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E-mail: wolff, nordin@fy.chalmers.se

Peter Nordin

Abstract

We demonstrate the first instance of a real
on-line robot learning to develop feasible
flying (flapping) behavior, using evolution.
Here we present the experiments and results
of the first use of evolutionary methods for
a flying robot. With nature’s own method,
evolution, we address the highly non-linear
fluid dynamics of flying. The flying robot is
constrained in a test bench where timing and
movement of wing flapping is evolved to give
maximal lifting force. The robot is assembled
with standard off-the-shelf R/C servomotors
as actuators. The implementation is a con-
ventional steady-state linear evolutionary al-
gorithm.

1 INTRODUCTION

As a novel application of EA, we set out to replicate
flapping behavior in an evolutionary robot [Nolfi and
Floreano, 2000]. There is a great interest in construct-
ing small flying machines, and the way to do that
might be artificial ornithopters. The continuum me-
chanics of insect flight is still not fully understood, at
least not about controlling balance and motion. Ac-
cording to what was known about continuum equa-
tions a couple of years ago, the bumblebee could not
fly. The way around this problem could be to give up
understanding and let the machines learn for them-
selves and thereby create good flying machines [Lang-
don and Nordin, 2001] and [Karlsson et al, 2000]. We
propose for several reasons the concept of evolution-
ary algorithms for control programming of so-called
bio-inspired robots [Dittrich et al, 1998] as e.g. an arti-
ficial ornithopter. The traditional geometric approach
to robot control, based on modelling of the robot and

derivation of limb trajectories, is computationally ex-
pensive and requires fine-tuning of several parame-
ters in the equations describing the inverse kinematics
[Wolff and Nordin, 2001] and [Nordin et al, 1998]. The
more general question is of course if machines, to com-
plicated to program with conventional approaches, can
develop their own skills in close interaction with the
environment without human intervention [Nordin and
Banzhaf, 1997], [Olmer et al, 1995] and [Banzhaf et
al, 1997]. Since the only way nature has succeeded in
flying is with flapping wings, we just treat artificial or-
nithopters. There have been many attempts to build
such flying machines over the past 150 years1. Gustave
Trouve’s 1870 ornithopter was the first to fly. Powered
by bourdon tube fueled with gunpowder, it flew 70 me-
ters for French Academy of Sciences2. The challenge

Figure 1: Drawing of Gustave Trouve’s 1870 or-
nithopter.

of building ornithopters attracts an accelerating inter-
est in our days as well and there are many different
types of ornithopters. Both manned and unmanned
machines, powered by rubber band, compressed air
and combustion engines as well as electric engine ex-
ist3. All of these projects are still dependent of a for-

1www.ctie.monash.edu.au/hargrave/timeline2.html
2indev.hypermart.net/engine.html
3indev.hypermart.net/photos.html
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ward motion trough the air and we are not aware of
any machine with flapping wings that has succeeded
in hovering like a dragonfly or a mosquito. Kazuho
Kawai, e.g. has during several years tried to make
a manpowered ornithopter fly, but has not succeeded
yet4. Charles Ellington has created another insect-
imitating robot5. The purpose of this robot is to learn
about the aerodynamics of insect flight, by means of
scaling up the insect and thereby get lower velocity
and easier measurements. After nine months of design
and construction, the flapper was born at a cost of £40
000. Although its slow motion ensured that the flapper
would never get airborne, it was perfect for visualizing
the detailed airflow over the wings. Conventional aero-

Figure 2: Pictures of some modern ornithopters. First
known R/C ornithopter, P.H. Spencer’s Orniplane,
which took off in 1961 (top). Kazuho Kawai’s project
Kamura (bottom).

dynamics used in the design of aircraft and helicopters
rely on ”steady-state” situations such as a fixed wing
moving at a constant speed, or a propeller rotating at a
constant rate. By contrast, the motion of insect wings
is a complex behavior in 3D-space. Within this the-
ory rooted in steady-state situations, it has not been
clearly understood why this special motion could gen-
erate any unusual sources of lift to explain the insect
flight. This picture left out some obvious differences
between insects and aircraft. First of all, insects are
small. On this smaller scale, viscosity of air becomes
more important so that, for the average insect, flying
through air is like swimming through treacle. Because
of this, the classic airfoil shape that generates an air-
craft’s lift doesn’t work, and insects have evolved en-
tirely different forms of wing structures. At the Uni-
versity of California at Berkeley, a research team at the

