374

Learning Regular Languages Using Genetic Programming

Bgrge Svingen
Department of Computer and Information Science
Norwegian University of Science and Technology
N-7034 Trondheim
Norway
bsvingen@idi.ntnu.no

ABSTRACT

This paper describes an experiment
where genetic programming was used to
evolve, given a set of positive and neg-
ative examples, regular expressions rec-
ognizing several regular languages. The
Tomita benchmark languages were used
to test the system, and general solutions
were found for all seven languages.

1 Introduction

In (Brave 1996), genetic programming (Koza 1992, Koza
1994) is used to evolve deterministic finite automata froma set
of positive and negative example strings. This is done by us-
ing the method of cellular encoding (Gruau 1994), where the
program trees build the automata while being executed, along
with an additional, boolean combination of the resulting au-
tomata.

There is, however, a more natural way to represent finite au-
tomata as trees — by using regular expression. Since regular
expressions and finite automata represent the same set of lan-
guages — regular languages — and since algorithms exist for
converting between these two representations (Sipser 1997),
it should be possible to evolve a regular expression that rec-
ognizes a given language, and then convert this into a finite
automaton as needed.

This is the approach taken in the work described in this pa-
per. Genetic programming is used to evolve regular expres-
sions from training data, and as in (Brave 1996), the seven
Tomita benchmark languages (Tomita 1982) are used to test
the system. The Tomita languages are shown in Table 1.

2 Regular Expressions

(Sipser 1997) gives a definition of regular expressions that can
be represented by the following grammar :

Language | Description

TL1 1*

TL2 -(10)*

TL3 no odd 0 strings after odd 1 strings

TL4 no 000 substrings

TLS an even number of 01’sand 10’s

TL6 number of 1°s - number of 0°s is multiple of
3

TL7 0*1*0*1*

Table 1 The Tomita Benchmark Languages

R — a,forsomea€X (€))]
R — ¢ 2)
R = 0 3)
R — (RUR) 4)
R — (RoR) o)
R — (Rx) ©)

¥ is here the alphabet used, (R U Rg) matches either Ry
or Ry, and (R; o R2) matches Ry followed by Re. (Ri*)
matches any number of occurrences of R;.
Since no interesting regular expressions require the use of
Equations 2 and 3, they will in the following be ignored.

3 Representing Regular Expressions
. Using Genetic Programming

As can be seen from the grammar above, a regular expression
can naturally be interpreted as a tree. If the members of the
alphabet ¥, which in this paper will be taken to be {0,1}, are
used as terminals, and the operations of union, concatenation
and repeated matches, represented by Equations 4 to 6 above,
are used as functions, a program tree can represent any regular
expression.

There are now two possible interpretations of such a pro-
gram tree. In the first case it would be seen as a static repre-
sentation of a regular expression, and not really as a program
tree at all, in the second as a computer program describing how
to build a finite automaton. Since building this automaton is

Learning Regular Languages Using Genetic Programming 375

Explanation

Builds an automaton that acceplts
any string accepted by one of the two
argument automata.

2 Builds an automaton that acceplts
any string that is the concatenation
of two strings that are accepled by
the two argument automata, respec-
tively.

Builds an automaton that accepts
any string that is the concatenation
of any number of strings where each
string is accepted by the argument
automaton.

Table 2 Function Set

Function | Arity
+ 2

Terminal | Explanation

0 Returns an automaton accepting the
single character 0.

1 Returns an automaton accepting the
single character 1.

Table 3 Terminal Set

the most practical way to match the regular expression with a
given string, the last approach will be taken.

The function and the terminal sets will then be as shown in
Tables 2 and 3, respectively.

4 The Experiment

For each of the seven Tomita languages, 500 positive and 500
negative strings were created. The strings were selected ran-
domly, and had a maximum length of 50 characters.

