniques.

For example, Hiden (1998) demonstrated how GP could be used in conjunction with

principal components analysis (PCA) and partial least squares (PLS) to generate

steady-state models of non-linear processes. The rest of this chapter demonstrates how

Steady-state Modelling

 26

GP can be used to evolve models of steady-state chemical processes. A modified form

of the algorithm, known as the multiple basis function (MBF) GP algorithm

(Hinchliffe et al., 1996, Hiden, 1998) is described and its performance compared to a

more ‘standard’ algorithm.

3.2 Standard GP algorithm details

Symbolic regression involves the use of GP to develop a model by simultaneously

evolving a functional relationship and the associated numerical parameters. In this

work, the aim is to use GP to generate steady-state models of the form,

),(ˆ Θ= ϕgy 3-1

Where y� is the estimated output, g is a non-linear function, ϕ are the regressors (in

this case, the process inputs u1, u2,…, un) and Θ are the model parameters. The

functional form of the approximation, g, can be generated using a GP algorithm

provided with the appropriate terminal and functional sets. In this chapter, the

function set (F) contains the standard mathematical operators - plus, minus, divide,

multiply, power (‘^’), square root (‘SQRT’), square (‘SQR’), natural logarithm

(‘LOG’) and exponential (‘EXP’),

F = {+,-,/,*,^,SQRT,SQR,LOG,EXP} 3-2

The function set is restricted to basic mathematical operators but can be extended if

model performance is inadequate. Possible additions include Koza’s automatically

defined functions (Koza, 1994) and functions borrowed from other modelling

techniques such as the hyperbolic tangent found in feedforward neural networks. The

terminal set contains the process inputs and randomly generated numerical constants.

} , ,..., ,{ 21 ℜ= nuuuT 3-3

The floating-point random constants (ℜ) were generated uniformly in the range [-10

10]. Even with the inclusion of random constants, a weakness of GP is its inability to

evolve numerical parameters efficiently. This is because the majority of the constants

Steady-state Modelling

 27

are generated during the creation of the initial population with only a small amount of

new constants being produced during evolution by the mutation operator. Although

the application of genetic operators on this initial set of constants can theoretically

enable the algorithm to evolve any numerical value, the process is extremely

inefficient.

In order to overcome this problem and maximise the performance of the evolved

model structures, an optimisation routine was used to fit the numerical constants

present in each model. A study of the literature reveals that a number of optimisation

techniques have been used in conjunction with GP to achieve this aim. Gray et al.

(1998) suggest that gradient-based techniques are unsuitable as they lack the

robustness required to deal with the wide range of model structures produced by GP.

As a result, the authors use a combination of simulated annealing (SA) and the

simplex method. Cao et al. (1999) described an algorithm called HEMA (hybrid

evolutionary modelling algorithm) that used a GA to carry out constant optimisation.

Although there are benefits to be gained by using a GA, the main disadvantage is the

high computational cost of applying the algorithm to every population member. The

authors do not cite this as a factor in their work, but it is likely that a combined

GA/GP approach would increase solution times unacceptably. A much simpler

method is to use a special mutation operator to adjust the constant values. Evett and

Fernandez (1998) claim that this technique is easy to implement and can improve the

ability of GP to evolve numerical constants without significantly increasing

computational requirements.

Bettenhausen, et al. (1995) argue that any conventional optimisation procedure is

valid, and use a gradient descent algorithm to determine constant values. In this work,

the Levenberg-Marquardt (L-M) non-linear least squares routine was used to optimise

the parameter values present in each population member. The L-M algorithm (see

appendix) is a commonly used non-linear optimisation routine and has been used in

conjunction with GP for other modelling applications (for example, Jiang and Wright,

1992, McKay et al., 1997). Hiden (1998) used a number of systems to demonstrate

how a GP algorithm using L-M optimisation was able to generate models that gave

more accurate predictions than those evolved without using parameter optimisation.

Steady-state Modelling

 28

The important features and settings of the standard GP algorithm are summarised in

Table 3-1. The algorithms developed in this thesis were all implemented using the

MATLAB programming language. Although this means that execution times may be

longer than would be achieved using languages such as C or FORTRAN, MATLAB’s

range of built-in mathematical and graphical functions lead to a significant reduction

in algorithm development time. The population members were stored and

manipulated in the form of variable length character strings. In order to prevent

individuals from occupying excessive computational resources, a hard constraint of

500 characters was placed on the length of the models strings. Justification for the

choice of selection method and the probabilities of mutation and crossover were given

in section 2.3.5. From here on, this algorithm will be referred to as the ‘standard GP’

algorithm.

Table 3-1 – Summary of algorithm settings and parameters

Function set +, -, /, *, ^, SQRT, SQR, LOG, EXP

Terminal set Process inputs, nuu ,...1 scaled in range [0 1]
ℜ generated uniformly in range [-10 10]

Crossover probability (pc) 0.7

Mutation probability (pm) 0.2

Direct reproduction probability (pr) 0.1

Generation gap 90%

Parameter optimisation Levenberg-Marquardt

Fitness measure RMS error

Selection method Linear ranking

Maximum tree size 500 characters

The units used to measure process variables mean that recorded values can typically

vary by several orders of magnitude. To prevent the search being biased towards one

particular process variable, the input-output data was scaled in the range [0 1]. It is

important to note that all of the RMS error values quoted throughout this thesis are

calculated on the scaled data.

Steady-state Modelling

 29

3.3 Multiple Basis Function GP Algorithm

The GP algorithm described in the previous section was restricted to the development

of models consisting of a single tree structure. However, some of the more established

system identification methods use models constructed from a number of functions

which combine to produce the overall model output. The non-linear function in

equation 3-1 can be represented as a series of separate functions, often referred to as

basis functions,

�
=

=Θ
m

i
ii gg

1

)(),(ϕθϕ 3-4

Where m is the number of basis functions, gi represents the individual functions and θi

the model parameters. Ljung (1999) shows how this expansion can be used to

represent and analyse virtually any non-linear modelling technique. Examples include

Fourier series, wavelets and the single-layer feedforward neural network. Most well

known non-linear black-box modelling techniques use multiple instances of the same

basis function. Ljung refers to this as the mother basis function, an obvious example

being the feedforward neural network, which uses a number of log-sigmoid or

hyperbolic tangent functions. Another network architecture commonly used for

modelling purposes is the radial basis function (RBF) network (Chen et al., 1990a),

which uses Gaussian basis functions. Although the modelling capabilities of such

techniques have been proven over a wide range of problems, a possible weakness is

that they are restricted to using a particular type of basis function. A potential

advantage of GP is its ability to evolve different types of basis functions and combine

them to form novel model architectures. Another disadvantage of existing techniques

is that the overall model structure (for example the network architecture) is fixed

before the parameter optimisation stage takes place. If the resulting model does not

provide an accurate solution, more candidate structures will have to be evaluated

before a successful result is obtained. An attractive aspect of the GP algorithm is that

the model structure is not fixed in this way as the number of basis functions can be

varied during the evolutionary process.

Steady-state Modelling

 30

The incorporation of the model structure outlined by equation 3-4 within a GP

framework is similar to an approach proposed by Altenberg (1994), who suggested

that the limitations of a fixed GA representation could be overcome by allowing the

algorithm to increase the number of genes present in each population member. This

‘multi-gene’ algorithm was able to expand the length of the genome in order to

improve performance. Although these concepts were demonstrated using a GA,

Altenberg mentions that a GP algorithm could be modified in a similar fashion. The

standard GP algorithm described earlier can be easily modified to evolve models that

are constructed from a number of separate functions, hopefully improving model

performance by varying the number of functions as the algorithm run proceeds.

Fröhlich and Hafner (1996) also described a GP algorithm that used population

members made from linear combinations of separate basis functions. The algorithm

used a simplex method to optimise the model parameters and was successfully applied

to a number of function approximation problems. More recently, Raidl (1998)

proposed a technique where standard GP trees are pre-processed in order to transform

them into a linear model structure. The first stage of the transformation requires a

search for the locations of the ‘+’ and ‘-’ nodes in each model tree. The positions of

these nodes are then used to divide the parent tree into separate basis functions. The

basis functions are then assigned weighting coefficients, which are optimised using a

least-squares algorithm.

The MBF-GP algorithm used in this work generates models of the following form,

�
=

+=
m

i
iio gy

1

)(ˆ Uθθ 3-5

Where U is a matrix of process inputs and θ0 is a bias or offset term. As the model

structure given by equation 3-5 is linear in the parameters, the values of θ0,…,θm can

be found using the method of least squares. The probabilistic nature of GP model

generation may cause the standard least squares algorithm to suffer numerical

problems due to ill-conditioning and/or linear correlations between basis functions.

To overcome these difficulties, the Moore-Penrose pseudo-inverse (Press et al., 1992)

based on the method of singular value decomposition (SVD), was used to carry out

the least squares optimisation. The individual basis functions were generated using the

Steady-state Modelling

 31

same function and terminal sets used by the standard GP algorithm. The number of

basis functions used to construct the model expressions in the initial population was

chosen in the range [1 10] using a uniform probability distribution.

3.3.1 Modification of Genetic Operators

Apart from crossover, which comprises two separate procedures, the MBF-GP

algorithm uses the same genetic operators as the standard GP algorithm. The MBF-

GP algorithm uses modified crossover operators, referred to as high and low level

crossover. This technique provides a mechanism for useful material to be exchanged

in the form of entire basis functions or basis function subtrees. These operators will be

described with reference to the following parent expressions, each constructed from

three basis functions,

Parent 1: 321 / uuu +)exp(46.1 1u+ 13)log(uu +

Parent 2: 21 uu +)log(23 uu − 24/1 uu −

An important aspect of the algorithm implementation is that the regression parameters

(θ0,…,θm) are not stored explicitly. These values are calculated at the fitness

evaluation stage and are not affected by the genetic operators. However, as the

terminal set contains real numbers, numerical constants can appear inside basis

functions. These constants are not optimised, but can be subjected to crossover or

mutation. With low-level crossover, crossover takes place between basis function

subtrees in the conventional manner. Two possible offspring created from applying

low-level crossover are as follows,

Offspring 1: 32)log(uu +)exp(46.1 1u+
13)log(uu +

Offspring 2: 21 uu + 213 / uuu − 24/1 uu −

Where the ‘u1/u2’ subtree from the first basis function of parent 1 has been exchanged

with the ‘log(u2)’ term in the second basis function of parent 2. High-level crossover

Steady-state Modelling

 32

involves the transfer of complete basis functions between parents. For example, using

the same parent models as before,

Parent 1: 321 / uuu +)exp(46.1 1u+
13)log(uu +

Parent 2: 21 uu +)log(23 uu − 24/1 uu −

Two crossover points (indicated by dashed lines) are selected using a uniform

probability distribution,

Parent 1: 321 / uuu +)exp(46.1 1u+
13)log(uu +

Parent 2: 21 uu +)log(23 uu − 24/1 uu −

Basis functions are then exchanged, producing the following offspring,

Offspring 1: 321 / uuu +)exp(46.1 1u+)log(23 uu − 24/1 uu −

Offspring 2: 21 uu + 13)log(uu +

In this example, the third basis function in parent 1 has been exchanged with the

second and third basis functions in parent 2. The resulting offspring now have

different numbers of basis functions, demonstrating how this mechanism enables the

algorithm to adjust the number of basis functions during model evolution. This is

beneficial as the number of basis functions is not restricted to a pre-specified value

and the algorithm can explore more complex model structures if required.

Hiden (1998) described a MBF-GP algorithm and demonstrated how the technique

was often able to generate models that gave more accurate predictions than a standard

GP algorithm. The high-level crossover operator described by Hiden only allows

single basis functions to be transferred between population members. In addition, the

algorithm used a fixed number of basis functions to build the models in the initial

population, with a modified mutation operator being responsible for increasing or

decreasing the number of basis functions during evolution. The approach used here is

Steady-state Modelling

 33

more flexible as the high-level crossover operator allows greater increases in model

size to occur. The MBF-GP algorithm uses the same crossover probability as the

standard algorithm, divided equally between the high and low-level variants.

3.4 Comparison of results

The first part of this section outlines the techniques used to compare the performance

of the standard and MBF-GP algorithms. The algorithms are then compared using

three case studies. The first case study uses data generated by a simple test function.

The other two case studies are based on process engineering systems - a vacuum

distillation column and an industrial cooking extruder. The input-output data and

linear models for each case study are contained in the appendix.

3.4.1 Analysis Procedure

The stochastic nature of GP means that results will vary from one run to the next. As a

result, multiple runs must be performed in order to give a more accurate indication of

the performance of each algorithm. In this work, sets of twenty algorithm runs were

carried out for each of the systems studied. Although a greater number of runs may

add greater statistical significance to the results, run time is also a consideration for

evolutionary algorithms such as GP and it was thought that this number provided a

reasonable compromise.

Before the sets of runs can be compared, the ‘best’ model from each run must be

selected. Since we are interested in developing models that have the ability to

generalise (fit unseen data well), an additional set of data points was used for model

validation. However, models with a high level of performance on the validation data

set may not necessarily meet the same standard on the training data. Also, models that

fit the training data accurately may perform unacceptably on the validation data due to

over-training. As a result, a compromise was found by using the sum of the RMS

values over both data sets to determine the best model from each run. This model will

not necessarily be taken from the final generation, as over-training may mean that

Steady-state Modelling

 34

these models perform poorly on the validation data. This means that the training and

validation RMS errors for the whole population from every generation must be

considered when choosing the best model. Once the RMS values for the best models

have been collected, their distributions can be compared for different algorithms using

histograms. This allows for a more detailed comparison than can be made by merely

comparing statistics such as the mean, minimum and maximum error values. The

validation errors for the set of ‘best’ models were used to construct the histograms in

order to emphasise the models’ ability to generalise.

Since the error distributions obtained from each set of runs may be different and not

normally distributed, a non-parametric statistical test was used to compare results. In

this work the Kolmogorov-Smirnov (K-S) test was use to determine whether two

distributions of prediction errors were significantly different. Fonseca and Fleming

(1996b) and Hiden (1998) have previously used this technique to make comparisons

between different GA, GP and neural network algorithms. An advantage of this

approach is that no assumptions have to be made about the distributions being

compared (for example, that the distributions are normal). The K-S test is described in

more detail below.

The K-S test can be formulated as a one or two-sided test. The test compares the

cumulative probability distributions (F1 and F2) of two samples of an independent

variable, x. The null hypothesis, H0, is that the two samples are drawn from the same

parent distribution. This hypothesis is tested and rejected in favour of the alternative

hypothesis H1 (the distributions are drawn from different population distributions),

i.e.,

Null hypothesis: () ()xFxFH 210 : = for all x

Alternative hypothesis:)()(: 211 xFxFH ≠ for some x

The first stage of the test requires the samples to be pooled to form a single array and

then sorted so that the empirical distribution function, S(x) can be calculated for each

sample,

Steady-state Modelling

 35

S1(x) = (number of observations in sample one that are less than or equal to x)/m

S2(x) = (number of observations in sample two that are less than or equal to x)/n

Where m and n are the sample sizes. If the population distributions are the same,

corresponding values of the empirical distribution functions should agree reasonably

well and the differences between S1 and S2 should be small. The K-S test statistic is

defined as the maximum value, for all values of x, of the absolute values of the

difference between S1(x) and S2(x),

)()(max 21 xSxSD −= 3-6

The corresponding P-value can then be found from tables that match the product mnD

to a range of confidence limits (Gibbons, 1985). A one-sided K-S test can be used in

order to detect a directional shift between two samples. The null hypothesis is the

same, i.e. that the distributions are taken from the same population distribution. There

are two alternative hypotheses to detect shifts in different directions,

Null hypothesis: () ()xFxFH 210 : = for all x

)()(: 211 xFxFH >+

or for some x

Alternative hypotheses:

)()(: 211 xFxFH <−

The one-sided K-S tests statistics are then defined as follows:

[](x)S(x)SD 21max −=+ 3-7

[](x)S(x)SD 12max −=− 3-8

As with the two-sided test, tables are available that compare values for mnD+/mnD- at

a selection of confidence intervals.

Another important aspect of algorithm performance is the computational cost required

to generate an acceptable solution. One method that can be used to compare the

efficiency of GP algorithms is to construct performance curves (Koza, 1992). This

Steady-state Modelling

 36

technique was used by Hinchliffe et al. (1996) to demonstrate how a MBF-GP

algorithm was able to develop models of the same accuracy as a standard GP

algorithm by processing fewer individuals. The main disadvantage of using

performance curves is that an RMS error tolerance must be specified in order to

define the prediction accuracy that corresponds to a ‘successful’ solution. Different

tolerance values may produce vastly different performance curves, making it difficult

to compare algorithms objectively. Also, the technique is designed to measure GP

algorithm performance and is not suitable for comparing GP with other algorithms

(such as neural networks).

An alternative measure of computational effort is the number of floating-point

operations (FLOPs) that have been performed. Operations such as addition,

subtraction and simple function evaluations (e.g. logarithm) each represent a single

FLOP. The MATLAB programming environment conveniently provides a means of

estimating the number of FLOPs performed during an algorithm run. The MBF-GP

and standard GP algorithms can therefore be compared using plots of the estimated

number of FLOPs against the prediction error achieved. This technique will provide a

fairer comparison than can be achieved by simply counting the number of individuals

processed, as longer GP strings will register more FLOPs in keeping with their longer

execution time. In addition, this metric is machine-independent, unlike measures such

as the time taken for an algorithm run. The remainder of this section uses the

techniques described above to compare the MBF and standard GP algorithms using

three case studies.

3.4.2 Test system

The following non-linear test system was used to assess the performance of the two

GP algorithms when applied to steady-state model development,

1
3
2

5
1 2 uuuy +−= 3-9

Three input vectors (u1, u2, u3) consisting of 200 data points were generated as

uniformly random numbers in the range [0 1]. Equation 3-9 is similar to the

Steady-state Modelling

 37

polynomial systems used by Koza (1992) to demonstrate the application of GP to

symbolic regression problems. However, this system has more in common with a real

process, as there are multiple inputs, with only two out of the three inputs having an

influence on the process output. This case study will provide a demonstration of the

algorithm’s ability to correctly select the relevant inputs from those provided in the

terminal set. Twenty runs of the MBF and standard GP algorithms were performed

with a population size of 25 for 25 generations. A set of 100 data points was used for

training purposes, with the remaining 100 samples being used for model validation.

A summary of the validation RMS errors from each set of runs is shown in Table 3-2

and Figure 3-1. The results show that the models generated by the MBF-GP algorithm

are significantly more accurate than the standard GP algorithm. A one-sided K-S test

performed at the 95% confidence level supports this conclusion.

Table 3-2 - Comparison of validation RMS values for test system

 Minimum Mean Maximum

MBF-GP 4.86×10-5 0.0037 0.0247

Standard GP 0.0159 0.0773 0.1441

The difference is highlighted by Figure 3-1 which shows that all but one of the MBF-

GP runs have generated models with validation RMS values lower than the best result

obtained by the standard algorithm. The histograms also show how the MBF-GP

algorithm has produced a much narrower error distribution than the standard

algorithm. The model with the lowest validation RMS error evolved by the standard

GP algorithm is shown below.

2
2
2

2
1

22
2

1

2982.0769.0)08113.06772.0

)6826.04652.0(08113.0)773.11396.0(08113.0(ˆ

uuu

uuuy

+−−−

−−−=
 3-10

Equation 3-10 contains no instances of the input u3, meaning that the algorithm has

managed to successfully select the inputs required to develop an accurate prediction.

Steady-state Modelling

 38

Figure 3-1 - Validation RMS distributions for test system

Table 3-3 shows the model with the best performance on the validation data evolved

by the MBF-GP algorithm. The model has been displayed as a set of separate basis

functions in order to give an idea of the size and form of the models developed using

this algorithm. The individual basis functions have been simplified.

Table 3-3 – MBF-GP model with lowest validation RMS (test system)

Basis Function Parameter

12 uu − 1.615
)1exp(

1 395.1 uu + 2.510
23676.0 u 3.405

6352.0)exp(127.1 2 +u -0.9733

2/2134.0 u -3.024×10-6

1u -0.04260
-0.2099 10.44

4/1
1)696.1(u+− 10.19

)3404.0357.3exp(2u−− -558.4
)2log(1u 0.001652

23848.0 u+− -3.734
2
33203.0 u 2.042×10-4

31 918.3 uu −− 6.788×10-5
2
13848.0 u− -0.06439

2
103878.0 u 1.978

 Bias 4.224

Steady-state Modelling

 39

The model is constructed from 15 relatively simple basis functions. This demonstrates

how the algorithm is able to generate population members that have a greater number

of basis functions than the maximum allowed in the initial population. Unlike

equation 3-10, the model shown in Table 3-3 contains some u3 terminals (in basis

functions 12 and 13). However, the model parameters associated with these terms are

relatively small, which may indicate that they do not make a significant contribution

towards the overall model prediction. Although it is beneficial for the algorithm to

have the flexibility to adjust the number of basis function in each model, the MBF-GP

model is rather complex in comparison to the actual system equation.

3.4.3 Distillation Column

This case study uses data obtained from a mechanistic model of a vacuum distillation

column. The column is equipped with 48 trays, a steam-heated reboiler and a total

condenser (see Figure 3-2). The control objective is to maintain the quality of the

bottom product stream (xB). While composition analysers may be used to measure

product quality, investment and maintenance costs often restrict their use. Thus, a

reliable inferential estimator can provide a cheap alternative to direct measurement

and allow tighter control of product composition.

Feed

Reflux

Condenser

Distillate

Boil-up

Reboiler

Bottom Product

x12

x27

x42

D, xD

B, xB

Figure 3-2- Vacuum distillation column

Steady-state Modelling

 40

The column design specifications and operating data are summarised in McKay et al.

(1997). Since the system is essentially binary, compositions can be estimated based on

temperature and pressure measurements. Unfortunately, the necessary sensors are

only installed on trays 12, 27 and 42 and reliable composition estimates from

temperatures and pressures can only be obtained for these three trays. The objective of

this exercise is to develop a model to infer the bottom product composition given the

available measurements. The control system on the column ensures that it operates

close to steady-state, allowing the dynamics between the tray and the product

compositions to be neglected.

Input-output data was generated from a mechanistic model of the column consisting

of several hundred differential and algebraic equations (Gani et al. 1986). One

hundred and fifty steady-state composition estimates from trays 12, 27 and 42 (x12,

x27, x42) together with the corresponding values of xB were used for model

development. An additional set of 50 data records was used for model validation. Due

to the increased complexity of this system in comparison to the previous case study,

the number of generations and population size were increased. Twenty runs of each

algorithm were performed with a population size of 50 for 50 generations. The results

are summarised in Table 3-4 and Figure 3-3.

Table 3-4 - Comparison of validation RMS values (column data)

 Minimum Mean Maximum

MBF-GP 0.0166 0.0227 0.0341

Standard GP 0.0231 0.0329 0.0503

The results show that the MBF-GP algorithm has outperformed the standard GP

algorithm on this system. The visible shift between the distributions is supported by a

one sided K-S test at the 95% confidence level. As before, the errors achieved by the

standard algorithm cover a wider range of values. However, the difference between

the error distributions is not as exaggerated as in the previous example.

Steady-state Modelling

 41

Figure 3-3 - Validation RMS distributions for distillation column data

The MBF model that produced the lowest RMS error on the validation data is shown

in Table 3-5. Again, the model is rather complex, containing thirteen basis functions.

Table 3-5 – MBF-GP model with lowest validation RMS

Basis function Parameter value

)440.102915.0log(27
12 +− xx 0.1725

2
27

12
xx 6.335

4227 xx + 0.5648
27

27
xx 0.8651

5596.0/1799.0/ 1212
2
4242 −+− xxxx -0.2511

2
27

42
xx 1.502

5596.0/)2932.0)981.8((271242 −+− xxx -1.441×10-4

274227 xxx − 4.443
5596.02

12
27)(−xx -0.1361

422742)log(/)log(xxx 1.798
)log(411.3 42x− 0.04516

548.4
12

1466.0
12 xx +− 0.02381

27
42
xx -3.243

 Bias -6.010

Steady-state Modelling

 42

Figure 3-4 – Bottom product prediction (MBF-GP)

Figure 3-5 – Bottom product prediction (Standard GP)

The standard GP model that gave the best prediction for bottom product composition

on the validation data is shown below in simplified form,

))199.2)643.5(/()434.1/()

045.1)234.1(/()388.0/()562.1log((/132.0

124242422742

124242271227

−+−−−−
−+−+−=

xxxxxx

xxxxxxxB 3-11

Figure 3-4 and Figure 3-5 compare the predictions obtained by the most accurate

MBF and standard GP models.

Steady-state Modelling

 43

Figure 3-6 compares the mean validation RMS errors achieved by the standard and

MBF-GP algorithms for a given number of FLOPs. The error bars indicate +/- one

standard deviation from the mean.

0

0.02

0.04

0.06

0.08

0.1

0.12

1.E+06 1.E+07 1.E+08 1.E+09 1.E+10 1.E+11

Estimated f lops

V
al

id
at

io
n

R
M

S

Standard GP

MBF-GP

Figure 3-6 – Comparison of computational effort (distillation column)

It can be seen how the standard GP algorithm requires a greater amount of

computational effort to achieve a given validation RMS error. In addition, the

standard deviation error bars indicate that there is a more variation in the accuracy of

fit achieved by the standard algorithm. The standard deviations are greater towards

the beginning of the algorithm run in both cases. This would be anticipated as the

initial population is made from a set of randomly generated model expressions.

3.4.4 Cooking Extruder

Cooking extruders have become increasingly popular in the process industry as they

provide an efficient means of processing a wide range of foodstuffs. Extrusion

provides a more cost efficient alternative to traditional cooking methods due to the

high throughput and energy efficiency of the process. One drawback is that current

knowledge of cooking extruder behaviour is largely reliant on empirical correlations

and operator experience. Sensitivity to different screw and die geometries, fluid

properties and complex flow patterns all combine to ensure that mechanistic models

Steady-state Modelling

 44

are difficult to develop. The objective of this study is to develop a model that can be

used to infer the degree of gelatinisation (g) of the extruded product. Gelatinisation is

an irreversible process that takes place when starch is heated to a sufficiently high

temperature to destroy the crystalline structure of the granules. An accurate model for

the degree of gelatinsation would provide a measure of the quality of the extruded

starch.

A typical extruder consists of a barrel, inside which one or more helical screws rotate

to convey the feed material towards a die at one end, as illustrated in Figure 3-7. The

section nearest the feed point is referred to as the solids conveying zone, where the

screw channels are only partially filled and there is no pressure build-up. At some

point along the extruder, the channels become completely filled and the temperature

and pressure increase considerably as a result of viscous heat dissipation and material

transport. This section is referred to as the melt zone. Heating or cooling sections

along the barrel may provide additional temperature control.

Screw
Speed, ω

Barrel Temperature, Tb

Die
Temperature, Td

Melt
Zone

Solids Conveying Zone

Feed
Temperature, Tf
Flow, Qf
Moisture, Mf

Figure 3-7 – A typical cooking extruder

The input-output data used in this study was generated using a mechanistic model of

an industrial cooking extruder. The model is based on the steady-state cooking

extruder model proposed by Kulshreshtha (1991) with a number of modifications and

extensions made by Elsey et al., (1997). The inputs available for model development

were screw speed (ω), feed rate (Qf), feed moisture content (Mf) and feed temperature

(Tf). One hundred steady state records of these values along with the corresponding

values of g were used for model development. A second set of 100 data records was

Steady-state Modelling

 45

used for model validation. The standard and MBF-GP algorithms were run twenty

times with a population of 100 individuals for 100 generations. Table 3-6 and Figure

3-8 compare the validation RMS errors for the best models from each run.

Table 3-6 - Comparison of validation RMS values (extruder data)

 Minimum Mean Maximum

MBF-GP 0.0344 0.0462 0.0645

Standard GP 0.0195 0.0418 0.0762

In this case study, the most accurate model prediction on the validation data was

generated using the standard GP algorithm. Figure 3-8 shows that the standard GP

algorithm does not perform as consistently as the MBF-GP algorithm, producing a

wider distribution of error values. Although there is an apparent dissimilarity between

the error distributions, a two-sided K-S test (at the 95% confidence level) does not

indicate that the difference is significant.