4web.kyoto-inet.or.jp/people/kazuho/
5www.catskill.net/evolution/flight/home.html

Robotics and Intelligent Machines Laboratory came to
the same conclusion as Ellington, i.e. that the problem
is scale dependent6. They are now developing a micro-
mechanical flying insect (MFI), which is a 10-25 mm
(wingtip-to-wingtip) device, eventually capable of sus-
tained autonomous flight. The goal of the MFI project
is to use biomimetic principles to capture some of the
exceptional flight performance achieved by true flies.
The project is divided into four stages:

1. Feasibility analysis

2. Structural fabrication

3. Aerodynamics and wing control

4. Flight control and integration

Their design analysis shows that piezoelectric actu-
ators and flexible thorax structures can provide the
needed power density and wing stroke, and that ad-
equate power can be supplied by solar cells. In the
first year of this MURI grant, research has concen-
trated on understanding fly flight aerodynamics and
on analysis, design and fabrication of MFI structures.
The Berkeley project does not try to improve nature’s
way of flying but are more concerned with the actual
construction of the robot. There are projects with
learning control systems for model helicopters known,
but there has not been any project involving learning
flying machines with flapping wings reported.

2 METHOD

2.1 EA CONTROL

Simulated evolution is a powerful way of finding so-
lutions for analytically hard problems [Banzhaf et al,
1998]. An ordinary mosquito has a very small compu-
tational power (a couple of 100.000 neurons at a very
low clock frequency) and yet it is able solves prob-
lem that are rather complex. The problem is not only
how to move its wings to fly, the mosquito also com-
putes its visual impression and controls its flight path
to avoid obstacles and compensates for disturbances
like side wind. Beside this performance, it also han-
dles its life as a caterpillar, finds food and a partner
to mate with. This is an example of a control system
created by nature. Developing such a control system
would be impossible for a single programmer and pos-
sibly even for an organization. This is why we propose
for evolutionary algorithms as a solution candidate for
control of such complex systems.

6robotics.eecs.berkeley.edu/∼ronf/mfi.html
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2.2 IMPLEMENTATION

The implementation is a simple linear evolutionary
system. All source code is written in MSVC. We have
used some MS Windows-specific functions, meaning
that the program is not possible to run from any other
platform without some changes in the code. The MS
Windows components that are used in the EA class are
first; writing to the serial port and second; a function
returning the mouse cursor coordinates.

2.2.1 Algorithm

The algorithm use tournament selection of the parents.
In this algorithm, only four individuals are selected for
the tournament. The fitness is compared in pairs and
the winners breed to form new offspring that replaces
the losers. This means that there are no well-defined
generations but a successive change of the population
[Banzhaf et al, 1998] and [Nordin, 1997].

2.2.2 Population storage and program

interpreter

However individuals are of random length, there
is a maximum length which the individuals are
not allowed to exceed. The possible instructions are:

0: Do nothing.

1: Move wings forward to a given angle.

2: Move wings up to a given angle.

3: Twist wings to angle.

Because of these limited possibilities, this imple-
mentation cannot form individuals of any other
kind even after a change in the fitness function.
These evolved individuals are represented as a data
structure and cannot be executed without the special
interpreting program. This solution has the advantage
of not having to wait for a compilation of the code.
Of course, it is possible to create compilable code
by generating a header, a series of strings from
the information from the structure and finally the
footer, but this have not yet been implemented.
The program is not computationally efficient but
there is no need for that. Since an evaluation of
one individual can take up to 5 seconds, it does
not matter if the rest of the computation takes ten
milliseconds instead of one. The interpreter translates
the information of the data structure to commands to
the control card of the robot. The different stages are:

1. All the instructions of the program are sent
to the robot without any delays. This sets the robots
starting position at the same as its final. If we do not
do that, the individual could benefit from a favorable
position from the last program executed.

2. The interpreter waits for one second to let
the robot reach the starting position and to let it
come to a complete standstill.

3. The cursor is set to the middle of the screen.

4. The instructions are sent to the robot at a
rate of 20 instructions per second. Meanwhile, the
cursor position is registered every 5 millisecond.
The cycle of the program is repeated three times
to find out if the program is efficient in continuous run.

The resulting array of mouse cursor position is
then passed to the fitness function for evaluation.