Genctic programming was then used to evolve regular ex-
pressions to match the examples. The population size was
10000, divided over 16 demes (Koza 1992, Wright 1932,
Tanese 1989, Andre and Koza 1996, Niwa and Iba 1996) with
625 individuals in each, and the best 25 individuals were kept
unchanged for each generation. Fitness was defined as the
number of strings not correctly classified, and fitness propor-
tional selection was used. The program trees had a maximum
initial depth of 3,and a maximum depth after crossover of 10.
The probability of crossover was 0.9. Automatically defined
functions (Koza 1994) were not used.

A single run of 100 gencrations was performed for each of
the seven Tomita languages.

5 Results

For cach of the Tomita languages, a perfect and general solu-
tion was found in the single run. These solutions are given,
along with simplified versions in more common notation, in
Table 4.

The languages TL1, TL2 and TL7 all have simple represen-
tations as regular expressions, and should therefore be easy to
find. This was also the case; the first two were even found in

the first generation.

The other solutions are not as intuitively correct, and will
be dealt with in the following.

To start with TL3, it is clear that no strings matched by this
regular expression contain an odd number of 0’s after an odd
number of 17, since the only way Lo get an odd number of 1’s
is by using the 100 part of the expression — except for 1 ’s at
the end of the string — which contains a pair of 0’s, and this
can again be followed by either a 1 or the double 0.

To see that any string that contains no odd 0°s after odd 1°s
is covered by this expression, it is enough to look at the sub-
set 0%(11 | 100 | 110 | 00)*1*; the first 0* takes carc of any
leading 0’s. There are then three possible cases which repcat
throughout the rest of the string; even 1’s followed by even
0’s, which are handled by the 11’s and the 00°s, even 1’s fol-
lowed by odd 0’s, which are handled by the 1 1’s,110’s and
00’s, and odd 1’s followed by even 0’s, which are handled by
the 11’s, 100’s, and 00°s. The 1* then takes care of any trail-
ing 1’s.

It is clear that no strings matched by the solution for TL4
contain the substring 000. To see that any string with no
such subset can be matched by the solution, look at the sub-
set (¢/00|0) (1 | 100 | 10)* — the first part handles any leading
zeros, while the second part matches the rest of the string.

The language TLS5 consists of all strings with an even num-
ber of 01’s and 10’s. The only way to achieve this, is to have
a string that starts and ends with the same characler, and this
clearly applies to any string matched by the solution cxpres-
sion. To see that any string that starts and ends with the same
character can be matched by the expression, it is important to
notice that the expression consists of two parts; one handles
strings that start and end with a 0, and the other handles strings
that start and end with a 1 — each part of the expression con-
sists of repeated patterns with just this property. For the 0s,
the subset 0 | 01*0 makes this clear, while for the 1’s, the sub-
set 10%1* does the same thing.

Finally, for TL6, the solution consists of the repeated union
of four parts, 1(10)*0,0(01)*1, 11(01)*1 and 0(01)*00)*, and
it is again clear that any string matched by this expression
fulfills the requirement that the number of 1’s subtracted the
number of 0’°s should be a multiple of 3. It is more difficult to
see that any such string can be matched by the expression —
to see that this is in fact the case, it is useful to imagine going
through such a string, counting modulo 3, where 1 is added for
each 1, and 1 is subtracted for each 0. For most strings, there
will be points in the string where the count reaches zero. Split
the string at these points.

The result will be a number of substrings, where the count
does not go to zero before the end. If the substring starts with
a 0, then the count will go to —1 mod 3 = 2. This means that
the next character must be another 0, to avoid reaching zero,
getting the sum 1. The following character must thenbea 1,
and the count is back to 2. This pattern will repeat until the
end of the string, where 0 is reached either by two 0’s or two
1’s in a row. This means that the substring will be matched by

376 Svingen

Language | Solution Simplified Solution

TLI **1) 1*

TL2 (" (* (- 10y) (10)*

TL3 CCECIEEIDCI0) N (* (+ (11]110|0)*(11| 100 | 110 | 00)*1*

(1HE1C00)(10))(* (- 00)) (* 1))

TL4 FOCHCEGEICOELCoONN D) (+(+(.

(-00)(* 1) 0) (* (+ 1 (- (+ (- 10) 1) 0))))

TLS5 FEEOCCOEECE)DN) (. (.

