
Checkers: Multi-modal Darwinian API Optimisation

Santanu Kumar Dash
University of Surrey

United Kingdom

s.dash@surrey.ac.uk

Fan Wu, Michail Basios, Lingbo Li
Leslie Kanthan

Turing Intelligence Technology, United Kingdom

{fan,mike,lingbo,leslie}@turintech.ai

ABSTRACT

Advent of microservices has increased the popularity of the API-

first design principles. Developers have been focusing on concretis-

ing the API to a system before building the system. An API-first ap-

proach assumes that the API will be correctly used. Inevitably, most

developers, even experienced ones, end-up writing sub-optimal

software because of using APIs incorrectly. In this paper, we dis-

cuss an automated approach for exploring API equivalence and a

framework to synthesise semantically equivalent programs. Un-

like existing approaches to API transplantation, we propose an

amorphous or formless approach to software translation in which a

single API could potentially be replaced by a synthesised sequence

of APIs which ensures type progress. Our search is guided by the

non-functional goals for the software, a type-theoretic notion of

progress, the application’s test suite and an automatic multi-modal

embedding of the API from its documentation and code analysis.

ACM Reference Format:

Santanu Kumar Dash, FanWu,Michail Basios, Lingbo Li, and Leslie Kanthan.

2020. Checkers: Multi-modal Darwinian API Optimisation. In IEEE/ACM

42nd International Conference on Software EngineeringWorkshops (ICSEW’20),

May 23–29, 2020, Seoul, Republic of Korea. ACM, New York, NY, USA, 2 pages.

https://doi.org/10.1145/3387940.3392173

1 INTRODUCTION

The popularity of cloud based applications and the need for scala-

bility and integration with various applications has lead to a micro-

service based approach when developing applications. Terms like

API-first development and API-first design are becoming increas-

ingly popular among developers [6]. This has lead to extensive

usage of external APIs in applications. Consequently, the selection

of the right API is central to achieving the best in efficiency, respon-

siveness, scalability, throughput, and memory usage [1, 3, 7, 11].

There is a need for automated API optimisation tools to fully

exploit API first design principles. Settling on an API is difficult

when requirements are continuously evolving. Consider Android’s

SurfaceView and TextureView classes which can both be used to cre-

ate dedicated drawing surfaces. SurfaceView does not allow frames

to be animated, transformed or scaled but TextureView does, al-

though at lower frame throughput. Choosing one over the other

is hard if there is a lack of clarity on whether animated frames

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7963-2/20/05. . . $15.00
https://doi.org/10.1145/3387940.3392173

1 public ByteBuffer getFrame () {

2 mPixelBuf.rewind ();

3 GLES20.glReadPixels (0, 0, mWidth , mHeight ,

format , type , mPixelBuf);

4 return mPixelBuf;

5 }

Listing 1: glReadPixels is used to read a block of pixels from

a frame. Here, format ∈ {GL_UNSIGNED_BYTE, GL_UNSIGNED_SHORT_*}

and type ∈ {GL_ALPHA, GL_RGB, GL_RGBA}.

might be required. Even if the right API can be identified, actual

parameters need to be tuned to meet non-functional requirements.

For example, a common mistake in OpenGL programming is the

usage of incorrect types for pixel depths. In Listing 1, precious

CPU cycles are used in converting depth formats for pixels from

normalised integer values to floating points if GL_FLOAT is used

instead of GL_UNSIGNED_BYTE or GL_UNSIGNED_SHORT_* to represent

depth buffer precision.

Additionally, migrating APIs across versions while optimising

their performance can take extensive manual work and testing.

Consider Android applications as an example. Android’s codebase

is fast-moving; APIs are frequently added and deprecated. It is not

uncommon for developers to have multiple APIs to achieve the

same task. This inevitably leads to mistakes in choosing the right

API. Even when the API for a subsystem is relatively stable, there

are parameters that need to be set properly to make the app faster

and reduce energy consumption. Take the case of the palette API as

an example, it was shown in [8] that altering the color composition

of the GUI can lead to significant energy savings.