2.2.3 Fitness function

The fitness is calculated from the series of mouse cur-
sor coordinates, from the interpretation of the pro-
gram. Our first intention was to use the average of
these coordinates as the only fitness function but we
had to add some penalty for ”cheating” behaviors.

3 HARDWARE

3.1 ACTUATORS

The robot is assembled with standard off-the-shelf
R/C servomotors as actuators. This kind of servo
has an integrated closed loop position control circuit,
which detects the pulse-code modulated signal that
emanates from the controller board for commanding
the servo to a given position [Jones et al, 1999]. The
signal consists of pulses ranging from 1 to 2 millisec-
onds long, repeated 60 times a second. The servo
positions its output shaft in proportion to the width
of that pulse. In this implementation, each servo is
commanded to a given position by the robot control
program by addressing it an integer value within the
interval {0, 255}.

3.2 ROBOT

Five servomotors are used for the robot. They are
arranged in such a way that each of the two wings has
three degrees of freedom. One servo controls the two
wings forward/backward motion. Two servos control
up/down motion and two small servos control the twist
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of the wings. The robot can slide vertically on two steel
rods. The wings are made of balsa wood and solar,
which is a thin, light air proof film used for model
aircrafts, to keep them lightweight. They are as large
as the servos can handle, 900 mm.

Figure 3: The robot mounted on its sliding rods.

Figure 4: Schematic orientation of the actuators.

3.3 CONTROLLER BOARD

A controller board called Mini SSC II (Serial Servo
Controller) from Scott Edwards Electronics Inc. was
used as the interface between the robot and the PC
workstation, via serial communication. It is possible
to connect up to eight servomotors to a single Mini
SSC II controller board. The communication protocol
consists of three bytes: first byte is a synchronization
byte, the second is the number of a servo (0-7), and
the last is a position-proportional byte (0-255). The
controller board maintains the actuators position ac-
cording to the last given command, as long as there
are no new commands sent.

The robot is placed on two rigid steel rods and is free
to slide vertically. In vertical direction, the robot is
supported by an elastic rubber band and a string con-
nects the robot to the mouse, which is used to detect
fitness during the evolutionary experiments.

Figure 5: Picture of the robot and the experimental
environment.

3.4 FEEDBACK

An ordinary computer mouse gives feedback to the
computer, which is a measure of the vertical position
of the robot. The mouse takes care about the con-
version from the analogue outside world to the digital
computer. The mouse is placed above the robot, which
is connected to the Y-direction detection wheel of the
mouse via a thin string. When the robot moves in
vertical direction, the mouse detects the changes in
position and the program simply reads the cursor po-
sition on the screen [Nordin and Banzhaf, 1995] and
[Andersson et al, 2000].

4 RESULTS

The robot was very fast to find ways to cheat. First,
it noticed that if it made a large jerk, it could make
the thread between the mouse and the robot slide and
therefore make the mouse unable to detect its real po-
sition. Once, the robot managed to make use of some
objects that had, by mistake, been left on the desk
underneath the robot. After a few hours the robot
was completely still and had twisted one wing so it
touched the objects and thereby pressed himself up.
It also invented motions that kept it hanging on the
rods without sliding down.

Initially, all individuals consist of completely random
movements. The fitness of an individual is the average
cursor position during the run. At the beginning of
the run, the cursor is set to 384, half the height of the
screen. A fitness of 200 or lower means that the robot
is producing enough lift to carry its weight; i.e. to fly.
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Figure 6: Series of pictures showing the best individual
of Experiment 1.

4.1 EXPERIMENT 1, VERTICALLY

Immediately the individuals achieve lower fitness. Af-
ter a couple of minutes all individuals has a better
result then just hanging still, which would give the fit-
ness 384. For a couple of hours, the average fitness
continues to decrease but finally the result does not
improve any more. The lengths of the individuals in-

crease to a certain program length, where they remain
fixed. At the random construction of the code, the
length is set to somewhere between one and half the
maximum program length.
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Figure 7: Fitness values from a representative run.
Average fitness (top) and best individual fitness (bot-
tom). The time scale is 2.5 hours.
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Figure 8: Fitness values of a longer run of 5 hours.
Average fitness (top) and best individual fitness (bot-
tom).

