EVOLUTIONARY SCHEDULING
AND ROUTING

Edmund Burke, chair

EVOLUTIONARY SCHEDULING AND ROUTING

1301

Balance between Genetic Search and L ocal Search
in Hybrid Evolutionary Multi-Criterion Optimization Algorithms

Hisao I shibuchi Tadashi Yoshida Tadahiko Murata
Dept. of Industrial Engineering Dept. of Industrial Engineering Dept. of Informatics
Osaka Prefecture University Osaka Prefecture University Kansa University

Sakai, Osaka 599-8531, JAPAN
hi saoi @ie.osakafu-u.ac.jp
Phone: +81-72-254-9350

Abstract

The aim of this paper is to clearly demonstrate
the importance of finding a good baance
between genetic search and local search in the
implementation of hybrid evolutionary multi-
criterion optimization (EMO) agorithms. We
first modify the local search part of an existing
multi-objective genetic local search (MOGLYS)
algorithm. In the modified MOGLS algorithm,
the computation time spent by local search can be
decreased by two tricks: to apply local search to
only selected solutions (not all solutions) and to
terminate local search before all neighbors of the
current solution are examined. Next we show that
the local search part of the modified MOGLS
algorithm can be combined with other EMO
algorithms. We implement a hybrid version of a
strength Pareto evolutionary algorithm (SPEA).
Using the modified MOGLS agorithm and the
hybrid SPEA agorithm, we examine the balance
between genetic search and local search through
computer simulations on a two-objective
flowshop scheduling problem. Computer
simulations are performed wusing various
specifications of parameter values that control the
computation time spent by local search.

1. INTRODUCTION

One promising trick for improving the search ability of
evolutionary multi-criterion optimization (EMO)
algorithms is the hybridization with local search. Such a
hybrid EMO algorithm was first implemented as a multi-
objective genetic local search (MOGLS) algorithm in
Ishibuchi & Murata (1996) together with a simple idea of
elitism. The MOGLS agorithm was successfully applied
to multi-objective flowshop scheduling problems in
Ishibuchi & Murata (1998). While their MOGLS

Sakai, Osaka 599-8531, JAPAN
yossy @ie.osakafu-u.ac.jp
Phone: +81-72-254-9351

Takatsuki, Osaka 569-1095, JAPAN
murata@res.kutc.kansai-u.ac.jp
Phone: +81-726-90-2429

algorithm implemented two promising tricks for
improving the search ability of EMO agorithms (i.e.,
hybridization and €litism), its search ability is not high if
compared with recently proposed EMO agorithms such
as a strength Pareto evolutionary algorithm (SPEA) of
ZitzZler & Thiele (1999) and a revised non-dominated
sorting genetic algorithm (NSGA-I1) of Deb et a. (2000).

Jaszkiewicz (1998) and Jaszkiewicz et a. (2001)
improved the performance of the MOGLS agorithm by
modifying its selection mechanism of parent solutions.
While his MOGLS algorithm uses a scalar fithess
function with random weight values for selection and
local search as in the originad MOGLS algorithm in
Ishibuchi & Murata (1996), it does not use the roulette
wheel selection. A pair of parent solutions is randomly
selected from a pre-specified number of the best solutions
(i.e., akind of subpopulation) with respect to the scalar
fitness function with the current weight values. The
weight values are randomly updated whenever a pair of
parent solutions is selected as in the origina MOGLS
algorithm. In the above-mentioned two MOGLS
algorithms, local search is applied to al solutions
generated by genetic operations in every generation. In
some hybrid EMO algorithms, local search is used only
when the execution of EMO algorithms is terminated.
Deb & Godl (2001) applied local search to fina solutions
obtained by EMO algorithms for decreasing the number
of non-dominated solutions (i.e, for decreasing the
variety of final solutions). On the other hand, Talbi (2001)
intended to increase the variety of final solutions by the
application of local search.

The performance of the original MOGLS algorithm in
Ishibuchi & Murata (1996) can be improved by carefully
addressing the following issues:

Choice of initial solutionsfor local search: Loca search
was applied to al solutions in the current population in
the original MOGLS agorithm. Its performance can be

1302

improved by choosing only good solutions from the
current population asinitial solutions for local search.

Specification of local search directions. The local
search direction for each solution was specified by the
scalar fitness function used in the selection of its parent
solutions in the origina MOGLS algorithm. Its
performance can be improved by specifying an
appropriate local search direction for each solution
independent of the scalar fitness function used in the
selection of its parent solutions.

Balance between genetic search and local search: If we
simply combine local search with EMO algorithms,
almost all the available computation time is spent by local
search. This is because a large number of solutions are
usually examined by local search for a single initia
solution until a locally optimal solution is found. As a
result, the global search ability of EMO algorithms is
deteriorated by the hybridization with local search. In the
original MOGLS algorithm, the balance between genetic
search and local search was controlled by the number of
neighbors examined by loca search around the current
solution. Local search was terminated if a better solution
was not found among a pre-specified number of neighbors
examined around the current solution. The balance can be
also controlled by the number of solutions in the current
population to which local search is applied. The
performance of the origina MOGLS agorithm can be
improved by finding a good balance between genetic
search and local search.

In this paper, first we briefly discuss the first two issues:
choice of initidl solutions for local search and
specification of a local search direction for each initia
solution. Then the balance between genetic search and
local search is discussed through computer simulations on
atwo-objective flowshop scheduling problem.

2. MULTI-CRITERION OPTIMIZATION

Let us consider the following n-objective minimization
problem:

Minimize z=(fq (X), fo (X), ..., Ty (X)), (D)
subjectto x e X , 2

where z is the objective vector, x is the decision vector,
and X isthe feasible region in the decision space. Usualy,
there is no optimal solution x* that satisfies the following
inequality condition:

fi (x*) < fj (x) for Vie{l,2,..,n} and Vxe X . (3)

Thus the task of EMO algorithms is not to find a single
final solution but to find &l solutions that are not
dominated by any other solutions. Let a and b be two
decision vectors (a,be X). Then b is said to be
dominated by a (i.e.,, a<b) if and only if the following

EVOLUTIONARY SCHEDULING AND ROUTING

two conditions hold:
f; (a)< f; (b) for Vie{l1,2,..,n}, 4
fi (a)< f; (b) for Jie{1,2,..,n}. (5)

When b is not dominated by any other solutionsin X, b is
said to be a Pareto-optimal solution. That is, b is a Pareto-
optimal solution when there is no solution a in X that
satisfies the above two conditions.

While the task of EMO algorithms is to find all Pareto-
optimal solutions, it is impractical to try to find true
Pareto-optimal solutions of large problems. Thus EMO
algorithms usually present non-dominated solutions
among examined ones to decision makers as a result of
their execution. In this case, the task of EMO agorithms
is to drive populations to true Pareto-optimal solutions as
close as possible.

3. HYBRID EMO ALGORITHMS

3. 1MOGLSALGORITHM

In the original MOGLS agorithm, local search is applied
to al solutions in every generation. The following scalar
fitness function was used for both the selection of a pair
of parent solutions and the local search for their offspring.

f(x)=wf (X)+wy o (X)+ - +w, fy (x), (6)

where w; is a non-negative weight. The point is to
randomly specify the weight values whenever a pair of
parent solutions is selected. This weight specification
mechanism generates various search directions in the n-
dimensional objective space. The MOGLS agorithm also
uses a kind of elitism where all non-dominated solutions
obtained during its execution are stored as a secondary
population separately from the current population. A few
non-dominated solutions are randomly selected from the
secondary population and their copies are added to the
current population.

The main characteristic feature of local search in the
MOGLS algorithm is that all neighbors of the current
solution are not examined. For decreasing the
computation time spent by local search, only k neighbors
of the current solution are randomly chosen and examined.
If no better solution is found among the examined k
neighbors, local search for the current solution is
terminated. The first move strategy isused in local search.
That is, the current solution is replaced as soon as a better
neighbor is found.

Figure 1 shows the genera outline of hybrid EMO
algorithms discussed in this paper. In hybrid EMO
algorithms, a new population is generated by genetic
operations in the EMO agorithm part. Then the new
population is improved by local search. The improved
population is handled as the current population in the

EVOLUTIONARY SCHEDULING AND ROUTING

EMO algorithm part. In this manner, the population
update is iterated by genetic operations and local search
until a pre-specified stopping condition is satisfied.

Initidization

Initial
\ population

EMO Algorithm Part

Improved A New

population \ population

Local Search Part

Figure 1: Outline of hybrid EMO algorithms.

3.2MODIFICATION OF LOCAL SEARCH PART

In the origina MOGLS algorithm, local search was
applied to al solutions in the current population. The
drawback of this scheme is computational inefficiency.
That is, the application of local search to poor solutions
seems to be mere waste of computation time. The
efficiency of the origina MOGLS algorithm can be
improved by applying local search to only good solutions
in the current population. The local search direction for
each solution was specified by the scalar fitness function
used in the selection of its parents. The drawback of this
scheme is that the local search direction for each solution
is not always appropriate.

As a remedy for these two drawbacks, we modify the
local search part of the original MOGLS algorithm as
follows:

[Modified L ocal Search Part]

Step 1. Iterate the following two procedures for
constructing alocal search pool of N, solutions:

(a) Randomly specify the weight values wy , ...,w,, .

(b) Select a solution to be included in the local search
pool from the current population (i.e., new
population generated by genetic operations in Fig.
1) using the size four tournament selection with
replacement based on the scalar fitness function
with the current weight values specified in (a).
That is, four solutions are randomly selected from
the current population and a copy of the best oneis
added to the local search pool. The four solutions
are returned to the current population for further
selection to construct the local search pool.

Step 2. Randomly select N| g solutions from the local
search pool without replacement. Local search is
applied to only the selected N| g solutions. The local
search direction of each solution is specified by the

1303

weight values used in the selection of that solution for
constructing the local search pool. The next
population consists of the improved N g solutions
and the other (N,q, — N g) solutions in the local
search pool.

3.3HYBRIDIZATION WITH EMO ALGORITHMS

In the modified local search part, the loca search
direction of each solution is not inherited from its parent
solutions. The local search direction is specified in the
local search part independent of the EMO algorithm part
in Fig. 1. Thus the modified local search part can be
combined with any EMO algorithms even if they do not
use the scalar fitness function in (6) for the selection of
parent solutions. As shown in Fig. 1, the local search part
of hybrid EMO agorithms receives a new population
updated in the EMO algorithm part and returns an
improved population by local search. It is an advantage of
the modified MOGLS algorithm over the original one that
the modified local search part can be combined as a
module with any EMO algorithms.

In this paper, we examine the original MOGLS algorithm
and its modified version. We also examine a hybrid
version of the SPEA algorithm because high search ahility
of the SPEA algorithm to find Pareto-optimal solutions
has been reported in the literature (see Zitzler & Thiele
1999 and Zitzler et al. 2000).

4. COMPUTER SIMULATIONS

4.1 EFFECT OF MODIFICATION OF MOGLS

We examined the effect of the modification of the loca
search part on the performance of the MOGLS algorithm.
In the same manner as in Ishibuchi & Murata (1998), we
generated a 40-job and 20-machine flowshop scheduling
problem with two objectives. to minimize the makespan
and to minimize the maximum tardiness. We applied the
original MOGLS algorithm and its modified version to
this test problem. Each algorithm was terminated when
60000 solutions were examined. As in Ishibuchi &
Murata (1998), we used the position-based two-point
crossover and the shift mutation as genetic operations.
The neighborhood structure was defined by the shift
mutation in local search.

We wused the following parameter specifications.
Population size: 20, crossover probability: 0.9, mutation
probability for each string: 0.3, the number of elite
solutions: 3, the number of neighbors examined for
improving the current solution in local search (i.e., K): 2.
These specifications are almost the same as Ishibuchi &
Murata (1998). In the modified MOGLS agorithm, the
tournament size was specified as four for constructing the
local search pool from the current population. The number

1304

of selected initial solutions for local search was specified
as N g =20 (i.e, the same as the population size).

Each algorithm was applied to the test problem 150 times.
Fig. 2 and Fig. 3 show all solutions obtained by the 150

runs of each algorithm. From the comparison between Fig.

2 and Fig. 3, we can see that the modified MOGLS

algorithm in Fig. 3 outperformed the original onein Fig. 2.

That is, the performance of the origina MOGLS
algorithm was improved by the modification of the local
search part.

2000

-
a
o
o

1000

500

Maximum tardiness

0
3300 3400 3500 3600 3700 3800

Makespan

Figure 2: Obtained solutions by 150 runs of the origina
MOGLS algorithm.

2000

-
a
o
o

1000

500

Maximum tardiness

0
3300 3400 3500 3600 3700 3800

Makespan

Figure 3: Obtained solutions by 150 runs of the modified
MOGLS agorithm. Only the choice of initial solutions for local
search is different from the original MOGL S algorithm.

4.2 EFFECT OF LOCAL SEARCH

In the same manner as in the previous subsection, we
examined the effect of the hybridization with local search
on the performance of EMO algorithms. In Fig. 4, we
show simulation results by a simple EMO agorithm
implemented by removing the local search part from the
original MOGLS algorithm. Since the performance of this
algorithm was very poor, many solutions are out of the
range of Fig. 4. From the comparison of Fig. 4 with Fig. 2
and Fig. 3, we can see that the hybridization with local

EVOLUTIONARY SCHEDULING AND ROUTING

search significantly improved the performance of the
simple EMO agorithm.