Figure 3-8 –Validation RMS distributions for extruder data

Steady-state Modelling

 46

The standard GP model with the best performance on the validation data is shown

below in simplified form,

)))()2480.0(1365.0()

2523.0((^)011.1271.3)()3.102(00696.0

(494.1(^)596.7)7988.0exp(/)))6104.3(

4012.0()1285.0(146.7exp(((/7636.0(ˆ

2/32/12

2/12

fffff

fff

fff

fff

MMMQM

MMQ

MQM

QMMg

+++−+−

++−−−

++++

−+−−−−=

ωωω

ωωωω

ωωωω
ω

 3-12

The MBF-GP model with the lowest validation RMS error is shown in Table 3-2. The

model is constructed from fifteen basis functions. Significantly, there are no instances

of Tf in either model, indicating that the feed temperature is not required to develop an

accurate prediction for the degree of starch gelatinsation.

Table 3-7 - MBF-GP model with best performace on extruder data

Basis Function Parameter Value
)/log(ff MM ωω +− 0.05689

fM 0.3737

ω−160.6 0.5055

()1exp +ωω fM 2.118
ω

fM 1.030

ff MQ − 1.278

fM/ω 0.005855

ω−fQ -1.374

)949.0(−fMω -4.779

ω012.7 -0.06637

()151.0506.0 +fM -2.741
ωω

f
M

ff MQM f + -0.6438

ff QM 0.05006
07395.0

fQ 0.1486

() ()() 2/
log407.3

ωωω fQ− -0.1535

 Bias 0.3897

Steady-state Modelling

 47

A similarity between the MBF and standard GP models is that both structures are

complex and difficult to interpret. Although the models give accurate predictions,

they do not provide any additional insight into the underlying physical process (apart

from the exclusion of Tf). The predictions generated using these models are compared

in Figure 3-9 and Figure 3-10.

Figure 3-9 - Prediction for degree of gelatinisation (MBF-GP)

Figure 3-10 – Prediction for degree of gelatinisation (Standard GP)

Figure 3-11 shows that, as in the previous example, the standard GP algorithm

requires a greater number of FLOPs in order to achieve a given validation RMS error.

The difference is greater towards the beginning of the algorithm runs with the

Steady-state Modelling

 48

standard GP algorithm performing approximately one hundred times more FLOPs

than the MBF-GP algorithm.

0

0.05

0.1

0.15

0.2

0.25

0.3

1.E+06 1.E+07 1.E+08 1.E+09 1.E+10 1.E+11

Estimated flops

V
al

id
at

io
n

R
M

S
Standard GP

MBF-GP

Figure 3-11 – Comparison of computational effort (extruder data)

The difference between the algorithms gradually decreases as the validation RMS

error reduces. However, the computational effort is still an order of magnitude higher

for the standard GP algorithm when the lowest RMS values are achieved. As was

observed in the previous case study, shorter error bars emphasise the greater

consistency achieved by the MBF-GP algorithm.

3.5 Conclusions

The results presented in this chapter have demonstrated the ability of both GP

algorithms to generate accurate steady-state process models. The difference in model

accuracy was greatest for the test system, with the MBF-GP algorithm clearly

outperforming the standard GP algorithm. However, the difference was less

noticeable for the two process systems, with the standard GP algorithm generating the

most accurate model on the extruder data. This could be because the algorithm uses a

non-linear optimisation routine to fit all of the constants in each model string whereas

the MBF-GP algorithm only optimises the parameters associated with each basis

function. This may enhance the standard algorithm’s ability to evolve accurate models

Steady-state Modelling

 49

of more complex processes. The MBF-GP algorithm is at a disadvantage in the sense

that it does not optimise constant values appearing inside basis functions, which could

explain its tendency to construct models from a number of relatively parsimonious

basis functions. In all three case studies, the MBF-GP algorithm produced narrower

error distributions, indicating that it produces more consistent results than the standard

algorithm.

The greatest advantage of using the MBF-GP algorithm is that it requires substantially

less computational effort to achieve the same model accuracy as the standard

algorithm. The L-M optimisation routine performs a relatively large number of

function evaluations in order to estimate the derivatives of the prediction error with

respect to each model parameter. This becomes particularly significant during the

latter stages of an algorithm run when the population contains complex model strings

that have a large number of numerical parameters. The least squares routine used by

the MBF-GP algorithm does not have this burden and execution times are reduced

considerably. This means that, although the standard algorithm was able to generate

the most accurate prediction on the extruder data, MBF-GP algorithm performance

could be improved by carrying out longer runs with larger populations and still

require less computational effort. As mentioned earlier, a variety of optimisation

techniques can be used in combination with GP, with each striking a different balance

between computational complexity and the accuracy of the resulting model fit. An

interesting approach would be to allow the GP algorithm to call upon an array of

different optimisation methods. Each routine could be selected on a probabilistic

basis, with more computationally expensive techniques having a lower chance of

being employed.

The functional form of the models developed by GP has been cited as an advantage

by some researchers when compared to other ‘black-box’ techniques such as neural

networks. For example, Lee et al. (1997) found that GP was able to evolve models

that performed as well as neural networks and preferred the functional form of the GP

solutions. Conversely, Greeff and Aldrich (1998) suggested that GP model structures

were difficult to interpret and offered no significant advantage over other methods.

The work carried out in this chapter seems to support this view, as the evolved

Steady-state Modelling

 50

models, particularly in the case of the MBF-GP algorithm, were rather complex.

Unfortunately, some of the features that are intended to improve the flexibility of the

algorithm (for example, high-level crossover) may intensify this problem.

It may be possible to simplify the MBF-GP models further, perhaps by discarding

basis functions that do not contribute significantly towards the accuracy of the model.

The remaining functions could then be combined to form a single expression that may

yield to further simplification. A more attractive approach would be for the algorithm

to account for model complexity during evolution, only allowing an increase in model

size to take place if an improvement in prediction accuracy is observed. The issue of

model parsimony will be tackled using a multi-objective GP algorithm in chapters 6

and 7. The next chapter compares the MBF-GP algorithm with a more established

data-based modelling technique - artificial neural networks.

Comparison of GP and Neural Networks

 51

4 Comparison of GP and Neural Networks

4.1 Introduction

The previous chapter demonstrated how GP could be used to develop accurate models

of steady-state chemical processes. However, for GP to be considered as a serious

alternative to more established data-based modelling techniques, the algorithm must

be able to generate models of a similar accuracy without experiencing an excessive

increase in computational requirements. This chapter examines this possibility by

comparing the MBF-GP algorithm with artificial neural networks. An increase in low

cost computing power combined with an abundance of process data has meant that the

use of neural networks has increased rapidly over the last decade. Process engineering

applications include fault diagnosis (Frank and Köppen-Seliger, 1997), process

control (Turner et al., 1996) and modelling (Lennox, 1996). Neural networks provide

a means of generating accurate data-based models whilst keeping development times

to a minimum. Consequently, they provide a cost effective alternative to mechanistic

modelling techniques and have been applied to a wide range of steady-state and

dynamic modelling problems. Another benefit is that the generic nature of neural

network models means that it is relatively straightforward to incorporate them into

established model–based control schemes (Henson and Seborg, 1997). This is

especially relevant to the chemical industry where non-linear control methods can

help to improve product quality and reduce running costs.

Previous studies (Willis et al., 1997 and Hiden, 1998) have suggested that GP is

capable of competing with neural networks in terms of the prediction accuracy of the

evolved models. However, such comparisons tend to place little or no emphasis on the

computational requirements, thus making it is difficult to draw any conclusions

regarding the practicality of GP. This study aims to address this issue by comparing

the performance of the two techniques in terms of the computational cost as well as

the prediction accuracy achieved. The commonest network architectures used for

modelling purposes are radial basis function and feedforward neural networks,

Comparison of GP and Neural Networks

 52

otherwise known as multi-layer perceptrons. Although it may be possible to develop

accurate models using either of these network architectures an assessment of both

techniques is beyond the scope of this thesis. As a result, this work is restricted to the

development of feedforward neural network models. The rest of this chapter

introduces the fundamental concepts of feedforward neural networks and their

application to steady-state modelling. Comparison is then made with GP using the

case studies described in the previous chapter. Aspects of the neural network

architectures and training methods used for dynamic modelling will be covered in the

next chapter.

4.2 Feedforward Artificial Neural Networks

The feedforward neural network consists of a number of layers of simple processing

nodes known as neurons. The output signal of each neuron is a function of the inputs

to the neuron. These functions are referred to as activation or basis functions. While

there is a range of possible linear and non-linear functions, the most common are the

log-sigmoid and hyperbolic tangent functions, described by equations 4-1 and 4-2

respectively.

logsig()x
e x=

+ −

1
1

 4-1

tanh()x
e e
e e

x x

x x= −
+

−

− 4-2

Plots of these functions are shown in Figure 4-1. The output of each neuron is then

passed to all of the neurons in the next network layer. Each of the connections in the

network has an associated regression parameter, or weight, which modifies the

strength of the signal that is passed along the connection to the next neuron. The

adjustment of these parameters enables the network to produce the desired output

value for a given set of inputs.

Comparison of GP and Neural Networks

 53

Log sigmoid Hyperbolic tangent

Figure 4-1 Activation functions

Figure 4-2 is a diagram of an artificial neuron, where u1,...,un are the n inputs, w1,...,wn

are the weights, y is the output and f is the activation function. An additional input

provides a bias or offset and has an associated parameter, b. This term is analogous to

the bias term used in linear regression problems and allows the activation functions to

approximate a wider range of function types (Wray and Green, 1991). The summation

function is sometimes referred to as the combination function of the neuron. Other

types of networks, such as RBF networks use different types of combination function.

Σ
u1
u2

u3

un

w1

w2
w3

wn

y
f

b1

Inputs
Weights

Bias

Output

Non-linearitySummation

Figure 4-2 – An artificial neuron

The output of the neuron is given by equation 4-3,

)(
1
�

=

+=
n

i
ii buwfy 4-3

Comparison of GP and Neural Networks

 54

The outputs of each node in a network layer provide the inputs to each of the neurons

in the next layer. Information flows through the network in only one direction, from

the input to the output layer, hence the term feedforward network. The structure of a

typical feedforward network containing a single hidden layer of neurons is shown in

Figure 4-3. The input and output layers have linear activation functions, which means

that they play no role in modelling any non-linearities associated with the input-output

data. Although it is possible to use networks that have more than one hidden layer, the

network architecture shown in Figure 4-3 has been successfully applied to a range of

process engineering problems (for example, Willis et al., 1991, Turner et al., 1996

and Lennox, 1996).

Network Output,

Input Layer Hidden layer Output layer

Bias

Network Inputs

u1, u2,…, un �y

Σ

Σ

Σ

Σ

Σ

Interconnecting weights

Bias

ΣNode performing no
processing

Summation node Activation functionKey:

Figure 4-3 - The feedforward artificial neural network

The process of modifying the network parameters to minimise the error between the

actual and predicted process output is known as network training. There are a number

of algorithms that can be used for this purpose, the most important of which are

described in the next section.

Comparison of GP and Neural Networks

 55

4.3 Network Training

The non-linear, highly interconnected structure of neural networks means that it is

necessary to use some form of non-linear optimisation algorithm. During training, the

goal is to find the values of the weights and biases that minimise the network

prediction error, ε. The objective function usually takes the form of a quadratic error

function, where the aim is to minimise the sum of the squared error between the

predicted and actual values of the output,

()�
=Θ

Θ−=
N

i
ii yy

1

2),(ˆ min ϕε 4-4

Where Θ is a vector of network parameters, ϕ contains the input data samples and N

is the number of data points. The method traditionally used for neural network

training is known as back-propagation (Rumelhart et al., 1986) and is described in the

next section.

4.3.1 Back-Propagation

Back-propagation is a steepest descent algorithm that makes use of analytical

gradients of the error surface. The term ‘back-propagation’ comes from the fact that

the derivation of the gradient equations begins at the output layer and propagates back

through the network. Training proceeds by calculating the partial derivatives of the

prediction error with respect to each of the network weights and biases. These values

can then be used to take a step in the direction of the steepest gradient. The basic

parameter update rule uses a step length proportional to the magnitude of the gradient

and is given by,

iii jα−Θ=Θ +1 4-5

Where ΘΘΘΘi is a vector of network parameters at iteration i, ji is a vector containing the

partial derivatives of the prediction error with respect to ΘΘΘΘi (the Jacobian), and α is

the step length or learning-rate. In the most basic implementation of the back-

Comparison of GP and Neural Networks

 56

propagation algorithm the learning rate remains constant, but in practice, faster

convergence is achieved by changing the value from one iteration to the next.

An additional term, known as momentum can be included in order to increase the

speed of the search. This also enables the algorithm to pass smoothly over small

undulations in the error surface, making it less likely to become trapped in local

minima. The parameter update equation then becomes,

)(11 −+ Θ−Θ+−Θ=Θ iiiii ηαj 4-6

Where η is the momentum term. Although back-propagation is easy to implement, a

number of disadvantages must be addressed in order to achieve faster and more

accurate solutions. For example, convergence can be extremely slow as the algorithm

approaches a minimum point. In addition, since the algorithm always searches in the

‘downhill’ direction, it has no way of avoiding local minima. Because of these

deficiencies, numerous variations on the standard back-propagation algorithm have

been suggested. Some of the most useful of these enhancements are discussed in the

next section.

4.3.2 Enhanced Back-Propagation

It is common for gradient descent algorithms to vary their step length from one

iteration to the next. This is usually achieved by performing a line minimisation in

order to determine the size of the optimal step length in the direction of steepest

gradient. This approach has been omitted from the back-propagation algorithm due to

the high degree of computational effort that is required for the additional function

evaluations. An alternative method is to use an adaptive learning rate.

The basic back-propagation algorithm described above makes use of a constant

learning rate, meaning that the step length is proportional to the gradient. This may

lead to problems when there are large differences between the gradients of different

parameter values. For example, if the learning rate is low and the gradient is very

gentle, the algorithm may take a considerable length of time to reach the minimum.

Comparison of GP and Neural Networks

 57

Using a higher learning rate could solve this problem, but this could cause difficulties

if other parameters have steep gradients. A high learning rate coupled with a steep

gradient could make the algorithm take very large steps and continually step over the

minimum.

One solution is to use individual learning rates for each network parameter (Jacobs,

1988). This approach leads to the following parameter update rule,

)(11 −+ Θ−Θ+−Θ=Θ iii

T
iii ηIj� 4-7

Where ααααi is a vector of learning rates for each parameter at iteration i. This modified

update rule enables the learning rate for each parameter to be adjusted independently.

This is carried out using successive gradient values to determine whether an increase

or decrease in learning rate would be beneficial. For example, if the gradient does not

change sign from one iteration to the next, it can be assumed that the algorithm is

making progress ‘downhill’ and an increase in learning rate may lead to faster

convergence. However, if the sign of the gradient alternates between positive and

negative values, it is likely that the algorithm is stepping over the minimum and a

reduction in the learning rate is required. A simple learning rate update rule is given

by,

α α(), , ,i j i j i jK+ =1 4-8

Where αi,j is the learning rate for the parameter j at iteration i. An adaptive learning

rate update rule can then be implemented by using the following heuristic for

determining the value for Ki,j,

1,
1- 0 if KK ji

j

i

j

i =>
∂θ
∂ε

∂θ
∂ε

2,
1- 0 if KK ji

j

i

j

i =<
∂θ
∂ε

∂θ
∂ε

 4-9

K i j, = 1 otherwise

Comparison of GP and Neural Networks

 58

Where K1 is a parameter that controls the increase of learning rate and K2 is a

parameter used to decrease learning rate. Numerous methods have been proposed to

improve the performance of the standard back-propagation algorithm. For example,

Minai and Williams (1990) extended Jacobs’ work and suggested that individual

momentum terms could be adapted in a similar way to the learning rate. The RPROP

(resilient back-propagation, Riedmiller and Braun, 1993) and Quickprop (Fahlman,

1989) algorithms are other examples of training methods intended to improve

convergence times.

4.3.3 Alternative training algorithms

A number of optimisation algorithms have been developed in order to overcome some

of the deficiencies of steepest descent algorithms such as back-propagation. One of

these is the Levenberg-Marquardt (L-M) algorithm. Hagan and Menhaj (1994) first

described how the algorithm could be used to train feedforward neural networks. A

disadvantage of using the L-M algorithm is that it is more computationally expensive

than the back-propagation algorithm. This factor becomes increasingly important

when tackling problems that require complex network structures. However, for

reasonable network sizes, this drawback may be offset by the greater efficiency that

the algorithm has when compared to the basic steepest descent algorithm, with

convergence usually being achieved in fewer iterations. Another advantage is that the

algorithm has become a widely used method of non-linear optimisation meaning that

the necessary software routines are widely available. The L-M algorithm is used to

train the neural networks used for dynamic modelling in chapter 5.

As mentioned previously, network training is essentially a parameter optimisation

problem. This means that virtually any optimisation algorithm can potentially be used

for network training. For example, the conjugate gradient algorithm is one alternative

(Charalambous, 1992), and is not as computationally expensive as the L-M algorithm.

A problem associated with all of the gradient-based methods discussed so far is their

potential to become trapped in local minima. An approach intended to avoid this

problem is the chemotaxis algorithm (Bremermann and Anderson, 1989). The

Comparison of GP and Neural Networks

 59

algorithm adjusts the network weights by perturbing them with random values taken

from a Gaussian distribution. Weight changes that lead to an improvement in network

performance are accepted and the process is repeated until the convergence criteria

are satisfied. Another optimisation technique that avoids the use of gradient

information is the GA. The GA does not necessarily have to be used as a simple

parameter optimisation algorithm and can be used to simultaneously evolve the

network architecture and weights (Schaffer et al., 1990). Some of the coding

difficulties connected with this approach can be avoided by using a GP algorithm to

evolve the network topology. For example, Esparcia-Alcázar and Sharman (1997)

used a GP algorithm to evolve recurrent neural networks for signal processing. A

major disadvantage of chemotaxis, GA and GP techniques is that they are more time

consuming than gradient-based methods.

4.3.4 Network Parameter Initialisation

The choice of the initial values for the network parameters can strongly influence the

performance of the final solution and the time required to train the network. The use

of random parameter values helps to break the symmetry of the network and prevent

the convergence to the same point in parameter space for every algorithm run. Care

must also be taken to avoid activation function saturation, which occurs when a

neuron’s output is forced to one of the flat regions of the log-sigmoid or hyperbolic

tangent function. This is undesirable, as the associated gradient will be very close to

zero, making it difficult for gradient-based training algorithms to optimise the

parameters associated with that neuron. One solution is to choose small initial values

for the network parameters. However, all of the network basis functions will be

grouped closely around the ‘origin’ of the search space. This may result in

unacceptably long training times as a large amount of shifting and resizing of the

basis functions will be required.

An alternative method of network initialisation, first proposed by Nguyen and

Widrow (1990), ensures that the basis functions are initially spread more evenly over

the input space. The principal behind this method is to suppose that each hidden layer

Comparison of GP and Neural Networks

 60

neuron can be considered responsible for approximating the output for a small range

of output values, so that the network output is actually a piece-wise linear

approximation of the desired output. The subject of weight initialisation is an

important area of research as the correct choice of initial parameters can vastly

improve training times. For example, Yam and Chow (2000) recently proposed a new

weight initialisation scheme, claimed to greatly reduce the number of training

iterations required. As a detailed evaluation of these techniques is beyond the scope of

this thesis, the method of Nguyen and Widrow (N-W) was adopted. McKay (1997)

demonstrated how this technique resulted in more accurate network predictions when

compared to random weight initialisation. In addition, training times were improved,

with fewer iterations being required to achieve a given prediction error.

4.3.5 Network Parsimony and Generalisation

When developing neural network models of chemical processes the ultimate aim is to

produce models that provide accurate predictions on unseen data. This raises the

problem of deciding when to stop the network training process. If training is carried

out for too long, the network may model the training data very accurately but be too

specialised to perform well on unseen data. This phenomenon is known as over-fitting

and is more likely to occur for large networks. Networks with a large number of

parameters are more likely to model characteristics of the data that are not

representative of the underlying process (for example, process noise).

One procedure that attempts to prevent over-fitting is known as early stopping (see

for example, Sarle, 1995). The technique works by stopping training when the

validation RMS error begins to increase. However, this approach is not valid for GP

algorithms as they are constantly evolving new model structures. As a result, the

validation RMS error may increase or decrease from one generation to the next and

the best overall model may be produced at any stage of the algorithm run. This means

that a different approach is required to find the best model generated by a GP

algorithm. The same method must also be used to select the best neural network

model, so that a fair comparison can be made between the two approaches. In the

Comparison of GP and Neural Networks

 61

previous chapter, models were chosen from GP algorithm runs based on the sum of

the training and validation RMS values. Consequently, the sum of these values was

calculated throughout network training, with the minimum value being used to

designate the ‘best’ neural network result.

An alternative technique designed to improve generalisation is referred to as weight

elimination. This involves the removal of unnecessary network connections to reduce

the effective number of network parameters. This is achieved by giving each network

parameter the tendency to decay towards zero. The simplest way of implementing

such a strategy is to modify the parameter update rule as follows

iiwd Θ−=Θ)1(, ξ 4-10

Where Θwd,i is a vector of modified network parameters and ξ, is a small value (for

example, 0.001). The drawback of this method is that all parameters are penalised

when the real aim is to drive small weights to zero. This problem can be overcome by

making ξ a function of the network parameters, so that only small weights are

affected (Weigend et al., 1991).

A number of techniques have been proposed for reducing network complexity. Details

of these methods, known as pruning algorithms, can be found in Reed (1993).

Another method designed to improve network generalisation is weight decay, (Krogh

and Hertz, 1992) which works by preventing very large weight values. As a detailed

assessment of these techniques is beyond the scope of this thesis, the algorithm used

in this study adopts the weight elimination scheme discussed earlier.

4.4 Comparison of GP and Neural Networks on Steady-State Systems

4.4.1 Experimental procedure

The networks used in this study were restricted to a single hidden layer of neurons

containing hyperbolic tangent activation functions. In order to determine the network

Comparison of GP and Neural Networks

 62

structure that gave the best performance on each data set, batches of twenty runs were

performed with networks containing a variety of hidden layer neurons (3, 5, 7, 9, 11,

13, 15). Training was carried out using an enhanced back-propagation algorithm with

individual adaptive learning rates and weight elimination. Initial values for the

network parameters were determined using the N-W method described in section

4.3.4. Further details of this algorithm can be found in McKay (1997). Although there

are a number of possibly more efficient training algorithms available, back-

propagation is an established technique and has been used quite recently by some

researchers (for example, Doherty et al., 1997). McKay (1997) demonstrated how

networks trained using this algorithm were able to achieve the same prediction

accuracy as networks trained using the L-M algorithm but required less computational

effort.

The rest of this chapter uses the three case studies used in the previous chapter to

compare the steady-state modelling performance of the neural network and GP

algorithms. The comparison focuses on the MBF-GP algorithm due to the advantages

that the algorithm has over the standard algorithm. Histograms are used to compare

the validation RMS errors obtained using the algorithms and K-S tests are used to

determine the significance of any observed differences. The computational

complexity of each algorithm is also considered in order to determine whether GP

provides a practical alternative to neural networks.

4.4.2 Test System

The results obtained using the different network architectures are summarised in

Table 4-1. The results show how the validation errors decrease as the number of

hidden layer neurons is increased to five neurons. Above this number, the errors begin

to increase and the largest errors correspond to the most complex networks. This

would be expected, as they are more likely to over-fit the training data and generalise

poorly. As a result of these observations, the network with five hidden layer neurons

was chosen for comparison with GP. Table 4-2 compares the performance of the

neural network with the standard and MBF-GP algorithms.

Comparison of GP and Neural Networks

 63

Table 4-1 – Neural network validation RMS errors (test system)

Hidden layer neurons Minimum Mean Maximum

1 0.0740 0.0763 0.0769

3 0.0019 0.0081 0.0582

5 0.0013 0.0036 0.0084

7 0.0017 0.0039 0.0071

9 0.0017 0.0039 0.0071

11 0.0023 0.0042 0.0088

13 0.0023 0.0047 0.0089

15 0.0019 0.0047 0.0074

Table 4-2 - Comparison of validation RMS errors (test system)

 Standard GP MBF-GP Neural Network
(3-5-1)

Minimum 0.0159 4.86x10-5 0.0013

Mean 0.0773 0.0037 0.0036

Maximum 0.1441 0.0247 0.0084

Figure 4-4 compares the distributions of the validation RMS errors achieved using the

neural network and MBF-GP algorithms, and shows that the GP algorithm generated

the most accurate models for this system.

Figure 4-4- Comparison of validation RMS distributions for test system

Comparison of GP and Neural Networks

 64

It is possible that the GP algorithm is at an advantage in this case as its function set

contains the mathematical operators that make up the system equation, whereas the

neural network must approximate the function using hyperbolic tangents. A

shortcoming of the GP algorithm is that it generated a handful of models with

relatively poor RMS errors. The neural network does not suffer from this problem and

is the more consistent of the two algorithms. A two-sided K-S test performed at the

95% confidence level indicates that the difference between the two distributions is

significant.

4.4.3 Distillation Column

The network architectures used in the previous section were applied to the distillation

column data. The performance of the various networks on the validation data is

summarised in Table 4-3.

Table 4-3 – Summary of neural network validation RMS errors (distillation column)

Hidden layer neurons Minimum Mean Maximum

1 0.0362 0.0775 0.1051

3 0.0166 0.0463 0.0900

5 0.0147 0.0318 0.0507

7 0.0147 0.0302 0.0565

9 0.0148 0.0291 0.0411

11 0.0143 0.0285 0.0523

13 0.0162 0.0292 0.0580

15 0.0190 0.0293 0.0511

The network containing eleven hidden layer neurons produced the lowest mean and

minimum validation RMS. This distribution of validation RMS errors achieved using

this network is compared to the distribution obtained by the MBF-GP algorithm in

Figure 4-5. In this example, the GP algorithm has produced the narrower distribution,

indicating that the algorithm’s performance is more consistent when applied to the

validation data set. The neural network is less consistent but was able to develop the

most accurate model overall.

Comparison of GP and Neural Networks

 65

Table 4-4 - Comparison of validation RMS errors (distillation column)

 Standard GP MBF-GP Neural Network
(3-11-1)

Minimum 0.0231 0.0166 0.0143

Mean 0.0329 0.0227 0.0285

Maximum 0.0503 0.0341 0.0523

A two-sided K-S test at the 95% confidence level verifies that the two error

distributions are significantly different.

Figure 4-5 - Validation RMS distributions for distillation column data

The fixed architecture used by the neural network would perhaps be expected to

produce a narrower error distribution than the GP algorithm, which explores a wide

range of model structures. A possible explanation is that the neural network has a

relatively large number of parameters, which means that the training algorithm is

presented with a complex error surface. This will increase the number of local minima

in which the training algorithm may become trapped.

Comparison of GP and Neural Networks

 66

0

0.05

0.1

0.15

0.2

0.25

0.3

1.E+06 1.E+07 1.E+08 1.E+09

Estimated flops

V
al

id
at

io
n

R
M

S

MBF-GP

Neural netw ork

Figure 4-6 – Comparison of computational effort for distillation column

Figure 4-6 shows that the initial neural network prediction error is substantially higher

than that of the GP algorithm. This could be due to the probabilistic manner in which

the initial weights are chosen. Although the MBF-GP algorithm uses an initial

population of randomly generated model structures, the model parameters are

optimised in order to achieve the best possible prediction. This process is relatively

economical in terms of computational effort and allows the algorithm to obtain a

reasonably good fit early in the algorithm run. As the number of FLOPs increases, the

neural network errors decrease more rapidly than the MBF-GP algorithm and the

difference between the algorithms becomes less significant. The network has a

relatively large number of parameters, which may explain why the GP algorithm can

compete in terms of computational effort. It is also likely that the difference in

algorithm performance is system dependent. The function set supplied to the GP

algorithm may be suited to developing accurate models of this particular system, but

may lead to inferior performance on other systems.

4.4.4 Cooking Extruder

The validation RMS error values obtained by various neural network architectures are

summarised in Table 4-5. The network containing seven hidden layer neurons was

selected for comparison with GP, as the mean validation RMS is the lowest for this

network.

Comparison of GP and Neural Networks

 67

Table 4-5 – Summary of neural network validation RMS errors (cooking extruder)

Hidden layer neurons Minimum Mean Maximum

3 0.0177 0.0225 0.0273

5 0.0119 0.0192 0.0278

7 0.0128 0.0186 0.0275

9 0.0128 0.0197 0.0263

11 0.0168 0.0208 0.0280

13 0.0153 0.0201 0.0245

15 0.0157 0.0216 0.0302

The neural network results were initially compared with a GP algorithm using a

population size of 100 individuals run for 100 generations. The model errors are

compared in Table 4-6 and Figure 4-7. The results show how the neural network

produced predictions of a significantly higher accuracy than those evolved by the GP

algorithm (this observation is supported by a one-sided K-S test at the 95%

confidence level). Hiden (1998) reported similar results for this system, suggesting

that a sigmoidal relationship in the data set meant that neural networks are ideally

suited to modelling this system.