The resulting individuals did come up with the result
one should have expected. A down stroke with no
twist angle of the wings and an up stroke with wings
maximally twisted to minimize the resulting downward
force.
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Figure 9: Average program length of the same run as
shown in figure 8.

4.2 EXPERIMENT 2, HORIZONTALLY

The second experiment aimed at exploring the possi-
bilities to have the robot to fly in horizontal direction.
The experimental set-up is shown in figure 9. The
robot is attached to a sleigh, which is free to move
along a horizontal rod.

Figure 10: Horizontally flying experiment set-up.

The fitness function in this experiment was set to the
average horizontal velocity of the sledge/robot. This
function did cause some trouble since the population
could not get an over all increasing fitness due to the
fact that the track was not infinitely long. The wires
to the robot were left hanging to generate an increas-
ing backward force as the robot travels further away.
Therefore the fitness of an individual was dependent
on the result of the last evaluated individual. As seen
in figure 10, the fitness only increases for one hour but
the resulting individuals were still getting better. The
position of the robot was recorded every tenth second
for two minutes and, as shown in figure 11, the evolu-

tion is still in progress even after that the fitness has
come to a standstill.
This experiment resulted in two different flying be-
haviors, both present in the small population of 50
individuals after two hours. The two types were one
”flying” and one ”rowing” program.
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Figure 11: Average fitness of experiment 2, horizon-
tally. The time scale is 2.5 hours.
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Figure 12: Diagram showing the position of the robot.
The position is the distance in horizontal direction
from the starting point.

5 SUMMARY AND CONCLUSIONS

We have demonstrated the first instance of a real on-
line robot learning to develop feasible flying (flapping)
behavior, using evolution. Using evolutionary robotics
in the difficult field of ornithopters could be a fruitful
way forward.
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Figure 13: Behavior of the two resulting individuals
in experiment 2, horizontally. ”Flying” behavior (top)
and ”rowing” behavior (bottom).

The most interesting future approach would be to sup-
ply the robot more power compared to its weight,
which should give the robot a reasonable chance of
flying. To achieve this, conventional R/C servomotors
is not likely to be used as actuators, since they have a
rather poor power-to-weight ratio.
Furthermore, providing the robot with a more sophis-
ticated feedback system would give it the possibility
to practice balancing in space. Another future devel-
opment stage is to make the robot autonomous, e.g.
carrying its energy source and control system.
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Abstract

The type of search where a robot’s track takes it
on a path where its sensors can detect all mines
located in the area is referred to as area coverage.
Planning this track is an issue in robotics and is
complicated when the robot is legged due to the
reduced precision of its movements.  Cyclic ge-
netic algorithms have been used as a method for
learning the cycle of turns and straights required
for a hexapod robot to solve the area coverage
problem.  Although successful in a static envi-
ronment, the learning system needed an anytime
component to make it adaptable enough to be
used in practice.  This paper discusses the crea-
tion of a viable learning system by adding the
anytime learning technique of co-evolving model
parameters.  Tests in simulation demonstrate this
system's usefulness in generating search patterns
despite changes in the robot's performance.

1  INTRODUCTION
Area coverage is a type of path planning that is concerned
with the coverage of an area.  Some applications are mine
sweeping, search and rescue, haul inspection, painting,
and vacuuming.  Coverage is done by the robot's sensors
/manipulators, which are assumed to have a certain width
of effectiveness.  The area to be covered is described as
having defined boundaries and possibly some obstacles.
The path planned is supposed to ensure that the area cov-
ered by the robot's sensors compared to the total area
within the defined boundaries is equal to the desired cov-
erage.

Research in the area of coverage path planning has con-
centrated primarily on covering a specified area while
contending with obstacle avoidance.  Zelinsky et al.
(1993) used path planning by dividing the area into cells
that were marked with the distance to the goal to form a

cell to cell path through the area. Choset and Pignon
(1997) divided the area into obstacle free sub-areas and
found an exhaustive path through the adjacency graph
representing these cells.  Within each cell the back-and-
forth boustrophedic motions (Figure 1) were used to as-
sure coverage.  Ollis and Stentz (1997) used vision to
control the lines in their boustrophedic motions to do
automated harvesting. Hofner and Schmidt (1995) used
templates appropriate for the type of robot to determine
the best path within varying sized areas.   In addition to
dead reckoning,  landmarks sensed by ultrasonic sensors
were used to maintain the desired track.  Hert at el. (1996)
used an on-line planar algorithm and sensors for an
autonomous underwater vehicle to explore areas of the
sea floor with arbitrary shape.