2000

-
(Al
o
o

1000

500

Maximum tardiness

0
3300 3400 3500 3600 3700 3800

Makespan

Figure 4: Obtained solutions by 150 runs of the origina
MOGLS agorithm with no local search. Many non-dominated
solutions are out of the range of thisfigure.

While the comparison between Fig. 3 and Fig. 4 clearly
shows that the smple EMO algorithm was significantly
improved by the hybridization with local search, one may
think that the improvement is mainly due to the poor
performance of the simple EMO algorithm in Fig. 4. So
we also implemented a hybrid version of the SPEA in the
same manner as the modified MOGLS agorithm.
Simulation results are summarized in Fig. 5 and Fig. 6.
The maximum number of stored non-dominated solutions
was specified as 20 in the computer simulations. The
other parameters were specified in the same manner asin
the previous subsection.

From the comparison between Fig. 5 and Fig. 6, we can
see that the performance of the SPEA was dightly
improved by the hybridization with local search. For
example, more solutions were obtained in the region
[3300, 3400]x[500, 1500] of Fig. 6 by the hybrid SPEA
than the original SPEA in Fig. 5.

For further examining the effect of the hybridization with
local search on the performance of the SPEA, a solution
set obtained by the SPEA was compared with another
solution set obtained by the hybrid SPEA. In this
comparison, solutions obtained by one algorithm were
examined whether they were dominated by other solutions
obtained by the other algorithm. This comparison was
performed over 150 runs of these two algorithms. Then
the average number of non-dominated solutions was
calculated. Simulation results are summarized in Table 1.
This table shows the average number of obtained
solutions by each algorithm, the average number of
solutions that were not dominated by other solutions
obtained by the other agorithm, the ratio of non-
dominated solutions to obtained solutions, and the
average CPU time. From this table, we can see that the

EVOLUTIONARY SCHEDULING AND ROUTING

hybrid SPEA outperformed the original SPEA in terms of
the ratio of non-dominated solutions. We can also see
from Table 1 that the CPU time was decreased by the
hybridization with local search. This is because local
search can be executed more efficiently than genetic
search. If these two algorithms are compared under the
same CPU time, it is more clearly shown that the hybrid
SPEA outperforms the original SPEA (compare Fig. 7
with Fig. 5).

2000

-
[
o
o

1000

500

Maximum tardiness

0
3300 3400 3500 3600 3700 3800

Makespan

Figure 5: Obtained solutions by 150 runs of the original SPEA.

2000

-
al
o
o

1000

500

Maximum tardiness

e e,

pekowt e

Liw"e

' ., 4
.

CH

0
3300 3400 3500 3600 3700 3800

Makespan

Figure 6: Obtained solutions by 150 runs of the hybrid SPEA.

2000

-
a
o
o

1000

500

M aximum tardiness

. o,
PR R

0
3300 3400 3500 3600 3700 3800

M akespan

Figure 7: Obtained solutions by 150 runs of the hybrid SPEA
with k = 3 using the same CPU time as the original SPEA.

1305

Table 1: Comparison between SPEA and its hybrid version.

. Obtained Non- Ratio of non- CPU time
Al h . . .
gorithm solutions dominated dominated (Sec.)
SPEA 17.34 10.08 58.13% 17.47
Hybrid 14.69 9.85 67.05% 13.26

4.3 BALANCE BETWEEN GENETIC SEARCH
AND LOCAL SEARCH IN THE MODIFIED
MOGLS

The performance of hybrid EMO algorithms depends on
parameter specifications. The point is to find a good
balance between genetic search and loca search. The
balance is controlled by two parameterskand N| g inthe
modified MOGLS agorithm (k: the number of neighbors
examined for improving the current solution by local
search, N| g: the number of solutions in each population
to which local search is applied). Table 2 shows
simulation results with various values of k. In this table,
N g was specified as N| g = 20. Good results were not
obtained from large values of k (see the column labeled as
“Non-dominated”). Good specifications of k in Table 2
are k =1~5.

Table 2: Simulation results by the modified MOGLS algorithm
with various values of k. The value of N g was specified as
N s = 20. Good results are highlighted by boldface letters.
“Generation updates’ means the number of generations.

K Generation Obtained Non- CPU time

updates solutions dominated (seconds)
0 3000.00 17.78 1.08 19.81
1 1490.56 18.09 4.29 14.75
2 952.24 17.01 4.60 13.21
3 696.80 16.90 341 12.46
4 543.65 16.99 3.44 12.10
5 440.84 17.08 313 11.78
10 212.56 17.78 1.99 10.84
20 92.43 17.03 157 10.40
30 55.25 17.19 141 10.25
40 37.90 16.88 1.02 10.19
50 28.39 17.03 1.36 10.16
100 11.83 14.91 1.08 10.09
1521 1.00 5.28 1.36 13.75

On the other hand, Table 3 shows simulation results with
various values of N| g. In this table, k was specified as
k =2. Good results were not obtained from small values
of N g. Good specifications of N g in Table 3 are
N LS = 8""20

For further examining the balance between genetic search
and local search, we examined various combinations of k
and N g. A solution set obtained from each combination

1306

was compared with other solution sets obtained from
other combinations in the same manner as in the previous
computer simulations. Simulation results are summarized
in Table 4. This table shows the number of solutions that
were not dominated by any other solutions obtained from
other parameter specifications. Table 4 shows average
results over 150 tridls as in the previous computer
simulations. From this table, we can see that appropriate
specifications of N| g and k are related to each other. An
appropriate value of N g decreases as the specified value
of kincreasesin Table 4. In general, larger values of these
two parameters mean longer computation time spent by
local search. Thus the increase of one parameter value
needs the decreases of the other parameter value for
keeping a good balance between genetic search and local
search.

Table 3: Simulation results by the modified MOGLS algorithm
with various values of N _g. The value of k was specified as
k = 2. Good results are highlighted by boldface letters.

EVOLUTIONARY SCHEDULING AND ROUTING

We aso performed the same computer simulation using
different specifications of the stopping condition. In one
specification, we decreased the available computation
time from the examination of 60000 solutions to 20000
solutions. Simulation results are shown in Table 5. In the
other specification, it was increased to 120000 solutions.
Simulation results are summarized in Table 6. Table 5 and
Table 6 show that appropriate values of N g and k are
related to each other as in Table 4. From the comparison
among the three tables, we can see that larger values of k
can be used when the available computation resource is
larger (i.e., Table 6). This means that we can use a larger
portion of the computation time for local search when the
available computation timeis longer.

Table 5: The average number of solutions that were not
dominated by any other solutions from other combinations of
parameter values. The execution of the modified MOGLS
algorithm was terminated when 20000 solutions were examined.
Good results are highlighted by boldface | etters.

N, . Generation Obtained Non- CPU time N The value of k
LS updates solutions dominated (seconds) 'S'o 1 2 3 4 5 10 20 30 40 50
0 3000.00 17.35 0.77 18.90 0 |0.02 0.02 0.02 0.02 0.020.02 0.02 0.02 0.02 0.02 0.02
2 2467.09 17.37 1.46 17.26 2 |0.02 0.04 0.37 0.39 0.510.52 0.44 0.63 0.68 0.49 0.92
4 2094.59 17.77 212 16.26 4 10.02 0.11 0.23 0.47 0.480.57 0.49 0.37 0.39 0.43 0.39
6 1819.94 17.93 2.56 15.53 6 [0.02 0.35 0.45 0.49 0.430.51 0.39 0.33 0.30 0.35 0.23
8 1611.89 16.93 3.33 14.92 8 [0.02 0.18 0.71 0.54 0.350.23 0.24 0.25 0.22 0.18 0.29
10 1444.13 16.81 31 14.49 10 |0.02 0.43 0.43 0.43 0.290.41 0.24 0.20 0.16 0.17 0.24
12 1306.81 17.70 271 14.14 12 |0.02 0.40 0.52 0.30 0.450.41 0.17 0.11 0.15 0.11 0.18
14 1193.71 17.51 3.27 13.85 14 10.02 0.41 0.52 0.48 0.270.28 0.11 0.06 0.16 0.17 0.05
16 1100.39 17.27 293 13.59 16 |0.02 0.32 0.53 0.41 0.320.26 0.20 0.05 0.05 0.07 0.09
18 1019.59 17.58 3.09 13.37 18 |0.02 0.35 0.33 0.53 0.310.23 0.12 0.04 0.04 0.05 0.02
20 952.24 17.01 3.62 13.21 20 |0.02 0.49 0.53 0.32 0.400.29 0.11 0.07 0.01 0.01 0.07

Table 4: The average number of solutions that were not
dominated by any other solutions from other combinations of
parameter values. The execution of the modified MOGLS
algorithm was terminated when 60000 solutions were examined.
Good results are highlighted by boldface |etters.

Table 6: The average number of solutions that were not
dominated by any other solutions from other combinations of
parameter values. The execution of the modified MOGLS
algorithm was terminated when 120000 solutions were
examined. Good results are highlighted by boldface letters.

N The value of k
LS'o 1 2 3 4 5 10 20 30 40 50

N The value of k
LS'o 1 2 3 4 5 10 20 30 40 50

0 |0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17
2]0.17 0.06 0.33 0.43 0.45 0.67 0.58 0.35 0.58 0.51 0.47
4 10.17 0.39 0.45 0.41 0.59 0.55 0.73 0.24 0.40 0.31 0.37
6 |0.17 0.35 0.55 0.51 0.51 0.81 0.50 0.29 0.32 0.29 0.23
8 |0.17 0.48 0.83 0.61 0.65 0.37 0.52 0.27 0.11 0.25 0.17
10 |0.17 0.50 0.66 0.39 0.64 0.59 0.31 0.21 0.21 0.20 0.19
12 |0.17 0.49 0.47 0.57 0.57 0.64 0.30 0.17 0.16 0.13 0.13
14 |0.17 0.75 0.62 0.42 0.42 0.46 0.31 0.25 0.17 0.15 0.09
16 |0.17 0.61 0.74 0.53 0.67 0.29 0.21 0.12 0.11 0.06 0.13
18 |0.17 0.68 0.58 0.65 0.41 0.42 0.35 0.15 0.09 0.04 0.04
20 [0.17 0.59 0.61 0.35 0.45 0.37 0.32 0.15 0.09 0.09 0.07

0 |0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11
2 |0.11 0.12 0.37 0.48 0.65 0.57 0.52 0.52 0.42 0.61 0.51
4 10.11 0.41 0.61 0.52 0.61 0.57 0.53 0.47 0.47 0.25 0.29
6 |0.11 0.27 0.70 0.55 0.54 0.73 0.51 0.37 0.35 0.31 0.35
8 |0.11 0.51 0.54 0.65 0.59 0.55 0.45 0.27 0.28 0.27 0.21
10 |0.11 0.38 0.51 0.51 0.71 0.77 0.54 0.39 0.19 0.29 0.27
12 |0.11 0.53 0.85 0.77 0.51 0.73 0.41 0.18 0.15 0.26 0.15
14 10.11 0.71 0.53 0.69 0.56 0.55 0.38 0.31 0.15 0.14 0.19
16 |0.11 0.56 0.62 0.69 0.73 0.45 0.38 0.15 0.10 0.13 0.14
18 |0.11 0.61 0.53 0.72 0.58 0.53 0.31 0.28 0.15 0.11 0.11
20 |0.11 0.69 0.57 0.70 0.74 0.60 0.11 0.13 0.16 0.13 0.16

EVOLUTIONARY SCHEDULING AND ROUTING

4.4 BALANCE BETWEEN GENETIC SEARCH
AND LOCAL SEARCH IN THE HYBRID SPEA

We also examined the balance between genetic search and
local search using the hybrid SPEA in the same manner as
in the previous subsection. Table 7 shows simulation
results by the hybrid SPEA with N| g =20 and various
values of k. Good results were not obtained from large
values of k. Good specifications of k in Table 7 are
k =2~5. On the other hand, Table 8 shows simulation
results by the hybrid SPEA with k =2 and various values
of N g. Good results were not obtained from small
values of N g. Good specifications of N g in Table 8
are N g = 18~20. We can aso see that the smulation
results by the hybrid SPEA in Table 7 and Table 8 are
similar to those by the modified MOGLS algorithm in
Table 2 and Table 3, respectively.

Table 7: Simulation results by the hybrid SPEA with various
values of k. The value of N g was specified as N g = 20.
Good results are highlighted by boldface |etters.

K Generation Obtained Non- CPU time

updates solutions Dominated (seconds)
0 3000.00 15.46 1.26 19.03
1 1483.57 15.69 291 14.91
2 976.18 14.69 3.12 13.26
3 719.59 15.85 3.73 12.59
4 565.81 15.43 3.50 12.21
5 462.69 15.35 3.95 11.99
10 227.53 15.68 293 10.95
20 97.62 16.69 177 10.47
30 57.25 16.68 1.62 10.31
40 38.53 16.76 1.29 10.23
50 28.95 16.38 115 10.19
100 11.58 15.35 111 10.13
1521 2.00 5.10 135 13.89

Table 8 Simulation results by the hybrid SPEA with various
values of N g. The value of k was specified as k=2. Good
results are highlighted by boldface |etters.