Table 4-6 - Comparison of validation RMS values (cooking extruder)

 Neural network
(4-7-1)

MBF-GP
(M=100, G=100)

MBF-GP
(M=500, G=500)

MBF-GP + tanh
(M=500, G=500)

Minimum 0.0128 0.0344 0.0192 0.0096

Mean 0.0186 0.0462 0.0293 0.0239

Maximum 0.0275 0.0645 0.0434 0.0359

To discover if it was possible for the MBF-GP algorithm to achieve the same level of

accuracy as the neural network, an additional set of twenty runs was performed with a

population size of 500 individuals for 500 generations. To investigate whether the

neural network’s use of hyperbolic tangent functions was a contributing factor,

another set of runs was carried out with this function added to the GP algorithm’s

Comparison of GP and Neural Networks

 68

function set. The results of the additional runs are included in Table 4-6 and Figure

4-7.

Figure 4-7 shows how the validation RMS errors are reduced by increasing the

population size and number of generations (a one-sided K-S test at the 95%

confidence level indicates that the difference between the distributions is significant).

Although the inclusion of the hyperbolic tangent function appears to have further

improved model performance, a one-sided K-S test reveals that the improvement is

only significant at the 90% confidence level. The resulting error distribution covers a

wider range of values than the neural network distribution. The most accurate model

was evolved by the GP algorithm, with a validation RMS of 0.0096 compared to

0.0128 for the neural network.

Figure 4-7 – Comparison of validation RMS distributions (extruder data)

Although the MBF-GP algorithm was eventually able to match the performance of the

neural network in terms of the prediction accuracy, the resulting increase in

computational effort is extremely large.

Comparison of GP and Neural Networks

 69

0

0.05

0.1

0.15

0.2

0.25

0.3

1.E+06 1.E+07 1.E+08 1.E+09 1.E+10 1.E+11 1.E+12

Estimated flops

V
al

id
at

io
n

R
M

S

Neural netw ork

MBF-GP

Figure 4-8 – Comparison of computational effort required for extruder modelling

Figure 4-8 demonstrates how the MBF-GP algorithm requires substantial increases in

processing power to evolve models with progressively lower validation RMS values.

When the lowest RMS errors are achieved, the computational cost of using the GP

algorithm is more than two orders of magnitude higher than required for the neural

network.

4.5 Conclusions

The work carried out in this chapter has shown that neither algorithm consistently

outperformed the other, with the relative performance of the two techniques appearing

to vary from one case study to the next. The GP algorithm was able to generate the

most accurate models for the test system and had a slight advantage in terms of

computational cost on the distillation column data. The neural network produced more

compact error distributions for the test system and extruder case study, but was less

consistent on the distillation column. The biggest difference was seen on the cooking

extruder data, where a large increase in computational effort was required to enable

GP to match the accuracy of the neural network models.

It is difficult to make fair comparisons between the GP and neural network algorithms

for a number of reasons. Firstly, the computational cost profiles only compare the

Comparison of GP and Neural Networks

 70

‘best’ neural network architecture with the MBF-GP algorithm. This does not account

for the fact that batches of runs must be carried out in order to determine this

architecture. This can be rather time consuming, as a range of network structures must

be considered. Advocates of both techniques would argue that the efficiency of each

algorithm could be improved. For example, algorithms such as L-M or conjugate

gradients may reduce network training times in certain cases. GP algorithm

performance could be enhanced by fine-tuning control parameters or using a different

function set. The performance of both algorithms may have improved if redundant

process variables had been omitted from the input data sets. Although the case studies

suggest that GP is able to automatically select the relevant input variables, a more

detailed study is required to fully assess how performance is affected by varying

degrees of redundancy in the input data.

It is also important to remember that FLOP counts are only an estimate of the

computational burden. This is particularly relevant in the case of the GP algorithms,

which store model expressions in the form of character strings. As string operations

do not register as FLOPs, the counts do not measure the processing required to

generate the initial populations of individuals or apply the crossover and mutation

operators. Fortunately, these operations do not account for a significant proportion of

the overall processing requirements. The most computationally expensive part of the

algorithm is the fitness evaluation stage, which is responsible for more than 95% of

the total processing time.

The main conclusion to be drawn from this study is that the modifications made to the

standard GP algorithm have resulted in a modelling technique that is more

competitive with neural networks. In this respect, the results presented in this chapter

provide sufficient motivation for continued research into the benefits of using GP as a

model development tool. The next section builds on the work presented so far and

describes how the standard and MBF-GP algorithms can be used to evolve models of

dynamic systems.

Dynamic Modelling

 71

5 Dynamic Modelling

5.1 Introduction

In chapter 3 it was demonstrated how GP can be used generate accurate steady-state

models of chemical processes. It was shown how a MBF-GP algorithm could be used

to develop steady-state models and comparison was made with a ‘standard’ GP

algorithm. Although steady-state models are sometimes useful for solving process

engineering problems, applications such as process simulation and control require a

model that accurately describes the dynamic behaviour of the system.

For steady state systems, the process output is uncorrelated with time and individual

data records are independent of each other. This is not the case with a dynamic

system, where the process output is related to previous values of the inputs and/or

outputs. Consequently, the GP algorithm used for steady-state modelling cannot be

applied to dynamic processes without alteration. This chapter describes how GP can

be modified in order to evolve models of dynamic systems. It is shown how the MBF-

GP algorithm can be applied to dynamic model development and its performance

compared with the standard GP algorithm.

5.2 Modelling Process Dynamics using GP

Although it is possible to model dynamic systems mechanistically, the process can be

difficult and time consuming due to the large number of equations that may be

required to describe the system. In addition, if some of the chemical or physical

processes are poorly understood, the resulting model may be prone to inaccuracies. A

possible solution is to use a GP algorithm to automatically generate and evolve the

necessary differential and algebraic equations. This method was used by Gray et al.

(1998) to evolve expressions that were incorporated into a set of ordinary differential

equations (ODEs) representing the flow of water in a coupled tank system. The

authors suggested that this approach may yield a more ‘meaningful physical model’

Dynamic Modelling

 72

than using a discrete time approximation. Similarly, Cao et al. (1999) used a GP

algorithm to evolve sets of ODEs in order to model the kinetics of chemical reactions.

The main disadvantage of this method is that a set of ODEs must be integrated in

order to evaluate the fitness of each population member. This will be computationally

expensive, especially for systems that require more than a couple of ODEs. It was

shown in chapter 3 that, even for a simple test case, GP is unable to generate an exact

representation of the underlying system. This is not unexpected, as GP evolves

models probabilistically, meaning that the final solution is always likely to

approximate the actual system. Although the GP derived model may give good

predictions, its structural form may be relatively complex and difficult to interpret. It

follows that it is unlikely that GP will be able to evolve ODEs that provide any insight

into the underlying physical processes of a dynamic system. Consequently, there are

no benefits to offset the potentially large computational cost of using GP within an

ODE framework.

A method often used by process engineers is to apply the Laplace operator (s) to

represent the problem in the s-domain. This approach is convenient as ODEs in the

time domain are transformed into linear equations in the s-domain. For example, a

first order ODE is transformed into a first order transfer function. One of the simplest

approaches used by process engineers is to use a first-order plus dead-time transfer

function model. For a single input-single output (SISO) system, the estimated process

output (ŷ) is given by,

)(
1

)(ˆ su
s

eK
sy

p

st
p

d

+
=

−

τ
 5-1

Where, u is the input, s is the Laplace operator, pτ is the process time constant, Kp is

the process gain and td is a time delay term. McKay et al. (1996) described a

technique for dynamic model development using a combination of first-order transfer

functions and GP. The first step involved the fitting of a dynamic model of the form,

�
= +

=
n

i ip

iip

s

uK
y

1 ,

,

1
ˆ

τ
 5-2

Dynamic Modelling

 73

Where u1,…,un are the process inputs. The GP algorithm is then used to develop a

model of the residuals produced by equation 5-2 instead of the original data. A

disadvantage of this technique is that the dynamic characteristics of the process are

fixed before the evolutionary stage of model development takes place. Another

drawback is that the method assumes a first order relationship between the model

input(s) and output. This assumption may be adequate for some applications, but it is

unlikely to be suitable for a wider range of chemical process systems, which tend to

be highly non-linear. The methodology does not include a means of compensating for

process dead time, so any substantial time delays will have to be identified and

removed from the data before the algorithm is applied.

Hiden (1998) improved on this approach by using a MBF-GP algorithm to build

models containing first order transfer functions. This resulted in the following model

form,

�
= +

+=
m

i i

i
i s

g
aay

1
0 1

)(
ˆ

τ
U

 5-3

Where τi is the time constant associated with the ith basis function, a0,…,am are model

parameters, g1,…,gm are basis functions determined by the GP algorithm and U is a

matrix containing the inputs u1,…,un. The parameters a0,…,am were found using the

method of least squares, while the values for the time constants, τi, were found by

using a modified mutation operator. This approach has several advantages over that

outlined by McKay et al. (1996). Firstly, the time constants are modified as the

evolutionary process proceeds, instead of being fixed by a separate modelling step. In

addition, the GP algorithm is now responsible for the development of the dynamic

model terms. This means that the model can be constructed from non-linear

expressions, giving it the potential to describe more complex systems. Finally, each

basis function can be a function of more than one input enabling the model to account

for interactions between process variables. Despite these improvements, Hiden’s

approach still relies on the use of first order transfer functions and does not provide a

method for time delay identification. If the aim is to develop an automated model

building tool, the GP algorithm must be able to identify the relevant process time

delays and higher order dynamics.

Dynamic Modelling

 74

Gray et al. (1998) also used GP to develop transfer function models, extending the

methodology to include higher order transfer functions and time delay terms. The

models were represented in block diagram form using the SIMULINK (Checkoway

and Kirk, 1992) toolbox for MATLAB. In a similar approach, Bettenhausen et al.

(1995) used a GP algorithm with a function set containing feedback loops and

recursive nodes to build models of a biotechnology process, also in block diagram

form. Although this approach proved successful in terms of model accuracy, a major

disadvantage was that the procedure was computationally intensive, requiring a

network of workstations to achieve a solution within an acceptable timeframe. This is

also likely to be a problem with the method outlined by Gray et al. as a separate

SIMULINK block diagram will have to be executed to calculate the fitness of every

population member.

An alternative method, used for modelling dynamic processes is to use a time series

approach, where the output is modelled as a function of past values of the input(s) and

output,

),...,,...,,...,,,...,(ˆ ,1,,11,11 τττ −−−−−−= knknkkkkk uuuuyyfy 5-4

Where k is the current time and τ is the maximum time shift. Introducing the back-

shift operator, q-1 (for example, q-1yk=yk-1), equation 5-4 may be written,

),,...,,(ˆ 1
,,1

−= quuyfy knkkk 5-5

The function f can easily be developed using a GP algorithm with a terminal set

containing lagged values of the input and output variables. The simplest form of the

time series model is to predict the output based solely on past values of the input(s).

This is sometimes referred to as the finite impulse response (FIR) model (Söderström

and Stoica, 1989),

),...,,...,,...,(ˆ ,1,,11,1 ττ −−−−= knknkkk uuuufy 5-6

A disadvantage of this model form is that it may be necessary to use a large time

history of process inputs to accurately capture the dynamic characteristics of the

Dynamic Modelling

 75

process. This may be especially problematic when using a GP algorithm, as the

terminal set would have to be very large. This would increase the likelihood of

redundant information being present in the terminal set, leading to a degradation of

algorithm performance. An increase in model parsimony can be achieved by using

past output values of the process. A common linear example of equation 5-4 is the

Auto-Regressive Moving Average with eXogenous inputs (ARMAX) model

(Söderström and Stoica, 1989). For a SISO system,

ccbbaa nknkknknknknkk ececeububyayay −−−−−− ++++++=+++ 111111 5-7

Or in simplified form,

kkk eqCuqByqA)()()(111 −−− += 5-8

Where A, B, and C are polynomials in the back-shift operator and ek is a noise term,

c

c

b

b

a

a

n
n

n
n

n
n

qcqcqC

qbqbqB

qaqaqA

−−−

−−−

−−−

+++=

++=

+++=

...1)(

 ...)(

 ...1)(

1
1

1

1
1

1

1
1

1

a, b and c are sets of model parameters that must be determined and na, nb and nc are

the maximum time-shifts for y, u and e respectively. In reality, the noise term is not

measurable and is not available for model development.

The non-linear form of this model is known as the polynomial NARMAX (Non-linear

ARMAX) model (Chen and Billings, 1989) and consists of polynomials made from

linear and non-linear combinations of past values of y, u and e. The polynomial

NARMAX model may be written as follows.

k

n

i

n

ii
iiii

n

i

n

ii
iiiii

n

i
ik exxaxxaxaay

ll

ll
+++++= � ����

= == = −11
0

1 1

11

1 12

21211

1

1
............ 5-9

Where ai are the model parameters, n is the sum of the maximum number of lags for

y, u and e, xi are the lagged terms in y, u and e, and l is the degree of the polynomial.

Dynamic Modelling

 76

If no terms containing e are used, the model becomes a NARX (Non-linear Auto-

Regressive with eXongenous inputs) model. For example, for a SISO system, a

NARX model limited to a second order polynomial and a single process lag for the

input and output is as follows,

118
2

1171
2

16

2
1

2
1514

2
1312

2
110

−−−−−−

−−−−−−

+++

+++++=

kkkkkk

kkkkkkk

yuayuayua

yuayayauauaay
 5-10

Although this model structure has been used in a number of practical applications, one

of the difficulties associated with NARMAX model development is that the number

of possible model structures can be very large. This will be especially true for non-

linear chemical processes that may have multiple inputs and require higher order

polynomials with a large time history of input(s) and outputs. It will be difficult to

select the appropriate terms from all of the possible combinations described by

equation 5-9 as there may be hundreds or even thousands of candidate models from

which to choose.

This problem can be addressed by applying techniques such as forward and backward

regression, which allow model terms to be added or removed systematically. In

forward regression, (Draper and Smith, 1981) model terms are added one at a time,

based on their degree of correlation with the process output. This method does not

account for the fact that newly added model terms may render some of the existing

terms unnecessary. Consequently, the resulting model will not necessarily provide the

most parsimonious solution to the problem. Backward regression (Smillie, 1966,

Draper and Smith, 1981) initially estimates the parameters for a model containing all

of the possible model terms. Terms are then removed and the parameters are re-

estimated in order to eliminate unnecessary terms. One of the problems of this

approach is that the initial parameter estimates for the model containing all of the

possible terms may be ill-conditioned and produce inaccurate estimates. More

efficient methods have been proposed for NARMAX model development, for

example, Billings and Voon (1986a) described a stepwise regression algorithm, which

uses a combination of forward and backward regression methods. More recently, Mao

and Billings (1997) developed the minimal model structure detection (MMSD)

Dynamic Modelling

 77

algorithm, which uses a GA to determine the order in which terms are added to the

overall model.

An alternative to these methods is to use a GP algorithm to determine the necessary

combinations of inputs, outputs and process lags. GP has been used to develop time

series models in a number of research areas. Applications include the prediction of

financial markets (Chen and Yeh, 1997, Kaboudan, 1999), sunspot prediction (Jaske,

1996), modelling of hydrological systems (Babovic, 1998) and the identification of

chaotic time systems (Howard and Oakley, 1995). Rodríguez-Vázquez and Fleming

(1998) applied GP to the development of NARMAX models for gas turbine engine

identification. More recently, Kulkarni et al. (1999) used GP to develop ARX models

of industrial processes including a CSTR and a heat exchanger. This form of model

structure is attractive in terms of its implementation within a GP framework, as few

modifications have to be made to the steady-state algorithm. In addition, solution

times should be more manageable than those achieved using methods based on block-

diagram representations or that require sets of differential equations to be solved. The

next section outlines the modifications that must be made to the standard GP

algorithm to allow the development of models of this form.

5.3 Dynamic GP Algorithm Details

The standard GP algorithm is almost identical to the algorithm used for steady-state

model development in chapter 3. The main difference is that modified terminal and

function sets must be used to allow the algorithm to generate models in time series

form. The method used to represent this type of model structure is outlined in the next

section.

5.3.1 Dynamic Model Representation

In order to develop models that can be used for long-term prediction, we must assume

that the actual process output values),...,(1 τ−− kk yy are unknown and cannot be used

Dynamic Modelling

 78

as model inputs. The predicted output values)ˆ,...,ˆ(1 τ−− kk yy generated by the model

must therefore be used instead. The general model form given by equation 5-5 then

becomes,

),,...,,ˆ(ˆ 1

,,1
−= quuyfy knkkk 5-11

This form of prediction is sometimes referred to as ‘pure’ prediction (Henson and

Seborg, 1997) as the method only requires the process inputs in order to predict the

output over the entire data set. This is especially important if the model is to be used

for carrying out process simulations, as the output must be assumed unknown. In

addition, if GP is to be developed into a useful dynamic modelling tool it must be able

to produce models that have the same level of performance and range of application

as existing artificial intelligence techniques. Since established techniques such as

globally and locally recurrent artificial neural networks are able to generate long-term

predictions, it follows that it would be more appropriate to apply GP to the same

problem. The simplest way to enable GP to construct dynamic models of the form

shown by equation 5-11 is to provide a terminal set that consists of time shifted

process input(s) and the model output,

{ }

uuy knknkkkk uuuuyyT τττ −−−−−−= ,1,,11,11 ,...,,...,,...,,ˆ,...,ˆ 5-12

Where n is the number of process inputs and τu and τy are the maximum time-shifts

for the inputs and output respectively. An important aspect of this method is that the

maximum number of process lags must be chosen before the algorithm run. If this

number is chosen incorrectly, the algorithm will be unable to evolve accurate models

and additional sets of runs will have to be performed. Although this problem will arise

if τ is less than the required value, poor performance could also result if the value is

too high, as the algorithm may have to work with a large number of superfluous

terminals. It is possible that the input-output data could be analysed before any runs

were undertaken in order to estimate process time constants and time delays, but this

would mean that GP was no longer operating as an automated modelling tool with no

a priori assumptions.

Dynamic Modelling

 79

A more elegant solution is to provide the algorithm with building blocks that allow

the number of process lags to be adjusted as the run proceeds. This can be

accomplished by including the back-shift operator, q-1, in the function set. Dynamic

models can then be created from a smaller terminal set consisting solely of the process

input(s) and model output shifted by a single time sample, i.e.,

{ }11,1,1 ˆ,,..., −−−= kknk yuuT 5-13

For example, consider the following model equation,

432ˆˆ −−− ++= kkkk uuyy 5-14

The model described by equation 5-14 can also be represented by applying the

appropriate back-shift operators to uk-1 and yk-1 terms,

1
3

1
2

1
1 ˆˆ −

−
−

−
−

− ++= kkkk uquqyqy 5-15

It should be noted that equation 5-15 makes use of back-shift operators that shift the

terminals back by multiple time samples, for example q-3 shifts uk-1 by three samples

resulting in a uk-4 term. The same result could be achieved by repeatedly applying

single sample back-shifts but it would be impractical for the algorithm to identify

large process time delays in this manner. Consequently, it is necessary to specify a

maximum number of time samples (�max) for the back-shift operators in the function

set. This approach is extremely flexible as the crossover operator allows the GP

algorithm to evolve models that contain time-shifts of greater than �max samples. This

is illustrated by the following example.

Figure 5-1 depicts two dynamic model trees constructed from back-shift operators,

input and output terminals. Each input or output terminal has been paired with a back-

shift operator. The maximum time-shift of the back-shift operators is three time

samples, which means that the maximum possible process lag is equal to four

samples. For example, parent 2 contains a uk-4 term resulting from the combination of

a q-3 operator and a uk-1 terminal.

Dynamic Modelling

 80

Parent 1: 323 ˆˆ −−− += kkkk uyuy Parent 2: 24 ˆˆ −− −= kkk yuy

uk-1

q-2

q-1

+

q-2

*

ŷ
 k-1 uk-1

q-3

-

q-1

uk-1 ŷ k-1

Figure 5-1 – Parent model trees

The dashed lines represent two randomly chosen crossover points. In this example,

the crossover operation exchanges the ‘q-2uk-1’ subtree from parent 1 with the ‘uk-1’

term from parent 2. The resulting offspring are shown in Figure 5-2. Offspring 2

contains a ‘uk-6’ term due to the application of two back-shift operators (q-3 and q-2) on

a uk-1 terminal.

Offspring 1: 123 ˆˆ −−− += kkkk uyuy Offspring 2: 26 ˆˆ −− −= kkk yuy

q-2

q-1

+

*

uk-1

uk-1

ŷ k-1

q-2

q-3

-

q-1

uk-1
ŷ k-1

Figure 5-2 – Offspring model trees

This nesting of back-shift operators enables the algorithm to build the necessary time-

shifted input and output terms without having to precisely define the number of lags at

the start of the run. Offspring 1 now contains a uk-1 terminal without a back-shift

operator. This emphasises the reason for using uk-1 and 1ˆ −ky terminals instead of uk

and kŷ – the terminals must be valid model terms if they appear without a back-shift

Dynamic Modelling

 81

operator. The GP algorithm would represent the model equation for offspring 2 as

follows,

Model equation: 26 ˆˆ −− −= kkk yuy

GP representation: (q3(q2(u)))-(q1(y))

Where, q1, q2 and q3 represent the back-shift operators q-1, q-2 and q-3 and u and y

are the input and output terminals, uk-1 and 1ˆ −ky respectively. As it is convenient to

simply assign a back-shift operator to every input/output terminal appearing in a

newly generated model equation, it is necessary to include an operator that does not

perform a time-shift. This ensures that there is a uniform distribution of time-shifts in

the initial population and allows model terms with a single process lag to be produced

(e.g. q0(u1)=uk-1). The GP algorithm settings and parameters are summarised in

Table 5-1.

Table 5-1 – Algorithm settings and parameters

Function set +, -, /, *, ^, SQRT,SQR,EXP,LOG

Back-shift operators: q0,q1,q2,q3

Terminal set Process inputs, 1,1,1 ,..., −− knk uu scaled in range [0 1]

Model output, 1ˆ −ky ,ℜ uniformly in range [-10 10]

Crossover probability 0.7

Mutation probability 0.2

Direct reproduction probability 0.1

Generation gap 90%

Fitness measure RMS error

Selection method Linear ranking

Maximum tree size 500 characters

The function set contains primitives such as logarithm and exponential, meaning that

the models will not be restricted to a particular type of NARX model such as the

polynomial form. Apart from the terminal and function sets, the other algorithm

features and settings are the same as those used for steady-state modelling. This

includes the Levenberg-Marquardt non-linear least squares routine used to obtain the

best possible fit for each evolved model.

Dynamic Modelling

 82

5.3.2 Multiple Basis Function GP Algorithm

The MBF-GP model structure is very similar to that used for steady-state modelling.

As before, each population member is a linear sum of a number of non-linear basis

functions,

�
=

−
−−−+=

m

j
kknkjjk qyuugaay

1

1
11,1,10),ˆ,,...,(ˆ 5-16

Where m is the number of basis functions (m was chosen as a uniformly random

integer in the range [1 10]), aj are constants and a0 is a bias or offset term. The model

structure given by equation 5-16 is the same as that used by the steady-state MBF-GP

algorithm apart from inclusion of the back-shift operator and time-shifted inputs and

model output.

As equation 5-16 is linear in the parameters, the constants (a0,…,am) can be optimised

using the method of recursive least squares (RLS). As the auto-regressive model

terms are predicted values of the output (ŷ), models must be evaluated recursively,

meaning that batch least squares methods are not suitable for parameter optimisation.

RLS is the recursive form of the method of ordinary least squares and is derived in the

appendix. A weakness of the standard RLS algorithm is its sensitivity to computer

round-off errors due to ill conditioning of the covariance matrix update. However, the

numerical stability and robustness of the algorithm can be significantly improved by

using the method of U-D factorisation described by Bierman (1977). Further details of

the standard RLS algorithm and the modifications required for performing the U-D

covariance measurement update can be found in Kanjilal, (1995).

As with the MBF-GP algorithm used for steady-state modelling, the dynamic version

of the algorithm uses both high and low-level crossover. High-level crossover enables

the algorithm to exchange whole basis functions and adapt the total number of

functions present in each population member. Low-level crossover provides a

mechanism for subtrees to be transferred between individuals.

Dynamic Modelling

 83

5.4 Comparison of Results

Three case studies were used to compare the performance of the standard and MBF-

GP dynamic modelling algorithms – a test system with and without a time delay and

an industrial cooking extruder. Plots of the input-output data and linear models for

these systems are contained in the appendix. The results are compared using the

analysis procedure used in the steady-state modelling case studies.

5.4.1 Case Study 1 – Test System

The following single-input single-output non-linear test system (Narendra and

Parthasarathy, 1990) was used to compare the ability of the standard and MBF-GP

algorithms to evolve accurate time series predictions,

12
2

2
1

121

1
)5.2(

−
−−

−−− +
++

+= k
kk

kkk
k u

yy
yyy

y 5-17

The input signal, u, was generated as a multi-level step response in the range [0 5].

Two hundred data points were used for training and a further 200 samples were used

for model validation. Both algorithms were run 20 times with a population size of 25

for 25 generations. The results are summarised in Table 5-2.

Table 5-2 - Summary of validation RMS error values for test system

 Minimum Mean Maximum

 MBF-GP 0.0028 0.0090 0.0332

 Standard GP 0.0030 0.0177 0.0329

Figure 5-3 compares the validation RMS error distributions for both algorithms.

Although there is only a small difference between the best models evolved by each

algorithm, the MBF-GP algorithm was able generate the more accurate models

overall. A one-sided K-S test performed at the 95% confidence level confirms that

this difference is significant. It can be seen that the majority of the MBF-GP errors lie

Dynamic Modelling

 84

below 0.015 (17 of the 20 runs), whereas the standard GP errors are more evenly

distributed around this value.

Figure 5-3 – Comparison of validation RMS error distributions (Test system).

The MBF-GP model expression with the lowest RMS error on the validation set is

shown in Table 5-3. The model is presented as a set of separate basis functions to give

an idea of the typical size and number of functions present in this type of model. The

individual basis functions have been simplified.

Table 5-3 - Model structure with lowest RMS error on validation data set

Basis functions Parameter values

211)8002.0(2166.0 −−− +− kkk uuu 0.2267

)ˆ1675.0log()136.2(2
21

−+−
k

u yk 0.0216

6177.0ˆ437.8 31
2

11 +−+− −−−− kkkk yuuu

-0.0521

23 ˆ −− + kk yu 0.0892

3ˆ5392.0 −+ ky 0.0277

Bias 0.0960

The model with the lowest validation RMS generated using the standard GP algorithm

is shown below in simplified form,

)01326.04730.0)(ˆ/161.1(ˆ 2

ˆ02689.0
31

1
−−− −+= −

k
y

kkk uyuy k 5-18

Dynamic Modelling

 85

Although the basis functions in Table 5-3 could be combined in order to allow further

simplification of the model equation, the resulting model would still be more complex

than the model evolved by the standard GP algorithm.

5.4.2 Case study 2 – Test System with Time Delay

This case study uses the same system equation as the first case study with the addition

of a time delay of ten sample instances,

112
2

2
1

121

1
)5.2(

−
−−

−−− +
++

+= k
kk

kkk
k u

yy
yyy

y 5-19

The system described by equation 5-19 will demonstrate the algorithms’ ability to

generate models that contain process lags greater than those provided by the back-

shift operators in the function set. As it is likely to be more difficult for GP to develop

an accurate model of this system, the population size and number of generations were

increased. Each algorithm was run 20 times with a population size of 50 for 50

generations. Table 5-4 shows a summary of the results on the validation data set.

Table 5-4 – Comparison of validation RMS error values for case study 2.

 Minimum Mean Maximum

MBF-GP 0.0047 0.0238 0.0622

Standard GP 0.0045 0.0225 0.0505

Figure 5-4 shows the distribution of the best validation RMS values for both

algorithms. It can be seen that there is no significant improvement in model accuracy

to be gained by using the MBF-GP algorithm. A two-sided K-S test performed at the

95% confidence level supports this observation.

Dynamic Modelling

 86

Figure 5-4 - Comparison of validation RMS values (test system with time delay)

The most accurate model on the validation data developed using the standard GP

algorithm is shown below.