Figure 1: Back-and-forth Boustrophedic motion.

Common to all of these works is either precise control of
the robot or some navigational means of finding its posi-
tion/orientation and making continual corrections to its
movement.  These assumptions make them ineffective for
inexpensive legged robots with minimal sensors and pre-
cision of movement since they cannot be positioned per-
fectly with exact headings.  What is often taken for
granted in these papers, a capability to perform perfect
back-and-forth boustrophedic motions (Figure 1), is diffi-
cult for legged robots, since the exact time and rate of turn
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cannot be specified.  In addition, often what is considered
a straight gait results in a small drift to one side or the
other due to performance differences from one side to the
other of the robot.  The best straight may actually be what
is programmed in as a minimal turn.  Efficiency is also a
major factor in determining the best track over the ground
to cover the area. The best path depends greatly on the
capabilities of the robot.  If the robot can efficiently rotate
or turn sharply, its best strategy may be to do a ladder
pattern (boustrophedic with square turns).  If tight turns
are not efficient for this particular robot, it may be better
to make large sweeping turns or buttonhooks with some
coverage overlap.

A method for learning turn cycles that will produce the
tracks required for area coverage was introduced in previ-
ous work (Parker, 2001).  The learning was done using a
cyclic genetic algorithm (a form of evolutionary compu-
tation designed to learn cycles of behavior).  Tests of the
robot’s dead reckoning capabilities with the learned cycles
showed that using CGAs is an effective means of learning
for area coverage.  This provided a means of learning the
optimal cycle of turns and straights that could greatly im-
prove the efficiency of area coverage within cells.  In ad-
dition, this system of learning could compensate for the
lack of calibration in robot turning systems.  Although
successful in a static environment, the learning system
needed anytime learning (Grefenstette and Ramsey, 1992)
to make it adaptable to changes in the robot or its envi-
ronment.  This paper discusses the use of the co-evolution
of model parameters to make the learning system useful
in a dynamic environment.  Tests in simulation demon-
strate this system’s success in generating search patterns
despite changes in the robot’s performance.

2  THE PROBLEM
During area coverage the robot is trying to maximize the
area covered in minimal time.  This may be done by an
insect to search for food or check for enemies.  A robot
could also be searching for enemies or clearing the area of
deadly devices such as mines.  For the area coverage
problem used in this research, the robot was to fully
search, starting from a specific point (Figure 2), an area of
specific width (180 cm).  Since the robot was judged by
the area covered in a set amount of time, plus the purpose
was to find the most efficient cycles of behavior required
to do it, the area to be searched had no bound on one side.
The area width was purposely small to accommodate ease
in actual testing and to force more turns during training.

The simulated search was for mines that would be fully
contained in the area.  In order to detect a mine, the robot
had to have the entire width of its body (excluding the
legs), at its mid point, within the same 60x60 cm square
as the mine.  For test purposes, 60x60 blocks with mines
were placed to completely fill the area.  The robot’s task
was to find as many mines as possible while ensuring that

no mines had been missed. The robot’s movement was
not restrained in any way by the environment. There was
no physical constraint requiring it to stay within the mine
area.

Figure 2:  Search area for coverage.

2.1 The Robot
The ServoBot is a small (25x12cm; 25x24cm including
legs), inexpensive hexapod robot with a BASIC Stamp II
controller.  The controller is capable of holding the pro-
gram that can produce a cycle of activations required for
12 servo motors to move its legs in a normal gait.  In ad-
dition it can hold a sequence of commands that result in a
sequence of turns and straights performed by the robot.

2.2 Gait Cycles
A gait is produced by the controller sending pulses to the
robot's actuators (servo motors).  The control program
includes a sequence of activations that the on-board con-
troller will continually repeat.  Each activation controls
the instantaneous movement of the 12 servo actuators.
The activation can be thought of as 6 pairs of actuations.
Each pair is for a single leg with the first bit of the pair
being that leg's vertical activation and the second being
that leg's horizontal activation. The legs are numbered 0
to 5 with 0,2,4 being on the right from front to back and
1,3,5 being the left legs from front to back. A signal of 1
moves the leg back if it is a horizontal servo and up if it is
a vertical servo. A signal of 0 moves it in the opposite
direction.  For example: an activation of 001000000000
results in the lifting of the left front leg; 000001000000
results in the pulling back of the second right leg.
001001000000 would activate both at the same time. This
set of input activations is held active by the controller for
one servomotor pulse (approximately 25 msec).

