
Human Factors in the Study of Automatic Software Repair
Future Directions for Research with Industry

Emily Winter
e.winter@lancaster.ac.uk

Lancaster University

David Bowes
d.h.bowes@lancaster.ac.uk

Lancaster University

Steve Counsell
steve.counsell@brunel.ac.uk

Brunel University

Tracy Hall
tracy.hall@lancaster.ac.uk

Lancaster University

Saemundur Haraldsson
saemundur.haraldsson@stir.ac.uk

Stirling University

Vesna Nowack
v.nowack@qmul.ac.uk

Queen Mary, University of London

John Woodward
j.woodward@qmul.ac.uk

Queen Mary, University of London

ABSTRACT

Automatic software repair represents a significant development in

software engineering, promising considerable potential change to

the working procedures and practices of software engineers. Tech-

nical advances have been the focus of many recent publications.

However, there has not been an equivalent growth of studies of hu-

man factors within automatic software repair. This position paper

presents the case for increased research in this area and suggests

three key focuses and approaches for a future research agenda. All

three of these enable industry-based software engineers not just to

provide feedback on automatic software repair tools but to partici-

pate in shaping these technologies so that they meet developer and

industry needs.

CCS CONCEPTS

• Software and its engineering→ Software development tech-

niques; • Human-centered computing → Human computer

interaction (HCI).

KEYWORDS

human factors, automatic software repair

ACM Reference Format:

Emily Winter, David Bowes, Steve Counsell, Tracy Hall, Saemundur Har-

aldsson, Vesna Nowack, and John Woodward. 2020. Human Factors in the

Study of Automatic Software Repair: Future Directions for Research with

Industry. In IEEE/ACM 42nd International Conference on Software Engineer-

ing Workshops (ICSEW’20), May 23–29, 2020, Seoul, Republic of Korea. ACM,

New York, NY, USA, 2 pages. https://doi.org/10.1145/3387940.3392176

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7963-2/20/05. . . $15.00
https://doi.org/10.1145/3387940.3392176

1 INTRODUCTION

Automatic software repair (ASR) responds to what has been de-

scribed as ‘a pressing need for automatic techniques to supplement

manual software development with inexpensive tools’ [4]. There

has been a rapid growth of technical innovation in this area, mo-

tivated by a desire to reduce the temporal and financial resources

involved in practices, such as manual testing and debugging.

Despite the growing domain of ASR, there has been very little

focus on the human factors or aspects in this field. However, within

software engineering more generally, there is increasing recogni-

tion of the need to study human factors in order to fully understand

software engineering practices. Recent work has considered, for

example, such topics as motivation [1], software engineers’ values

[8], and key software engineering skills [5]. Central to such work is

the notion that software engineering is never just about technical

decisions, but is an inherently human activity, involving complex

interactions of the human and the technical.

Whilst somework onASRmentions potential developer attitudes

[2] [4], there have been very few empirical studies of human factors

in this domain. There are, however, a small number of empirical

studies in the closely related field of automated testing [3] [7]. From

a consideration of such work, this position paper suggests three

important directions for future research.

2 FUTURE DIRECTIONS FOR RESEARCH

Beyond Usability: The existing research highlights what software

developers and testers consider to be the advantages and disadvan-

tages of automated testing but is limited to a focus on the usability

of automated testing [3]. Similar concerns are demonstrated in the

ASR literature, such as whether developers can understand fixes

[2] [4].

This is an important research focus, but there are also other

components that a study of human factors in ASR should consider.

One key research question, for example, might be how ASR tools

impact upon developer and tester job satisfaction. The adoption of

new tools will often displace certain tasks and work patterns and

lead to the development of new ones. ASR, for example, may reduce

the need for manual debugging while yielding patches that need to

be validated and that the developer may need to maintain. This is

285

2020 IEEE/ACM 42nd International Conference on Software Engineering Workshops (ICSEW)

likely to have implications for software professionals’ perceptions of

their work life and their job satisfaction. To fully consider developer

attitudes to ASR, it is therefore important that a broad range of

themes are considered, not just usability.

An openness to considerations beyond usability also indicates

a broader conceptual shift. This is marked by a move away from

merely eliciting feedback from software professionals to an ap-

proach that is more responsive to software developers’ needs, open-

ing space for increased dialogue and iteration of tools.

This is important given that some recent work has cautioned

against paying too much attention to developer attitudes. Mon-

perrus [6], for example, contends that ‘we should not be afraid of

alien ways of writing code’ and also critiques evaluative studies of

ASR tools for their reliance on developers’ perceptions of solutions

that ‘look good’. Whilst ASR may well produce unfamiliar-looking

fixes or patches that will ultimately require a process of developer

adaptation, it is of vital importance that developers’ concerns and

priorities are not disregarded. Studies of software developers’ per-

ceptions and attitudes should have the openness to support software

developers in shaping ASR tools; such studies shouldn’t aspire sim-

ply to evaluation, or to persuading developers of the tools’ efficacy.

As an example, developers’ suggestions might be used to shape

how patches are presented to the developer.