N Generation Obtained Non- CPU time

LS Updates solutions Dominated (seconds)
0 3000.00 15.46 0.78 19.03
2 2486.16 15.64 1.99 17.50
4 2123.08 15.13 1.99 16.41
6 1850.80 16.26 2.33 15.74
8 1641.54 15.63 2.49 15.06
10 1474.84 16.01 2.56 14.63
12 1338.12 15.45 2.53 14.28
14 1223.87 15.80 2.62 14.06
16 1128.85 15.39 2.70 13.77
18 1046.31 15.75 3.19 13.54
20 976.18 15.44 3.23 13.26

1307

We also examined various combinations of k and N g
using the hybrid SPEA. Simulation results are
summarized in Table 9 ~ Table 11. As in the previous
subsection, these tables show simulation results using
different stopping conditions. From these tables, we can
see that appropriate specifications of N g and k are
related to each other. An appropriate value of N g
decreases as the specified value of k increases. From the
comparison between the simulation results in this
subsection by the hybrid SPEA and those in the previous
subsection by the modified MOGLS algorithm, we can
see that appropriate specifications of N g and k depend
on the agorithm. For example, appropriate values of k for
the hybrid SPEA are larger than those for the modified
MOGLS algorithm. Thisis observed from the comparison
between Table 6 and Table 11.

Table 9: The average number of solutions that were not
dominated by any other solutions. The execution of the hybrid
SPEA was terminated when 60000 solutions were examined.
Good results are highlighted by boldface |etters.

Thevaue of k
NLS0123451020304050
0 {0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07
2 |0.07 0.09 0.29 0.23 0.38 0.37 0.76 1.03 0.57 0.76 0.61
4 (0.07 0.25 0.37 0.29 0.37 0.29 0.63 0.55 0.53 0.50 0.35
6

8

0.07 0.29 0.49 0.34 0.46 0.62 0.48 0.50 0.39 0.33 0.33
0.07 0.29 0.31 0.49 0.26 0.72 0.49 0.30 0.41 0.41 0.35
10 [0.07 0.23 0.43 0.31 0.59 0.56 0.57 0.29 0.41 0.22 0.21
12 [0.07 0.32 0.35 0.41 0.33 0.66 0.58 0.49 0.15 0.18 0.16
14 (0.07 0.19 0.37 0.47 0.49 0.57 0.57 0.37 0.19 0.17 0.12
16 [0.07 0.32 0.31 0.44 0.65 0.39 0.37 0.39 0.22 0.06 0.05
18 (0.07 0.31 0.34 0.44 0.65 0.51 0.33 0.23 0.14 0.17 0.07
20 |0.07 0.24 0.67 0.43 0.41 0.34 0.33 0.12 0.15 0.08 0.08

Table 10: The average number of solutions that were not
dominated by any other solutions. The execution of the hybrid
SPEA was terminated when 20000 solutions were examined.
Good results are highlighted by boldface |etters.

N The value of k

LS'0 1 2 3 4 5 10 20 30 40 50
0 |0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
2 |0.06 0.10 0.28 0.17 0.23 0.26 0.61 0.68 0.47 0.69 0.72
4 |0.06 0.22 0.21 0.23 0.39 0.32 0.73 0.47 0.41 0.53 0.34
6
8

0.06 0.25 0.29 0.29 0.41 0.56 0.58 0.33 0.35 0.28 0.29
0.06 0.38 0.37 0.47 0.24 0.65 0.44 0.15 0.25 0.27 0.33
10 |0.06 0.23 0.23 0.31 0.24 0.35 0.38 0.14 0.25 0.14 0.13
12 10.06 0.37 0.29 0.38 0.28 0.37 0.41 0.25 0.13 0.16 0.10
14 10.06 0.18 0.46 0.45 0.40 0.35 0.23 0.12 0.11 0.11 0.09
16 |0.06 0.36 0.30 0.29 0.40 0.41 0.20 0.14 0.09 0.07 0.04
18 |0.06 0.43 0.51 0.19 0.39 0.35 0.13 0.11 0.03 0.06 0.04
20 |0.06 0.41 0.43 0.42 0.24 0.40 0.17 0.03 0.07 0.06 0.03

1308

Table 11: The average number of solutions that were not
dominated by any other solutions. The execution of the hybrid
SPEA was terminated when 120000 solutions were examined.
Good results are highlighted by boldface |etters.

N The value of k

'S'o0 1 2 3 4 5 10 20 30 40 50
0 |0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09
2]0.09 0.11 0.23 0.25 0.21 0.21 0.63 0.62 0.65 0.77 0.56
4 |0.09 0.17 0.28 0.21 0.38 0.34 0.43 0.61 0.65 0.53 0.48
6
8

0.09 0.27 0.57 0.36 0.45 0.57 0.45 0.57 0.46 0.57 0.52
0.09 0.37 0.45 0.39 0.43 0.45 0.57 0.27 0.51 0.39 0.39
10 |0.09 0.39 0.45 0.31 0.43 0.47 0.54 0.51 0.44 0.51 0.41
12 |0.09 0.35 0.42 0.49 0.28 0.54 0.53 0.40 0.31 0.31 0.24
14 10.09 0.32 0.36 0.36 0.56 0.53 0.69 0.34 0.33 0.27 0.13
16 |0.09 0.33 0.37 0.47 0.67 0.56 0.49 0.55 0.29 0.19 0.15
18 |0.09 0.34 0.47 0.58 0.58 0.54 0.47 0.25 0.21 0.23 0.16
20 [0.09 0.42 0.45 0.59 0.49 0.45 0.50 0.20 0.13 0.21 0.19

5. CONCLUSIONS

In this paper, we first modified the local search part of
the MOGLS algorithm of Ishibuchi & Murata (1996) for
applying local search only to good solutions in the current
population and assigning an appropriate local search
direction to each solution. The local search direction of
each solution is specified in the modified local search part
independent of genetic operations in the EMO algorithm
part. Thus the modified local search part can be combined
with other EMO algorithms. We implemented a hybrid
SPEA by combining local search with the SPEA. Using
the modified MOGL S algorithm and the hybrid SPEA, we
examined the balance between genetic search and local
search. Simulation results in this paper showed that the
performance of the hybrid EMO agorithms strongly
depends on this balance. When a good balance is achieved
by appropriate parameter specifications, the hybrid EMO
algorithms outperform the corresponding non-hybrid
EMO algorithms.

It was also shown through computer simulations with
different stopping conditions that appropriate parameter
specifications for achieving a good baance between
genetic search and local search depend on the amount of
the available computation time. When long computation
time was available, good results were obtained from
parameter specifications that increase the ratio of the
computation time spent by local search. On the other hand,
good results were obtained in the case of a small ratio of
the computation time spent by local search when we did
not have long computation time. Simulation results also
showed that different hybrid EMO agorithms require
different parameter specifications for achieving a good
balance. An appropriate ratio of the computation time
spent by local search in the hybrid SPEA was larger than

EVOLUTIONARY SCHEDULING AND ROUTING

that in the modified MOGLS algorithm. Implication of
this observation is not clear. One possible explanation is
that genetic search in the hybrid SPEA may require
shorter computation time than that in the modified
MOGLS agorithm because the EMO algorithm part of
the hybrid SPEA is more powerful than that of the
modified MOGLS agorithm (compare Fig. 5 by the
origina non-hybrid SPEA with Fig. 4 by the EMO
algorithm part in the modified MOGL S algorithm).

REFERENCES

K. Deb and T. Goel, “A hybrid multi-objective
evolutionary approach to engineering shape design,”
Proc. of 1st International Conference on Evolutionary
Multi-Criterion Optimization, pp. 385-399, Zurich,
Switzerland, March 7-9, 2001.

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast
eitist multi-objective genetic algorithm: NSGA-II,”
KanGAL Report 200001, Indian Ingtitute of
Technology Kanpur, 2000.

H. Ishibuchi and T. Murata, “Multi-objective genetic local
search algorithm,” Proc. of 3rd IEEE International
Conference on Evolutionary Computation, pp. 119-
124, 1996.

H. Ishibuchi and T. Murata, “A multi-objective genetic
local search agorithm and its application to flowshop
scheduling,” IEEE Trans. on Systems, Man, and
Cybernetics - Part C: Applications and Reviews, val.
28, no. 3, pp. 392-403, 1998.

A. Jaszkiewicz, “Genetic local search for multiple
objective combinatorial optimization,” Working Paper,
RA-014/98, Poznan University of Technology, 1998.

A. Jaszkiewicz, M. Hapke, and P. Kominek,
“Performance of multiple objective evolutionary
algorithms on a distribution system design problem -
Computational experiment,” Proc. of 1st International
Conference on Evolutionary Multi-Criterion
Optimization, pp. 241-255, 2001.

E. Talbi, M. Rahoual, M. H. Mabed, and C. Dhaenens, “A
hybrid evolutionary approach for multicriteria
optimization problems: Application to the flow shop,”
Proc. of 1st International Conference on Evolutionary
Multi-Criterion Optimization, pp. 416-428, Zurich,
Switzerland, March 7-9, 2001.

Zitzler and L. Thiele, “Multiobjective evolutionary
algorithms: A comparative case study and the strength
Pareto approach,” IEEE Trans. on Evolutionary
Computation, vol. 3, no. 4, pp. 257-271, 1999.

E. Zitzler, K. Deb, and L. Thiele, “Comparison of
Multiobjective Evolutionary Algorithms: Empirical
Results,” Evolutionary Computation, vol. 8, no. 2, pp.
173-195, 2000.

m

EVOLUTIONARY SCHEDULING AND ROUTING

1309

A Hybrid Genetic Algorithm for the Vehicle Routing Problem
with Time Windows

Soonchul Jung and Byung-Ro Moon
School of Computer Science and Engineering
Seoul National University
Seoul, 151-742 Korea
{samuel,moon}@soar.snu.ac.kr

Abstract

This paper suggests a new hybrid genetic al-
gorithm for the 2D Euclidean vehicle rout-
ing problem with time windows. The natu-
ral crossover, proposed for the 2D Euclidean
traveling salesman problem, was adopted with
some modification in the suggested genetic al-
gorithm. The most notable feature of the nat-
ural crossover is that it uses the 2D image of
a solution itself for chromosomal cutting. We
also investigate the usefulness of parents’ deci-
sion variables such as arrival times during re-
combination. The suggested genetic algorithm
found optimal solutions for 26 out of 31 in-
stances with known optimal solutions.

1 Introduction

The vehicle routing problem (VRP) is the problem of
finding a set of minimum-cost vehicle routes which start
at a central depot, serve a set of customers with known
demands, and return to the depot without any viola-
tion of constraints [6], [24]. There are several variants
of VRP depending on their constraints. The vehicle
routing problem with time windows (VRPTW) is an ex-
tension of VRP. In VRPTW, time-window constraints
are added to the basic constrains of VRP. Each cus-
tomer must be served only once by one vehicle, and the
total demands of the customers served by a particu-
lar vehicle must not exceed the capacity of the vehicle.
Each customer must be served within his/her time win-
dow. A vehicle must wait until the service is possible if
the vehicle arrives at a customer earlier than the lower
bound of his/her time window — the earliest arrival time.
The depot also has a time window, and all the vehicles
must return by the latest arrival time of the depot. In
VRPTW, the objective can be the minimization of the
travel distance, the travel time, the number of vehicles,

or their combinations.

VRPTW has shown its usefulness in the area of
distribution-related systems — school bus routing,
newspaper delivery, garbage collection, fuel oil delivery,
dial-a-ride service, etc. If a new routing plan of vehicles
is more efficient than before, we can save fuel, money,
and/or time.

Various algorithms for VRP and its variants have been
studied intensively for decades. There are some of ex-
act methods to solve VRPs and VRPTWs to the op-
timality [10], [12], [19], [21]. Although the speed-up
techniques for exact methods have been introduced, the
NP-hardness of VRPTW [27] still makes the required
computational time prohibitive. Local heuristic meth-
ods often produce good near-optimal solutions in short
computational time. They are divided into two classes:
route construction heuristics [13], [11] and route im-
provement heuristics [7], [32]. Solomon [26] designed
and reviewed several route construction heuristics. In
[18], A number of route improvement heuristics are
clearly described. Although these heuristics were able
to run separately to solve VRPTW, they have also been
incorporated in meta heuristics like tabu search, sim-
ulated annealing, genetic algorithm (GA), etc [4], [5],
[30], [23], [15].