163115

13915115

ˆ432.0ˆ0298.0ˆ0841.00140.0503.0)ˆ
0432.0ˆ0357.00643.0336.00357.0(ˆ0487.0ˆ

−−−−−

−−−−−

+−++++
+−−+=

kkkkk

kkkkkk

yyyuy

uyuuyy
 5-20

Equation 5-20 only makes use of the ‘+’, ‘-‘ and ‘*’ mathematical operators and is

therefore a polynomial NARX model. It should also be noted that the model contains

a greater number of process lags than the system equation; the model output and input

have maximum lags of nine and fifteen samples respectively.

The MBF-GP model with the lowest validation RMS error is shown in Table 5-5. The

basis functions have been included in the form that they are stored by the GP

algorithm (with some simplification to improve readability). Table 5-5 illustrates how

the algorithm has combined a series of back-shift operators in order to model the

system time delay. For example, the first basis function contains a uk-11 term

constructed from a combination of six back-shift operators.

Dynamic Modelling

 87

Table 5-5 – MBF-GP model with lowest validation RMS error

Basis Functions GP Representation Parameters

698.34848.0 11 −− −ku -0.4848*q1(q2(q1(q2(q1(q3(u)

+q0(-9.3343e-2))))+3.8604))-1.871
-1.068

562.54848.0 12 −− −ku -0.4848*q1(q2(q1(q1(q2(q1(q3(u)+

q0(-9.334e-2))))+7.7208+

q0(-1.427e-2))))-1.871

-0.3091

))ˆˆ)exp((

ˆ)(ˆˆ(

3234

221

−−−−

−−−

−−
−+

kkkk

kkk

yyuu

yyy
(q0(y)+q1(y))*(q1(y)-exp((q0(q3

(u))-q2(q0(u)))*q1(y)-q2(y)))

-0.01907

12 ˆ4848.0ˆ4848.0 −− +− kk yy -0.4848*q1(y)+0.4848*y 0.3091

860.3ˆ 2 −−ky q1(y)+q3(-3.8604) 0.2659

32 ˆˆ −− + kk yy q1(y)+q2(y) 0.04660

 0.1482 q1(0.3849*q0(0.3849)) -2.549

 Bias 1 -4.259

Although there appears to be no advantage gained by using the MBF-GP algorithm in

terms of model accuracy, the algorithm requires considerably less computational

effort than the standard GP algorithm. This is illustrated by Figure 5-5, which

compares model accuracy obtained with the number of FLOPs performed by each

algorithm. It can be seen that, for a given RMS error, the standard GP performs a

substantially greater number of calculations than the MBF-GP algorithm.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

1.E+06 1.E+07 1.E+08 1.E+09 1.E+10

Estimated flops

V
al

id
at

io
n

R
M

S

Standard GP

MBF-GP

Figure 5-5 – Comparison of computational cost (test system with time delay)

Dynamic Modelling

 88

This difference is a consequence of the optimisation method employed by each

algorithm. The standard GP algorithm uses L-M optimisation, which requires a large

number of function evaluations in order to calculate gradient information for each

model parameter. On the other hand, the RLS algorithm optimises model parameters

in a single pass of the data set, giving the MBF-GP algorithm an advantage in terms

of computational effort.

5.4.3 Case Study 3 – Cooking Extruder

The industrial cooking extruder was described in detail in chapter 3. A data set

containing 595 records of the degree of starch gelatinisation (g) together with the

corresponding inputs was generated for dynamic model development. The following

inputs were used - feed flowrate (Qf), feed moisture content (Mf), screw speed (ω),

and the feed temperature (Tf). A set of 400 data points was used for model training

and the remaining 195 data points were used for model validation. Each algorithm

was run 20 times with a population of 50 for 50 generations. The resulting validation

RMS error distributions are shown in Figure 5-6.

Table 5-6 – Comparison of validation RMS error values for extruder

 Minimum Mean Maximum

MBF-GP 0.0348 0.0401 0.0496

Standard GP 0.0412 0.0607 0.0780

The results show that the models developed by the MBF-GP algorithm are more

accurate than those obtained using the standard algorithm. All of the MBF-GP runs

produced models with a validation RMS error of less than 0.05, whereas only five

standard GP runs were able to achieve a similar level of performance. This conclusion

is supported by one-sided K-S test (95% confidence level)

Dynamic Modelling

 89

Figure 5-6 – Comparison of validation RMS distributions (extruder data).

The MBF-GP model that produced the most accurate prediction on the validation data

is shown in Table 5-7. The model is constructed from nine basis functions, although

each of the individual functions is relatively parsimonious.

Table 5-7 – MBF-GP model structure with lowest validation RMS

Basis functions Parameter values

)1557.0log(3ˆ

2
−+

−
kg

kfM -0.2744
2

2−kω 0.1448

222
2/1
31)/()ˆ(−−−−− −++ kkfkfkk MTg ωω 0.0023

21 −−
+ kkfQ ω 0.1829

208779.0 −kω 3.0189
2/12

33
)(

−−
+

kfkf QQ -0.2387

2
5462.0

−
−

kfM -0.4214

23ˆ −− kkg ω -0.5323
2

2ˆ −kg 0.2766

Bias 0.2182

Dynamic Modelling

 90

The model with the lowest validation RMS generated by the standard GP algorithm is

shown in simplified form below,

2

32
2/1

3

313

/)4125.1(2681.04519.0

)216.1ˆ248.106713.04425.0log(ˆ

−−−

−−−

−−+

−−−+=

kfkkf

kkfkfk

QeQ

gMQg

ω
 5-21

The predictions for the degree of starch gelatinisation generated using these models

are shown in Figure 5-7 and Figure 5-8. The plots show that both models accurately

represent the dynamics of the process, however, as would be expected with a more

complex application, are subject to a higher degree of inaccuracy than the test systems

studied earlier. It can also be seen that the MBF-GP model gives a more accurate

prediction on the validation data, having an RMS error of 0.0301 compared to 0.0412

for the standard GP model.

Figure 5-7 - Prediction for degree of starch gelatinisation (Standard GP)

The models described by equation 5-21 and Table 5-7 make little or no reference to

the extruder feed temperature (Tf). This was also a feature of the steady-state extruder

models developed in chapter 3. This can be explained by the fact that the fluctuations

in feed temperature cover a relatively small range (27.5-32.5 C) and are insignificant

when compared to the temperature increase that takes place inside the extruder.

Dynamic Modelling

 91

Figure 5-8 –Prediction for degree of starch gelatinisation (MBF-GP)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

1.E+06 1.E+07 1.E+08 1.E+09 1.E+10

Estimated flops

V
al

id
at

io
n

R
M

S

MBF-GP

Standard GP

Figure 5-9 – Comparison of computational cost (extruder data)

Figure 5-9 shows that, in terms of computational cost, the MBF-GP algorithm is much

more economical than the standard algorithm. The narrower error bars support the

observation that the MBF-GP algorithm produces more consistent results than the

standard GP algorithm.

Dynamic Modelling

 92

5.5 Comparison with Neural Networks

In the previous chapter it was demonstrated how neural networks could be used for

steady-state process modelling and the results were compared to those obtained using

the MBF-GP algorithm. The same network structure can be modified in a number of

ways in order to allow the development of dynamic process models.

5.5.1 Dynamic Modelling Using Neural Networks

The simplest approach is to use a time history of input variables (τ−−− kkk uuu ,...,, 21) as

inputs to the network, so that each network input consists of a process input shifted

back in time (Bhat and McAvoy, 1989). This is similar to the FIR approach (equation

5-6) and has the disadvantage that a long time history of inputs may be required to

enable the network to accurately capture the dynamics of the process. This means that

the network will have a large number of inputs, giving rise to a complex model with a

large number of parameters to be optimised. This will increase network training times

and mean that there is a higher probability of the network converging around local

minima.

A possible solution is to configure the network in the form of a NARX model by

assigning inputs that are past values of the process input(s) and output

(),...,,,,...,, 2121 yu kkkkkk yyyuuu ττ −−−−−− . This approach has been applied to system

identification problems using conventional feedforward (Chen et al., 1990b) and

radial basis function networks (Chen et al., 1990a). In order to enable the network to

predict the output for more than a single time step in the future, the process output

must be replaced by the network output, ŷ . The resulting network structure is known

as a globally recurrent network. One of the drawbacks of this approach is that training

times can be high (Turner et al., 1996).

An alternative approach is the filter based neural network (FBNN) (Willis et al.,

1992), where the hidden layer neurons of the conventional feedforward network are

Dynamic Modelling

 93

augmented with simple linear dynamic processing capabilities. Although it may be

possible to include neurons with any dynamic characteristic, Willis et al. (1992)

suggest that simple first order transfer functions or ‘filters’ should be sufficient for

most applications. The structure of a typical filter-based neural network is shown in

Figure 5-10 (in practice, the filters are implemented in discrete time using difference

equations).

Network Output,

Input Layer Hidden layer containing f
neurons and transfer functions

Output layer

Bias

Network Inputs

u1, u2,…, un
�y

Σ

Σ

Σ

Σ

Σ

Interconnecting weights
1

11τ s +

1
12τ s +

1
13

τ s +

1
1τ f s +

Bias

ΣNode performing no
processing

Summation node Activation function

Figure 5-10 – Filter based neural network architecture

The process of training filter-based neural networks requires the optimisation of the

filter constants),...,,(21 fτττ as well as the weights and bias values. This means that

the back-propagation training algorithm used in chapter 4 cannot be used for FBNN

training without modification. Consequently, a L-M algorithm was used for network

training. Lennox (1996) used this technique to develop models of several chemical

processes and found that the FBNN outperformed globally recurrent and RBF

network structures in terms of the predication accuracy of the resulting models.

Another advantage was that the FBNN did not need to be presented with a time

history of inputs or the network output.

Dynamic Modelling

 94

In order to find the network configuration giving the highest performance for each of

the test cases, multiple runs were performed using different neural network

architectures. The search was limited to networks consisting of a single hidden layer

of 3, 5, 7, 9, 11, 13 and 15 neurons, with each network being trained 20 times. Further

runs were performed if there was evidence that the minimum prediction error could be

provided using a network with a different number of hidden layer neurons. To enable

a fair comparison with GP to be made, the ‘best’ model was found by using the sum

of the training and validation RMS values.

5.5.2 Test System

The results of the runs performed with various FBNN architectures on the test system

data are summarised in Table 5-8.

Table 5-8 – Summary of neural network validation RMS errors

Hidden layer neurons Minimum Mean Maximum

3 0.003212 0.008470 0.020129

5 0.002408 0.003389 0.019932

7 0.002405 0.002509 0.002703

9 0.002424 0.002522 0.002665

11 0.002439 0.002536 0.002712

13 0.002418 0.002533 0.002736

15 0.002426 0.002535 0.002742

Table 5-8 shows how the accuracy of the predictions improves as the network size is

increased from three to seven hidden layer neurons. However, larger networks do not

produce any further improvement in model accuracy. Consequently, the network with

seven hidden layer neurons was selected for comparison with GP. As the GP

algorithm runs performed with a population of 25 individuals for 25 generations (see

section 5.4.1) failed to generate models that matched the accuracy of the neural

networks, the population size was increased to 50 and the duration of the runs was

Dynamic Modelling

 95

extended to 50 generations. Table 5-9 and Figure 5-11 compare the RMS values

obtained using the neural network and MBF-GP algorithms.

Table 5-9 – Comparison of validation RMS values (test system)

 Minimum Mean Maximum

MBF-GP 0.0018 0.0028 0.0046

FBNN (1-7-1) 0.0024 0.0025 0.0027

The results show that the RMS errors produced by the neural network form a

narrower distribution than those obtained using the MBF-GP algorithm. This means

that, although the most accurate model was produced by the MBF-GP algorithm, the

neural network appears to be the more consistent of the two approaches. A two-sided

K-S test performed at the 95% confidence level confirms that the difference between

the distributions is significant.

Figure 5-11 – Comparison of validation RMS values (test system)

Although several of the GP algorithm runs produced RMS errors that were inferior to

the FBNN results, the accuracy of the predictions is still very high.

Dynamic Modelling

 96

5.5.3 Test System with Time Delay

In this case study, it is difficult to make an unbiased comparison between the neural

network and MBF-GP algorithms. The FBNN does not have the ability to model the

system time delay and will be at a disadvantage when compared to the GP algorithm.

The easiest way to overcome this problem is to present the network with input data

that has the time delay removed. However, this will hand the advantage to the neural

network, as the GP algorithm has to use a combination of back-shift operators and uk-1

terminals to identify the time delay. One solution is to carry out two batches of

network runs, with and without the time delay removed, and observe the relative

performance of the GP algorithm. The results of these runs are summarised in Table

5-10 and Table 5-11

Table 5-10 – Summary of FBNN results (no time delay compensation)

Hidden layer neurons Minimum Mean Maximum

3 0.0451 0.0509 0.0589

5 0.0442 0.0525 0.0551

7 0.0387 0.0494 0.0549

9 0.0390 0.0477 0.0549

11 0.0410 0.0486 0.0538

13 0.0473 0.0488 0.0538

15 0.0417 0.0480 0.0524

Table 5-11 –Summary of FBNN results (time delay removed)

Hidden layer neurons Minimum Mean Maximum

3 0.00913 0.01079 0.01601

5 0.00399 0.00993 0.01403

7 0.00313 0.00746 0.01404

9 0.00232 0.00732 0.01443

11 0.00206 0.00702 0.01404

13 0.00332 0.00642 0.01057

15 0.00281 0.00813 0.01540

Dynamic Modelling

 97

In each case, the ‘best’ network architecture was selected using the mean validation

RMS values. Although other architectures may provide ‘one-off’ results that

outperform these networks, it was thought that networks with the lowest mean RMS

provided the best compromise. The neural network and GP algorithm results are

compared in Table 5-12 and Figure 5-12.

Table 5-12 – Comparison of validation RMS values

 Minimum Mean Maximum

MBF-GP 0.0047 0.0238 0.0622

FBNN#1 (1-9-1) 0.0390 0.0477 0.0549

FBNN#2 (1-13-1) 0.0033 0.0064 0.0106

As expected, the neural network with time delay compensation (FBNN#2) easily

outperforms the network that does not have the time delay removed (FBNN#1). This

observation is supported by a one-sided K-S test conducted at the 95% confidence

level. The GP algorithm produced a wide range of prediction errors, with the worst

values lying in the same region as those generated by FBNN#1 and the lowest errors

approaching the accuracy of FBNN#2.

Figure 5-12 – Validation RMS error distributions (test system with time delay)

Dynamic Modelling

 98

Although the GP algorithm was able to achieve performance comparable to FBNN#2

in a fraction of the runs, the algorithm also produced unacceptably poor results. This

should be expected, as the algorithm has the difficult task of evolving a suitable

model structure from elementary building blocks. The fact that the process time delay

does not have to be explicitly accounted for gives the GP algorithm a distinct

advantage over neural networks in this case study.

5.5.4 Cooking extruder

The validation RMS errors obtained using a range of different FBNN architectures on

the extruder data are summarised in Table 5-13. The network containing four hidden

layer neurons was selected for comparison with the MBF-GP algorithm as it produced

the lowest mean RMS error.

Table 5-13 – Summary of neural network validation RMS errors

Hidden layer neurons Minimum Mean Maximum

3 0.0349 0.0409 0.0565

4 0.0345 0.0382 0.0455

5 0.0338 0.0393 0.0560

7 0.0344 0.0415 0.0560

9 0.0361 0.0440 0.0571

10 0.0353 0.0406 0.0563

11 0.0367 0.0445 0.0584

13 0.0338 0.0415 0.0530

15 0.0328 0.0445 0.0692

The validation RMS values obtained using the neural network and MBF-GP

algorithms are compared in Table 5-14.

Dynamic Modelling

 99

Table 5-14 – Comparison of validation RMS error values for extruder.

 Minimum Mean Maximum

MBF-GP 0.0348 0.0401 0.0496

Neural Network (1-4-1) 0.0345 0.0382 0.0455

Figure 5-13 shows validation RMS error distributions obtained using the neural

network and MBF-GP algorithms. Although the minimum, mean and maximum RMS

values are slightly lower for the neural network, a one-sided (at the 95% confidence

level) indicates that the difference is not significant.

Figure 5-13 – Validation RMS error distributions (extruder data)

Figure 5-14 compares the performance of the neural network and MBF-GP algorithms

in terms of the computational effort required to achieve a given validation RMS error.

At higher RMS error values, the MBF-GP algorithm outperforms the neural network.

This could be because the RLS optimisation routine enables the MBF-GP algorithm to

raise the performance of the initial population members to a reasonable level without

consuming a particularly large amount of processing power. The neural network may

initially produce poor predictions due the large number of model parameters, which

all have to be initialised probabilistically.

Dynamic Modelling

 100

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

1.E+07 1.E+08 1.E+09

Estimated flops

V
al

id
at

io
n

R
M

S

Neural Netw ork

MBF-GP

Figure 5-14 – Comparison of computational effort required by FBNN and MBF-GP

algorithms (extruder data)

As the validation RMS error decreases, the neural network begins to outperform the

MBF-GP algorithm, requiring fewer FLOPs to achieve the same RMS error. The

difference between the algorithms continues to increase as the validation RMS errors

are reduced. This could be because neural network training is essentially a parameter

optimisation exercise. The GP algorithm has to explore a wide range of different

model structures, performing parameter optimisation on each candidate solution, and

is therefore unlikely to be as efficient as the neural network. One of the disadvantages

of using neural networks is that a wide range of network architectures has to be

investigated in order to obtain the best set of model predictions. If the computational

effort required to carry out these additional runs is taken into consideration, the

difference between the algorithms is less significant and GP becomes a more

attractive possibility.

5.6 Conclusions

In this chapter, it was shown how the standard and MBF-GP algorithms could be used

to evolve discrete-time models of dynamic systems. As was observed in the steady-

state modelling comparison, the MBF-GP algorithm was generally able to generate

models that gave more accurate predictions than the standard algorithm and required

Dynamic Modelling

 101

less computational effort. An interesting feature of this technique is that the algorithm

can make use of past values of model terms that are not specified explicitly by the

function and terminal sets. This was demonstrated in the second case study, where the

algorithm combined a number of back-shift operators in order to model the system

time delay. The model structures are relatively complex but do not appear to be as

unwieldy as those evolved by the steady-state modelling algorithms. This may be

because back-shift operators occupy a considerable proportion of each model string.

These sections are easily simplified, leading to a greater reduction in model size.

The results also revealed that the performance of GP compared to neural networks

was system dependent. The neural network produced the more consistent results on

the first test system, although the GP algorithm evolved the most accurate prediction.

On the second test system, the neural network was only able to outperform GP once

the system time delay has been manually removed from the input data. There was

little difference between the two techniques in terms of model accuracy on the

extruder case study. However, the GP algorithm required more computational effort

to achieve the same accuracy as the neural network.

For real problems, additional factors must be taken into account when assessing the

suitability of a model derived using GP. Different applications may raise issues that

make a neural network the more desirable option. For example, a reason offered by

some researchers (Chen et al., 1990b) as justification for choosing a neural network

model is that the network output is bounded. This is beneficial, as the network will

behave less erratically when applied to data lying outside of the range used for

training. The complexity of GP models and the probabilistic nature of model

evolution mean that a GP model cannot be expected to behave as predictably.

However, Hernandez and Yarkun (1993) describe a possible solution to this problem,

which involves the use of a NARMAX model combined with a sigmoid function. The

GP algorithm could be modified in a similar way, if this model property was thought

to be desirable.

Another important aspect of neural network and GP models is their robustness to

process noise. Noise was not added to any of the data sets used in this work, as the

Dynamic Modelling

 102

aim was to concentrate on the differences in prediction accuracy achieved by each

modelling technique. However, in practice, data sets typically contain noisy process

measurements and it would be useful to carry out a comparison between the

algorithms when subjected to these conditions. Possible issues concerning the MBF-

GP algorithm include the robustness of the RLS routine, which may produce biased

parameter estimates under certain conditions.

Finally, the use of neural networks for non-linear modelling is well established and

supported by research into a wide range of theoretical and practical applications. This

cannot be said for GP, although the number of applications to engineering problems

has increased in recent years. Also, unlike neural networks, which have a generic

model structure, GP models vary greatly from one algorithm run to the next and are

more of an unknown quantity. These factors, combined with the fact that the tools

required to develop neural network models are more widely available, mean that most

engineers will turn to neural networks before considering GP for model development.

However, one area in which evolutionary algorithms such as GP are being used

extensively is that of multi-objective problem solving. The steps that must be taken to

apply the GP algorithm to this type of problem are described in the next chapter

 Multi-objective Genetic Programming

 103

6 Multi-objective Genetic Programming

6.1 Introduction

In the previous chapter, it was shown how a MBF-GP algorithm could be used to

evolve models of dynamic chemical processes. Comparison with a ‘standard’ GP

algorithm revealed that the MBF-GP algorithm produced a higher level of

performance in terms of model accuracy and computational effort required. All of the

GP runs in previous chapters were concerned solely with the minimisation of the

RMS error between the actual and predicted process output. However, process model

development is a task that may require a number of other factors or ‘objectives’ to be

considered before the final solution is reached. Some examples of possible objectives

are,

• Measures of model parsimony, for example, the number of model parameters and

the maximum number of process lags.

• Additional or alternative measures of prediction error such as residual variance,

one-step ahead and long term prediction errors.

• Model validation criteria such as residual correlation tests and statistical

information criteria.

This chapter demonstrates how the MBF-GP algorithm can be modified to incorporate

additional measures of model performance. The next chapter compares the algorithm

with the single objective algorithm to assess the advantages gained by considering

extra objectives during the process of model evolution.

6.2 Multi-objective Evolutionary Algorithms

Although the first notable work on multi-objective evolutionary algorithms (MOEAs)

was published by Schaffer in the mid 1980s (Schaffer, 1985), it was not until a decade

later that there was a substantial increase in the number of applications of such

 Multi-objective Genetic Programming

 104

algorithms to engineering problems. Applications including controller design

(Chipperfield and Fleming, 1995), system identification (Fonseca and Fleming,

1996a), process optimisation (Garg and Gupta, 1999) and scheduling (Shaw et al.,

1999) have all received attention in recent years. While the majority of these

applications are essentially optimisation problems using multi-objective genetic

algorithms (MOGAs), the fundamental concepts are also applicable to other

evolutionary algorithms including GP.

Rodríguez-Vázquez and Fleming (1998) used a multi-objective genetic programming

(MOGP) approach to system identification, making use of additional model

performance measures such as the number of process lags and linear correlation

criteria. The MOGP algorithm used the same multi-objective ranking and fitness

assignment scheme employed by the MOGA used in the authors’ previous work. An

overview of the important features and applications of MOEAs can be found in

Fonseca and Fleming (1995), Coello (1999), and Van Veldhuizen and Lamont (2000).

The remainder of this section outlines the aspects of MOEAs relevant to the MOGP

algorithm used in this thesis.

The practice of solving multi-objective engineering problems can prove to be a

difficult and time-consuming task. Whereas single objective problems may have

unique optimal solutions, multi-objective problems often have a large number of

possible solutions. This is because the different performance measures that

characterise the multi-objective problem may conflict with each other, meaning that

only a partial ordering of the search space is possible. The solution will therefore be in

the form of a set of individuals representing a trade-off between different levels of

performance in each objective domain.

The final solution generated by a MOEA can be seen as the result of both an

evolutionary and a decision process. The evolutionary aspect of the algorithm enables

the search to cover a diverse range of possible solutions with the aim of achieving

improved performance relative to the objectives under consideration. However, the

nature of the multi-objective problem means that the algorithm is likely to produce a

set of candidate solutions. The final solution must then be chosen from this set of

 Multi-objective Genetic Programming

 105

individuals. This decision process can take place at different stages in the algorithm

run. Hwang and Masud (1979) suggested the following categories,

A priori preference articulation. The multi-objective problem is effectively

transformed into a single objective problem. The weighted sum approach (section

6.2.1.2) is an example of this technique.

Progressive preference articulation. Decision-making takes place as the

evolutionary process proceeds. Each generation presents a new set of candidate

individuals to be considered. For example, Fonseca and Fleming (1998) proposed a

method for progressive articulation of preferences within a MOGA framework (see

section 6.2.2).

A posteriori preference articulation. At the end of the search, the algorithm presents

a set of candidate solutions from which the desired solution is chosen.

A disadvantage of a priori preference articulation is that an inappropriate choice of

parameters (e.g. cost function weights) can lead to the discovery of an unsuitable

solution. Additional algorithm runs will then have to be performed using different

parameters values. This is in contrast to the a posteriori method, which will ideally

lead to a Pareto optimal (see section 6.2.2) set of solutions from which to choose. This

can be advantageous as no possible solutions are discarded until the final decision

stage. However, for real life problems, the trade-off surface between the objectives

can be extremely complex and it may be beneficial for the search to be directed

towards the region that it of most interest. In this case, progressively articulating

preferences may yield better results.

A wide range of methods has been used to apply evolutionary algorithms to the task

of multi-objective problem solving. The most significant are outlined below, along

with their comparative advantages and disadvantages. The techniques are grouped

into two categories – Pareto and non-Pareto approaches.

 Multi-objective Genetic Programming

 106

6.2.1 Non-Pareto approaches

6.2.1.1 The Vector Evaluated Genetic Algorithm

It is widely recognized that Schaffer (1985), was the first to demonstrate the potential

of evolutionary algorithms to discover a set of non-dominated solutions in a single

algorithm run. The resulting algorithm, known as the vector evaluated genetic

algorithm (VEGA), considered each of the objectives separately by dividing the

population into separate parts, each corresponding to a different objective. Individuals

were then chosen from each section of the population based on their performance with

respect to only one objective. These where then shuffled and the genetic operators

used to create the next population in the usual manner. One of the drawbacks of this

method was that the algorithm tended to produce individuals that performed

extremely well in a single objective and poorly in all of the others. This phenomenon

is known as speciation and is a direct result of the selection process being based on an

individual’s performance with respect to a single objective.

6.2.1.2 Aggregating approaches

Another technique used to handle multiple objectives is to combine the individual

objectives using a weighted cost function of the form,

�
=

=
n

j
ijji xfwF

1

)(6-1

Where Fi is the fitness of population member xi, wj are the weighting coefficients

representing the relative importance of each of the n objectives and fj are the functions

used to generate the objective values. This approach can be problematic for a number

of reasons. For instance, insufficient knowledge of the problem may make it difficult

to assess the relative importance of each objective. This will make it difficult to select

appropriate values for the weighting coefficients in the cost function. If algorithm

performance is deemed unsatisfactory, the weightings must be adjusted and more runs

 Multi-objective Genetic Programming

 107

performed until a satisfactory solution is achieved. This may prove to be time

consuming, especially if algorithm performance is very sensitive to small changes in

these parameters. In addition, objective values must be appropriately scaled before

they can be combined to form the cost function. The method of scaling may alter the

shape of the trade-off surface and make it more difficult or even impossible to find a

suitable balance (Fonseca and Fleming, 1995).

Examples of MOGAs making use of the weighted sum approach include Hajela and

Lin (1992), and Ishibuchi and Murata (1996). Hajela and Lin’s Genetic Algorithm

(HLGA) addresses some of the drawbacks of the weighted sum technique by

adaptively changing the cost function weightings as the run proceeds. This is achieved

by encoding the weight values as part of the genotype. Although Fonseca and Fleming

(1997) reported that linear fitness combination was the most popular MOEA

technique, Pareto-based techniques have become increasingly popular in recent years.

This is especially true for real world scientific and engineering applications to which

90% of Pareto based MOEA applications are applied (Van Veldhuizen and Lamont,

2000). Pareto based methods are discussed in the next section.

6.2.2 Pareto-based Approaches

Some of the problems associated with non-Pareto methods may be avoided by

comparing individuals using the concept of Pareto dominance, defined as follows,

Assuming a minimisation problem, a vector []nvv ,...1=v is said to dominate vector

[]nuu ,...1=u if it is partially less than u, i.e. the following criteria must be satisfied,

{ } { } iiii uvni uvni <∈∃∧∈∀ ≤ ,,...,1 ,,...,1 6-2

The family of solutions to a multi-objective optimisation problem is said to be Pareto-

optimal if, for each individual, an improvement in performance in one objective

dimension cannot be achieved without degrading performance with respect to other

objectives. Pareto based fitness assignment was first proposed by Goldberg (1989) as

 Multi-objective Genetic Programming

 108

a means of assigning equal probabilities of selection to all non-dominated individuals

in the current population.

An important aspect of Pareto based ranking is that credit is given to an individual

that has a high level of performance in one objective, even if it performs badly with

respect to all other objectives. Also, unlike methods such as the weighted sum

approach, Pareto based ranking is independent of the scaling of the objectives since

raw objective values may be used when comparing the performance of individual

population members.