Longitudinal Studies: Most empirical studies in the area of

automated testing consider attitudes to such tools at a fixed point in

time. Whilst these studies are still valuable and provide significant

insights, there are limitations, and studies of human factors in ASR

should be aware of this. More longitudinal studies could offer real

benefit in providing insight into how attitudes might change over

time. This could include studying attitudes at three key stages: prior

to the introduction of a particular ASR tool; during the early use of a

tool; and several months later. This could enable research into how

concerns expressed by developers at the beginning might either

diminish, continue or increase over the following two stages.

A longitudinal research approach also offers greater possibility

for software professionals to interact more with the developers

and designers of ASR tools. This allows industry-based software

engineers to potentially feed into the process and shape the develop-

ment of these tools. Through deeper and longer-term engagement

with industry, academics can iterate to produce ASR tools that more

fully serve the needs of developers, rather than such tools being

seen as externally imposed.

Diversity of Appropriate Social Research Methods: Most

empirical studies in automated testing have used surveys and inter-

views. Alongside such methods, the study of human factors in ASR

calls for others, such as focus groups and ethnographic research.

This requires appropriate expertise in qualitative methods.

Ethnographic research in particular has the potential to yield key

insight into how tools are used in situ and also how they might be

discussed in more informal work contexts. Given that software en-

gineering is rarely a solo activity, focus groups offer an opportunity

to consider the group dynamics at work, including social norms and

conventions that may shape individual attitudes and perceptions of

ASR tools. Reception of new tools does not occur in a vacuum, but

is likely to be influenced by many aspects of workplace culture.

There is also space for the kind of research methods rarely used

in empirical studies of human factors in software engineering. For

example, facilitated workshops using design thinking techniques

could be an effective way to engage developers around a specific

ASR tool and gain their input. Again, this helps to position the

research encounter in amore dialogical way, rather than positioning

industry-based engineers as more passive providers of feedback.

3 OBSTACLES TO CONDUCTING USER
STUDIES

The main barrier to conducting thorough user studies in the way

that has been described here is the fact that gaining access to indus-

try can be difficult. When access to industry is achieved, it may also

be challenging to persuade key stakeholders that it is worthwhile

for employees to spend their time interacting with researchers.

The directions presented here intend to combat some of these

difficulties. In particular, longitudinal studies enable the building

of trust and relationships. Additionally, a more developer-centered

approach yields clearer potential benefit to industry partners.

4 CONCLUSION

The rapid technical advances in the field of ASR promise significant

changes to the practice of software engineering. This rise should be

accompanied by a focus on the human elements of this picture. This

position paper has argued for the need for studies of human factors

in ASR that move beyond a focus on usability, are longitudinal,

and use a variety of social research methods. All of these could

contribute to a more developer-centered approach that pays greater

attention to developer attitudes and perceptions and also allows

software professionals to be involved in shaping ASR tools and

techniques so that they are more fitting to industry needs.

5 ACKNOWLEDGMENTS

This work is funded by an Engineering and Physical Sciences Re-

search Council grant EP/S005730/1.

REFERENCES
[1] Cesar França, Fabio Q. B. da Silva, and Helen Sharp. 2018. Motivation and Satis-

faction of Software Engineers. IEEE Transactions on Software Engineering (2018),
1–1. https://doi.org/10.1109/TSE.2018.2842201

[2] Luca Gazzola, Daniela Micucci, and Leonardo Mariani. 2019. Automatic Software
Repair: A Survey. IEEE Transactions on Software Engineering 45, 01 (jan 2019),
34–67. https://doi.org/10.1109/TSE.2017.2755013

[3] Azham Hussain, Hamidah Abdul Razak, and Emmanuel O. C. Mkpjiogum. 2017.
The perceived usability of automated testing tools for mobile applications. Journal
of Engineering, Science and Technology 12 (2017), 86–93.

[4] Claire Le Goues, Stephanie Forrest, and Westley Weimer. 2013. Current challenges
in automatic software repair. Software Quality Journal 21, 3 (1 9 2013), 421–443.
https://doi.org/10.1007/s11219-013-9208-0

[5] Paul Luo Li, Andrew J. Ko, and Jiamin Zhu. 2015. What Makes a Great Software En-
gineer?. In Proceedings of the 37th International Conference on Software Engineering
- Volume 1 (Florence, Italy) (ICSE ’15). IEEE Press, 700–710.

[6] Martin Monperrus. 2014. A Critical Review of “Automatic Patch Generation
Learned from Human-Written Patches”: Essay on the Problem Statement and the
Evaluation of Automatic Software Repair. In Proceedings of the 36th International
Conference on Software Engineering (Hyderabad, India) (ICSE 2014). Association
for Computing Machinery, New York, NY, USA, 234–242. https://doi.org/10.1145/
2568225.2568324

[7] Raphael Pham, Stephan Kiesling, Leif Singer, and Kurt Schneider. 2017. Onboarding
inexperienced developers: struggles and perceptions regarding automated testing.
Software Quality Journal 25, 4 (2017), 1239–1268.

[8] Emily Winter, Stephen Forshaw, Lucy Hunt, and Maria Angela Ferrario. 2019.
Advancing the Study of Human Values in Software Engineering. In Proceedings
of the 12th International Workshop on Cooperative and Human Aspects of Software
Engineering (Montreal, Quebec, Canada) (CHASE ’19). IEEE Press, 19–26. https:
//doi.org/10.1109/CHASE.2019.00012

286