Blanton and Wainwright [2] introduced a genetic algo-
rithm for VRPTW that used a sequence of customers
as a chromosome. A greedy insertion-based heuristic
interprets a chromosome (sequence), and calculates the
fitness of the chromosome. The sequence means the in-
sertion order of customers for the heuristic. GIDEON,
suggested by Thangiah et al. [31], [30], is a framework
for VRPTW, adopting a cluster-first route-second strat-
egy. Their GA was used in the clustering phase. The
chromosome represents angles whose origin is the de-
pot, in order to define sectors to which customers will
belong. Customers within a sector are assigned to one
vehicle, and routed by the cheapest insertion method

1310

[14]. In another system of Thangiah [29], a chromosome
represents circles (by defining an origin and a radius).
Customers within or near a circle are assigned to one ve-
hicle. GENEROUS of Potvin and Bengio [23] uses a set
of routes themselves as a chromosome. The crossover
merges two parents heuristically, then the repair oper-
ator is applied to the offspring. Most approaches use a
set of routes themselves as a chromosome after Potvin
and Bengio’s work [23]. Recently, Tan et al. [28] intro-
duced a messy genetic algorithm that a chromosome is
a sequence of (customer number, vehicle number) pairs.

The natural crossover, introduced by Jung and Moon
[17], [16] is a crossover manipulating chromosomes in
which genes are laid on a 2D space. Because 2D chro-
mosomes can preserve problem information with less
distortion, two-dimensional chromosomes are often used
in genetic algorithms for 2D problems [8], [1], [3]. The
natural crossover was originally devised for the 2D Eu-
clidean traveling salesman problem (TSP), and pro-
duced better experimental results than state-of-the-art
GAs for TSP [17]. In most VRPTW instances includ-
ing Solomon’s benchmark instances [26], customers are
located on a 2D FEuclidean space. Therefore, only if
a 2D form of chromosomes are defined for VRPTW,
it is possible for a genetic algorithm to use the natu-
ral crossover. This paper provides an extension of the
natural crossover to VRPTW, and investigates its com-
petence.

There are variables created during the evaluation of a
route. Waiting times, arrival times, and travel-so-far
distances are some of such decision variables. Almost all
genetic algorithms for VRPTW did not utilize parents’
decision variables in the course of recombination and
mutation. In this paper, we utilize parents’ decision
variables during crossover.

The paper is organized as follows. Section 2 describes
the mathematical formulation of VRPTW. Section 3
explains the genetic operators used in the proposed ge-
netic algorithm. Section 4 presents the experimental
results. Finally Section 5 makes conclusions.

2 Formulation of VRPTW

Table 1 represents the meanings of terms related to
VRPTW. For a given route Ry = (v1,v2,...,0m),01 =
¢y, decision variables are calculated as follows:

._ [0 i=1
vi T tty,_, +to, v, ©>1
0, i=1
Wy, = .
: max(0, ey, — ay;), >1

v = 0, i=1
vio Ay; + Wy, + Sy, 1>1

EVOLUTIONARY SCHEDULING AND ROUTING

Table 1: Terminologies

| constants | meaning

N number of customers

Q capacity of vehicles

c set of all customers including the depot

ci customer i, 0 < i < N (¢ is the depot.)

di; distance from customer ¢ to customer j

1 travel time from customer ¢ to customer j

qi demand of customer 1

S; service time of customer ¢

e; earliest arrival time to customer ¢

l; latest arrival time to customer ¢
variables | meaning

n(R) number of routes

n(Ry) number of customers in route k
Vjk j“‘ customer of route k
Ry route k = (vig, vak, -..)
Sk set of customers in route k
RDy, travel distance of route k
RT}, travel time of route k
RLy, total load of route k
a; arrival time at ¢;
al; adjusted latest arrival time at ¢;
w; waiting time before servicing ¢;
tt; travel-so-far time after servicing ¢;
td; travel-so-far distance when arriving at ¢;
ad; accumulated demands of customers
after servicing ¢;
0 i=1
td,, = ’ .
vi { tdy, | +dy; yu;, 1>1
0 i=1
d,, = ’ .
v { a’dvi—l + G, 1> 1
RTy, = tt,, +ty, v
RDy, = td,, +dy,o,
RLk = advm

The objective of our genetic algorithm is to find a set
of routes having the minimal travel distance. In other
words, we have to minimize

n(R)
> RDy
k=1
subject to
S1US2U---USyrR) =C, (1)
SinSj={co}, 1<i,j<n(R),i#j (2)
’Uik;évjka]-SZ:]SH(RIC)77/7£] (3)
aiglia]-SlSN (4)

EVOLUTIONARY SCHEDULING AND ROUTING

GA()
{
initialize population P of size IV;
while (stopping condition is unsatisfied) {
select parent: and parents from P;
offspring < crossover(parenti, parents);
if (random number is larger than mutation rate)
mutate offspring;
local-optimize offspring;
replace an individual in P with offspring;

return the best individual;

Figure 1: A typical steady-state hybrid genetic algo-
rithm

RTy, <o,
RLk S Q;

L<k<n(R) (5
1<k <n(R). (6)
Restriction (1) ensures that all the customers are nec-
essarily visited. Restriction (2) means that all the cus-
tomers must be partitioned disjoint, and the depot is
included in all routes. Restriction (3) ensures that ev-
ery customer is visited only once. Restriction (4) and
(5) take care of time constraints. Restriction (6) pre-
vents the overload of vehicles.

3 Hybrid Genetic Algorithm

We use a typical steady-state hybrid genetic algorithm
(Figure 1). Local optimization algorithms help GAs
fine-tuning around local optima. The following subsec-
tions describe our genetic algorithm in detail.

3.1 Initialization of Population

A lot of route construction heuristics have been pro-
posed for VRPTW. In [26], several heuristics are care-
fully designed and compared with one another. Ac-
cording to [26], the insertion heuristic 1 (I1) overall
beat other route construction heuristics such as savings,
nearest neighbor, etc. The core part of I1 is the rou-
tine inserting a new unrouted customer into the current
route, between two adjacent customers on the route. If
there is no feasible customer to insert, a new route is
created. Il repeats the loop until there are no unrouted
customers.

We create a population of solutions using a stochastic
version of I1. The existence of adjustable weights in the
cost function of I1 makes the creation of various solu-
tions possible. In calculating an insertion cost of a cus-
tomer, the weights determine the balance between the
spatial aspect and the temporal aspect of the problem

1311

instance. The values of weights are changed at random
in the ranges of p € [0.1,0.9], A € [0,1],; € [0.1,0.9],
and ap € [0.1,0.9](a1 + a2 = 1). This is expected to be
helpful in creating a robust population whose solution
qualities do not depend on specific aspects of the prob-
lem instance. The first customer for a new route is cho-
sen at random among the farthest unrouted customer,
the unrouted customer with the earliest deadline, and
a random unrouted customer.

3.2 Selection and Crossover

We use the typical binary tournament selection.

Most genetic algorithms for VRPTW do not consider
the representation of chromosomes as important, and
they recombine the new offspring by heuristically inter-
preting the two parents. In recombining the offspring,
they consider a number of criteria like distances between
customers, ranges of time windows, sizes of routes, dis-
tribution of distances, etc; but they do not consider the
physical locations of customers. In GIDEON system
of Thangiah et al. [31], [30], each chromosome con-
tains a set of numbers representing the angles defining
sectors (centered at the depot) instead of routes them-
selves. Customers in a sector basically belong to the
same route. Namely, this system considers the locations
of customers to be more important than other elements.

Multi-dimensional chromosomes were suggested for
problems with multi-dimensional characteristics. A
two-dimensional crossover, introduced by Cohoon and
Paris [8], chooses a small rectangle from one parent and
then copies the genes in the rectangle into the offspring
with the rest of genes copied from the other parent.
Anderson et al. [1] suggested a block-uniform crossover
which tessellates a 2D chromosome into ¢ x j blocks,
and copies the genes block by block from a uniformly
selected parent. Bui and Moon [3] proposed a general-
ization of crossovers to n dimensions. Jung and Moon
[17], [16] introduced an encoding/crossover pair for the
2D Euclidean traveling salesman problem which uses a
2D image as a chromosome, and performs crossover on
the chromosome. Since 2D Euclidean VRPs and 2D Eu-
clidean TSPs share a lot of characteristics, we inherit
the natural encoding/crossover pair with some modifi-
cation.

In this paper, we use the 2D image of routes as a chro-
mosome, where each gene is located at the coordinate
of the corresponding customer. We describe the natural
crossover for the 2D Euclidean VRPTW in the follow-

ing:

1. The 2D image of two solutions are selected as par-
ents (Figure 2 (a),(b)).

1312

EVOLUTIONARY SCHEDULING AND ROUTING

ST
fé\%/?‘g?\‘

parent B

e
SR

(d) inherited arcs from parent A

{ The diamond represents the depot.

(e) adding arcs from parent B

(f) new offspring

Figure 2: An example of the natural crossover for VRPTW

2. Free curves or figures are drawn on the 2D space
where customers are located!. It is proven that
they always partition the chromosomal space into
two equivalent classes [17] (marked white and gray
in Figure 2 (c)). Every customer belongs to one
of the classes. Customers in the white class are
marked black and customers in the other gray class
are marked white.

3. For every arc of the parent A, if both of the start-
point and the end-point are marked black?, it sur-
vives in the offspring (Figure 2(d)); for every arc
of the parent B, if both are marked white, it sur-
vives in the offspring (Figure 2(e)). Then we have
a number of disconnected segments.

4. The decision variables of the parent A such as
a;, w;, tt;, and td; are saved as af‘, w{‘, ttf‘, and tdf‘,
respectively. The decision variables of the parent
B are saved in the same way. They are used in

repairing the offspring later.

5. A valid solution is made by adding arcs by the re-
pair algorithm in Section 3.2.1 (Figure 2(f)).

Because we only have to calculate the class of every
customer, the time complexity of the crossover grows
linearly with respect to the number of customers.

'We do not have an efficient implementation for drawing
fully free curves. Instead, we use four types of curves —
straight line, triangle, quadrangle, and ellipse. Two curves
are chosen at random among them allowing multiple occur-
rences. Refer to [16] for more information.

%It is possible that the arc passes through the gray region
even when both points are marked black; there are a few
arcs in Figure 2 (d). For efficient implementation, we ignore
classes of arcs.

3.2.1 Repair Algorithm

The step 5 in the previous section repairs the inter-
mediate offspring to a valid solution. We utilize the
parents’ decision variables in this process. Figure 3
represents the repair algorithm. Its key routine is con-
necting the last customer on the current partial route to
the minimum-cost start-point of a segment in a nearest-
neighbor manner.

In calculating the cost of adding an arc, we consider
terms about spatial and temporal closenesses of cus-
tomers, and terms about parents. Let ¢; be the last
customer (point) on the current partial route, and let
cj be a candidate customer to connect c;. The cost is
the weighted sum of i) the distance between ¢; and ¢;,
ii) the waiting time at c;, iii) the slack time of delivery
to ¢;, and iv) the difference of the service completion
between parents and the offspring at c;:

Cij =01 dij + 02 - W +0d3-Sj + 04 P;
where

01+ 02 +3+8, =1,

Aj = G+,

W; = max(0,e; — A4j),

Sj = lj - Aj, and

P; = min(|ttd — (4; + W; + 55)],

|tt]-B — (A] + Wj + Sj)|).

01, 02,03, and d4 are reinitialized within respective spe-
cific ranges whenever the repair function is invoked.

To investigate the usefulness of parents’ decision vari-
ables, we compare in Section 4 a GA version with d4 # 0
against one with 64 = 0.

EVOLUTIONARY SCHEDULING AND ROUTING

1313

repair()

{

while(there are segments starting from the depot) {
randomly choose a segment among them as a partial route;
complete_a_route(the last customer of the partial route, start-points of the remaining segments);

while(there are remaining segments)

complete_a_route(depot, start-points of the segments);

complete_a_route(the last customer, candidate customers)

t < the last customer;
do {

find a feasible customer, say c¢*, among candidate customers and the depot,
such that the cost from ¢ to ¢* is minimized;

add an arc from ¢ to c*;

t < the end-point of the segment whose start-point is c*;

} while(¢ is not the depot)

Figure 3: The pseudo-code of the repair algorithm

3.3 Mutation

In mutation, each route of the offspring is split into
at most three routes. Two cut-points are selected at
random to split a route.

3.4 Local Optimization

A considerable number of local optimization algorithms
have been proposed to improve routes. Most of them be-
long to edge-exchange neighborhoods [18]. Most edge-
exchange neighborhoods can be viewed as special cases
of the cyclic transfer algorithm introduced by Thomp-
son and Psaraftis [32]. Although the cyclic transfer al-
gorithm is a generalized edge-exchange algorithm, its
performance is limited due to its computational cost.

We call three local optimization heuristics in sequence
— Or-opt [22], crossover [25], relocation [25] — to
optimize the offspring locally. These three heuristics
have different characteristics from one another; they are
thought to produce synergies. The Or-opt is a vertex-
based algorithm trying to move a vertex to another
place within a single route. The crossover is a special
type of two-edge exchange which removes the cross links
of two routes. The relocation is similar to the Or-opt;
it is different in that it manipulates multiple routes. Its
key routine is moving a vertex in a route to another
place in other routes (an example in Figure 4).

In VRPTW, it consumes considerable CPU time to
check the time-feasibility of a solution. Consider the
routine which checks whether an unrouted customer u
can be inserted between two specific adjacent customer

(b) after relocation

For the sake of convenience, the depot was depicted as two
diamonds.