6.2.2.1 Preference information

The set of Pareto-optimal solutions for a particular problem may be very large and it

will therefore be difficult to effectively sample all regions of the trade-off surface

using a GP algorithm that has a relatively small population size. As the number of

objectives increases, the trade-off surface becomes more complex and it becomes less

likely that the algorithm will be able to find solutions that perform acceptably with

respect to each objective.

In addition, some objectives may be much easier to minimise (or maximise) than

others and this may cause the population to become saturated with individuals that

perform acceptably in only these objectives. Applying genetic operators to these

individuals is likely to create even more individuals that have a high level of

performance in only one objective. As the evolutionary process continues, the

population may converge to a set of solutions that perform extremely well in one

objective and poorly in all of the others. These problems can be counteracted by using

the goal based Pareto ranking method proposed by Fonseca and Fleming (1998). This

enables the user to specify desired levels of performance in each objective domain

and direct the search towards the required region of the trade-off surface.

This approach requires goal values to be specified for each of the objectives being

considered. These values are then used to selectively eliminate objectives that have

 Multi-objective Genetic Programming

 109

reached a certain level of performance from the comparison procedure. For example,

if two population members satisfy the same goals, only objectives that do not satisfy

their goals are used to determine which individual dominates. This concentrates the

search in the direction of the objectives that have not achieved the desired level of

performance and prevents the algorithm from attempting to further minimise

objectives that have already attained acceptable values. Alternatively, if objectives are

allocated goals that are unattainable, those objectives will always be included in the

comparison process. In the special case that all goals are unattainable, the ranking

procedure becomes equivalent to conventional Pareto ranking. The method described

by Fonseca and Fleming ranks populations of individuals by comparing them using

the preferability relationship defined below.

Consider two objective vectors []nuuu ,...,, 21=u and []nvvv ,...,, 21=v , and a goal

vector g containing goal values for each objective, []nggg ,...,, 21=g .

If �
u

u refers to the components of u that satisfy their goals and �
u

u refers to the

components of u that violate their goals, a vector u is said to be preferable to another

vector v given a goal vector g if,

�
�
�

�
�
�

�	

��

 ∨≤/∧=∨) () ()
uuuuuuuu

vugvv(u) v (u �
�

������
�

� 6-3

Where u� v denotes that u dominates v.
u
 v � refers to the components in v that

correspond to the objectives in u that violate their goals. For example if u1 and u2

violate their goals,
u
 v � refers to v1 and v2.

It is important to note that the inequalities in equation 6-3 apply to the individual

components of the vectors. For example, we can refer to the components of u that

satisfy their goals by using the following inequality,

uu

gu
�� ≤ 6-4

 Multi-objective Genetic Programming

 110

This can be re-written in terms of the individual vector components, i.e.,

ii gui ≤∈∀ ,
u

u � 6-5

Equation 6-3 describes three possible conditions, one of which must be satisfied for u

to dominate v,

• The components of u that do not satisfy their goals dominate the corresponding

components of v:) v (u
uu �

�
� .

• The components of u that do not satisfy their goals are equal to the corresponding

components of v, but v has at least one other component that does not satisfy its

goal:) ()
uuuu

gvv(u ���� ≤/∧= .

• The components of u that do not satisfy their goals are equal to the corresponding

components of v, but u dominates v as a whole:) ()
uuuu

vuv(u �
�

��� ∧= .

Note that equation 6-3 assumes that the aim is to minimise all of the objectives.

Therefore, the components of a vector must be less than the corresponding goal values

in order to satisfy them.

6.2.2.2 Fitness assignment

After all individuals have been compared with each other using the preferability

relationship described by equation 6-3, Fonseca and Fleming (1998) propose the

following ranking and fitness assignment scheme. Ranking is assigned according to

the number of individuals that dominate each population member. Consequently, all

non-dominated individuals are given an equal ranking. If the set of non-dominated

individuals is assigned rank 0, the ranking of population member xi dominated by pi
t

individuals at generation t is given by,

t
ii ptxrank =),(6-6

 Multi-objective Genetic Programming

 111

The individuals are then sorted by rank and fitness allocated by interpolating linearly

between the best and the worst individuals. Fitness values must be averaged for

equally ranked individuals to ensure that they are given equal chance of reproduction

and maintain a constant level of selection pressure across the population.

Figure 6-1 and Figure 6-2 demonstrate how (for a bi-objective problem) the ranking

assigned to population members is affected by the inclusion of goal values. Figure 6-1

shows how a small population of individuals would be ranked using Pareto ranking

(non-dominated individuals are circled). The non-dominated individuals are assigned

a rank of zero and all other individuals are ranked according to the number of

population members that dominate them.

Figure 6-1 – Pareto ranking

Figure 6-2 shows the ranks assigned to the same individuals by performing Pareto

based ranking with goals using the preferability relation described earlier. As only one

individual satisfies both goals, this individual is said to be preferable to the others and

is assigned a rank of zero. The figure shows how the solutions in the area marked ‘A’

are ranked in terms of objective 2 only, since they have all attained the desired level

of performance with respect to objective 1 (g1).

 Multi-objective Genetic Programming

 112

Figure 6-2 – Pareto ranking with goals.

In the region marked ‘B’, all individuals have satisfied the goal g2 and are ranked

using their objective 1 values only. This is beneficial, as search effort is not wasted by

attempting to minimise objectives that have already reached the required level of

performance.

6.2.2.3 Priority levels

The goal-based ranking strategy also provides a means of assigning different priority

levels to each of the objectives. This enables the user to incorporate preferences

concerning the relative importance of the objectives into the search process. The goal

values for objectives with the highest priority level must be satisfied before the

objectives and goal values at the next priority level are considered. The process is

repeated until the lowest priority goals are satisfied.

Figure 6-3 demonstrates how the ranking given to population members is modified by

the addition of priority levels. Here, the goal value for objective 1 has been given a

higher priority than objective 2 goal. Individuals that do not satisfy g1 are ranked in

terms of objective 1 only. Once individuals have achieved the desired level of

A

B

 Multi-objective Genetic Programming

 113

performance with respect to objective 1, ranking is carried using objective 2 values

only.

Figure 6-3 – Population ranking with goals and priorities

(g1 has priority over g2)

The techniques outlined above can be used in conjunction with a MOEA that uses

progressive preference articulation. This allows the user to interact with the algorithm

at each generation to modify goals and/or priorities in an attempt to guide the search

towards a desirable solution. For example, Rodríguez-Vázquez and Fleming (1998)

used this technique to evolve polynomial NARMAX models of dynamic systems

using a GP algorithm. The main disadvantage of this method is that the operator must

be present for the duration of the algorithm run. This is particularly relevant to the

experimental procedure used in this thesis, which involves the use of multiple runs in

order to make a fair comparison between algorithms. In addition, frequent user

interaction is undesirable if the aim is to use GP to automatically generate model

structures.

As a result, progressive preference articulation was not used in this thesis and each set

of algorithm runs was carried out using goal/priority information fixed for the entire

run length. Although goal and priority information must be specified before the

algorithm run commences, this method should not necessarily suffer the same

 Multi-objective Genetic Programming

 114

drawbacks as other methods that use a priori parameter specification (such as the

weighted cost function approach). The algorithm will still produce a non-dominated

or preferable set of solutions from which to choose. Ideally, these solutions will be

more densely concentrated around the desired region of the objective space than

solutions that are evolved using conventional Pareto ranking.

6.2.3 Multi-Objective GP Algorithm Details

The MOGP algorithm used in this thesis is based on the MBF-GP algorithm described

in chapter 5. It was shown how the algorithm could be used to evolve accurate time

series predictions of dynamic processes, requiring less computational effort than a

‘standard’ GP algorithm. The ranking and fitness assignment techniques are described

in sections 6.2.2.1-6.2.2.3. The remaining differences between the MOGP and SOGP

algorithms are outlined below.

6.2.3.1 Fitness sharing

Although evolutionary algorithms such as GP are capable of simultaneously exploring

different regions of the solution space, genetic drift will cause the algorithm to

eventually converge around one region of the trade-off surface. To counteract the

effects of this phenomenon and promote diversity, niche induction methods may be

used. One such method is that of fitness sharing and is analogous to biological species

competing for resources in a natural environment. Individuals that are closer to each

other mutually decrease each other’s fitness and consequently individuals that are

more isolated are given a greater chance of reproducing.

For each individual in the population, a niche count is calculated to determine the

degree of crowding around each population member. An individual’s niche count is

initially set to zero and then increased by a certain amount for every individual in the

population including itself. This amount is calculated using a sharing function, which

is a function of the distance between two individuals. This distance can be measured

in relation to the genotype (the individual population members) or the phenotype (the

 Multi-objective Genetic Programming

 115

objective vectors). The niche counts are then used to scale the individuals’ fitness

values in favour of those that are more isolated.

In this work, fitness sharing is carried out in the objective domain since the aim is to

promote diversity with respect to the actual objective values. The following sharing

function, often referred to as the triangular sharing function (Goldberg and

Richardson, 1987), is used,

�
�
�

�
�
�−=

share

ddSh σ1)(for shared σ<

0)(=dSh for shared σ≥

6-7

Where d is the distance between population members and σshare is the sharing

parameter and dictates how close two individuals must be to each other in order to

begin decreasing each other’s fitness.

o

o

o

o

o

o

o

Objective 1

O
bj

ec
tiv

e
2

0

+

+

+

+

++

+

+
+

+

o

- dominated individuals

- non-dominated individuals

shareσ

A

B

Figure 6-4 – Fitness sharing parameter, σshare

The example shown in Figure 6-4 shows the distance σshare in relation to two non-

dominated individuals. It can be seen that there are two individuals within the distance

σshare for population member A, while there a no other individuals within the same

distance of B. Consequently, the fitness of A will be reduced relative to that of B as it

is deemed to be in a more crowded region of the trade-off surface. This will hopefully

 Multi-objective Genetic Programming

 116

enable the algorithm to sample the non-dominated front more evenly, as opposed to

converging around particular regions of the search space.

Following Fonseca and Fleming, 1998 the distance, d, was measured using the ∞-

norm. An alternative, and perhaps more obvious method, would be to use the 2-norm.

However, since the values of the different objectives are non-commensurable, the 2-

norm measure of distance between does not have any significant meaning. The ∞-

norm is therefore more appropriate and has the advantage of being easier to compute.

The niche count, m, for population member i is then given by:

()�
=

=
N

j
iji dShm

1

 6-8

Where N is the number of individuals and ijd is the distance between individuals i

and j. Fitness sharing is only carried out between sets of equally ranked individuals.

This ensures that additional selective pressure is given to the more isolated individuals

while still maintaining the ordering imposed by the original ranking process. This

technique was first proposed by Horn et al. (1994) who referred to it as ‘equivalence

class sharing’.

Objective 1

O
bj

ec
tiv

e
2

xx xx xx

x

x

x

x

x

X - population member

B

A

C

σshare

Figure 6-5 – Niche size determination

 Multi-objective Genetic Programming

 117

Since the case studies in this thesis will deal with problems consisting of only two

objectives, the method used for determining the sharing parameter �share, is outlined

below with reference to a bi-objective example. Figure 6-5 shows an example Pareto

front, AC , for two objectives scaled in the range [0 1].

An estimate for the parameter �share can be calculated by considering the maximum

possible length of the Pareto front. It can be seen from Figure 6-5 that, the length of

the Pareto front can be no greater than the distance ABC . If ABC is populated with N

evenly spaced individuals, the distance between each individual is given by,

1−
=

N
ABC

shareσ 6-9

since 211 =+=+= BCABABC

1
2
−

=
Nshareσ 6-10

This result is the same as that obtained using the method of Fonseca and Fleming

(1998), who proposed a more general approach, applicable to niche size determination

in higher dimensional objective space.

Unlike the Pareto-based ranking scheme outlined earlier, the fitness sharing procedure

outlined above requires objective values to be scaled in the range [0 1]. The maximum

and minimum values used to carry out the scaling must be chosen carefully, so that all

objectives are compared equally. Possible values include the known global maximum

and minimum or the maximum and minimum discovered so far in the algorithm run.

However, these options were thought to be inappropriate for the problems under

investigation in this thesis due to RMS error being used as one of the objectives. The

RMS errors associated with models generated by a GP algorithm can vary by many

orders of magnitude. Although this is most likely to be the case at the start of the

algorithm run when the population consists of randomly generated model strings, one

cannot guarantee that some highly unfit offspring will be created in subsequent

generations, even if a large proportion of the population has a high level of fitness.

 Multi-objective Genetic Programming

 118

Therefore, it was decided to use the maximum and minimum values associated with

the equally ranked individuals taking part in fitness sharing. This approach reduces

the probability of the scaled RMS values becoming bunched together by the presence

of a few very unfit population members.

There are a number of other sharing methods that could be used in conjunction with

the MOGP algorithm. For example, the non-dominated sorting genetic algorithm

(NSGA) proposed by Srinivas and Deb (1994) uses a quadratic sharing function and

requires the number of niches to be specified at the start of the algorithm run in order

to determine σshare. There is, however, little evidence to suggest that one method

provides substantially better performance. Although comparisons have been

performed, they tend to concentrate on relatively simple test problems using GAs,

meaning the results may not translate directly to the work in this thesis (see for

example, Watson, 1999).

6.2.3.2 Mating Restriction

The use of mating restriction was first proposed by Goldberg (1989) as a method of

preventing the production of highly unfit individuals known as lethals. Mating

restriction works by only allowing an individual to mate with other individuals that

are within a certain distance, σmate. This approach is intended to prevent the

production of highly unfit individuals by preventing mating between individuals that

have vastly different objective values.

Although some studies have revealed that improved performance can be achieved by

incorporating mating restriction schemes (Hajela and Lin, 1992), others have found

no evidence to suggest that such a scheme is necessary and consequently make no use

of mating restriction. For example, the strength Pareto evolutionary algorithm (SPEA)

outlined by Zitzler and Thiele (1999) makes use of fitness sharing but does not use

mating restriction. The MOGP algorithm used in this work does not have a restricted

mating scheme.

 Multi-objective Genetic Programming

 119

6.2.3.3 Secondary Populations

The stochastic nature of GP means that there is no guarantee that desirable solutions

will be preserved from generation to generation and be present in the population when

the algorithm terminates. This is especially important in the case of a MOGP

algorithm that may be applied to a problem where the solution set may consist of an

extremely large number of non-dominated solutions. In this case, it is impossible for

the relatively small population to be able to preserve all non-dominated individuals

from one generation to the next while also attempting to exploit new regions of the

search space. For this reason, MOEAs often make use of an additional or secondary

population in which to store all of the non-dominated or preferable individuals found

so far. Some practitioners, for example Zitzler and Thiele (1999), make use of

secondary populations that are integrated with the EA and actively take part in the

evolutionary process by providing members to take part in generating the next

population.

Although there are advantages in using this approach, for example increased diversity

may be achieved, a study of such methods was thought to be beyond the scope of this

thesis. In addition, the use of a secondary population would make comparison with

the SOGP algorithm more difficult as the MOGP algorithm would effectively be

working with a larger population size. A simpler method, implemented by the MOGP

algorithm used in this work is to simply find the current non-dominated set of

individuals at each generation and copy them to the secondary population. The aim of

the secondary population is to store a record of all the known non-dominated

solutions found so far. As some of the newly added members may dominate some of

the existing members, the secondary population will have to be periodically trimmed

by ranking the individuals and removing any dominated solutions.

The use of the non-dominated set of individuals taken from every generation of a run

is sometimes referred to as the offline algorithm performance. In contrast, online

performance only considers the non-dominated individuals that are present in the

population at the end of each run.

 Multi-objective Genetic Programming

 120

6.2.3.4 Summary of MOGP algorithm settings

Figure 6-6 shows a flowchart of the MOGP algorithm used in this thesis. The most

significant difference between this MOGP and SOGP algorithms is that the former

makes use of a Pareto based ranking scheme with fitness sharing. A secondary

population of individuals is also maintained in order to preserve all non-

dominated/preferable models along with their objective values. This population is

updated at each generation by adding the latest set of preferable individuals. Ranking

is then performed in order to remove any individuals that are dominated by the

addition of these new population members.

Table 6-1 - MOGP Algorithm details

Model structure m basis functions. m generated as a uniformly
random integer in range [1 10]

Function set +, -, /, *, ^, ^2, ^3, q0, q1, q2, q3

Terminal set Process input(s), 1,1,1 ,..., −− knk uu scaled in range [0 1]

Model output, 1ˆ −ky
ℜ generated uniformly in range [-10 10]

Crossover probability 0.7

Mutation probability 0.2

Direct reproduction probability 0.1

Generation gap 90%

Fitness assignment RMS error
+ additional
objectives

→
Pareto ranking

using preference
information

→ Fitness
sharing

A number of other MOEA techniques have been proposed, making use of alternative

ranking, sharing and fitness assignment methods to those described earlier. Examples

include the niched Pareto genetic algorithm (NPGA, Horn et al., 1994), NSGA

(Srinivas and Deb, 1994) and SPEA (Zitzler and Thiele, 1999). Although Zitzler et al.

(2000) have shown how these algorithms can outperform Fonseca and Fleming’s

MOGA, the comparison is restricted to a group of test functions. In addition, each

algorithm’s performance is assessed in terms of its ability to discover solutions along

the entire length of the Pareto optimal front.

 Multi-objective Genetic Programming

 121

Fitness sharing

Pareto based ranking
and fitness
assignment

Objective vector
calculation

Goal and priority
information

Creation of new
population

Non-dominated
individuals

Keep non-
dominated
individuals

Generation Loop
i = 1 to G

End of Generation
Loop

Start

Stop

Generate initial
population

Secondary
population

Pareto based ranking

Discard dominated
individuals

Figure 6-6 – Flowchart for MOGP algorithm

 Multi-objective Genetic Programming

 122

Unfortunately, the objective space associated with real-world engineering problems is

much more complicated than that of a simple test function. Consequently, the greatest

difficulty is that of being able to direct the search towards the required region of the

trade-off surface. As the specification of preference information provides a higher

level of control over the algorithm search, this was an important reason for selecting

the ranking method used in this thesis. The important settings and features of the

MOGP algorithm are outline in Table 6-1.

Dynamic Modelling Using Multi-objective GP

 123

7 Dynamic Modelling Using Multi-objective GP

7.1 Introduction

The previous chapter outlined the modifications necessary to apply the MBF-GP

algorithm to multi-objective problems. This chapter demonstrates the application of

the algorithm to dynamic model development. Since the notion of algorithm

performance is more complex than for the single objective problem, the first part of

this chapter describes the methods used to compare MOGP algorithm results. The

algorithm is then applied to two problems, each involving the incorporation of one

additional measure of model performance. The first example uses the MOGP

algorithm to improve the parsimony of the evolved model structures. The second

example demonstrates how residual correlation tests can be used as an additional

objective. In each case, the algorithm is applied to an artificial test system and a

process engineering case study.

7.1.1 Measures of MOEA Performance

The performance of a MOGP algorithm is more difficult to quantify than the single

objective case. For example, Zitzler et al. (2000) outlined the following criteria for

measuring the performance of MOEA runs,

• The distance of the non-dominated solutions from the known Pareto optimal set

should be minimised.

• A uniform distribution of the solutions over the front is desirable.

• The extent of the non-dominated front should be maximised, so that the solutions

cover a wide range of values in each objective domain.

However, these criteria were used to compare the performance of various MOGA

implementations when applied to a set of synthetic test functions and there are a

several reasons why they may be unsuitable for real-world applications. Firstly, in this

Dynamic Modelling Using Multi-objective GP

 124

work the objective values for the global Pareto optimal solutions are not known,

meaning that it is impossible to measure the distance of the evolved Pareto front from

the actual solutions. Secondly, test studies often compare the range of values covered

by the Pareto optimal set to measure the algorithms ability to find a diverse set of

candidate solutions. This may not necessarily be the best approach for a complex

engineering problem as only a small region of the trade-off surface may contain

solutions that provide a useful compromise between the different performance

criteria. For example, an engineer may require a model that is both parsimonious and

accurate and will not want the algorithm to discover solutions that perform very well

in only one of the criteria.

Zitzler et al. (2000) made a comparative study of the most popular MOGA

implementations found in the literature. The results ranked the method of Fonseca and

Fleming (FFGA) behind the Pareto based algorithms SPEA, NSGA, NPGA and even

the non-Pareto methods of VEGA and HLGA. However, as mentioned previously, the

main reason for choosing a method based on FFGA is its successful application to real

engineering problems where the aim is to use preference information to guide the

algorithm towards the relevant part of a complex search space. In addition, in MOGA

performance studies, the GA is concerned solely with the evolution of the parameters

belonging to a fixed functional relationship. The problem is more complicated for the

MOGP case, as the algorithm is also responsible for evolving the model structure.

This is further justification for concentrating the search towards the desired region of

the non-dominated front instead of stretching algorithm resources by trying to

discover solutions along the entire length of the front. The method used to compare

algorithm performance in this thesis is described in the next section.

7.1.2 Analysis procedure

Although the SOGP algorithm only uses RMS error to measure the fitness of each

population member, additional measures of model performance can be calculated for

the final population at the end of the algorithm run. These objective values can be

used in conjunction with Pareto ranking to find a non-dominated set of solutions

describing the trade-off between the different objectives. These solutions can then be

Dynamic Modelling Using Multi-objective GP

 125

compared with those obtained using the MOGP algorithm to determine the benefits of

using multi-objective techniques during model evolution.

The first stage of the experimental procedure is to compare the MOGP algorithm

using conventional Pareto ranking with the SOGP algorithm. Comparison is made by

comparing the non-dominated set of individuals obtained from a set of twenty

algorithm runs. This set is found by combining the non-dominated solutions from

each run and then re-ranking the individuals to find the non-dominated members. The

non-dominated individual’s objective values can then be plotted to illustrate the trade-

off between the different measures of algorithm performance.

One of the most common techniques for comparing non-dominated fronts produced

by MOEAs is to use visual inspection. Additional approaches have been proposed that

use specially designed metrics to quantify the differences between certain aspects of

the non-dominated front. One of the drawbacks of these methods is that it is

extremely difficult to define a single metric that allows all of the desired performance

criteria to be combined in a meaningful way. The results of such analyses have to be

interpreted with care as each performance measure has its advantages and

disadvantages. For example, Zitzler et al. (2000) describe a metric used to calculate

the fraction of individuals produced by one algorithm that dominate those generated

using another algorithm. One of the disadvantages of this technique is that it does not

consider the magnitude of the difference between the objective values. In contrast,

with visual inspection it is easy to observe whether one front dominates another by a

very large or small margin. In this thesis, no performance metrics have been used to

characterise the non-dominated fronts produced by different algorithms and all

observations were made by visual examination.

As some regions of the objective space (and consequently the non-dominated front)

may be sampled more densely, histograms are used to compare the distribution of the

final population members’ objective values. These distributions along with the non-

dominated fronts provide information that can be used to determine how preference

information can be used to enhance algorithm performance. For example, the

distribution of the final population members may indicate that an algorithm has

tended to bias its search in favour of one of the objectives. Additional sets of runs can

Dynamic Modelling Using Multi-objective GP

 126

then be carried out with preference information and the results compared to those

achieved using Pareto ranking.

7.2 Model parsimony

The results in previous chapters showed that, although GP is able to develop accurate

models of steady-state and dynamic processes, the resulting structures are rather

complex. Even for simple test systems, the MBF-GP model expressions contained a

relatively large number of basis functions. Although the models produced accurate

predictions when applied to the validation data, parsimonious representations are

more desirable as it is generally thought that they are more likely to generalise well.

Complex models may include superfluous model terms that lead to overfitting of the

training data resulting in poor performance when applied to unseen data. During any

model development process, a balance must be reached between model accuracy and

complexity, as there is little benefit in greatly increasing model complexity if the

relative improvement in accuracy is not significant. From a practical point of view, it

is preferable to work with a parsimonious model structure rather than a highly

complex representation with the same prediction accuracy. In addition, a population

of unnecessarily large model expressions will require a greater amount of processing

time and reduce the efficiency of the algorithm.

Conventional model development procedures often result in a set of candidate models

with varying levels of accuracy and complexity. One way to select the most

appropriate solution is to apply statistical information criteria such as the Akaike

information criterion (AIC) and the final prediction error (FPE), which attempt to

strike a balance between the prediction accuracy and complexity of the model. The

AIC and FPE for a particular model are given by the following relationships,

ϕ+�
	

�
�

= �
=

2)(
1

ln
1

2
N

k

k
N

NAIC ε 7-1

�
	

�
�

ϕ−
ϕ++�

	

�
�

= �
= N

N
Nk

N
NFPE

N

k

ln)(
1

ln
1

2ε 7-2

Dynamic Modelling Using Multi-objective GP

 127

Where)(ˆ)()(kykyk −=ε is the residual at time sample k,)(ky is the measurement,

)(ˆ ky is the model prediction, � is the total number of terms included in the model and

N is the number of data points. It can be seen from equations 7-1 and 7-2 that both

criteria consist of two terms, one for prediction error and one for model order. The

first term is a measure of how well the model fits the data and the second is a measure

of the complexity of the model required to achieve the fit. AIC and FPE therefore

attempt to find a compromise between low residual variance and an excessive number

of model parameters with smaller values indicating more desirable model structures.

Ideally, if AIC is statistically consistent, it will obtain a minimum value for the correct

number of model parameters. However, it can be demonstrated that the AIC is

statistically inconsistent and tends to overestimate the model order (Johansson, 1993).

Similar problems can be encountered when using FPE, which has been found to

underestimate the correct order of the system. Consequently, a number of other

criteria have been proposed, such as the Bayesian information criterion (BIC), law of

iterated logarithms criterion (LILC) and the minimum description length (MDL)

principle. Iba et al. (1994) proposed a MDL based fitness function in order to control

the size of the models produced by their GP algorithm (STROGANOFF).

A disadvantage of using such criteria in conjunction with a GP algorithm is that GP

models can be very complex yet may not necessarily have a large number of

numerical parameters. Consequently, the algorithm may evolve models that have

relatively low AIC values by generating models consisting of a few extremely

complex basis functions. This will defeat the overall aim of evolving parsimonious

model structures. This is not an issue with STROGANOFF as the functional nodes are

restricted to linear polynomials, each with a fixed number of parameters.

It is well documented in the GP literature that program trees expand as the

evolutionary process proceeds. This process, known as ‘bloat’, has been widely

reported by a number of researchers, and it is common that such increases in program

size occur without any significant improvement in performance (Koza, 1992, Blickle

and Thiele, 1994, Nordin and Banzhaf, 1995). Consequently, the performance of the

Dynamic Modelling Using Multi-objective GP

 128

GP algorithm may be compromised if model trees expand to the maximum allowable

size

It has been suggested that code growth occurs in GP algorithms as a means of

protecting solutions from destructive crossover operations (Blickle and Thiele, 1994,

Nordin and Banzhaf, 1995). This is due to the fact that large GP programs will often

contain sections of code that serve no useful purpose and when executed do not

contribute to the individual’s fitness. These sections, known as introns, may help to

prevent the creation of unfit solutions by providing sites for crossover to take place

non-destructively. Nordin et al. (1996) used a symbolic regression problem to

demonstrate how the inclusion of explicitly defined introns (EDIs) could lead to

improved generalisation and reduced processing time.

Another method used by GP practitioners to evolve parsimonious solutions is to

directly limit the growth of the program trees. This can be done by setting a maximum

program size that must not be exceeded by new offspring if they are to be allowed to

take part in the next generation. However, this approach is not very flexible, as the

maximum program size must be set at the start of the run. If unsuccessful results are

obtained, the program size will have to be increased and more algorithm runs

performed until a successful solution is generated.

Another commonly used way of implementing parsimony pressure is to use a fitness

term that incorporates a penalty function based on program size. The fitness of

individual i is then given by,

)(iii spPF −= 7-3

Where Pi is a measure of how individual i actually performs, si is the size of i and p is

a function used to apply parsimony pressure. If p is chosen to be a simple linear

function, the fitness function becomes,

iii sPF β−= 7-4

Dynamic Modelling Using Multi-objective GP

 129

Where � is a weighting parameter used to adjust the strength of the parsimony

pressure to be applied. Although some researchers have reported successful

applications of parsimony pressure (Soule et al., 1996, Blickle, 1996), others have

experienced less favourable results (Koza, 1992, Nordin and Banzhaf 1995),

reporting that increased parsimony lead to a reduction in the performance of the

evolved solutions. A possible disadvantage is that it may be difficult to find the value

of � in equation 7-4 that enables the algorithm to evolve parsimonious solutions

without degrading their performance.

The aim of this work is to investigate whether the MOGP algorithm can provide a

more flexible approach. By applying the concepts of Pareto dominance, the algorithm

can be used to generate a set of candidate solutions from which to choose the final

model. This means that fewer decisions have to be made (e.g. setting cost function

weightings) before the end of the algorithm run, thus avoiding some of the drawbacks

of other methods. Preference information can be used to enhance performance by

directing the search towards the desired region of the non-dominated front.