LECEO D) 1))

TL6 CECEECEICECTN0Y 0™

ODMDN FCFCLET)C (1T

CODNDNCCCOC(*(01)))0)0))

TL7 CCCECEED) o) ¢t (+11) 0*1*0*1*
Table4 Results

((1]01 | 001)*|001*|0) (1 | 100 | 10)*
(0] 0(0*1)*0)* | (1(0*1)*1*)*

(1(10)*0| 0(01)*1 | 11(01)*1 | 0(01)*00)*

the expression 0(01)*1 | 0(01)*00. Similarly, the other parts
of the solution matches any substring that starts with a 1.
All the evolved solutions are therefore correct.

6 Conclusion

Based on the results described in the previous section, evolv-
ing regular expressions seems to be a useful method for recog-
nizing regular languages. It has several advantages compared
to the method used in (Brave 1996). First and most obvious, it
seems to give better results — all the seven Tomita languages
were recognized successfully here, while (Brave 1996) did not
recognize TL6. Second, regular expressions are a more nat-
ural and elegant way of specifying a regular language in the
formofatree, and it is immediately understandable to the user.
The extra steps with additional boolean combinations, used in
(Brave 1996), are not necessary. Third, regular expressions
can specify any regular language — this is not the case with
the cellular encoding used in (Brave 1996).

Acknowledgements

This work has received support from The Research Coun-
cil of Norway (Program for Supercomputing) through a grant
of computing time. The GP++ genetic programming library
(Svingen 1997) was used to do the genetic programming.

References

Andre, David and John R. Koza (1996). Parallel genetic pro-
gramming: A scalable implementation using the trans-
puter network architecture. In: Advances in Genetic Pro-
gramming 2 (Peter J. Angeline and K. E. Kinnear, Jr.,
Eds.). Chap. 16, pp. 317-338. MIT Press. Cambridge,
MA, USA.

Brave, Scolt (1996). Evolving deterministic finite automata
using cellular encoding. In: Genetic Programming
1996: Proceedings of the First Annual Conference
(John R. Koza, David E. Goldberg, David B. Fogel and
Rick L. Riolo, Eds.). MIT Press. Stanford University,
CA, USA. pp. 39-44,

Gruau, Frederic (1994). Genetic micro programming of neural
networks. In: Advances in Genetic Programming (Ken-
neth E. Kinnear, Jr., Ed.). Chap. 24, pp. 495-518. MIT
Press.

Koza, John R. (1992). Genetic Programming: On the Pro-
gramming of Computers by Natural Selection. MIT
Press. Cambridge, MA, USA.

Koza, John R. (1994). Genetic Programming II: Automatic
Discovery of Reusable Programs. MIT Press. Cam-
bridge Massachusetts.

Niwa, Tatsuya and Hitoshi Iba (1996). Distributed genetic
programming: Empirical study and analysis. In: Genetic
Programming 1996: Proceedings of the First Annual
Conference (John R. Koza, David E. Goldberg, David B.
Fogeland Rick L. Riolo, Eds.). MIT Press. Stanford Uni-
versity, CA, USA. pp. 339-344.

Sipser, Michael (1997). Introduction to the Theory of Compu-
tation. PWS Publishing Company.

Svingen, Bgrge (1997). GP++ An introduction. In: Late
Breaking Papers at the 1997 Genetic Programming
Conference (John R. Koza, Ed.). Stanford Bookstore.
Stanford University, CA, USA. pp. 231-239.

Tanese, R. (1989). Distributed genetic algorithms. In: Pro-
ceedings of the 3rd International Conference on Genetic
Algorithms.

Tomita, M. (1982). Dynamic construction of finite-state au-
tomata from examples using hill climbing. In: Proceed-
ings of the Fourth Annual Cognitive Science Conference.
Ann Arbor, ML pp. 105-108.

Wright, Sewall (1932). The roles of mutation, inbreeding,
crossbreeding and selection in evolution. In: Proceed-
ings of the Sixth International Congress of Genelics.