Figure 4: An example of a relocation

vp—1 and v, on the route Ry = (v1,v2,...,0m). The
routine must check the time-feasibility at u, vp, vpt1, ...,
and v,,, respectively. Solomon introduced Push For-
ward [26] to practically speed up this kind of operation.
However, the time-feasibility checking takes O(n) in the
worst case even when using Push Forward (n is the num-
ber of customers in the route.).

We use the adjusted latest arrival time (aly,), instead
[20]. The adjusted latest arrival times at customers on
a route are computed as follows:

alvi = { lO o t’u,'Co;

min(lvi) alvi+1 - tvivi+1 - Svi)a

The adjusted latest arrival time of a customer is the

1314

time by which the vehicle must arrive at the customer to
satisfy the time-feasibility with no further checking. Us-
ing the adjusted latest arrival times, the time-feasibility
check is completed in constant time even in the worst
case. In other words, when inserting an unrouted cus-
tomer u between v,_1, and vy, it only have to check to
see if tt,, | + 1y, _ju+ Wy + Sy + tuy, < aly,.

The Or-opt algorithm and the relocation algorithm call
the above routine very frequently, and thus the time-
feasibility is checked fast using the adjusted latest ar-
rival time described in Section 3.1.

3.5 Replacement

The offspring is compared with one of the parents. The
parent is replaced to the offspring if the offspring is
better. Otherwise, the other parent is replaced if the
offspring is better than it. Otherwise, the worst in the
population is replaced.

3.6 Stop Condition

Our GA stops when the best solution has not been bro-
ken during p consecutive generations. p was set to 2,000.

4 Experimental Results

We set a GA with 4, € [0.4,0.9],0, € [0.2,0.7],05 €
[0.1,0.6], and &, € [0.3,0.8] and call it VGAL.

We programmed our GA in C++ language. In the ex-
periment, the population size and the mutation rate
were set to 60 and 0.05, respectively. 100 runs were
performed for each Solomon’s VRPTW instance [26].

4.1 Performance

Table 2 shows the experimental results of VGA1 and
TLOL [28], a recent representative paper from the
field of the evolutionary computation. Inter-customer
distances were calculated with real double-precision.
VGA1-best and VGAl-average represent the best and
the average results of VGA1 over 100 runs, respectively.
For TLOL, only the best results are available [28]. The
figures were rounded off to two decimal places. “#V”
and “TD” mean the number of vehicles and the travel
distance, respectively. “t” represents the average CPU
seconds on Pentium IIT 1GHz.

VGAL1 outperformed TLOL for 47 of the 56 instances;
TLOL outperformed VGA1 for two of them; they tied
for the other seven instances. Among the 47 cases that

3If 61 4+ 62 + 63 + 64 > 1, then they are scaled down to
satisfy that their sum is equal to 1.

EVOLUTIONARY SCHEDULING AND ROUTING

VGAL outperformed, even the average results of VGA1
were better than TLOL (the best results) for all of them
except one (R206).

In Table 3, we compared VGA1-best with the optimal
solutions? reported in [9]. Inter-customer distances were
truncated to the first decimal place to be consistent with
[9]. The bold-faced numbers represent that the results
of VGAL1 equal the optimal solutions. VGA1 found op-
timal solutions for 26 out of 31 instances whose optimal
solutions are known. VGA1 found most of the opti-
mal solutions for the C and R groups, but it found the
optimum for one of the five in the RC group.

4.2 The Usefulness of Parents’ Decision
Variables During Crossover

To test the usefulness of parents’ decision variables, we
set another GA with 6, € [0.4,0.9],d, € [0.5,1.0],05 €
[0.1,0.6], and 64 = 0 (VGA2). Because d4 # 0, VGAL1
utilized parents’ decision variables (parents’ travel-so-
far times, in detail), while VGA2 did not.

Table 4 shows the results of VGA1 and VGA2 for each
problem group. Each group of problems has about 10
instances, e.g., C1 has C101 through C109. The best
(“Best”) and average (“Average”) results of each group
are the averages of the best and average results for the
corresponding instances, respectively.

According to the best results, VGA1 found better solu-
tions more frequently than VGA2, but VGA2 was bet-
ter on the average. In other words, the deviation of
the best and average results in VGA1 was larger than
in VGA2. VGAL1 seems to be strong in instances that
have long scheduling horizons and large vehicle capaci-
ties (C2, R2, and RC2 groups), although there are only
slight differences compared to VGA2. Overall, the per-
formances of VGA1 and VGA2 were comparable. It is
notable that VGA1 was about 30% faster than VGA2.

5 Conclusion

In this paper, we suggested a new hybrid genetic al-
gorithm for the 2D Euclidean vehicle routing problem
with time windows. In our genetic algorithm, the 2D
image itself of a solution becomes a chromosome; each
gene corresponds to a customer in the 2D plane; the
natural crossover cuts the chromosomal space with free
curves. Because of its simplicity, the natural crossover
may be applied to other variants of VRP with minor
modification. The experimental results showed that the
suggested hybrid genetic algorithm solved VRPTWs to

*http://web.cba.neu.edu/ msolomon /problems.htm.
After [9], some more optimal solutions were added.

EVOLUTIONARY SCHEDULING AND ROUTING

1315

Table 2: Experimental Results of VGA1

TLOL VGAI-best VGA1l-average TLOL VGAIl-best VGAIl-average
Instance | #V TD | #V TD | #V TD Instance | #V TD | #V TD | #V TD t
C101 10 828.94 10 828.94 | 10.00 828.94 C201 3 591.56 3 591.56 | 3.00 591.56 9
C102 10 828.94 10 828.94 | 10.00 828.94 12 C202 3 591.56 3 591.56 | 3.00 591.56 16
C103 10 859.78 10 828.06 | 10.00 828.06 18 C203 3 618.00 3 591.17 | 3.00 591.17 30
C104 10 893.23 10 824.78 | 10.00 824.96 29 C204 3 609.02 3 590.60 | 3.00 591.18 44
C105 10 828.94 10 828.94 | 10.00 828.94 C205 3 616.32 3 588.88 | 3.00 588.88 10
C106 10 828.94 10 828.94 | 10.00 828.94 C206 3 615.92 3 588.49 | 3.00 588.49 12
c1o7 10 828.94 10 828.94 | 10.00 828.94 Cc207 3 636.62 3 588.29 | 3.00 588.29 13
C108 10 830.94 10 828.94 | 10.00 828.94 C208 3 611.29 3 588.32 | 3.00 588.32 12
C109 10 849.03 10 828.94 | 10.00 828.94
R101 18 1648.86 20 1642.88 | 20.00 1643.53 30 R201 8 1198.15 9 1149.68 | 8.29 1153.04 64
R102 17 1486.71 18 1472.81 | 18.50 1479.19 52 R202 9 1057.56 8 1034.35 | 7.40 1038.40 81
R103 14 1234.43 14 1213.62 | 14.81 1222.29 51 R203 5 922.38 6 874.87 | 6.00 875.87 84
R104 11 1024.38 11 976.61 | 11.70 1001.44 61 R204 5 791.78 4 736.52 | 4.46 741.41 92
R105 15 1372.71 15 1360.78 | 15.91 1371.52 34 R205 5 1015.99 5 955.82 | 6.05 964.69 70
R106 12 1271.11 13 1240.47 | 13.59 1252.44 48 R206 4 884.65 5 879.89 | 5.33 892.55 93
R107 12 1106.19 11 1073.34 | 11.73 1083.10 63 R207 4 875.76 4 799.86 | 4.66 814.05 97
R108 9 992.12 10 947.55 | 10.74 959.65 65 R208 3 778.38 4 705.45 | 3.50 714.37 99
R109 13 1101.37 13 1151.84 | 12.97 1157.27 41 R209 3 920.34 5 859.39 | 5.26 867.52 83
R110 11 1119.12 12 1072.41 | 12.00 1082.72 53 R210 4 961.18 5 910.70 | 6.10 918.37 102
R111 12 1083.05 12 1053.50 | 12.00 1063.21 56 R211 6 820.23 4 755.96 | 4.70 765.64 96
R112 11 1020.52 10 953.63 | 10.77 971.89 49
RC101 14 1659.68 16 1643.41 | 16.46 1658.34 28 RC201 4 1354.96 9 1265.56 | 9.00 1269.94 50
RC102 15 1492.10 14 1461.23 | 14.65 1480.82 45 RC202 8 1151.46 8 1095.64 | 7.84 1101.03 74
RC103 11 1249.86 12 1277.54 | 12.11 1313.73 48 RC203 7 1018.09 5 928.51 | 5.29 943.81 104
RC104 11 1202.12 10 1136.81 | 10.56 1154.26 57 RC204 4 865.51 4 786.38 | 4.05 799.19 81
RC105 16 1585.34 16 1518.58 | 15.96 1540.66 42 RC205 9 1225.69 7 1157.55 | 7.80 1164.43 69
RC106 12 1449.30 13 1381.23 | 13.39 1397.45 33 RC206 5 1122.23 7 1054.61 | 6.39 1067.49 64
RC107 11 1303.36 12 1212.83 | 12.03 1227.81 32 RC207 6 1047.86 6 966.08 | 6.07 975.24 76
RC108 11 1197.13 11 1117.53 | 11.00 1135.81 32 RC208 4 854.75 4 779.31 | 4.98 791.35 68

the near-optimality.

We also tested the usefulness of parents’ decision vari-
ables during crossover. In terms of solution qualities,
the use of parents’ decision variables did not give no-
table improvement; but, it shortened the running time.

We used the synergy of three local optimization heuris-
tics. Some stronger local optimization heuristic may
further improve the hybrid genetic algorithm. This part
is left for future study.

Acknowledgements

This work was partly supported by KOSEF through
Statistical Research Center for Complex Systems at
Seoul National University and Brain Korea 21 Project.
The RIACT at Seoul National University provided re-
search facilities for this study.

References

[1] C. A. Anderson, K. F. Jones, and J. Ryan. A two-dimensional ge-
netic algorithm for the Ising problem. Complex Systems, 5:327—
333, 1991.

[2] J. Blanton and R. Wainwright. Multiple vehicle routing with
time and capacity constraints using genetic algorithms. In Fifth
International Conference on Genetic Algorithms, pages 452—
459, 1993.

[3] T. N. Bui and B. R. Moon. On multi-dimensional encod-
ing/crossover. In Sizth International Conference on Genetic
Algorithms, pages 49-56, 1995.

[4] W. Chiang and R. Russell. Simulated annealing metaheuristics
for the vehicle routing problem with time windows. Annals of
Operations Research, 63:3-27, 1996.

[5] W. Chiang and R. Russell. A reactive tabu search metaheuristics
for the vehicle routing problem with time windows. INFORMS
Journal on Computing, 9:417-430, 1997.

[6] N. Christofides. Vehicle routing. In E. Lawler, J. Lenstra, A. Rin-
nooy Kan, and D. Shmoys, editors, The Traveling Salesman
Problem, pages 431-448. John Wiley & Sons, 1985.

[7] G. Clarke and J. Wright. Scheduling of vehicles from a central
depot to a number of delivery points. Operations Research,
12:568-582, 1964.

[8] J. P. Cohoon and W. Paris. Genetic placement. IEEE Trans.
on Computer-Aided Design, CAD-6(6):956-964, 1987.

[9] J. Cordeau, G. Desaulniers, J. Desrosiers, M. M. Solomon, and
F. Soumis. The VRP with time windows. In P. Toth and D. Vigo,
editors, The Vehicle Routing Problem, pages 157-193. STAM
Monographs on Discrete Mathematics and Applications, 2002.

[10] M. Desrochers, J. Desrosiers, and M.M. Solomon. A new op-
timization algorithm for the vehicle routing problem with time
windows. Operations Research, 40:342-354, 1992.

[11] M. Fisher and R. Jaikumar. A generalized assignment heuristic
for vehicle routing. Networks, 11:109-124, 1981.

[12] M. Fisher, K. Jornsten, and O. Madsen. Vehicle routing with
time windows: Two optimization algorithms. Operations Re-
search, 45:488-492, 1995.

[13] B. Gillet and L. Miller. A heuristic algorithm for the vehcile
distpatch problem. Operations Research, 22:340-349, 1974.

[14] B. Golden and W. Stewart. Empirical analysis of heuristics. In
E. Lawler, J. Lenstra, A. Rinnooy Kan, and D. Shmoys, editors,
The Traveling Salesman Problem, pages 207-249. John Wiley
& Sons, 1985.

[15] J. Homberger and H. Gehring. Two evolutionary metaheuristics
for the vehicle routing problem with time windows. INFOR,
37:297-318, 1999.