It has been shown (Hinchliffe et al., 1998) how the MOGP algorithm described in the

previous chapter can be used to generate parsimonious models of steady-state

processes without compromising model accuracy. Rodríguez-Vázquez and Fleming

(1998) used a number of model attributes such as the maximum process lag and

polynomial order when evolving NARX models using a similar algorithm. However,

if GP is to be used to automatically develop dynamic models, it must be assumed that

aspects of the final model structure such as the maximum process lag are unknown. It

is therefore difficult to specify goals for such objectives before the algorithm run

commences. This was not a disadvantage for Rodríguez-Vázquez and Fleming as their

approach allows preference information to be adjusted during model evolution.

Following Hinchliffe et al. (1998), the string length of a GP model expression is used

in this thesis to measure model parsimony. This value is easy to calculate and does not

require a significant amount of additional processing. Another advantage is that the

GP algorithm is still responsible for model characteristics such as the number of lags

and degree of non-linearity as no restrictions (i.e. preference information) have to be

placed on these criteria.

Dynamic Modelling Using Multi-objective GP

 130

7.2.1 Analysis of Results

7.2.1.1 Test System with Time Delay

Initial algorithm runs were performed to compare the SOGP algorithm with the

MOGP algorithm using Pareto ranking (MOGP-P). An additional set of MOGP-P

runs was carried out without fitness sharing (FS) to demonstrate its effect on

algorithm performance. Each algorithm was run 20 times with a population size of 50

for 50 generations. The non-dominated sets of individuals obtained from each set of

runs are compared in Figure 7-1 (RMS errors are on the training data set).

0

50

100

150

200

250

300

350

400

450

0 0.05 0.1 0.15

RMS error

S
tri

ng
 le

ng
th

SOGP

MOGP-P
MOGP-P (no FS)

Figure 7-1- Comparison of non-dominated fronts achieved by SOGP and MOGP-P

algorithms

The non-dominated fronts contain sets of solutions that represent a trade-off in

performance between the two objectives. The solutions range from parsimonious

models with high RMS errors to increasingly complex solutions with lower prediction

errors. Figure 7-1 shows that the MOGP-P algorithm evolved the more parsimonious

solutions with 8 of the 14 non-dominated individuals having a string length of fewer

than 50 characters. Unfortunately, the reduction in complexity has been achieved at

Dynamic Modelling Using Multi-objective GP

 131

the expense of accuracy, with the most accurate of these models having an RMS of

0.0152 compared to the most accurate SOGP model, which has an RMS of 0.00429.

As the accuracy of the MOGP-P models improve, there is a sharp increase in model

complexity. The MOGP-P model with the lowest prediction error has an RMS error of

0.00839. Without fitness sharing, the MOGP-P algorithm can only manage to

generate a set of relatively inaccurate models that are all under 50 characters in

length.

Although the SOGP and MOGP-P algorithms have evolved non-dominated sets of

solutions covering a wide range of objective values, the distributions of the final

population members must be studied to examine how evenly the individuals are

scattered along the non-dominated front. The distributions of the final population

members’ objective values for the SOGP and MOGP-P algorithms are shown in

Figure 7-2. Figure 7-2a shows how the majority of the individuals produced by the

SOGP algorithm have expanded towards the maximum permissible string length of

500 characters. The resulting models provide accurate predictions but are rather

complex.

The effect of including the string length objective during model evolution is

demonstrated by Figure 7-2b. The MOGP-P algorithm has produced a large number

of parsimonious model structures, with only a fraction having RMS errors as low as

the models produced by the SOGP algorithm. This is probably because it is easier for

the algorithm to generate parsimonious models than it is to evolve models that give

accurate predictions. Whereas the algorithm may require a considerable number of

generations to evolve models with low RMS errors, parsimonious models will be

present in the initial population. These models will be selected to take part in

reproduction due to their high level of performance in one objective dimension. The

action of genetic operators on these models is more likely to produce parsimonious

solutions instead of ones that have low RMS errors. As the population becomes

saturated with simple model structures, it will become increasingly difficult for the

algorithm to evolve accurate models via crossover and mutation. Although the fitness

sharing scheme is intended to promote diversity, it is unable (in this case) to prevent

the population members from becoming unevenly distributed along the non-

dominated front.

Dynamic Modelling Using Multi-objective GP

 132

(a) Single objective (b) MOGP-P algorithm

Figure 7-2 – Distributions of final population members’ objective values

Figure 7-3 shows that the bias towards the string length objective is more pronounced

when fitness sharing is not included. In this case, the algorithm produces an extremely

large number of solutions with very short string lengths and relatively high RMS error

values. The lack of a fitness sharing scheme means that additional fitness is not

allocated to diverse individuals (in this case, more accurate but more complex

solutions). Consequently, the population becomes saturated with parsimonious

solutions that perform poorly in terms of RMS error. Without sharing, the tendency of

the algorithm to favour model parsimony is so exaggerated that virtually all of the

models are constructed from a single input terminal.

Although the MOGP-P algorithm has discovered a large number of parsimonious

solutions, model accuracy has been compromised. This problem can be addressed by

using preference information to guide the search towards the desired region of the

non-dominated front. The MOGP-P algorithm can be prevented from biasing its

search in favour of string length minimisation by setting a goal value for that

objective. The preferability relationship outlined in section 6.2.2.1 selectively omits

objectives from the ranking process once they have satisfied their goals.

Consequently, goals can be used to prevent the algorithm from attempting to

minimise an objective that has already reached a desirable level of performance.

Dynamic Modelling Using Multi-objective GP

 133

Figure 7-3 –Distribution of objective values for MOGP-P algorithm without fitness

sharing

An additional set of runs was performed with the MOGP algorithm using Pareto

ranking with preference information (this algorithm will be referred to as MOGP-FF

due to its use of Fonseca and Fleming’s preferability relation). The RMS error goal

was set to an ‘ideal’ value of zero and the model string length goal was arbitrarily set

to 100 characters. This means that population members with string lengths below this

value are compared using their RMS values alone. With this approach, the algorithm

will not try to minimise the string length below 100 characters and avoids the

evolution of overly parsimonious solutions. Figure 7-4 compares the non-dominated

front obtained using the MOGP-FF algorithm with the fronts achieved by the SOGP

and MOGP-P algorithms.

0

50

100

150

200

250

300

350

400

450

0 0.05 0.1 0.15
RMS error

S
tri

ng
 le

ng
th

SOGP

MOGP-P

MOGP-FF

Figure 7-4 – Comparison of non-dominated fronts

Dynamic Modelling Using Multi-objective GP

 134

The plots show how the non-dominated solutions evolved by the MOGP-FF algorithm

are grouped closely around the 100 character goal value. The corresponding RMS

error values are lower than those achieved by all of the MOGP-P solutions. The most

accurate model produced by the MOGP-FF algorithm has an RMS value of 0.00433

compared to a value of 0.00429 for the most accurate SOGP model. The

corresponding string length is considerably shorter (125 compared to 414 characters),

meaning that the MOGP-FF algorithm has been able to reduce model complexity

without a significant loss of prediction accuracy. The distribution of the individuals

from the final populations of the MOGP-FF runs is shown in Figure 7-5. The

inclusion of preference information has enabled the algorithm to develop accurate and

parsimonious process models, with the greatest concentration of models located

around the 100 character goal value. This is in contrast to the SOGP results, which

demonstrate how ‘bloat’ leads to the generation of solutions that occupy the

maximum allowable program size.

Figure 7-5 - Distribution of objective values for MOGP-FF algorithm

The non-dominated set of solutions provides the engineer with a trade-off between

model parsimony and accuracy. Before the final model is chosen, the validation RMS

of each model must also be considered. Table 7-1 shows the validation RMS values of

the six non-dominated solutions generated using the MOGP-FF algorithm along with

their training RMS errors and model string lengths.

Dynamic Modelling Using Multi-objective GP

 135

Table 7-1- Comparison of non-dominated solutions

Model no. RMS String length Validation RMS

1 0.0043296 125 0.007287

2 0.0043297 124 0.007287

3 0.0043333 121 0.007293

4 0.0043465 120 0.007312

5 0.0043959 114 0.006619

6 0.0044174 100 0.008632

The fifth model in Table 7-1 has the lowest RMS error on the validation data set. The

model is constructed from a single basis function and is shown in simplified form

below,

() 0451.0894.0ˆ512.5ˆ5114.0ˆ 111191 −+++= −−−− kkkkk uuyyy 7-5

The model is ranked second in terms of parsimony and probably provides the best

overall solution to the problem (in terms of a compromise between the chosen

performance criteria). The lowest validation RMS achieved by the SOGP algorithm is

slightly lower (0.00606 compared to 0.00662) but the model is more complex,

containing 13 basis functions.

7.2.1.2 Cooking extruder

As in the previous section, SOGP, MOGP-P and MOGP-FF algorithm runs were

carried out in order to compare algorithm performance. Twenty runs of each

algorithm were performed using a population size of 50 individuals for 50

generations. As before, the MOGP-FF algorithm RMS and string length goals were

set to values of 0 and 100 respectively. The non-dominated fronts obtained are shown

in Figure 7-6

Dynamic Modelling Using Multi-objective GP

 136

0

100

200

300

400

500

0 0.05 0.1 0.15

RMS error

S
tri

ng
 le

ng
th

SOGP

MOGP-P

MOGP-FF

Figure 7-6 – Comparison of non-dominated fronts achieved by SOGP and MOGP

algorithms

The non-dominated set of solutions evolved by the MOGP-P algorithm covers a wide

range of objective values. The most accurate MOGP-P model has an RMS error of

0.0197 and a string length of 463 characters. At the opposite end of the front, the most

parsimonious solution is only seven characters long and has an RMS of 0.146.

Although the SOGP algorithm was able to evolve a number of relatively simple

solutions, models of fewer than 200 characters in length have substantially higher

RMS errors than MOGP-P models of the same size. The SOGP algorithm evolved the

model with the lowest training RMS (0.0158 compared to 0.0197 for the MOGP-P

algorithm). This would be expected, as all SOGP algorithm resources are

concentrated on the task of evolving models that perform well in terms of this

objective.

The distributions of the end-of-run objective values are compared in Figure 7-7.

Figure 7-7a demonstrates how the SOGP models have expanded to fill the maximum

available string size of 500 characters. Figure 7-7b shows that there is a relatively

even distribution of individuals along the non-dominated front evolved by the MOGP-

P algorithm. This is in contrast to the distribution that is achieved by the same

algorithm without fitness sharing (Figure 7-7c). It can also be seen that the MOGP-P

algorithm has produced a large cluster of individuals that have short string lengths and

Dynamic Modelling Using Multi-objective GP

 137

RMS error values of approximately 0.12. The bias towards the string length objective

was much greater for the test system studied in the previous section.

(a) Single objective (b) MOGP-P algorithm

(c) MOGP-P algorithm without fitness sharing (d) MOGP-FF algorithm

Figure 7-7 – Distribution of objective values for final generation

 population members

The non-dominated set of solutions obtained using the MOGP-FF algorithm does not

contain the highly parsimonious but inaccurate models that are found in the MOGP-P

set. In the test system case study, the MOGP-FF algorithm was able to evolve models

that were more parsimonious and had lower RMS errors than the other algorithms.

This is not the case in this example, as the non-dominated front evolved by the

MOGP-FF algorithm closely follows that evolved by the MOGP-P algorithm.

Dynamic Modelling Using Multi-objective GP

 138

However, Figure 7-7d shows that the MOGP-FF produced fewer models with

extremely short string lengths and high RMS errors, indicating an improvement in

terms of the consistency of individual algorithm runs.

Table 7-2 – MOGP model with lowest validation RMS

Basis function Parameter

4ˆ −kg 0.29736

2−kω 0.49312
3

2 −kfM -0.039973

4 −kfQ -0.27842

4−kω 0.054084
2

4 −kfT -0.073058

57363.04
3 −−kfQ 0.18924

Bias 0.1441

The validation RMS must also be considered before the final model structure can be

selected. The SOGP model with the best performance when applied to the validation

data had a validation RMS error of 0.0399 and a string length of 492 characters. The

best MOGP-FF model had a slightly lower validation RMS error of 0.0385 and a

string length of only 131 characters. The MOGP model contains seven parsimonious

basis functions, compared to the sixteen basis functions of the SOGP model. The

MOGP model is shown in Table 7-2 in simplified form.

7.2.2 Discussion

Both case studies showed how the MOGP-P algorithm was able to generate a set of

non-dominated solutions that possessed varied levels of performance in each

objective. The main disadvantage of this technique is that many of the solutions do

not have a high enough level of performance with respect to both objectives. In this

example, the algorithm tended to generate a large number of models that had short

string lengths but higher RMS errors than the SOGP algorithm. The MOGP-P results

are useful, however, as they highlight the regions of objective space that are being

Dynamic Modelling Using Multi-objective GP

 139

over exploited by the algorithm. This information can then be used to help select

suitable goal values to be supplied to the MOGP-FF algorithm.

This MOGP-FF runs illustrated how preference information can be used to

concentrate the search towards the desired region of the objective space. The benefits

of using the MOGP-FF algorithm were greater for the test system, where the

algorithm was able to generate concise solutions that provided more accurate

predictions than the SOGP and MOGP-P algorithms. A smaller improvement was

seen with the extruder data, but this would be expected for a more complex system.

The work carried out in this section also emphasised the importance of the fitness

sharing scheme. Without fitness sharing, all of the MOGP-P solutions converged

closely around round the same region of the search space. This was undesirable, as the

solutions were overly parsimonious and produced very poor predictions.

7.3 Residual analysis

The residuals of a model represent the difference between the predicted and actual

values of the process output. Consequently, the presence of any information

remaining in the residuals is an indication that the proposed model may be inadequate

in some way. The existence of such information can be investigated by using a

number of techniques that take into account factors such as (Johansson, 1993),

• Correlations between residuals and the inputs(s) or output.

• The autocorrelation of the residuals

• Normal distribution of residuals

• Zero crossings (changes of sign) of the residual sequence

These techniques are usually applied after the model structure and associated

parameters have been identified. A potential advantage of using a MOGP approach is

that performance with respect to the tests could be taken into account throughout the

model evolution process.

Dynamic Modelling Using Multi-objective GP

 140

Although any combination of these criteria could be used as objectives within a

MOGP framework, the correlation tests outlined by Billings and Voon (1986b) are

used in this thesis. The tests were designed to determine whether a proposed model

captures the dynamics of the underlying process as opposed to simply fitting the

available data. These tests have been applied to a number of non-linear dynamic

systems including real and simulated processes (Doherty et al., 1997, Arkov et al.,

2000). In addition, it has been shown how the test results can be used to identify

process lags that are missing from the input sequence. Similarly, providing the GP

algorithm with the same measure of model performance may increase the algorithm’s

ability to discover the correct combinations of inputs and process lags required to

evolve an accurate model.

For linear systems, the auto-correlation function of the residuals and the cross-

correlation between the residuals and the input(s) are sufficient model validation tests

(Söderström and Stoica, 1989). However, for non-linear systems, additional higher

order tests are required to detect the presence of unmodelled linear and non-linear

terms. In total, the following five tests have been proposed (Billings and Voon,

1986b),

(a) 0)(=τφ εu τ∀

(b))()(τδτφεε = τ∀

(c) 0)(=τφεεu τ∀

(d) 0)(
)'(2 =τφ εu

 τ∀

(e) 0)(22)'(
=τφ εu

 τ∀

7-6

Where τ is the time-shift and δ is the Kronecker delta function. The necessary

expressions for obtaining the correlation estimates are as follows:

� �

�

= =

=

−−

−−−
=

N

k

N

k

N

k
xy

ykyxkx

ykyxkx

1 1

22))(())((

))()()((
)(τ

τ
τφ 7-7

Dynamic Modelling Using Multi-objective GP

 141

� �

�

= =

=

−

−−−
=

N

k

N

k

N

k
u

ukuk

ukukkN

1 1

22))(()(

))()(1()(
)(

ε

τεε
τφ τ

εε 7-8

The first two tests are the standard autocorrelation and cross correlation functions

used in linear system identification. The remaining higher order tests are designed to

detect missing non-linear terms by examining the correlations between odd and even

powers of the inputs and residuals.

Rodríguez-Vázquez and Fleming (1998) used the linear autocorrelation and

correlation tests as objectives during the evolution of NARMAX models using a

MOGP algorithm. Later, Arkov et al. (2000) extended the work by including the

additional tests for non-linear systems. Although the authors describe how the

technique can be used to develop accurate models, the results were not compared with

algorithms that did not use multi-objective techniques. In contrast, the aim of this

work is to emphasise the advantages of using the MOGP-FF algorithm in place of the

MOGP-P and SOGP algorithms.

The correlation tests are usually performed at the 95% confidence level. This means

that the residuals will contain no linear or non-linear structure if the absolute value of

each test statistic is not greater than N/96.1 . The correlation test objective value

(Φ) for a MOGP model can then be found by taking the sum of the test values that

exceed the 95% confidence limit,

()��
= =

−=Φ
5

1 0

/96.1)(
i j

i Nj
maxτ

φ 0≠j if i=1 7-9

εεφφ =1 εφφ

)'(4 2u
=

εφφ u=2 22)'(5 εφφ
u

=

Where

uεεφφ =3 maxτ = Maximum time shift

Dynamic Modelling Using Multi-objective GP

 142

For a process with multiple inputs, the test values for each input can be combined to

produce a single objective value,

�
=

Φ=Φ
n

i
itotal

1

 7-10

Where n is the number of process inputs. Combining 7-10 with equation 7-9 yields,

() ()����
= = ==

−+−=Φ
n

k i j
ui

j
total

max

k

max

NjNj
1

5

2 0
,

1
1 /96.1)(/96.1)(

ττ

φφ 7-11

Where

kui ,φ refers to correlation test i using the kth process input. Note that the first test

is based on the residuals only and does not have to be evaluated for each process

input.

If all of the correlation values for time shifts in the range [0 �max] fall within the 95%

confidence region, equation 7-11 produces an objective value of zero. This is

convenient as the required performance level for this objective will always be the

same, regardless of the maximum lag and number inputs. Another approach would be

to use the individual tests as separate objectives. An advantage of this method is that

more information is given to the MOGP algorithm in terms of which correlation tests

have been satisfied. However, the resulting problem will have a relatively large

number of objectives, especially if processes with more than a single input are

considered. This may lead to a large number of non-dominated solutions and larger

population sizes may be required to enable the algorithm to carry out an effective

search. Another reason for combining the tests into a single objective value is that the

overall problem has only two objectives, making the trade-off between the objective

values of candidate solutions easier to visualise.

The maximum time-shift, maxτ , was set to twenty process lags for all of the

correlation tests carried out in this work. This is a commonly used value (Doherty et

al., 1997, Arkov et al., 2000) and exceeds the maximum time delay encountered

during both of the case studies used in this work. In practice, the results of the tests

must be analysed carefully to ensure that maxτ is not less than the maximum lag

required for an accurate model.

Dynamic Modelling Using Multi-objective GP

 143

7.3.1 Analysis of Results

7.3.1.1 Test System with time delay

Initially, two sets of runs were performed to compare the performance of the MOGP

algorithm using Pareto ranking with that of the SOGP algorithm. As with the model

string length objective, correlation tests can be performed at the end of each SOGP

algorithm run and the values used to rank the population members and find a non-

dominated set of solutions to be compared with the MOGP results

Preliminary results indicated that, after 50 generations of the MOGP algorithm run,

few models had correlation test values close to zero and consequently all sets of runs

were allowed to run for 100 generations. Twenty runs of each algorithm were

performed with a population size of 50. Figure 7-8 compares the non-dominated

solutions obtained by both algorithms.

0

1

2

3

4

5

6

7

8

9

10

0 0.005 0.01 0.015
RMS error

C
or

re
la

tio
n

SOGP

MOGP-P

Figure 7-8- Non-dominated fronts obtained using SOGP and MOGP-P algorithms

Figure 7-8 demonstrates the advantage of including the correlation test objective

during model evolution. The MOGP-P algorithm has improved performance with

respect to both objectives. The most accurate model obtained using the MOGP

Dynamic Modelling Using Multi-objective GP

 144

algorithm has a lower RMS (0.00250 compared with 0.0336) and a lower correlation

test value (5.798 compare with 9.665). At the opposite end of the non-dominated

front, there are individuals with better performance in terms of correlation test values

but degraded performance in terms of RMS error. The MOGP algorithm has

outperformed the SOGP algorithm as the model with the best correlation test value for

the MOGP algorithm has an RMS error of 0.0508 and a correlation test value of zero

compared to values of 0.1591 and 0.0232 for the SOGP algorithm. It can be seen, for

any given RMS error, the corresponding correlation test value is lower for the MOGP

algorithm and vice versa.

(a) Single objective (b) MOGP-P algorithm

Figure 7-9 –Distribution of final generation objective values for

SOGP and MOGP-P algorithms

Despite this improvement, preference information can still be used to evolve a greater

number of solutions with increased performance with respect to both objectives.

Figure 7-9 reveals that the MOGP-P algorithm appears to have biased its search in

favour of the correlation tests, with a substantial number of individuals performing

well at the tests but having higher RMS values in the range [0.01 0.03]. This means

that although the non-dominated front shows improved performance, individual runs

may fail due to their convergence around regions with RMS errors in this range.

A possible solution is to only include the correlation tests when prediction errors have

reached a certain level of accuracy (for example an RMS error of 0.01). This can be

accomplished by setting goals of 0.01 and ∞ for the RMS and correlation objectives

Dynamic Modelling Using Multi-objective GP

 145

respectively. Setting a value of ∞ means that all population members will satisfy the

goal for that particular objective. Consequently, the correlation tests are omitted from

the ranking process and individuals are compared using their RMS values only. This

will be the case until individuals are encountered that have RMS errors that satisfy the

RMS goal (0.01). At this stage, all goal values will be satisfied and the corresponding

individuals will be compared in the conventional Pareto manner, meaning that both

objectives are taken into consideration. An additional set of twenty runs was

performed using the MOGP-FF algorithm with the goal values described above. The

non-dominated front achieved by the algorithm is shown in Figure 7-10 compared to

the fronts evolved by the SOGP and MOGP-P algorithms.

0

1

2

3

4

5

6

7

8

9

10

0 0.005 0.01 0.015

RMS error

C
or

re
la

tio
n

SOGP

MOGP-P

MOGP-FF

Figure 7-10 – Comparison of non-dominated fronts achieved using SOGP,

MOGP-P and MOGP-FF algorithms

Figure 7-10 illustrates how the MOGP-FF algorithm was able to evolve a set of

solutions with improved performance with respect to both objectives. For example,

the most accurate MOGP-FF model has an RMS error of 0.00231 and a correlation

test value of 3.371 compared to values of 0.00250 and 5.798 for the corresponding

MOGP-P model. At the opposite end of the non-dominated front, the MOGP-FF and

MOGP-P algorithms have both discovered models that have correlation values equal

to zero. However, the MOGP-FF algorithm gives a more accurate prediction, with an

RMS of 0.00394 compared to a value of 0.00508 for the MOGP-P algorithm. The

Dynamic Modelling Using Multi-objective GP

 146

distribution of the objective values taken from the final generation of each run is

shown in Figure 7-11. The addition of preference information has prevented the

algorithm from evolving models with low correlation scores and RMS errors greater

than 0.01. Without these solutions occupying algorithm resources, more solutions

have been evolved with RMS errors in the range [0.005 0.01].

Figure 7-11 – Distribution of final population objective values obtained

using the MOGP-FF algorithm

Before the ‘best’ model of these preferable models can be chosen, the performance of

the models on the validation data must also be taken into consideration. Table 7-3

contains the objective values and validation RMS errors belonging to the non-

dominated solutions evolved using the MOGP-FF algorithm. Table 7-3 shows how

low RMS errors can be obtained on the training and validation data sets, by the

models that have the higher correlation values.

Model 3 provides the most accurate prediction on the validation data, with an RMS

error of 0.00323 (compared to the best validation RMS of 0.00475 for SOGP).

Arguably, model 4 provides a better compromise solution. The model has slightly

higher training and validation RMS error values than model 3, but has a significantly

lower correlation test score. Figure 7-12 shows the results of the five correlation tests

for this model (+/- 95% confidence limits are shown as horizontal dashed lines).

Dynamic Modelling Using Multi-objective GP

 147

Table 7-3 – Preferable individuals obtained using MOGP-FF algorithm

Model no. RMS Correlation tests Validation RMS

1 0.002309 3.3707 0.003507

2 0.002353 3.1662 0.003579

3 0.002388 1.3484 0.003234

4 0.002423 0.7742 0.003450

5 0.002720 0.6392 0.003447

6 0.002825 0.4598 0.003691

7 0.002859 0.2848 0.003645

8 0.002908 0.1603 0.003838

9 0.003434 0.0667 0.004079

10 0.003468 0.0158 0.004172

11 0.003938 0 0.004588

Figure 7-12 – Correlation test plot for model 4 (RMS=0.00242, �=0.774)

7.3.1.2 Cooking extruder

Twenty runs of the SOGP and MOGP-P algorithms were performed with a population

size of 100 individuals for 100 generations. The non-dominated fronts evolved by the

algorithms are compared in Figure 7-13. The plots show that the MOGP-P algorithm

Dynamic Modelling Using Multi-objective GP

 148

was able to produce models with lower correlation values, although some of the

prediction errors are rather high.

0

5

10

15

20

25

0 0.02 0.04 0.06 0.08 0.1
RMS error

C
or

re
la

tio
n

SOGP

MOGP-P

Figure 7-13- Non-dominated fronts achieved by SOGP and MOGP-P algorithms

The distributions of the final generation population members’ objective values are

shown in Figure 7-14. The distributions reveal that the individuals evolved by the

MOGP-P algorithm are all grouped along one half of the non-dominated front. The

MOGP-P distribution is wider along the RMS error axis than the SOGP distribution

as model accuracy has been reduced at the expense of improved residual test

performance. Figure 7-14 also shows that the solutions generated by both algorithms

have correlation tests values that are much higher than those achieved in the previous

test system example (see Figure 7-9b). This would be expected, as this case study is

based on a more complex system. In addition, the correlation objective value is the

sum of a larger number of tests as the process has multiple inputs.

In the previous example, the MOGP-P algorithm was able to generate a large number

of solutions that performed well in terms of the correlation tests but relatively poorly

with respect to RMS error. Consequently, preference information was needed to

prevent the algorithm from carrying out a search that was biased towards the residual

tests. In this example, preference information is not required for this reason. However,

the non-dominated front does contain a number of solutions that have poor RMS

values and preference information can be used to ensure that these individuals are

Dynamic Modelling Using Multi-objective GP

 149

discarded and do not form part of the final set of candidate solutions. Another

requirement is to improve performance with respect to the residual tests. One possible

approach is to set an RMS error goal to force the algorithm to concentrate solely on

the correlation tests once a certain level of prediction accuracy has been achieved.

Although this means that model accuracy may have to compromised at the expense of

the residual tests, it is important to note that the most accurate models on the training

data do not necessarily have the best performance on the validation data.

(a) Single objective (b) MOGP-P algorithm

Figure 7-14 – Distributions of final population objective values

An attempt can be made to accomplish both of these aims by setting preference

information at two different priority levels. The goal values for each objective and

priority are shown in Table 7-4.

Dynamic Modelling Using Multi-objective GP

 150

When ranking the population, the MOGP algorithm uses the highest priority goals

first (priority 2 in this case). At this priority, the correlation objective has been given

an infinite value which means that that every population member will satisfy this goal.

As a result, the population will be ranked using their RMS values alone. This strategy

is intended to prevent the survival of solutions that pass the correlation tests but have

higher RMS values.

Table 7-4- MOGP preference information

Priority level RMS goal Correlation test goal

2 0.03 ∞

1 0.02 0

Ranking will be based solely on RMS values unless comparison is made between two

individuals that both satisfy the RMS goal of 0.03. When this occurs, both members

satisfy all priority 2 goals and the ranking algorithm moves down to the next priority

level. At priority level 1, the correlation goal is zero and is therefore unsatisfied. This

means that the correlation test results are now included in the ranking process.

Ranking will continue to use both objectives unless two members meet the RMS goal

of 0.02, in which case ranking will be performed using correlation values alone. Here,

the aim is to force the algorithm to evolve more models that perform well in terms of

the correlation tests instead of continuing to evolve models with RMS errors below

the 0.02 value. This technique assumes that the models with RMS errors in the range

[0.02 0.03] provide an adequate level of prediction accuracy and further reduction in

model accuracy can be sacrificed in exchange for improved performance with respect

to the residual tests. The choice of RMS goal values is not as arbitrary as may first

appear as work carried out in chapter 5 showed that the lowest validation RMS errors

were achieved by models that had training errors in this range.