In this paper, we propose a framework to identify API calls,

automatically find substitutions for them and test the substituted

software for non-functional requirements. For API calls, we replace

them with either a single API or a sequence of API calls that are

semantically equivalent to the original call. As we permit sequences

of APIs as substitutions, our search process is more involved that

finding APIs with the same type signature. To ameliorate the search

process, in a first, we aim to harness API documentation to guide

the search.

2 SEARCHING FOR EQUIVALENT APIS

For every API call site, there are two ways in which potential

replacements can be identified without causing type errors. We call

these Singular and Compositional replacements.

Definition 2.1. The type environment Γ for a program is the map-

ping of terms in a grammar to their type where Γ(𝑥) returns the
type for the terms 𝑥 . If 𝑥 is a method, Γ𝑖 (𝑥) returns a sequence of
its input types and Γ𝑜 (𝑥) returns a sequence of its output types.

291

2020 IEEE/ACM 42nd International Conference on Software Engineering Workshops (ICSEW)

API Exploration

foo.java
bar.java

API Models

Doc Analysis

Code Analysis

Identify

Transform

Test

foo.java
bar.java

Figure 1: Overview of Checkers.

Definition 2.2. Singular Replacement is the replacement of a single

API call 𝑓 with 𝑔 such that Γ(𝑓) = Γ(𝑔)

The ImageReader class in Android contains examples of candi-

dates for singular transplantation. It contains two methods for read-

ing images: acquireLatestImage() and acquireNextImage() with

identical type signatures. The former gets the next Image from

the ImageReader queue but applies the close() method on all in-

stances of Image that are open. However, the acquireNextImage()

does not close older instances of Image. This has an impact on mem-

ory consumption and Android’s developer notes recommend using

acquireNextImage() only for background/batch processing.

Definition 2.3. Compositional Replacement is the replacement

of a single API call 𝑓 with a sequence of type-correct API

calls 𝑔1 (𝑔2 (𝑔3 (· · ·𝑔𝑛 (𝑥1, 𝑥2, · · · , 𝑥𝑘) · · ·))) such that ∀𝑘.Γ𝑖 (𝑔𝑘) =
Γ𝑜 (𝑔𝑘+1) ∧ Γ𝑖 (𝑔𝑛) = Γ𝑖 (𝑓) ∧ Γ𝑜 (𝑔1) = Γ𝑜 (𝑓)

Examples of compositional replacement, which has the same

theoretical underpinnings as type-directed program synthesis [10],

can be found in the RecyclerView class which displays lists, that can

be dynamically updated, in a constrained widget. If RecyclerView

needs to display a list that is re-fetched from the network or the

database upon update, there are three ways to achieve this. The

first is through a ListAdapter API which diffs the lists on a back-

ground thread unblocking the main thread. The second is through

the AsyncListDiffer which does the same task through a callback.

Finally, there is the low-level DiffUtil class which achieves the

same task on a background thread. Each of the three techniques

use a combination of API calls but are semantically equivalent.

Type-correctness of the replacement does not automatically im-

ply semantic equivalence with the original API. Two methods with

identical type signatures could be doing different tasks. Therefore,

we rely on the program’s test suite to establish a weak form of

semantic equivalence for candidate replacements with the same

type signature. Our framework for optimisation is described next.

3 MULTI-STAGE API OPTIMISATION

An overview of Checkers is shown in Figure 1. Checkers uses

combination of code and documentation for optimisation. It builds

on recent work in dual-channel research which has shown to ben-

efit standard forms of analysis by drawing signal from both the

human-human or natural language channel and human-machine

or programming language channel in software [4, 5, 9].

Checkers aims to identify candidates for singular and compo-

sitional replacements. For this, it relies on a one-time extraction

of an API’s type signatures and parsing of its documentation [9]

to build API models. This process is shown in yellow in Figure 1.