1316

EVOLUTIONARY SCHEDULING AND ROUTING

Table 3: Comparison with Optimal Solutions

Optimum VGA1-best Optimum VGA1-best Optimum VGA1-best
Instance | #V TD | #V TD Instance | #V TD | #V TD Instance | #V TD #V TD
C101 10 827.3 10 827.3 R101 20 1637.7 20 1637.7 RC101 15 1619.8 16 1637.8
C102 10 827.3 10 827.3 R102 18 1466.6 18 1466.6 RC102 14 1457.4 14 1473.5
C103 10 826.3 10 826.3 R103 14 1208.7 14 1208.7 RC103 11 1258.0 11 1273.4
C104 10 822.9 10 822.9 R104 - - 11 971.5 RC104 - - 10 1132.8
C105 10 827.3 10 827.3 R105 15 1355.3 15 1355.3 RC105 15 1513.7 15 1513.7
C106 10 827.3 10 827.3 R106 13 1234.6 13 1234.6 RC106 - - 13 1373.9
C1o07 10 827.3 10 827.3 R107 11 1064.6 11 1064.6 RC107 - - 12 1209.3
C108 10 827.3 10 827.3 R108 - - 10 935.1 RC108 - - 11 1114.2
C109 10 827.3 10 827.3 R109 13 1146.9 13 1146.9
R110 12 1068.0 12 1068.0
R111 12 1048.7 12 1049.6
R112 - - 10 948.6
C201 3 589.1 3 589.1 R201 8 1143.2 8 1143.2 RC201 9 1261.8 9 1262.4
C202 3 589.1 3 589.1 R202 - 8 1029.6 RC202 - - 8 1092.3
C203 3 588.7 3 588.7 R203 - - 6 870.8 RC203 - - 5 925.5
C204 - - 3 588.1 R204 - - 4 731.8 RC204 - - 4 783.5
C205 3 586.4 3 586.4 R205 - - 5 951.3 RC205 - - 7 1154.0
C206 3 586.0 3 586.0 R206 - - 5 875.9 RC206 - - 7 1051.1
C207 3 585.8 3 585.8 R207 - - 4 797.1 RC207 - - 6 962.9
C208 3 585.8 3 585.8 R208 - - 4 701.4 RC208 - - 5 779.6
R209 - - 5 854.8
R210 - - 6 901.8
R211 - - 4 746.7
Table 4: Results of VGA1 and VGA2
VGA1 VGA2
Group Best Average Best Average
#V TD #V TD t #V TD #V TD t
C1 10.00 828.38 10.00 828.40 12 10.00 828.38 10.00 828.38 13
C2 3.00 589.86 3.00 589.93 18 3.00 589.86 3.00 589.95 21
R1 13.25 1179.95 13.73 1190.69 50 13.25 1180.20 13.70 1189.28 69
R2 5.36 878.41 5.61 885.99 87 5.27 878.46 5.64 886.60 109
RC1 13.00 1343.64 13.27 1363.61 40 12.88 1340.53 13.34 1362.38 54
RC2 6.25 1004.20 6.43 1014.06 73 6.38 1004.57 6.44 1013.72 88

[16] S. Jung and B. R. Moon. Toward minimal restriction of genetic [25] M. W. P. Savelsbergh. The vehicle routing problem with time
encoding and crossovers for the 2D Euclidean TSP. IEEE Trans. windows: Minimizing route duration. ORSA Journal on Com-
on Evolutionary Computation accepted with minor revision. puting, 4:146-154, 1992.

[17] S. Jung and B. R. Moon. The natural crossover for the 2D Eu- [26] M. Solomon. Algorithms for the vehicle routing and scheduling
clidean TSP. In Genetic and Evolutionary Computation Con- problems with time window constraints. Operations Research,
ference, pages 1003-1010, 2000. 35(2):254-265, 1987.

[18] G. Kindervater and M. Savelsbergh. Vehicle routing: Handling [27] M. Solomon and J. Desrosiers. Time window constrained routing
edge exchanges. In E. Aarts and J. Lenstra, editors, Local Search and scheduling problems. Transportation Science, 22(1):1-13,
in Combinatorial Optimization, pages 337-360. John-Wiley and 1988.

Sons, Ltd., 1997.
[28] K. Tan, T. Lee, K. Ou, and L. Lee. A messy genetic algorithm

[19] N. Kohl, J. Desrosiers, O. B. G. Madsen, M. M. Solomon, and for the vehicle routing problem with time window constraints. In
F. Soumis. 2-path cuts for the vehicle routing problem with time IEEE Congress on Evolutionary Computation, pages 679-686,
windows. Transportation Science, 33:101-116, 1999. 2001.

[20] G. Kontoravdis and J. Bard. A GRASP for the vehicle routing [29] S. Thangiah. An adaptive method using a geometrical shape for
problem with time windows. ORSA Journal on Computing, vehicle routing problems with time windows. In International
7:10-23, 1995. Conference on Genetic Algorithms, pages 536-543, 1995.

[21] J. Larsen. Parallelization of the Vehicle Routing Problem with [30] S. T}'langlah. Vehicle routing with time windows using genetic
Time Windows. PhD thesis, Technical University of Denmark, algorithms. In Lance Chambers, editor, Application Handbook
1999. of Genetic Algorithms: New Frontiers, pages 253-277. CRC

Press, 1995.
(22] Ijgho’?' Traveling Salesman-Type Combinatorial Problems and —1g)1 g mp.yoian K. Nygard, and P. Juell. GIDEON: A genetic algo-
eir Relation to the Logistics of Regional Blood Banking. N .
PhD thesis, Northwestern University, 1976. rithm system for vehlcl'e routmg' with time Wlndpws. In Seventh
’ ? Conference on Artificial Intelligence Applications, pages 322—

[23] J. Potvin and S. Bengio. The vehicle routing problem with 328, 1991.
tlmecwmdov_vs flpart H‘: Genetic search. INFORMS Journal [32] P. Thompson and H. Psaraftis. Cyclic transfer algorithms for
on Computing, 8:165-172, 1996. multi-vehicle routing and scheduling problems. Operations Re-

[24] M. W. P. Savelsbergh. Computer Aided Routing. PhD thesis, search, 41(5):935-946, 1993.

Centrum voor Wiskunde en Informatica, 1988.

EVOLUTIONARY SCHEDULING AND ROUTING

1317

A Savings based Ant System for the Vehicle Routing Problem

Marc Reimann
Center for Business Studies
University of Vienna
Vienna, Austria
Tel. ++43 1 4277 38096
Fax: ++43 1 4277 38094
e-mail: marc.reimann@univie.ac.at

Abstract

In this paper we study the merit of using
the well known Savings algorithm within the
framework of an Ant System to tackle the Ve-
hicle Routing Problem (VRP). First, we show
the influence of the pheromone information
on the solution quality, by comparing the Ant
System with a randomized implementation of
the Savings algorithm. Second, we evaluate
our approach on benchmark data sets. Fi-
nally, we provide numerical results about the
average and worst case behavior of our algo-
rithm.

1 INTRODUCTION

In this paper we show how a powerful problem spe-
cific algorithm can be incorporated into the framework
of an Ant System. This is exemplified for a problem
from distribution logistics, namely the Vehicle Routing
problem (VRP).

The VRP is a well known combinatorial optimization
problem, which has been extensively studied for the
last 40 years. It involves the construction of a set
of vehicle tours starting and ending at a single depot
and satisfying the demands of a set of customers. Con-
straints ensure that each customer is served by exactly
one vehicle, vehicle capacities are not exceeded and a
prespecified upper bound on the maximum tour length
is respected.

The VRP belongs to the class of NP-hard problems
(cf. Garey and Johnson, 1979). Therefore no efficient
exact solution methods are available, and the existing
solution approaches are of heuristic nature. Recently
the focus of research on this problem was on the use
of meta-heuristics such as Tabu Search, Simulated An-
nealing and Ant Systems.

Michael Stummer
Center for Business Studies
University of Vienna
Vienna, Austria

Karl Doerner
Center for Business Studies
University of Vienna
Vienna, Austria

The Ant System is a new meta-heuristic developed
in the nineties (cf. Colorni et al., 1991). It’s in-
spiration comes from the observation of trail laying
- trail following behavior of some ant species. As they
move in search for food, the individual ants of these
species deposit an aromatic essence called pheromone
on the ground. The amount deposited generally de-
pends on the quality of the food sources found. Other
ants, observing the pheromone are likely to follow the
pheromone trail, with a bias towards stronger trails.
Thus, the pheromone trails reflect the ‘'memory’ of the
ant population, and over time trails leading to good
food sources will be reinforced while paths leading to
remote sources will be abandoned.

Within the framework of the Ant System the above
mentioned details were implemented in the following
way. The artificial ants construct solutions for a given
combinatorial optimization problem by taking a num-
ber of decisions probabilistically. First these deci-
sions are only based on some local information (e.g.
a heuristic rule), as there is no artificial pheromone
available. Gradually the collective memory is built
up, as some ants, depending on the solution quality
found, are allowed to lay artificial pheromone on the
paths they used. The amount of pheromone laid also
depends on the solution quality. Other ants are then
guided in their decision making. Over time paths with
high pheromone concentration will attract more ants
than paths with low concentration. Thus, these paths
will be reinforced and the artificial ants are (hopefully)
guided to promising regions of the search space.

This approach has been applied to a number of com-
binatorial optimization problems, such as the Graph
Coloring Problem (c.f. Costa and Hertz, 1997), the
Quadratic Assignment Problem (e.g. Stuetzle and
Dorigo, 1999), the Travelling Salesman Problem (e.g.
(Dorigo and Gambardella, 1997), (Bullnheimer et al.,
1999a)), the Vehicle Routing Problem ((Bullnheimer
et al., 1999b), (Bullnheimer et al., 1999¢)) and the

1318

Vehicle Routing Problem with Time Windows (Gam-
bardella et al., 1999). Recently, a convergence proof
for a generalized Ant System has been developed by
Gutjahr (Gutjahr, 2002).

In Doerner et al. (Doerner et al., 2002), we have pro-
posed the incorporation of a problem specific heuristic
algorithm, namely the well known Savings algorithm
into an Ant System for the VRP. The results there
have shown the potential of the method. In this paper
we present a modified version of the algorithm, where
the modifications stem from observations made on the
behavior of our original algorithm. These modifica-
tions have led to a significant improvement of the per-
formance. Furthermore, we thoroughly evaluate the
algorithm. First, we study the learning behavior by
comparing cases with and without learning, respec-
tively. Second, we show that the best results found
by our approach are competitive to state of the art
results. Third, we examine the average and worst case
behavior of our algorithm and the effects of problem
characteristics on these measures.

The remainder of this paper is organized as follows. In
the next section we provide a problem formulation and
an overview of related works on the VRP. After that we
give a detailed description of our new approach. Sec-
tion 4 contains the results of the computational study
we performed. We conclude with a discussion of our
findings.

2 PROBLEM FORMULATION AND
RELATED WORKS

The VRP can be formulated in the following way'. Let
G = (V,E,c) be a complete graph, with n + 1 nodes
(vo, ..., vn) corresponding to the customers i = 1,..., N
and the depot i = 0, and the edge set ((v;,v;) € E
Y v;,v; € V). With each edge (v;,v;) € E is associated
a non-negative weight c¢;;, which refers to the travel
costs between nodes v; and v; and a non-negative
weight t;;, which refers to the travel time between the
nodes. Furthermore, with each node v;,¢ =1,...,N is
associated a non-negative demand d;, which has to be
satisfied, as well as a service time ;. The service time
at the depot is set to dg = 0. At the depot a fleet of
size K is available, where each vehicle has a capacity
of Q% and the maximum driving time for each vehicle
is T*.

!This formulation is closely related to the formulation
presented in (Christofides, 1985).

EVOLUTIONARY SCHEDULING AND ROUTING

Let x}; denote the binary decision variables with the
following interpretation:

1 if vehicle k visits node v;
immediately after node v;
0 otherwise.

Then the objective can be written as

K
Z Cij':ci'cj (1)

j=0 k=1

minimaize E

N N
=0

under the following restrictions

N N
DY ahdi<QY 1<k<K (2)
i=1 j=1
N N
ZZw%(tméi)STk 1<k<K (3)
i=0 j=0
N N
dSoak - k=0 1<k<KO0<j<N (4
=0 =0
s~k _ [1 1<G<N 5

DD el <ISI-1 VS C{1,.,N}1<k<K (6)

€S jES

o €{0,1} 1<k<KO0<ij<N (7

The objective (1) is to minimize the total travel costs.
Constraints (2) ensure that no vehicle is overloaded.
Constraints (3) require that the maximum driving
time for each vehicle is respected. Constraints (4) en-
sure that if a vehicle visits a customer it also leaves
the customer. Constraints (5) require that all cus-
tomers are visited once, and that the depot is left K
times. Subtour elimination is ensured through con-
straints (6). Finally, constraints (7) are the usual bi-
nary constraints.

A large number of researchers have addressed this
problem with different approaches. Early approaches
dealt with simple heuristics for constructing solutions
like the Savings algorithm (Clarke and Wright, 1964)
or the Sweep algorithm (Gillett and Miller, 1974), as

EVOLUTIONARY SCHEDULING AND ROUTING

well as with the application of more or less sophis-
ticated improvement mechanisms like the 2-opt algo-
rithm (Croes, 1958). We use the idea of the Savings
algorithm in our Ant System approach, so we will dis-
cuss this algorithm in more detail in the next section.

In the last decade the use of meta-heuristics was inves-
tigated. First approaches were based on Tabu Search
(c.f. Osman, 1993, Gendreau et al., 1994 and Rego and
Roucairol, 1996) and Simulated Annealing (Osman,
1993). Recently an Ant System approach for the VRP
was proposed by Bullnheimer et al. ((Bullnheimer et
al., 1999b),(Bullnheimer et al., 1999c)).