An additional set of twenty runs was performed using the MOGP-FF algorithm using

the preference information outline in Table 7-4. Figure 7-15 shows how the evolved

non-dominated front compares with the results obtained using the SOGP and MOGP-

P algorithms.

Dynamic Modelling Using Multi-objective GP

 151

0

2

4

6

8

10

12

14

0 0.02 0.04 0.06 0.08 0.1
RMS error

C
or

re
la

tio
n

SOGP

MOGP-P

MOGP-FF

Figure 7-15 – Comparison of non-dominated fronts achieved using MOGP-FF,

MOGP-P and SOGP algorithms

0

1

2

3

4

5

6

0 0.01 0.02 0.03 0.04 0.05

RMS error

C
or

re
la

tio
n

SOGP

MOGP-P

MOGP-FF

Goal value

Figure 7-16 – Non-dominated individuals with RMS errors between 0.02 and 0.03

The MOGP-FF non-dominated front covers a much smaller region than those

obtained using the SOGP and MOGP-P algorithms. An equally small subset of

individuals could be obtained by re-ranking the SOGP and MOGP-P non-dominated

individuals using the preference information described in Table 7-4. This process

would effectively discard individuals with RMS errors outside the range [0.02 0.03].

Figure 7-16 highlights the non-dominated fronts in this range of RMS values. It can

Dynamic Modelling Using Multi-objective GP

 152

be seen that the MOGP-FF front has lower correlation values than those produced by

the MOGP-P algorithm. Although the difference is small, this example still illustrates

how the goal based ranking scheme can be used to channel the algorithm’s search

effort towards the chosen area of the objective space.

Figure 7-17 – Distribution of final population objective values for MOGP-FF

algorithm runs

The distribution of the final population members taken from each MOGP-FF run is

shown in Figure 7-17. The inclusion of preference information has resulted in a

narrower distribution with the majority of the individuals lying between the two RMS

goal lines, with an especially high concentration along the 0.02 line. This is because

the search is being targeted towards the correlation test values once this level of

prediction accuracy has been achieved. The distribution has also shifted slightly in the

direction of lower correlation values.

The correlation test plots for the non-dominated MOGP-FF model with the highest

correlation objective value are shown in Figure 7-18. The tests that include the four

process inputs all have values that fall with in the 95% confidence limits. This

indicates that the relevant information present in the input data has been used to

develop the model. The correlation objective value is greater than zero because of the

first test, which tests for the presence of autocorrelated residuals. This may be due to

the fact that the information available in the inputs is not sufficient to completely

model the process. The remaining unmodelled dynamics may be the cause of the

Dynamic Modelling Using Multi-objective GP

 153

autocorrelated residuals. Another reason could be that the model contains past outputs

of the model and not past process outputs. This approach may introduce correlations

in the residuals and make it more difficult to completely satisfy all of the tests.

a) Autocorrelation

b) Input 1 c) Input 2

d) Input 3 e) Input 4

Figure 7-18 – Example correlation test results (RMS=0.0198, �=1.916)

Dynamic Modelling Using Multi-objective GP

 154

7.3.2 Discussion

A disadvantage of using the correlation tests is that the additional processing time

becomes significant as the number of process inputs increases. This is because the

four cross correlation tests have to be repeated for each process input. One alternative

is to use tests based only on the residuals and the process output. Billings and Zhu

(1994) demonstrated how such tests could be used to reduce the number of

correlations that have to be evaluated. More recently, Mao and Billings (2000)

introduced a new set of model validation tests designed to overcome some of the

deficiencies associated with the tests described earlier. It was demonstrated how,

under certain conditions, models could pass the original tests, even when the residuals

contained predictable information. Consequently, a set of new ‘multi-directional’

model validity tests was devised in order to overcome this problem. It is possible that

these tests could be used within a MOGP framework, the main drawback being an

increase in computational effort.

7.4 Conclusions

This chapter has demonstrated, using two test cases, how performance with respect to

additional modelling criteria can be improved using a MOGP algorithm. It was found

that preliminary algorithm runs using Pareto ranking were useful in order to obtain

information regarding the trade-off between the different objectives. This information

could then be used to help determine appropriate preference information for the

MOGP-FF algorithm. In this respect, the algorithm cannot be considered as an

automatic modelling tool as the technique relies heavily on information supplied by

the engineer. At this moment in time this may be the best approach as human decision

makers have the ability to assess the trade off between the performance measures

associated with solutions to complex real-world problems.

Although a Pareto based technique was chosen due to its advantages when compared

to methods such as the weighted sum approach, there are still issues that must be

addressed to ensure that successful solutions are obtained. The process of setting goal

values can be a somewhat arbitrary process, and it is likely that performing additional

Dynamic Modelling Using Multi-objective GP

 155

sets of runs with slightly different values could have yielded further increases in

performance. It is possible that an interactive approach with progressive preference

articulation would produce a greater number of desirable solutions. However, the

process of examining objective information to fine-tune the preference information at

the end of every generation would be time consuming. This concern would become

more significant for problems that have more objectives and require larger

populations sizes.

The work in this thesis has been restricted to case studies consisting of only two-

objectives. A number of issues will arise when the algorithm is applied to problems

that have a greater number of performance criteria. For example, how does the

increased number of performance criteria affect the required population size and

number of generations? In addition, it will more difficult to visualise the objective

space, making it harder to set goal/priority information effectively. There is a wide

range of additional modelling criteria that could be included in the MOGP framework.

In terms of residual analysis, there are the additional tests based on the process output

and the more recently developed multi-directional tests. Other factors such as the

distribution of the residuals could also be considered. In terms of model structure, the

maximum lag, degree of non-linearity and the number of model terms have been used

by other researchers. Although additional objectives may provide the algorithm with

more information about evolved models, a balance must be struck as a large number

of objectives may make it difficult to find a suitable compromise solution. Also,

objectives based on traditional modelling techniques may not be directly applicable to

models generated by a GP algorithm and unexpected results may be achieved.

Another consideration is the extra processing required to evaluate the additional

model attributes. Whereas the evaluation of the model string length uses an

insignificant amount of processing time, objectives such as correlation tests (which

have to be calculated for each input over a number of process lags) carry a greater

overhead. A significant amount of the algorithm run time is allocated to the

optimisation of the numerical parameters present in each model. One concern is that

this process favours the RMS error objective. Results without optimisation and larger

population sizes may produce different distributions of individuals and could make it

easier to minimise the other objectives.

Dynamic Modelling Using Multi-objective GP

 156

Another important aspect of this work is that no statistical techniques were used to

compare the non-dominated sets of individuals. This means that it is difficult to

determine the significance of any differences between two non-dominated fronts.

Although there may be difficulties associated with some of the techniques designed to

make such comparisons, future work should perhaps investigate the application of

statistical MOEA performance measures.

While GP does not provide a significant increase in model accuracy when compared

to more established techniques such as neural networks, the algorithm has more of an

advantage when applied to multi-objective problems. The parallel nature of GP means

that it can evolve a set of candidate solutions with varying levels of performance in

each objective. Real world engineering problems typically involve a number of

criteria that must be satisfied before a successful solution can be achieved.

Consequently, there has been a large increase in the application of MOEAs to

engineering problems and it is likely that this trend will continue.

Conclusions and Future Work

 157

8 Conclusions and Future Work

This thesis has examined a number of aspects of both steady-state and dynamic model

development using GP. Chapter 2 discussed how GP could be used to carry out

symbolic regression, where models are evolved in the form of tree structured

mathematical expressions. Chapter 3 showed how this technique could be applied to

the modelling of steady-state chemical processes. The first aim of this thesis was to

demonstrate how the modelling capabilities of the standard GP algorithm could be

improved. This was achieved using a MBF-GP algorithm, which uses a model

structure shared by many existing system identification techniques. Chapter 3 showed

that the MBF-GP algorithm was able to generate models of a higher accuracy on the

first two case studies, with the standard GP algorithm evolving the best models on the

extruder data. The most revealing aspect of the comparison was the difference in the

computational cost of each approach. The MBF-GP algorithm required less

computational effort to evolve models of the same accuracy as the standard algorithm.

Although the MBF-GP algorithm was generally able to outperform the standard

algorithm, it was not able to generate the most accurate models in the extruder case

study. It was suggested that the use of a non-linear optimisation routine might give the

standard GP algorithm an advantage in some cases. However, the major drawback is

that the computational burden is greater than that required by the linear least squares

routine used by the MBF-GP algorithm. An important consideration for future

algorithm development is the trade-off between the computational complexity and the

effectiveness of the available parameter optimisation routines. The MBF-GP

algorithm could call on a variety of different techniques, perhaps selected on a

probabilistic basis. For example, the L-M algorithm could be used sparingly (not

necessarily operating on all of the constants present in a model expression) to provide

the ability to fit constants appearing inside basis functions. Simpler operations such as

constant mutation could be applied more frequently as they only carry a small

processing penalty.

Chapter 4 continued the steady-state modelling work by comparing the performance

of the MBF-GP algorithm with neural networks. The results showed that, in terms of

Conclusions and Future Work

 158

prediction error, GP was able to compete in the test system and distillation column

case studies, but was outperformed on the extruder data. This shortcoming was

addressed by modifying the function set and increasing the population size and

number of generations. Although this strategy enabled the algorithm to match the

accuracy of the neural network, the additional computational burden was excessively

large.

One would perhaps expect GP to require more computational effort than neural

networks. Neural network training is essentially a parameter estimation exercise,

whereas the GP algorithm performs a search through the space of possible model

structures. One of the drawbacks of neural network model development is that a

variety of architectures must be examined before arriving at the final model structure.

This additional computational effort is not reflected in the FLOPs profiles presented

in Chapter 4. If this processing is considered, the difference between the GP and

neural network algorithms becomes less significant.

As with any algorithm comparison, it would be beneficial to apply the steady-state

modelling algorithms to a wider range of case studies. Future work should include

systems that exhibit characteristics typical of those encountered in real industrial

applications. For example, data sets collected from a real process may be corrupted

with measurement noise and outliers. Another problem encountered in industrial

processes is the sheer number of available process variables. It would be interesting to

study the performance of GP in response to a large number of inputs. In such a case,

the major problem is often one of determining the relevant input variables from a

highly correlated data set. In this event, the study may have to be extended to

encompass hybrid techniques. For example, a combination of GP and PLS may be

better suited to solving this type of problem.

The second aim of this thesis was to demonstrate how GP could be used to evolve

models of dynamic processes. Chapter 5 described how the steady-state modelling

algorithm could be modified in order to achieve this aim. The most innovative feature

of the dynamic version of the algorithm is its ability to automatically discover the

appropriate process lags required to build an accurate model. Although discrete-time

models have been developed in previous GP applications, the time-shifted model

Conclusions and Future Work

 159

inputs had to be specified explicitly in the terminal set. The aim of this thesis was to

develop a more flexible approach so that the final model form is not restricted by

assumptions made before the algorithm run. The second case study demonstrated how

the GP algorithm was able to combine a number of back-shift operators in order to

model the system time delay. This is a significant result, as neural network modelling

techniques do not have the ability to perform this task automatically. In practice, this

limitation can be overcome by using some form of correlation analysis to identify and

remove the time delay before network training. Nevertheless, it is encouraging to

discover that GP was able match the accuracy of the neural network that had the

benefit of time delay compensation. The GP algorithm also produced some models

that gave poor predictions. This should have been anticipated, as the algorithm has to

construct the time delay term by nesting a number of back-shift operators. This means

that the algorithm has to perform a more difficult task than the neural network and the

probabilistic nature of GP means that it is likely to fail on some occasions.

As was found in the steady-state modelling study, the dynamic MBF-GP algorithm

required less computational effort to develop models of the same accuracy as the

standard algorithm. This is again the result of being able to use a linear optimisation

technique (RLS) instead of the more complex non-linear L-M routine used by the

standard GP algorithm. The MBF-GP algorithm was able to compete with neural

networks in terms of prediction accuracy but was more expensive in terms of

computational effort. While this is an important consideration, it should be

remembered that computer technology is rapidly improving and today’s PCs are

capable of tasks that would have previously required access to high-end workstations.

The work carried out in this thesis required a relatively modest amount of processing

power when compared to other applications of GP. This can be put into context by

comparing the single desktop computer used for this work with the network of a

thousand PCs employed by Bennett et al. (2000) to design electrical circuits.

One of the concerns when attempting to compare GP with neural networks is that it is

difficult to carry out an objective study. A number of approaches could improve the

performance of both algorithms. In the case of neural networks, examples include

alternative training algorithms, weight initialisation techniques and additional

methods for improving generalisation. GP practitioners would argue that

Conclusions and Future Work

 160

enhancements could also be made to the GP algorithm. Changes could be as simple as

adjustments to the algorithm control parameters or involve the use of alternative

genetic operators and parameter estimation techniques. One of the main conclusions

to be drawn from the work conducted in thesis is that the relative accuracy of the two

techniques appears to be system dependent.

As with all modelling studies, it would have been beneficial to apply the dynamic GP

algorithm to a wider range of systems. Future work should ideally study more

demanding problems that require the identification of more substantial and/or variable

time delays. As with the steady-state modelling algorithm, the dynamic version

should be tested on data that is corrupted with noise and outliers. The algorithm could

also be used to generate different forms of time series models. For example, the

algorithm could be used to generate one-step ahead predictors that could be used to

track time varying processes. Future work could also compare the algorithm with

other techniques, such as those that use GP to evolve transfer function models.

Despite the encouraging performance of the GP algorithm, the results do not provide

sufficient evidence to suggest that GP will become as widely used as neural network

modelling techniques. This is largely because neural networks are well established,

meaning that the necessary software tools are well developed and widely available. In

addition, neural networks have been applied to a wide range of industrial applications

and have been the subject of detailed theoretical studies. Although the number of

applications of GP is increasing, more work is required in order to study the

suitability of GP derived models for real applications. For example, it has been shown

that neural networks can be incorporated into a variety of model-based control

schemes. It would be interesting to investigate the possibility of using GP models in a

similar fashion.

Some researchers have adopted the GP approach to modelling as models are

generated in the form of mathematical expressions. Although this model form may be

more ‘transparent’ than a neural network, this study has shown how GP can generate

models that are rather cumbersome and do not appear to offer any additional process

insight. The generic structure of neural network models can be seen as an advantage

as the engineer knows that the final model will possess certain properties. For

Conclusions and Future Work

 161

example, an interesting characteristic of RBF networks is that they do not extrapolate

into regions outside the range of the training data. In addition, hardware and software

implementation of neural network models is aided by the repetitive structure of the

network. GP generated models are more unpredictable in the sense that a different

model structure is generated by each algorithm run.

One of the key features of the GP algorithm is its ability to perform a highly parallel,

population-based search, making it well suited to multi-objective problem solving.

The algorithm is able to maintain and evolve a set of candidate solutions that offer

different levels of performance with respect to each objective domain. Chapter 7

showed how a MOGP algorithm could account for additional modelling criteria that

would usually be considered at the end of the algorithm run. Two case studies were

used to make comparisons between the MOGP and SOGP algorithms. The first case

study demonstrated how model parsimony could be improved by using the MOGP

algorithm. The second case study showed how more complex performance criteria

can be included. This was demonstrated using model residual tests, where a number

of correlation tests were combined to form a single objective function.

Although Pareto ranking enabled the MOGP algorithm to improve performance with

respect to the additional performance criteria, model accuracy was also compromised.

This failing was overcome by using a goal-based ranking scheme to guide the

algorithm towards the desired region of the search space. This technique is not as

straightforward as it first seems, as the need for goal values cannot be envisaged until

preliminary runs have been undertaken. For example, initial runs with conventional

Pareto ranking revealed that the model string length tended to be minimised at the

expense of the prediction error. While this occurrence could easily be explained with

hindsight, it is an indication that unexpected results may be achieved when greater

numbers of objectives are considered. It may be the case that progressive preference

articulation is required, as goal and priority information can be adapted during

evolution. The overriding concern with this approach is that it would be time

consuming and tedious to carry out multiple algorithm runs. It is also interesting to

note how this approach conflicts with the original notion of using GP as a completely

automated modelling tool.

Conclusions and Future Work

 162

Future work with the MOGP algorithm should move on to problems with more than

two performance criteria. It would be advisable to begin by including the string length

and correlation tests together with RMS error to create a three dimensional problem.

This would be a logical starting point as the bi-objective problems concerning these

objectives have already been studied in detail. One consideration is the extra

processing required to evaluate additional performance measures. Larger population

sizes may also be required to compensate for the increased difficulty of the problem.

Visualisation of the non-dominated set of individuals will be more difficult, making it

harder to configure goal and priority information. It is also important to try to adopt

more rigorous techniques designed to compare non-dominated sets of solutions.

Again, the difficulties associated with these approaches may be amplified if more than

two objectives are being considered. Possible modelling criteria that could be used

within a MOGP framework were discussed in chapters 6 and 7.

Multi-objective evolutionary computation is an expanding field of research. While the

number of applications is rapidly increasing, so is the need for more theoretical

studies to explain the underlying mechanisms associated with this type of algorithm.

Research in the GP community has followed a similar path, with a number of recent

contributions on the subject of a schema theory for GP (see for example, Poli, 2000).

A similar course will have to be taken by researchers in the field of multi-objective

problem solving. Although there is empirical evidence to suggest that certain

techniques may outperform others, the work tends to concentrate on test cases that do

not necessarily imitate the difficulties encountered when tackling complex problems.

Also, the metrics used to compare results may not necessarily measure features of

algorithm performance that are relevant to real problems.

Recent work has attempted to carry out a more theoretical analysis of MOEA

performance. For example, Deb (1999) tackles the problem of comparing MOGAs

and describes how test problems can be designed in order to assess certain aspects of

algorithm performance. More recently, Laummans et al. (2000) provided a model for

the role of elitism in MOEAs. There is still a need to formulate methods to analyse

different Pareto ranking schemes, fitness sharing and niching methods to provide

guidance to engineers wishing to tackle multi-objective problems in this way.

Although much of the current work is MOGA based, it is likely that multi-objective

Conclusions and Future Work

 163

GP will also have an important role to play in solving engineering problems such as

process optimisation, control, identification and scheduling which often have multiple

design considerations.

A feature of GP that attracts many researchers is that the algorithm can be applied to a

diverse range of problem domains with little or no modification to the basic

algorithm. While an algorithm that can be used to automatically generate solutions to

problems is an attractive prospect, it also encourages the tendency to replace scientific

judgement with ever increasing amounts of processing power. This thesis has

attempted to demonstrate a more measured approach to problem solving. This is

especially significant in the case of multi-objective problems, as a human decision

maker is able to influence the evolutionary process. This is an important consideration

for future work, which should not rely on the hope that an excessive amount of

computing power can be a substitute for engineering insight.

Bibliography

 164

Bibliography

Altenberg, L. (1994) ‘Evolving better representations through selective genome

growth’. Proceedings of the First IEEE Conference on Evolutionary Computation,

Orlando, Florida. June 27-29. pp 182-187.

Androulakis, I. P., Venkatasubramanian, V. (1991) ‘A Genetic Algorithm Framework

for Process Design and Optimisation’. Computers and Chemical Engineering, 15, pp

217-228.

Angeline, P. (1997) ‘Subtree Crossover: Building Block Engine or Macromutation?’.

In Genetic Programming 1997: Proceedings of the Second Annual Conference

(GP97). J. Koza et al. (eds.). San Francisco, Morgan Kaufmann. pp 240–248.

Arkov, V., Evans, C., Fleming, P. J., Hill, D. C., Norton, J. P., Pratt, I., Rees, D.,

Rodríguez-Vázquez, K. (2000) ‘System Identification Strategies Applied to Aircraft

Gas Turbine Engines’. Annual Reviews in Control, 24 (1), pp 67-81.

Babovic, V. (1998) ‘A data mining approach to time series modelling and

forecasting’. In Babovic and Larsen, (eds.), Proceeding of the Third International

Conference on Hydroinformatics, pp 847-856, Copenhagen, Denmark, 1998.

Baker, J. E. (1985) ‘Reducing Bias and Inefficiency in the Selection Algorithm’. In

Proceedings of an International Conference on Genetic Algorithms and Their

Applications.

Bennett, F. H., Koza, J. R., Yu, J., Mydlowec, W. (2000). ‘Automatic synthesis,

placement, and routing of an amplifier circuit by means of genetic programming’.

Evolvable Systems: From Biology to Hardware. Proceedings of the Third

International Conference, ICES 2000, Edinburgh, Scotland.

Bibliography

 165

Bettenhausen, K. D., Marenbach, P. Freyer, S., Rettenmaier, H., Nieken, U. (1995)

‘Self-Organizing Structured Modelling of a Biotechnological Fed-Batch Fermentation

by Means of Genetic Programming’. IEE Conference on Genetic Algorithms in

Engineering Systems: Innovations and Applications, 12-14 September, 1995. pp 481-

486.

Bhat, N., McAvoy, T.J. (1989) ‘Use of Neural Nets for Dynamic Modelling and

Control of Chemical Process Systems’. Computers in Chemical Engineering, 14, pp

573-583.

Bierman, G.J. (1977) Factorisation Methods for Discrete Sequential Estimation.

Academic Press, New York.

Billings, S.A., Voon, W. S. F. (1986a) ‘A Prediction-error and Stepwise-regression

Estimation Algorithm for Non-linear systems’. International Journal of Control, 44

(3), pp 803-822.

Billings, S. A., Voon, W. S. F. (1986b) ‘Correlation based model validation tests for

non-linear models’. International Journal of Control, 44, pp 235-244.

Billings, S.A., Zhu, Q.M. (1994) ‘Nonlinear Model Validation Using Correlation

Tests’. International Journal of Control, 60 (6), pp 1107-1120

Blickle, T., Thiele, L. (1994) ‘Genetic programming and redundancy’. In J. Hopf

(ed.), Genetic Algorithms within the Framework of Evolutionary Computation

(Workshop at KI-94, Saarbr�cken), pp 33-38. Max Planck-Institut f�r Informatik.

Blickle, T., Thiele, L. (1995) ‘A Comparison of Selection Schemes used in Genetic

Algorithms’. Technical Report 11, Computer Engineering and Communication

Networks Lab (TIK), Swiss Federal Institute of Technology (ETH), Zurich.

Bibliography

 166

Blickle, T. (1996) ‘Evolving compact solutions in genetic programming: A case

study’. In H.-M. Voigt, W. Ebeling, I. Rechenberg, and H.-P. Schwefel (eds.),

Parallel Problem Solving from Nature IV: Proceedings of the International

Conference on Evolutionary Computing, pp. 564–573, Heidelberg, Germany,

Springer-Verlag.

Bremermann, H.J., Anderson, R.W. (1989) ‘An Alternative to Back-propagation; A

Simple Rule for Synaptic Modification for Neural Net Training and Memory’. Tech.

Rep. No.PAM-483, Center for Pure and Applied Mathematics, University of

California, Berkeley, CA, USA.

Cao, H., Yu, J., Kang, L., Chen, Yuping, Chen, Yongyan (1999) ‘The kinetic

evolutionary modelling of complex systems of chemical reactions’. Computers and

Chemistry, 23 (2), pp 143-152.

Charalambous, C. (1992) ‘Conjugate Gradient Algorithm for Efficient Training of

Artificial Neural Networks’. IEEE proceedings, 139 (3), pp 301-310.

Checkoway, C., Kirk, K. (1992) SIMULINK Users Guide, The MathWorks, Inc.

Chen, S., Billings, S.A. (1989) ‘Representations of Non-linear Systems: the

NARMAX Model’. International Journal of Control, 49 (3), pp 1013-1032.

Chen, S., Billings, S.A., Cowan, C.F.N., Grant, P.M. (1990a) ‘Practical identification

of NARMAX models using radial basis functions’. International Journal of Control,

52 (6), pp.1327-1350.

Chen, S., Billings, S.A., Grant, P. (1990b) ‘ Non-linear System Identification Using

Neural Networks’. International Journal of Control, 51 (6), pp 1191-1214.

Chen, S., Yeh, C. (1997) ‘Using genetic programming to model volatility in Financial

time series’. In Koza, J., Deb, K., Dorigo, M., Fogel, D., Garzon, M., Iba, H. and

Riolo, R. (eds.), Genetic Programming 1997: Proceedings of the Second Annual

Conference, San Francisco: Morgan Kaufmann, 1997, pp 58-63.

Bibliography

 167

Chipperfield, A. J., Fleming, P. J. (1995) ‘Gas Turbine Engine Controller Design

Using Multiobjective Genetic Algorithms’. Proceedings of the First IEE/IEEE

International Conference on Genetic Algorithms in Engineering Systems: Innovation

and Applications (GALESIA).

Coello, C. (1999) ‘A Comprehensive Survey of Evolutionary-Based Multiobjective

Optimization techniques’. Knowledge and Information Systems, 1 (3), pp 269-308.

Cramer, N.L. (1985) ‘A Representation for the Adaptive Generation of Simple

Sequential Programs’. J. J. Grefenstette. (ed.), Proc. International Conference on

Genetic Algorithms and Their Applications, pp 183-187.

Deb, K. (1999) ’Multi-Objective Genetic Algorithms: Problem Difficulties and

Construction of Test Problems’. Evolutionary Computation, 7 (3), pp 205-230.

Doherty, S. K., Gomm, J. B., Williams, D. (1997) ‘Experiment design considerations

for non-linear system identification using neural networks’. Computers and Chemical

Engineering, 21 (3), pp 327-346.

Draper, N. R. and Smith, H. (1981) Applied Regression Analysis. Wiley, New York.

Elsey, J., Riepenhausen, J., McKay, B., Barton G. W., Willis, M. J. (1997) ‘Modelling

and Control of a Food Extrusion Process’. Computers and Chemical Engineering, 21,

Suppl, pp S361-S366, Proceedings of the European Symposium on Computer Aided

Process Engineering. - ESCAPE-7,Trondheim, Norway.

Esparcia-Alcázar, A. I., Sharman, K. (1997) ‘Evolving Recurrent Neural Network

Architectures by Genetic Programming’. Genetic Programming 1997: Proceedings of

the Second Annual Conference, pp. 89-94, Morgan Kaufmann.

Evett, M., Fernandez, T. (1998) ‘Numeric Mutation Improves the Discovery of

Numeric Constants in Genetic Programming’. Genetic Programming 1998:

Proceedings of the Third Annual Conference, University of Wisconsin, Madison,

Wisconsin, USA.

Bibliography

 168

Fahlman, S.E. (1989) ‘Faster-Learning Variations on Back-Propagation: An

Empirical Study’, in Touretzky, D., Hinton, G, and Sejnowski, T. (eds.), Proceedings

of the 1988 Connectionist Models Summer School, Morgan Kaufmann, pp 38-51.

Fogel, I. J., Owens, A. J., Walsh, M. J. (1966) Artificial Intelligence Through

Simulated Evolution. Wiley.

Fogel, D. B. (1995) Evolutionary Computation: Toward a New Philosophy of

Machine Intelligence. Piscataway, NJ.

Fonseca, C. M., Fleming, P. J. (1995) ‘An Overview of Evolutionary Algorithms in

Multiobjective Optimization’. Evolutionary Computation, 3 (1), pp 1-16.

Fonseca, C. M., Fleming, P. J. (1996a) ‘Non-linear System Identification with

Multiobjective Genetic Algorithms’. Proceedings of the 19th World Congress of

IFAC, pp 1887-192, San Francisco, California.

Fonseca, C.M., Fleming, P.J. (1996b) ‘On the Performance Assessment of

Multiobjective Stochastic Optimisers’. Internal Report. Department of Automatic

Control. Sheffield University, UK.

Fonseca, C. M., Fleming, P. J. (1997). ‘Multiobjective Optimization’. In Back, T.,

Fogel, D. and Michalewicz, Z. (eds.), Handbook of Evolutionary Computation, 1, pp

C4.5:1–C4.5:9, Oxford University Press, Oxford, England.

Fonseca, C. M., Fleming, P. J. (1998) ‘Multiobjective Optimization and Multiple

Constraint Handling with Evolutionary Algorithms - Part I: A Unified Formulation’.

IEEE Transactions on Systems, Man, and Cybernetics Part A: Systems and Humans,

28 (1), pp 26-37.

Frank, P. M., Köppen-Seliger, B. (1997) ‘New Developments Using AI in Fault

Diagnosis’. Engineering Applications of Artificial Intelligence, 10 (1), pp 3-14.