Each API’s representation has two components: a type signature

and a vector embedding derived from the documentation for API.

While the type signature helps identify type-correct replacements,

the vector embedding guides the search process for compositional

replacements by using embedding to group together APIs with

related documentation.

We use static analysis and program transformation to produce

a candidate program which improves upon the original program.

A key point in our approach is that for any replacement, we also

try to tune individual parameters to the API wherever possible

and auto-parsing of the API documentation helps identify tunable

parameters such as flags. The three main stages in our rewriting

are Identify, Transform and Test. The Identify stage parses the

source to identify locations for target APIs. The Transform stage

searches for candidate replacement amongst API models and the

Test phase runs unit and integration tests on the rewritten code

to sanity check the rewriting. We adopt a similar approach to [2]

which uses test-driven optimisation and loops until it reaches a

desired level of improvement or times out.

REFERENCES
[1] Michail Basios, Lingbo Li, Fan Wu, Leslie Kanthan, and Earl T. Barr. 2017. Opti-

mising Darwinian Data Structures on Google Guava. In Search Based Software
Engineering, Tim Menzies and Justyna Petke (Eds.). Springer International Pub-
lishing, Cham, 161–167.

[2] Michail Basios, Lingbo Li, Fan Wu, Leslie Kanthan, and Earl T. Barr. 2018. Dar-
winian Data Structure Selection. In Proceedings of the 2018 26th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE 2018). 118–128.

[3] Bobby R. Bruce, Justyna Petke, and Mark Harman. 2015. Reducing Energy Con-
sumption Using Genetic Improvement (GECCO ’15). Association for Computing
Machinery, New York, NY, USA, 1327–1334.

[4] Casey Casalnuovo, Earl T. Barr, Santanu Kumar Dash, Prem Devanbu, and Emily
Morgan. 2020. A Theory of Dual Channel Constraints. In International Conference
on Software Engineering (ICSE), New Ideas and Emerging Results (NIER). To appear.

[5] Santanu Kumar Dash, Miltiadis Allamanis, and Earl T. Barr. 2018. RefiNym: using
names to refine types. In Proceedings of the 2018 ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/SIGSOFT FSE 2018, 2018. 107–117.

[6] Nicola Dragoni, Saverio Giallorenzo, Alberto Lluch Lafuente, Manuel Mazzara,
Fabrizio Montesi, Ruslan Mustafin, and Larisa Safina. 2017. Microservices: yester-
day, today, and tomorrow. In Present and ulterior software eng. Springer, 195–216.

[7] William B. Langdon, Westley Weimer, Christopher Timperley, Oliver Krauss,
Zhen Yu Ding, Yiwei Lyu, Nicolas Chausseau, Eric Schulte, Shin Hwei Tan, Kevin
Leach, and et al. 2019. The State and Future of Genetic Improvement. SIGSOFT
Softw. Eng. Notes 44, 3 (Nov. 2019), 25–29.

[8] Mario Linares-Vásquez, Gabriele Bavota, Carlos Bernal-Cárdenas, Massimil-
iano Di Penta, Rocco Oliveto, and Denys Poshyvanyk. 2018. Multi-Objective
Optimization of Energy Consumption of GUIs in Android Apps. ACM Transac-
tions on Software Engineering and Methodologies 27, 3, Article Article 14 (Sept.
2018), 47 pages.

[9] Profir-Petru Pârt,achi, Santanu Kumar Dash, Christoph Treude, and Earl T. Barr.
2020. POSIT: Simultaneously Tagging Natural and Programming Languages. In
International Conference on Software Engineering (ICSE). To appear.

[10] Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. 2016. Program
Synthesis from Polymorphic Refinement Types. In 37th ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI ’16). 522–538.

[11] Fan Wu, Westley Weimer, Mark Harman, Yue Jia, and Jens Krinke. 2015. Deep
Parameter Optimisation (GECCO ’15). ACM, 1375–1382.

292