Overviews on exact and approximate methods can
be found in Laporte (Laporte, 1999) and Laporte
and Semet (Laporte and Semet, 1999), respectively.
Meta-heuristics have been reviewed by Gendreau et
al. (Gendreau et al., 1999).

As our approach is based on an Ant System, we will
now briefly describe the algorithm proposed for the
VRP by Bullnheimer et al. (Bullnheimer et al., 1999c).
In their paper, the construction of solutions is done
using the Nearest Neighbor algorithm. This algorithm
starts with the assignment of an arbitrary customer to
the first vehicle and in each decision step chooses to
visit the customer closest to the current location un-
til the capacity or time constraints of the vehicle are
violated. At this point the vehicle returns to the de-
pot, another vehicle is initialized and the procedure is
repeated until all customers are assigned. In the case
of the Ant System, this Nearest Neighbor algorithm is
made stochastic, such that the closest location is not
always chosen, but rather all unvisited locations have
a positive probability to be chosen. In Bullnheimer et
al. (Bullnheimer et al., 1999c) this probability was cal-
culated via a parametrized Savings function. After an
ant has constructed a solution the tours of this solution
are improved using the 2-opt algorithm (Croes, 1958).
At the end of an iteration, i.e. when all ants have gen-
erated their solutions, pheromone is updated accord-
ing to a rank-based scheme with elitists. This means
that not all ants are allowed to update the pheromone
information, but only the m best ants. The amount
of pheromone written depends on the solution quality
found as well as on the rank of the ant. In addition to
the best ants of the iteration, the global best solution
found during the process is updated as if a number of
elitist ants had used it in the current iteration.

1319

3 THE SAVINGS BASED ANT
SYSTEM ALGORITHM

In this section we propose our implementation of the
Savings based Ant System. The Ant System frame-
work of our algorithm is identical to the one proposed
in Bullnheimer et al. (Bullnheimer et al., 1999c) and
mainly consists of the iteration of three steps:

e Generation of solutions by ants according to pri-
vate information and pheromone information

e Application of a local search to the ants’ solutions

e Update of the pheromone information

Our approach differs in the actual implementation of
the three steps as described below.

3.1 SOLUTION GENERATION

The solution generation technique we implemented is
the main contribution of our work. As discussed above,
solution construction in an Ant System for the VRP
has so far been based on the Nearest Neighbor con-
struction mechanism. Note, that in this constructive
mechanism vehicles are filled one at a time.

As opposed to that, each of our ants constructs a
solution based on the well known Savings algorithm
(Clarke and Wright, 1964). We will now describe the
main structure of this algorithm and propose the mod-
ifications we applied in order to be able to use it in the
Ant System context.

The Savings algorithm starts from a solution where all
customers are served on separate tours. After that for
each pair of customers ¢ and j the following savings
measure is calculated:

545 = dio + doj — dj, (8)

where d;; denotes the distance between locations ¢ and
j and the index 0 denotes the depot. Thus, the values
s;; contain the savings of combining two customers i
and j on one tour as opposed to serving them on two
different tours.

In the iterative phase, customers or partial tours are
combined according to these savings, starting with the
largest savings, until no more combinations are feasi-
ble. A combination is infeasible if it violates either the
capacity or the tourlength constraints.

The result of this algorithm is a (sub-)optimal set of
tours through all customers.

1320

Our modifications are related to the use of pheromone
information in the decision making. Initially, we gener-
ate a sorted list of attractiveness values ;; in decreas-
ing order. These attractiveness values feature both the
savings values as well as the pheromone information.

Thus the list consists of the following values

&ij = [s41° [7i5]* 9)

where 7;; denotes the pheromone concentration on the
arc connecting customers ¢ and j, and a and § bias
the relative influence of the pheromone trails and the
savings values, respectively. The pheromone concen-
tration 7;; contains information about how good the
combination of two customers ¢ and j was in previous
iterations.

In each decision step of an ant, we consider the k best
combinations still available, where k is a parameter of
the algorithm which we will refer to as 'neighborhood’
below.

Let Qj denote the set of k neighbors, i.e. the k feasible
combinations (¢, j) yielding the largest savings, consid-
ered in a given decision step, then the decision rule is
given by equation (10), where P;; is the probability of
choosing to combine customers ¢ and j on one tour.

&ij

2 if &, € Qp
E(h,l)eﬂk €n “

Pij = (10)

0 otherwise.

The construction process is stopped when no more fea-
sible combinations are possible.

3.2 LOCAL SEARCH

After the ants have constructed their solutions but be-
fore the pheromone is updated each ants’ solution is
improved by applying a local search. In the paper by
Bullnheimer et al. (Bullnheimer et al., 1999¢) as well
as in our original algorithm (Doerner et al., 2002) the
local search algorithm used was the 2-opt algorithm
(c.f. Croes, 1958). The 2-opt algorithm was developed
for the traveling salesman problem and iteratively ex-
changes two edges with 2 new edges until no further
improvements are possible. In the context of the VRP
it was applied separately to all vehicle routes built by
the ants. The main idea of this algorithm is to improve
the routing of each tour.

In preliminary tests we found that the solutions ob-
tained using only the 2-opt algorithm are acceptable
as reported in Doerner et al. (Doerner et al., 2002).

EVOLUTIONARY SCHEDULING AND ROUTING

While the individual routes were of high quality, the
'sub-optimal’ clustering of customers led to the main
deviation of these results from the best known solu-
tions.

Thus, we modified the algorithm in the following way.
In addition to the 2-opt algorithm, we first apply a
local search based on swap moves to an ants solution.
A swap move aims at improving the solution by ex-
changing two customers from different tours, i.e. a
customer 4 from tour k is exchanged with a customer
j from tour [. The idea of this local search is to im-
prove the clustering of the solution. The use of swap
moves was proposed by Osman (Osman, 1993) for the
VRP.

So in our new approach, we first aim to improve the
clustering and if no more improvements are possible,
we subject each resulting cluster to a 2-opt algorithm
in order to improve the routing.

3.3 PHEROMONE UPDATE

After all ants have constructed their solutions, the
pheromone trails are updated on the basis of the solu-
tions found by the ants. According to the rank based
scheme proposed in Bullnheimer et al. (Bullnheimer
et al., 1999a) the pheromone update is done as follows

m
Tij 1= PTij + Z A’Til;- + oAT (11)

p=1

where 0 < p < 1 is the trail persistance and o =
m + 1 is the number of elitists. Using this scheme
two kinds of trails are laid. First, the best solution
found during the process is updated as if o ants had
traversed it. The amount of pheromone laid by the
elitists is A75 = 1/L*, where L* is the objective value
of the best solution found so far. Second, the m best
ants of the iteration are allowed to lay pheromone on
the arcs they traversed. The quantity laid by these
ants depends on their rank p as well as their solution
quality L*, such that the u-th best ant lays A7f; =
(m —p+ 1)/L*. Arcs belonging to neither of those
solutions just lose pheromone at the rate (1—p), which
constitutes the trail evaporation.

After the pheromone information has been updated
the attractiveness values {;; are augmented with the
new pheromone information as in equation (9).

Note, that in our original approach as proposed in (Do-
erner et al., 2002), this attractiveness list was re-sorted
after each iteration. The intuition for this re-sorting
was the following. In the beginning the attractive-

EVOLUTIONARY SCHEDULING AND ROUTING

ness values are sorted according to the savings values,
as the pheromone is equal on all arcs. As learning
occurs, and some arcs are reinforced through the up-
date of the pheromone information, the attractiveness
values &;; change, as they become more and more bi-
ased by the pheromone information. Thus, values that
were initially high but turned out not to be in good
solutions will decrease, while combinations with ini-
tially low values that appeared in good solutions will
become more attractive. As the attractiveness values
are re-sorted after each iteration, this leads to dynamic
effects. In particular, ’good’ arcs are reinforced twice.
First, they receive more pheromone than others, and
second as their attractiveness increases they are con-
sidered earlier in the constructive process.

However, this re-sorting lead to fast, and premature
convergence and thus was left out of the modified al-
gorithm presented here. This, as a positive side ef-
fect, also lead to a minor decrease in computation
time which to some degree offset the additional effort
needed for the new local search.

4 COMPUTATIONAL STUDY

In this section we will evaluate our proposed approach.
First we will describe the standard benchmark prob-
lem instances for the VRP. Afterwards we will provide
a comparison between a stochastic savings algorithm,
where no learning occurs and our new approach, as
well as with the approach described in Bullnheimer et
al. (Bullnheimer et al., 1999¢). Next we will com-
pare our results with state of the art results of other
meta-heuristic approaches. Finally, we present infor-
mation on the average and worst case behavior of our
algorithm.

4.1 THE BENCHMARK PROBLEM
INSTANCES

All our computations were performed on a set of
benchmark problems described in (Christofides et al.,
1979). Information on these instances is collected in
Table 1.

The instances C'1 — C'10 are random problems, i.e. the
customers are located randomly in the plane, while
instances C'11 — C'14 are clustered problems, i.e. the
customer locations are clustered. All instances are ca-
pacity constrained. In addition to that, the instances
C6 — C10 and C'13 — C'14 are restricted with respect
to tourlength. In these instances, all customers have
identical service times §. Apart from the additional
time constraints, instances 1-5 and 6-10 are identical.
The same is true for instances 11-12 and 13-14.

1321

Table 1: Characteristics Of The Benchmark Problem
Instances

Random Problems

Instance n Q L é best publ.
c1 50 160 oo 0 524.61 (a)
C2 75 140 oo 0 835.26 (a)
C3 100 200 oo 0 826.14 (a)
C4 150 200 oo 0 1028.42 (a)
C5 199 200 oo 0 1291.45 (b)
C6 50 160 200 10 555.43 (a)
C7 75 140 160 10 909.68 (a)
C8 100 200 230 10 865.94 (a)
C9 150 200 200 10 1162.55 (a)
C10 199 200 200 10 1395.85 (b)

Clustered Problems

Instance n Q L é best publ.
C11 120 200 () 0 1042.11 (a)
C12 100 200 00 0 819.56 (a)
C13 120 200 720 50 1541.14 (a)
C14 100 200 1040 90 866.37 (a)

n ... number of customers
Q@ ... vehicle capacity

L ... maximum tour length

§ ... service time

best publ. ... best published solution
(a) Taillard, 1993

(b) Rochat and Taillard, 1995

4.2 EVALUATION OF THE LEARNING
BEHAVIOR

Let us first analyse the learning behavior of our ap-
proach. This will give us a first insight into the per-
formance of the Ant System. As stated above our Ant
System is very similar to the Ant System described in
(Bullnheimer et al., 1999c). Thus, we chose basically
the same parameter settings, namely n artificial ants,
a = =5 and o = 6 elitist ants.

In preliminary studies we found that for our approach
an evaporation rate p = 0.95 is preferable to p = 0.75
(as proposed in (Bullnheimer et al., 1999c¢)). We also
varied the population sizes and the number of itera-
tions, but found that n ants and 2 - n iterations pro-
vide a good compromise between computation time
and solution quality. Finally, we tested different sizes
of the neighborhood, i.e. different numbers of alter-
natives in each decision step of an ant and found that
k = |n/4] again yields the best results with respect
to both computation times and solution quality. More
details about these results can be found in (Doerner
et al., 2002).

1322

To analyse the learning behavior of our approach and
the performance of our new Ant System approach
more generally, we compare three cases.

e Savings based Ants: our new approach

e Stochastic Savings algorithm: this refers to our
new approach with a = 0, i.e. the influence of the
pheromone information is deliberately set to zero
and no learning occurs

e Standard Ant System: this refers to the algorithm
by (Bullnheimer et al., 1999c)

565,00 T
560,00 ~
555,00

550,00 ~
545,00 ~
540,00 ~
535,00 A
530,00 ~
525,00 ~

Objective function value

520,00 T e e I T

Iterations

Figure 1: Comparing The Learning Behavior Of Our
Savings Based Ants (bold line) With The Stochastic
Savings Algorithm

Figure 1 shows the behavior of our new approach as
compared to the Stochastic Savings algorithm for a
typical run of problem C1. We can observe two im-
portant results. First, in the beginning the two al-
gorithms are almost identical. The ants have not yet
gathered enough pheromone, so the influence of the
trails is small. Indeed, it seems that the Stochastic Al-
gorithm finds better solutions more quickly as it is not
disturbed by the emerging structure in the pheromone
information. Second, the Savings based Ants start to
gain from the pheromone memory and continually im-
prove their solutions until they converge to an opti-
mum (which in this case is slightly worse than the
global optimum), while the Stochastic Savings algo-
rithm does of course neither learn nor converge to a
certain level, but rather oscillates around an average
solution that is much worse than the solutions found
by our new Savings based Ant System.

Let us now compare the three algorithms with respect
to the best solution found over 10 runs for each of the

EVOLUTIONARY SCHEDULING AND ROUTING

14 instances. Note, that for all three approaches we
generated an identical number of solutions. The re-
sults for the three approaches are summarized in Ta-
ble 2. For each instance we indicate the best solution
found with any of the three algorithms in bold.