Bibliography

 169

Fröhlich, J., Hafner, C. (1996) ‘Extended and Generalized Genetic Programming for

Function Analysis’. <http://www.ifh.ee.ethz.ch/~hafner/ggp/ggppaper.zip>.

Fujiki, C., Dickinson, J. (1987) ‘Using the Genetic Algorithm to Generate LISP

Source Code to Solve the Prisoners Dilemma’. Genetic Algorithms and Their

Applications: Proceedings of the Second International Conference on Genetic

Algorithms, Erlbaum.

Gani, R. C., Ruiz, A., Cameron, I. T. (1986) ‘A Generalised Model for Distillation

Columns - I’. Computers and Chemical Engineering, 10 (3), pp 181-198.

Garg, S., Gupta, S. K. (1999) ‘Multiobjective optimization of a free radical bulk

polymerization reactor using genetic algorithm’. Macromolecular Theory and

Simulations, 8 (1), pp 46-53.

Gibbons, J.D. (1985) Nonparametric Methods for Quantitative Analysis. American

Series in Mathematical and Management Sciences, American Sciences Press.

Goldberg, D. E., Richardson, J. (1987), ‘Genetic Algorithms for Multimodal Function

Optimization’. Genetic Algorithms and Their Applications: Proceedings of the Second

International Conference on Genetic Algorithms, pp 41-49.

Goldberg, D. E. (1989) Genetic Algorithms in Search, Optimization, and Machine

Learning. Addison Wesley, Reading, Massachusetts.

Goldberg, D.E., Korb, B., Deb, K. (1989) ‘Messy Genetic Algorithms: Motivation,

Analysis and First results’. Complex Systems 3 (5) pp 493-530.

Goldberg, D. E. (1990) ‘Real-coded genetic algorithms, virtual alphabets, and

blocking’. Illinois Genetic Algorithms Laboratory, Dept. of General Engineering,

University of Illinois, Urbana, IL, IlliGAL Report 90001.

Bibliography

 170

Gray, G. J., Murray-Smith, D. J., Li, Y., Sharman, K. C., Weinbrenner, T. (1998)

‘Nonlinear model structure identification using genetic programming’. Control

Engineering Practice, 6 (11), pp 1341-1352.

Greeff, D. J., Aldrich, C. (1998) ‘Empirical modelling of chemical process systems

with evolutionary programming’. Computers & Chemical Engineering, 22 (7-8), pp

995-1005.

Hagan, M. T., Menhaj, M. (1994) ‘Training Feedforward Networks with the

Marquardt Algorithm’. IEEE Transactions on Neural Networks,. 5 (6), pp 989-993.

Hajela, P., Lin, C.-Y. (1992) ‘Genetic Search Strategies in Multi-criterion Optimal

Design’. Structural Optimisation, 4, pp 99-107.

Henson, M. A., Seborg, D. E. (1997) Nonlinear process control. Prentice Hall.

Hernandez, E., Arkun, Y. (1993) ‘Control of Nonlinear Systems Using Polynomial

ARMA Models’. AIChE Journal, 39, pp 446-460.

Hiden, H.G. (1998) ‘Data-based Modelling Using Genetic Programming’. PhD thesis,

University of Newcastle-upon-Tyne, UK.

Hinchliffe, M., Hiden, H., Willis, M., McKay, B., Barton, G.W. (1996) ‘Chemical

Process Systems Modelling Using a Multi-gene Genetic Programming Algorithm’.

Late Breaking Papers, GP ’96, Stanford, USA.

Hinchliffe, M., Tham, M., Willis, M. (1998) ‘Chemical Process Systems Modelling

Using Multi-Objective Genetic Programming’. Genetic Programming 1998:

Proceedings of the Third Annual Conference, University of Wisconsin, Madison,

Wisconsin, USA.

Holland, J.H. (1975) Adaptation in Natural and Artificial Systems. The University of

Michigan Press.

Bibliography

 171

Horn, J., Nafpliotis, N., Goldberg, D. E. (1994) ‘A Niched Pareto Genetic Algorithm

for Multiobjective Optimization’. In Michalewicz, Z. (ed.), Proceedings of the First

IEEE Conference on Evolutionary Computation, pp 82–87, IEEE Press, Piscataway,

New Jersey.

Howard, E. and Oakley, N. (1995) ‘Genetic programming as a means of assessing and

reflecting chaos’. Tech. Report FS-95-01, AAAI Press, pp 68-72.

Hwang, C.-L., Masud, A. S. M. (1979) Multiple Objective Decision Making –

Methods and Applications. Springer Verlag, Berlin, Germany.

Iba, H., Sato, T., de Garis, H. (1994) ‘System Identification Approach to Genetic

Programming’. Proceedings of the 1994 IEEE World Congress on Computational

Intelligence. pp 401–406.

Ishibuchi, H., Murata, T. (1996) ‘Multi-objective Genetic Local Search Algorithm’.

Proceedings of the IEEE International Conference on Evolutionary Computation

(ICEC ’96), Piscataway, NJ, pp 119-124.

Jacobs, R.A. (1988) ‘Increased Rates of Convergence Through Local Learning Rate

Adaption’. Neural Networks, 1, pp 295-307.

Jaske, H. (1996) ‘One-step-ahead prediction of sunspots with genetic programming’.

In Jarmo T. Alander (ed.), Proceedings of the Second Nordic Workshop on Genetic

Algorithms and their Applications (2NWGA), 19-23 August, University of Vaasa,

Finland. pp 79-88.

Jiang, M., Wright, A. H. (1992) ‘A Hierarchical Genetic System for Symbolic

Function Identification’. In Proceedings of the 24th Symposium on the Interface:

Computing Science and Statistics, College Station, Texas.

Johansson, R. (1993) System modeling and identification, Prentice Hall.

Bibliography

 172

Kaboudan, M. A. (1999) ‘A Measure of Time Series' Predictability Using Genetic

Programming Applied to Stock Returns’. Journal of Forecasting, 18, pp 345-357.

Kanjilal, P. P. (1995) Adaptive Prediction and Predictive Control. Peter Peregrinus

Ltd.

Koza, J. R. (1992) Genetic Programming: On the Programming of Computers by

Means of Natural Selection. MIT Press

Koza, J. R. (1994) Genetic Programming II: Automatic Discovery of Reusable

Programs. MIT Press.

Koza, J. R., Bennett, F. H., Andre, D., Keane, M.A. (1999) Genetic Programming III;

Darwinian Invention and Problem Solving. Morgan Kaufmann.

Krogh , A., Hertz, J. A. (1992) ‘A simple weight decay can improve generalization’.

Advances in Neural Information Processing Systems, 4, pp 950-957, Morgan

Kaufmann.

Kulkarni, B. D., Tambe, S. S., Dahule, R. K., Yadavalli, V. K. (1999) ‘Consider

Genetic Programming for Process Identification’. Hydrocarbon Processing 78 (7) pp

89-97.

Kulshreshtha, M. K. (1991) ‘Modelling and control of a twin screw food extruder’.

Ph.D. Thesis, Dept. of Food Science and Technology, University of Reading, UK.

Laumanns, M., Zitzler, E., Thiele, L. (2000) ‘A Unified Model for Multi-Objective

Evolutionary Algorithms with Elitism’, Proceedings of the 2000 Congress on

Evolutionary Computation, 1, pp 46-53, Piscataway, NJ.

Lee, D.-G., Kim H.-G., Baek, W.-P., Heung, Soon, H. C., (1997) ‘Critical heat flux

prediction using genetic programming for water flow in vertical round tubes’.

International Communications in Heat and Mass Transfer, 24 (7), pp 919-929.

Bibliography

 173

Lennox, B. (1996) ‘Application of Neural Networks to the Process Industries’, PhD

thesis, University of Newcastle upon Tyne, UK.

Ljung, L. (1999), System Identification: Theory for the User, 2nd edition, Prentice

Hall.

Löhl, T., Schulz, C., Engell, S. (1998) ‘Sequencing of batch operations for a highly

coupled production process: genetic algorithms versus mathematical programming’.

Computers and Chemical Engineering, 22 (Suppl.), pp S579–S585.

Mao, K. Z., Billings, S. A. (1997) ‘Algorithms for minimal model structure detection

in nonlinear dynamic system identification’. International Journal of Control, 68 (2),

pp 311-330.

Mao, K. Z., Billings, S. A. (2000) ‘Multi-directional Model Validity Tests for Non-

linear System Identification’. International Journal of Control, 73 (2), pp 132-143.

McKay, B., Lennox, B., Willis, M., Barton, G., Montague, G. (1996) ‘Extruder

Modelling: A Comparison of two Paradigms’. UKACC International Connference on

Control ‘96, 2, pp. 734-739, IEE, 2-5 September 1996.

McKay, B. (1997) ‘Studies in Data-based Modelling’. PhD thesis. University of

Sydney, Australia.

McKay, B., Willis, M., Barton, G. (1997) ‘Steady-state modelling of chemical process

systems using genetic programming’. Computers and Chemical Engineering, 21 (9),

pp 981-996.

Minai, A. A., Williams, R.D. (1990) ‘Back-propagation heuristics: A study of the

extended delta-bar-delta algorithm’. Proceedings of the IEEE Joint International

Conference on Neural Networks, 1, pp 595-600.

Bibliography

 174

Montana, D.J., Czerwinski, S. (1996) ‘Evolving Control Laws for a Network of

Traffic Signals’. Genetic Programming, Proceedings of the First International

Conference. July 28-31, 1996, Stanford University, California. pp 333-338.

Narendra, K., Parthasarathy, K. (1990) ‘Identification and Control of Dynamic

Systems Using Neural Networks’. IEEE Trans. Neural Networks, 1, pp 4-27.

Nguyen, D., Widrow, B. (1990) ‘Improving the learning speed of 2-layer neural

networks by choosing initial values of the adaptive weights’. Proceedings of the Joint

International Conference on Neural Networks, 3, pp 21-26.

Nordin, P., Banzhaf, W. (1995) ‘Complexity compression and evolution’. In L. J.

Eshelman (ed.), Proceedings of the Sixth International Conference on Genetic

Algorithms, pp. 310–317. San Francisco, CA, Morgan Kaufmann.

Nordin, P., Francone, F., Banzhaf, W. (1996) ‘Explicitly defined introns and

destructive crossover in genetic programming’. Advances in Genetic Programming 2,

pp 111-134, MIT Press, Cambridge, MA, USA.

Nordvik, J. P., Renders, J. M. (1991) ‘Genetic Algorithms and their Potential for use

in Process Control: A Case Study’. In R. K. Belew and L. B. Booker (eds.),

Proceedings of the Fourth International Conference on Genetic Algorithms, pp 480-

486.

Poli, R. (2000) ‘Exact Schema Theorem and Effective Fitness for GP with One-point

Crossover’. Proceedings of the Genetic and Evolutionary Computation Conference,

Morgan Kaufmann. Las Vegas. pp. 469-476.

Porter, M., Willis, M.J., Hiden, H.G. (1996) ‘Computer-Aided Polymer Design using

Genetic Programming’. MEng. Research Project, Dept. Chemical and Process

Engineering, University of Newcastle upon Tyne, UK.

Press, W.H., Flannery, B.P., Saul, A., Vetterling, W.T. (1992) Numerical Recipes in

C: The Art of Scientific Computing, 2nd edition, Cambridge University Press.

Bibliography

 175

Raidl, G.R. (1998) ‘A Hybrid GP Approach for Numerically Robust Symbolic

Regression’. In Proceedings of the 1998 Genetic Programming Conference, Madison,

Wisconsin, pp. 323-328.

Rechenberg, I. (1972) Evolutionsstrategie: Optimierung Technischer Systeme nach

Prinzipien der Biologischen Evolution, Stuttgart: Frommann-Holzberg Verlag.

Reed, R. (1993) ‘Pruning Algorithms - A Survey’. IEEE Transactions on Neural

Networks, 4 (5), pp 740-747.

Riedmiller, M., Braun, H. (1993) ‘A direct adaptive method for faster

backpropagation learning: The RPROP algorithm’. Proceedings of the IEEE

International Conference on Neural Networks.

Rodríguez-Vázquez, K., Fleming, P. J. (1998) ‘Multiobjective genetic programming

for gas turbine engine model identification’. UKACC International Conference on

Control ’98, 1-4 September, IEE, 1988.

Rumelhart, D., Hinton, G., Williams, R. (1986) Parallel Distributed Processing:

Explorations in the Microstructure of Cognition, 1, MIT, Cambridge, Massachusetts.

Sarle, W. S. (1995) ‘Stopped Training and Remedies for Overfitting’. In Proceedings

of the 27th Symposium on Interface.

Schaffer, J. D. (1985) ‘Multiple Objective Optimization with Vector Evaluated

Genetic Algorithms’. In Grefenstette, J. J. (ed.), Proceedings of the First International

Conference on Genetic Algorithms.

Schaffer, J.D., Caruana, R.A., Eshelman, L.J. (1990) ‘Using genetic search to exploit

the emergent behaviour of neural networks’. Physica D, 42 (1-3), pp 244-248 1990.

Schwefel, H.-P. (1995) Evolution and Optimum Seeking. Sixth-Generation Computer

Technology Series. Wiley, New York.

Bibliography

 176

Searson, D., Willis, M., Montague, G. (1998) ‘Chemical Process Controller Design

Using Genetic Programming’. Genetic Programming 1998: Proceedings of the Third

Annual Conference, pp 359-364, Morgan Kaufmann, 22-25 July.

Sharman, K.C., Esparcia Alcazar, A.I., Li, Y. (1995) ‘Evolving Signal Processing

Algorithms by Genetic Programming’. IEE Conference on Genetic Algorithms in

Engineering Systems: Innovations and Applications. 12-14 September, pp 473-480.

Shaw, K. J., Nortcliffe, A. L., Thompson, M., Love, J., Fonseca, C. M., Fleming, P. J.

(1999) ‘Assessing the Performance of Multiobjective Genetic Algorithms for

Optimization of a Batch Process Scheduling Problem’, Congress on Evolutionary

Computation, pp37–45, IEEE Press, Piscataway, New Jersey.

Smillie, K. W. (1966) An Introduction to Regression and Correlation, Academic

Press, New York.

Söderström, T, Stoica, P. G. (1989) System Identification, Englewood Cliffs, NJ,

Prentice-Hall International.

Soule, T., Foster, J. A., Dickinson, J. (1996) ‘Code growth in genetic programming’.

In J. R. Koza, D. E. Goldberg, D. B. Fogel, and R. R. Riolo (eds.), Genetic

Programming 1996: Proceedings of the First Annual Conference, pp 215–223,

Cambridge, MA: MIT Press.

South, M. C. (1994) ‘The application of genetic algorithms to rule finding in data

analysis’, PhD thesis, University of Newcastle-upon-Tyne, UK.

Srinivas, N., Deb, K. (1994). ‘Multiobjective Optimization Using Nondominated

Sorting in Genetic Algorithms’. Evolutionary Computation, 2 (3), pp 221-248.

Tan, K.C., Murray-Smith, D.J., Sharman, K.C. (1995) ‘System Identification and

Linearisation using Genetic Algorithms and Simulated Annealing’. IEE Conference

on Genetic Algorithms in Engineering Systems: Innovations and Applications. 12-14

September, 1995. pp 164-169.

Bibliography

 177

Turner, P., Montague, G., Morris, J. (1996) ‘Dynamic neural networks in non-linear

predictive control (an industrial application)’. Computers and Chemical Engineering,

20 (972), pp S937-S942.

Van Veldhuizen, D. A., Lamont, G. B. (2000) ‘Multiobjective Evolutionary

Algorithms Analyzing the State-of-the-Art’, Evolutionary Computation 8 (2). pp 125-

147

Watson, A. H., Parmee, I. C. (1996) ‘Identification of Fluid Systems Using Genetic

Programming’, Proceedings of the Second Online Workshop on Evolutionary

Computation – WEC2. pp.45-48.

Watson, J.-P. (1999) ‘A Performance Assessment of Modern Niching Methods for

Parameter Optimization Problems’, GECCO-99: Proceedings of the Genetic and

Evolutionary Computation Conference, Orlando, Florida, USA. Morgan Kaufmann.

pp. 719-725.

Weigend, A. S., Rumelhart, D. E., Huberman, B. A. (1991) ‘Generalization by

weight-elimination with application to forecasting’. In: R. P. Lippmann, J. Moody,

and D. S. Touretzky (eds.), Advances in Neural Information Processing Systems 3,

San Mateo, CA: Morgan Kaufmann.

Willis, M.J., Di Massimo, C., Montague, G.A., Tham, M.T., Morris, A.J. (1991)

‘Artificial Neural Networks in Process Engineering’. IEE Proceedings - D.138 (3).

Willis, M. J., Montague, G. A., Di Massimo, C., Tham, M. T., Morris, A. J. (1992)

‘Artificial Neural Networks in Process Estimation and Control’. Automatica, 28 (6),

pp 1181-1187.

Willis, M., Hiden, H., Hinchliffe, M., McKay, B., Barton, G.W. (1997) ‘Systems

Modelling Using Genetic Programming’. Computers and Chemical Engineering, 21

(Suppl.), pp S1161-S1166, Elsevier Science Ltd.

Bibliography

 178

Wray, J., Green, G. G. R. (1991) ‘How Neural Networks Work: The Mathematics of

Networks Used to Solve Standard Engineering Problems’. Proceedings of the

American Control Conference, 3, pp 1654-1667.

Yam, J. Y. F., Chow, T. W. S. (2000) ‘A Weight Initialisation Method for Improving

Training Speed in Feedforward Neural Network’, Neurocomputing, 30, pp 219-232.

Zitzler, E., Thiele, L. (1999) ‘Multiobjective Evolutionary Algorithms: A

Comparative Case Study and the Strength Pareto Approach’. IEEE Transactions on

Evolutionary Computation, 3 (4), pp 257–271.

Zitzler, E., Thiele, L., Deb, K. (2000) ‘Comparison of Multiobjective Evolutionary

Algorithms: Empirical Results’, Evolutionary Computation, 8 (2), pp 173-195.

Appendix

 179

Appendix

A.1 Levenberg-Marquardt Optimisation

A recognised drawback of gradient descent algorithms is that they can make

extremely slow progress as they approach the minimum. One method that can be used

to overcome this problem is to perform a search in the direction given by Newton’s

method. The basic assumption of Newton’s method is that when the search is

sufficiently close to the minimum, a second order Taylor series expansion can be used

to approximate the error surface,

)()(
2
1

)()(ˆ TT Θ−ΘΘ−Θ+Θ−Θ−Θ= iiiiii Hjεε A-1

Where ε̂ is the estimated error, ε is the actual error, Θ is a vector of parameters

(model or network parameters) and Θi is a particular set of values for those

parameters. j is a vector of partial derivatives of the error with respect to each of the

parameters (the Jacobian) and H is a matrix of second derivatives of the error with

respect to the parameters (the Hessian).

Calculation of these derivatives enables the parameters that minimise A-1 (�m) to be

found. Hopefully, the same parameters will minimise the real function that the

quadratic approximates, thus enabling the algorithm to ‘jump’ directly to the solution.

The additional computational effort required to calculate the second derivatives is

avoided by using an approximation to the Hessian, (Ĥ). The Gauss-Newton search

direction is then given by,

0)(ˆ
2
1ˆ

=Θ−Θ+−=
Θ miii Hj

∂
ε∂

iiim jH 1ˆ2 −−Θ=Θ

A-2

Appendix

 180

The Levenberg-Marquardt(L-M) algorithm varies smoothly between the extremes of

the Gauss-Newton method and steepest descent. Far from the minimum, it is likely

that the error surface is not well approximated by a quadratic and steepest decent is

used. However, as the algorithm approaches the minimum the Gauss-Newton search

direction begins to dominate. The L-M parameter update rule can be represented as,

iiiii jIH 1
1)ˆ(−

+ +−Θ=Θ λ A-3

Where a large value of λ gives a step in the steepest gradient direction and a small

(approaching zero) λ gives a Gauss-Newton step. A simple heuristic is generally used

to adjust the value of λ dynamically during a run. This procedure has been found to

work well in practice and L-M has effectively become the standard non-linear least-

squares optimisation algorithm (Press et al., 1992).

A.2 Steady-state Process Data

A.2.1 Test System

Plots of the input and output variables for this system are shown below.

Figure A-1 - Output

Appendix

 181

Figure A-2 – Input 1

Figure A-3 – Input 2

Figure A-4 – Input 3

Appendix

 182

Table A-1 shows the linear correlations between the input and output variables.

Table A-1– Correlation coefficients for test system

 y u1 u2 u3

y 1.00 0.60 -0.70 0.03

u1 0.60 1.00 0.01 0.13

u2 -0.70 0.01 1.00 0.05

u3 0.03 0.13 0.05 1.00

A.2.2 Vacuum Distillation Column

Plots of the input and output variables are shown below,

Figure A-5 – Bottom product composition

Appendix

 183

Figure A-6 –composition at tray 12

Figure A-7 – composition at tray 27

Figure A-8 –composition at tray 42

Appendix

 184

The linear correlations between the input-and output variables are displayed in Table

A-2

Table A-2 – Correlation coefficients for distillation column

 xB x12 x27 x42

xB 1.00 0.12 0.83 0.29

x12 0.12 1.00 0.30 0.79

x27 0.83 0.30 1.00 0.55

x42 0.29 0.79 0.55 1.00

A.2.3 Cooking Extruder

Plots of the input and output variables used in the cooking extruder case study are

shown below,

Figure A-9 – Degree of gelatinisation (mass fraction)

Appendix

 185

Figure A-10 – Screw speed (rpm)

Figure A-11 – Feed flowrate (Kg/s)

Figure A-12 – Feed moisture content (mass fraction)

Appendix

 186

Figure A-13 – Feed temperature (C)

Table A-3 - Correlation coefficients for cooking extruder variables

 g ω Qf Mf Tf

g 1.00 0.69 -0.19 -0.60 0.05

ω 0.69 1.00 0.02 0.00 0.14

Qf -0.19 0.02 1.00 0.08 0.23

Mf -0.60 0.00 0.08 1.00 -0.03

Tf 0.05 0.14 0.23 -0.03 1.00

Appendix

 187

A.3 Linear Models of Steady-state Systems

Linear models were developed for each steady-state data set using batch least squares

to determine the regression parameters. RMS values are for the data scaled in the

range [0 1].

A.3.1 Test System

A linear model for the test system is shown below. The model has a training RMS of

0.0789 and a validation RMS of 0.0730.

5730.00164.05122.04217.0ˆ 321 +−−= uuuy A-4

The prediction obtained using this model is shown in Figure A-14.

0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

1.2

Sample number

O
ut

pu
t (

y)

Training Validation

Actual
Predicted

Figure A-14 - Linear model prediction for test system

Appendix

 188

A.3.2 Distillation Column

A linear model for bottom product composition is shown below,

1458.03647.08289.00217.0 422712 +−+= xxxxB A-5

The model has a Training RMS of 0.1093 and a Validation RMS of 0.0890. The

model prediction is shown in Figure A-15.

0 20 40 60 80 100 120 140 160 180 200

0

0.2

0.4

0.6

0.8

1

1.2

Sample number

B
ot

to
m

 c
om

po
si

tio
n,

x B

 Training Validation

Actual
Predicted

Figure A-15 – Linear model prediction for bottom composition, xB

A.3.3 Cooking Extruder

Equation A-6 is a linear model for the degree of starch gelatinisation.

6375.00066.05995.0036.28651.0ˆ +−−−= fff TMQg ω A-6

The model has a Training RMS of 0.1278 and a Validation RMS of 0.1237. The

model prediction is shown in Figure A-16.

Appendix

 189

0 20 40 60 80 100 120 140 160 180 200
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Sample number

D
eg

re
e

of
 g

el
at

in
is

at
io

n

Training Validation

Actual
Predicted

Figure A-16 – Linear model prediction for degree of starch gelatinisation

A.4 Recursive Least Squares Optimisation

This recursive least squares algorithm can be derived from the ordinary least squares

estimate as follows (Johansson, 1993),

Consider the regressor φi and the observations yi in the following matrices,

�
�
�
�

	

�
�
�
�

�

=Φ

T
k

T

k

φ

φ

�

1

�
�
�
�

	

�
�
�
�

�

=

k

k

y

y

Y �

1

 A-7

The least squares criterion based on k samples is,

)ˆ()ˆ(
2
1

)ˆ()ˆ(
2
1

)ˆ(k
T

kkkk
T

kkkk YYv θεθεθθθ =Φ−Φ−= A-8

The ordinary least squares estimate is given by,

)()()(ˆ
1

1

1

1 ��
=

−

=

− =ΦΦΦ=
k

i
ii

k

i

T
iik

T
kk

T
kk yY φφφθ A-9

Appendix

 190

Introducing the matrix,

11

1

)()(−−

=

ΦΦ== � k
T
k

k

i

T
iikP φφ A-10

A recursive update is given by,

T
kkkk PP φφ+= −

−
− 1

1
1 A-11

)ˆ(ˆ
)ˆ(

)(ˆ

11

1
1
1

1

1

−−

−
−
−

−

=

−+=

+=

+= �

k
T
kkkkk

kkkkk

k

i
kkiikk

yP

yPP

yyP

θφφθ

φθ

φφθ

A-12

It is also possible to calculate the matrix Pk instead of its inverse,

1

11
1)()(−

−−
− +ΦΦ=ΦΦ= T

kkk
T
kk

T
kkP φφ A-13

In practice it is often difficult and computationally expensive to perform matrix

inversion. However, the problem can be reformulated using the following

relationship,

111111)()(−−−−−− +−=+ CABCAIBAABCA A-14

If A-14 is applied to A-13, the following relationship results,

1
1

111

11
1

)(

)(

−
−

−−−

−−
−

+−=

+=

k
T
kkk

T
kkkk

T
kkkk

PPIPP

PP

φφφφ
φφ

 A-15

The following three equations are required to carry out RLS optimisation,

kkkkk P εφθθ += −1
ˆˆ A-16

1
ˆ

−−= k
T
kkk y θφε A-17

Appendix

 191

kk
T
k

k
T
kkk

kk P
PP

PP
φφ

φφ
1

11
1 1 −

−−
− +

−= A-18

kθ̂ is the parameter estimate based on the prediction error (εk), the regression vector

(φk) and the covariance matrix (Pk).

A.4.1 U-D Factorisation

The matrix P can be expressed as (Kanjilal, 1995),

[][]TT UDUDUDUP 2121 == A-19

Where D is a diagonal matrix, U is an upper triangular matrix with 1’s on the diagonal

and UD1/2 is the square root of P. The factorisation is referred to as U-D factorisation

of the covariance matrix. Instead of updating P, its factors U and D can be updated

and propagated through the recursions. This approach reduces round-off errors and

increases numerical stability.

A.5 Dynamic Process Data

This section contains plots of the input-output data used for in the dynamic modelling

case studies.

A.5.1 Test system

The input-output data for the test system is shown below. The data has been scaled in

the range [0 1].

Appendix

 192

Figure A-17 - Output

Figure A-18 - Input

A.5.2 Cooking Extruder

The input-output data for the extruder case study is shown in below.

Figure A-19 – Degree of gelatinisation (mass fraction)

Appendix

 193

Figure A-20 – Screw speed (rpm)

Figure A-21 – Feed flowrate (Kg/s)

Figure A-22 – Feed moisture content (mass fraction)

Appendix

 194

Figure A-23 – Feed temperature (C)

A.6 Linear Models of Dynamic Systems

Linear models were developed using a single time shift for each input/output term. In

order to develop models capable of long-term prediction over the entire data set, the

model output was used instead of the process output. Model parameters were

estimated using the RLS algorithm.

A.6.1 Test System

The following linear model has a training of 0.0173 and a validation RMS of 0.0178,

0140.06790.0ˆ3282.0ˆ 11 ++= −− kkk uyy A-20

The prediction generated by this model is shown in Figure A-24.

Appendix

 195

0 50 100 150 200 250 300 350 400
0

0.2

0.4

0.6

0.8

1

Sample number

O
ut

pu
t (

y)

Training Validation

Actual
Predicted

Figure A-24 - Linear model prediction for test system

A.6.2 Cooking Extruder

The following model for the degree of gelatinisation has a training RMS of 0.0659

and a validation RMS of 0.0702

1010.00434.00036.0

0474.01104.0ˆ8182.0ˆ

1,1.

1,11

+−+

−+=

−−

−−−

kfkf

kfkkk

TM

Qgg ω
 A-21

Figure A-25 shows the accuracy of the prediction obtained using this model.

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

1.2

Sample number

D
eg

re
e

of
 g

el
at

in
is

at
io

n
(g

)

 Training Validation

Actual
Predicted

Figure A-25 – Linear model prediction for degree of starch gelatinisation.