Table 2: Comparison Of Savings Based Ants With
Stochastic Savings And A Standard Ant System

Instance | Savings based AS SSA SAS
C1 524.63 530.26 524.61
C2 838.60 851.63 844.31
C3 828.67 847.70 832.32
C4 1040.09 1077.57 | 1061.55
Ch 1303.53 1356.71 | 1343.46
C6 555.43 560.35 560.24
C7 909.68 932.46 916.21
C8 866.87 901.52 | 866.74
C9 1171.34 1247.32 | 1195.99
C10 1416.05 1520.17 | 1451.64
C11 1042.11 1047.09 | 1065.21
C12 819.56 819.56 | 819.56
C13 1545.12 1566.96 | 1559.92
Cl14 866.37 866.79 866.37

SSA...Stochastic Savings algorithm
SAS...Standard Ant System

From Table 2 we can observe two interesting results.
First, clearly our new Savings based Ant System out-
performs the other two algorithms. In 10 out of the
14 instances it finds strictly better solutions than the
other two approaches. For 2 more instances our new
approach finds the same solution as one or both of the
other algorithms. Only two instances can be solved
more effectively with the standard Ant System. How-
ever, if we look at the results more closely, we see that
our algorithm generally finds significantly better solu-
tions than the other two approaches, whereas when it
does not find the best solution, it is very close to the
result obtained by the standard Ant System.

Second, for the clustered problems C11 — C'14 a strik-
ing observation can be made. For these instances, the
Stochastic Savings algorithm, which performs worst
for the random problems, finds very good solutions.
More specifically, it is competitive with the Standard
Ant System. The structure of these problems seems
to be strongly exploited by the Savings algorithm. In
fact, as the Savings algorithm tends to combine cus-
tomers that are close to each other and far from the
depot and is able to build tours simultaneously, it is
very likely to start building partial tours for each clus-
ter. Thus, the assignment of a customer belonging to
a certain cluster, to a tour for another cluster, lead-
ing to long unnecessary movements between clusters is
unlikely.

EVOLUTIONARY SCHEDULING AND ROUTING

4.3 EVALUATION OF OUR SAVINGS
BASED ANTS AGAINST STATE OF
THE ART RESULTS

Let us now turn the analysis of our algorithm with
respect to absolute effectiveness. To that end we com-
pare the results obtained with our Savings based Ant
System with two Tabu Search approaches, which are
currently the best meta-heuristic approaches for the
problem. We will measure the performance in terms
of deviation of the best solution obtained with each
method from the best known solution available for
each instance as presented in Table 1.

The algorithms we compare our Savings based Ant
System with are the parallel tabu search algorithm
(PTS) from (Rego and Roucairol, 1996) and the
TABUROUTE algorithm (TS) from (Gendreau et al.,
1994).

The last two rows of Table 3 show for all algorithms
the relative percentage deviation (RPD) over the best
known solution. More specifically, the second to last
row gives the average RPD for the random problems
(C1-C10), while the last row shows the average RPD
for the clustered problems (C11-C14).

Table 3: Comparison Of Tabu Search And The Savings
Based Ant System

Instance PTS TS Savings based
AS
RPD | min! | RPD | min? | RPD | min®
C1 0.00 1.05 0.00 6.0 0.00 0.06
C2 0.01 43.4 0.06 53.8 0.40 0.34
C3 0.17 26.3 0.40 18.4 0.31 1.37
C4 1.55 48.5 0.75 58.8 1.14 8.41
C5 3.34 77.1 2.42 90.9 0.94 33.2
C6 0.00 2.38 0.00 13.5 0.00 0.06
C7 0.00 20.6 0.39 54.6 0.00 0.40
C8 0.09 18.9 0.00 25.6 0.11 1.48
C9 0.14 29.9 1.31 71.0 0.76 9.91

C10 1.79 | 427 | 1.62 | 99.8 1.45 39.3
C11 0.00 11.2 | 3.01 22.2 | 0.00 3.44
C12 0.00 1.57 | 0.00 16.0 | 0.00 1.33
C13 0.59 1.95 | 212 | 59.2 | 0.26 7.22
C14 0.00 | 24.7 | 0.00 | 65.7 | 0.00 1.44

RPD (avg.)
C1-C10 0.71 0.70 0.51
C11-C14 | 0.15 1.28 0.06

! Minutes on 4 parallel Sun Sparc 4 machines.
2Minutes on a Silicon Graphics Workstation (36MHz).
3Minutes on a Pentium IIT (900 MHz).

1323

From Table 3 it can be clearly seen, that our algorithm
outperforms the two Tabu Search approaches with re-
spect to solution quality. The average deviation of our
Savings based Ant System over all instances is only
0.38%, while the parallel tabu search is on average
0.55% away from the best known solution, and the
TABUROUTE algorithm has an average deviation of
0.81%. Particularly, on the clustered problems the su-
perior performance of our algorithm can be observed.
This is due to the fact, that the Savings algorithm
itself is known to perform very well on the clustered
problems. This was also confirmed by our results in
the last section.

Looking at computation times, we have to consider the
following issues: first, the machines used differ greatly.
Moreover, the PTS algorithm, was performed on par-
allel machines. Second, the times given for the Tabu
Search approaches denote the time to find the best so-
lution, whereas our computation times denote the time
to perform 2-n solutions. For most problems the best
solution was found earlier in the search process. Keep-
ing these points in mind, it seems that our approach
finds competitive solutions very fast as compared to
the other methods.

4.4 AVERAGE AND WORST CASE
BEHAVIOR OF THE PROPOSED
METHOD

So far we have evaluated our approach according to
the best solutions found for each instance in 10 trials.
In this section we will take a look at the average and
worst case behavior of our algorithm in these 10 trials
for each of the 14 instances.

What is mainly of interest, is the question whether
the average or worst deviation depends on the prob-
lem size and characteristics. Therefore we will now
provide results for the different problem sizes and for
the different problem characteristics, namely random
and clustered.

Let us first look at problem characteristics. In Table 4
we can see the average and worst case behavior of our
Savings based Ant System, averaged over the random
and clustered problems, respectively.

From these results it becomes once again obvious that
our algorithm performs particularly well on the clus-
tered problems. However, the worst case behavior of
1.92% for the random problem seem still to be more
than reasonable.

While we have now confirmed the strong performance
of our Savings based Ant System for the clustered
problems let us finally turn to the question how av-

1324

Table 4: Influence Of Problem Characteristics On The
Average And Worst Case Behavior Of Our Savings
Based Ant System

Deviation Random Clustered

in % Problems Problems
Average 1.10 0.14
Worst Case 1.92 0.18

erage and worst case behavior relate to the problem
size. In order to answer this question, we have only
looked at problems C'1— C'10. The intuition for this is
the following. The clustered problems C'11 —(C'14 have
sizes of 100 and 120 customers. Thus, they are medium
sized. However, due to their clustered structure they
can be better solved than problems with random dis-
tribution of customers of equal and even smaller size.
In order not to bias our results on the dependence of
average and worst case behavior on problem size we
have thus decided to ignore problems C'11 — C'14.

14
0,5 -
0 - L
50 75 100 150 199

Problem size

Average and worst case
deviation in %
[6)]
.

Figure 2: Average(Dark Columns) And Worst Case
Behavior Of Our Savings Based Ants For Different
Problem Sizes

Figure 2 shows that both average and worst case re-
sults increase with problem size however at a decreas-
ing rate. This result is particularly encouraging as
it suggests that even for larger problems our Savings
based approach should be able to find robust results.
However, the validity of this statement needs to be
tested in future work.

5 CONCLUSIONS

In this paper we have investigated the merit of the
incorporation of a powerful problem specific algorithm
for the VRP, namely the Savings algorithm, into an
Ant System framework.

We have first presented a mathematical formulation,

EVOLUTIONARY SCHEDULING AND ROUTING

followed by an overview of existing research in the area.
Afterwards we have described our approach in detail.

Through tests on the standard benchmark problem in-
stances we were able to show, that our algorithm ex-
hibits adaptive learning, outperforms existing Ant Sys-
tem as well as state of the art Tabu Search approaches
and shows satisfying average and worst case behavior.

Finally, we should add, that our approach features
two important issues concerning real world problems.
First, these problems are generally clustered, as in
cities the density of customer locations is higher than
in rural areas. We showed, that for clustered problems
our algorithm works particularly well. Second, compu-
tation time is often crucial in real world applications,
and our results suggest, that our Savings based Ant
System compares favorably to other techniques with
respect to this objective.

Acknowledgments

This work was supported by the Austrian Science
Foundation under grant SFB #010 ’Adaptive Informa-
tion Systems and Modelling in Economics and Man-
agement Science’ and by the Oesterreichische Nation-
albank (OeNB) under grant #8630. We are grateful to
Herbert Dawid and four anonymous referees for their
valuable comments on the paper.

References

B. Bullnheimer, R. F. Hartl and Ch. Strauss (1999a): A
new rank based version of the ant system: a computational
study. Central European Journal of Operations Research
7(1):25-38.

B. Bullnheimer, R. F. Hartl and Ch. Strauss (1999b):
Applying the ant system to the vehicle routing problem.
In: S. Voss et al. (eds.), Meta-Heuristics: Advances
and Trends in Local Search Paradigms for Optimization,
Kluwer, Boston, 285-296.

B. Bullnheimer, R. F. Hartl and Ch. Strauss (1999c): An
improved ant system algorithm for the vehicle routing
problem. Annals of Operations Research 89:319-328.

N. Christofides, A. Mingozzi and P. Toth (1979): The ve-
hicle routing problem. In: N. Christofides et al. (eds.),
Combinatorial Optimization, Wiley, Chicester, 315-338.

N. Christofides (1985): Vehicle Routing. In. E. L. Lawler
et al. (eds.), The Traveling Salesman Problem, Wiley,
Chicester, 431-448.

G. Clarke and , J. W. Wright (1964): Scheduling of vehi-
cles from a central depot to a number of delivery points.
Operations Research 12:568-581.

A. Colorni, M. Dorigo and V. Maniezzo (1991): Dis-
tributed Optimization by Ant Colonies. In: F. Varela and
P. Bourgine (eds.), Proceedings of the First European Con-
ference on Artificial Life, Elsevier, Amsterdam, 134-142.

EVOLUTIONARY SCHEDULING AND ROUTING

D. Costa, A. Hertz (1997). Ants can colour graphs. Jour-
nal of the Operational Research Society 48(3):295-305.

G. A. Croes (1958). A method for solving Traveling Sales-
man Problems. Operations Research 6:791-801.

K. Doerner, M. Gronalt, R. F. Hartl, M. Reimann,
Ch. Strauss and M. Stummer (2002): SavingsAnts for the
Vehicle Routing Problem. In S. Cagnoni et al.(eds.), Appli-
cations of Evolutionary Computing, Springer LNCS 2279,
Berlin /Heidelberg, 11-20.

M. Dorigo and L. M. Gambardella (1997): Ant Colony
System: A cooperative learning approach to the Travelling
Salesman Problem. IEEE Transactions on Evolutionary
Computation 1(1):53-66.

L. M. Gambardella, E. Taillard and G. Agazzi (1999):
MACS-VRPTW: A Multiple Ant Colony System for Vehi-
cle Routing Problems with Time Windows. In D. Corne et
al.(eds.), New Ideas in Optimization, Mc Graw-Hill, Lon-
don, 63-73.

M. R. Garey, D. S. Johnson (1979). Computers and In-
tractability: A Guide to the Theory of NP Completeness.
W. H. Freeman & Co., New York.

M. Gendreau, A. Hertz and G. Laporte (1994): A tabu
search heuristic for the vehicle routing problem. Manage-
ment Science 40:1276-1290.

M. Gendreau, G. Laporte and Y. Potvin (1999): Meta-
heuristics for the vehicle routing problem. GERAD Tech-
nical report G-98-52.

B. E. Gillet and L. R. Miller (1974): A heuristic algo-
rithm for the vehicle-dispatch problem. Operations Re-
search 22:340-349.

W. J. Gutjahr (2002): ACO algorithms with guaranteed
convergence to the optimal solution. Information Process-
ing Letters 82:145-153.

G. Laporte (1999): Exact algorithms for the travel-
ling salesman problem and the vehicle routing problem.
GERAD Technical report G-98-37.

G. Laporte and F. Semet (1999): Classical heuristics for
the vehicle routing problem. GERAD Technical report G-
98-54.

I. H. Osman (1993): Metastrategy simulated annealing and
tabu search algorithms for the vehicle routing problem.
Annals of Operations Research 41:421-451.

C. Rego and C. Roucairol (1996): A parallel tabu search
algorithm using ejection chains for the vehicle routing
problem. In: I. H. Osman and J. Kelly (eds.), Meta-
Heuristics: Theory and Applications, Kluwer, Boston, 661—
675.

Y. Rochat and E. D. Taillard (1995): Probabilistic Diver-
sification and Intensification in Local Search for Vehicle
Routing. Journal of Heuristics 1:147-167.

T. Stiitzle, M. Dorigo (1999): ACO Algorithms for the
Quadratic Assignment Problem. In D. Corne et al. (eds.),
New Ideas in Optimization, Mc Graw-Hill, London, 33-50.

E. D. Taillard (1993): Parallel iterative search methods for
vehicle routing problems. Networks 23:661-673.

1325