A repeated sequence of these activations can be evolved
by a cyclic genetic algorithm (Section 3.3) to produce an
optimal gait for a specific SevroBot (Parker, Braun, and
Cyliax, 1997). The gait generated for area coverage tests
was a tripod gait (Figure 3).  The tripod gait is where legs
0, 3, & 4 alternate with legs 1, 2, & 5 in providing the
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thrust for forward movement.  While one set of legs is
providing thrust, the other set is repositioning for its next
thrust.  In the case of  the ServoBot used, the entire cycle
lasted for 58 activations with each set providing 29 acti-
vations of thrust.

��

��

��

��

��

��

Figure 3:  The two leg configurations for the robot
during a tripod gait.   The solid lines show legs that are
on the ground and producing thrust.  The dashed lines
show legs that are repositioning for the next thrust by
initially lifting and then lowering again while the leg is
moving forward.  Legs 0, 3, & 4 alternate with legs 1, 2,
& 5 in providing thrust.

2.3 Production of Turns in Gait Cycles
Differing degrees of turn were provided in the gait cycles
through the use of affecters.  These affecters could inter-
rupt activations to the thrust actuators for either the left or
right side of the robot.  Since the normal gait consisted of
a sequence of 29 pulses of thrust to move the leg from the
full front to full back position, anything less than 29
would result in some dragging of the legs on that side.
For example: a right side affecter of 7 would allow only
14 (2 x 7) thrusts on the right side while keeping 29 on
the left.  The result would be that the left side would
move further than the right resulting in a right turn.  Af-
fecters from 0 to 15 (4 bits) were possible.  0 meant that
side would get no thrust producing a maximum turn.  15
will not affect the normal gait so the result should be a
straight track.  A one bit indicator specified if the affecter
was for the right or left.

Each gait cycle, made up of 58 activations, was assigned
an affecter, which resulted in a turn throughout that cycle.
For consistency, each gait cycle started with legs 0, 3, & 4
full forward and legs 1, 2, & 5 full back; all the legs were
on the ground.  As the gait cycle started legs 0, 3, & 4
would provide the thrust as legs 1, 2, & 5 would start to
lift and move forward to reposition for their thrust after 29
activations.  A single gait cycle was defined as being
complete when the legs returned to their starting positions
(in this case, after 58 activations).

2.4 Cycles of Gait Cycles
The controller can be programmed to make the series of
turns specified in an input sequence by application of the
affecters to produce the corresponding gait cycle.  The
input sequence includes the turn direction, turn strength
(affecter), and the number of times to repeat that gait cy-
cle.  Up to nine changes in gait cycles can be used with up

to 63 repetitions of that gait cycle. The effective result
was to produce cycles of gait cycles that could be used to
define a desired path over the ground. A cycle of sub-
cycles results in a single cyclic behavior.

3  STATIC SOLUTION USING A
    CYCLIC GENETIC ALGORITHM
Training was done to find the best search path for a spe-
cific robot.  The robot’s base gait cycle was learned using
a cyclic genetic algorithm and was optimizing for speed;
15 left and 15 right gait cycles were programmed using
the method described in Section 2.3.  The effect of each
of these gait cycles was tested on the actual robot and the
results were used to build a list of robot capabilities.  This
list was used to simulate the robot for the CGA while it
generated area coverage search paths.

3.1 Simulated Robot Performance
The robot was simulated by maintaining its current state,
which was made up of its xy position in the area and its
orientation (heading).  Its capabilities were stored in a list
of 32 gait cycles (Figure 4).  Each element of the list
could be identified by its gait cycle number (five bits).
The high order bit describes whether the turn will be left
(1) or right (0) and the remaining four bits indicate the
level of turn.  The list (F T ∆H) of three numbers after
that indicates the result of applying that gait cycle for one
cycle.

( 0 (3.7 4.0 24.3))  (16 (5.0 -3.7 -26.7))
( 1 (3.7 4.0 22.2))  (17 (5.7 -3.7 -24.7))
( 2 (3.8 4.3 20.2))  (18 (6.0 -5.0 -22.2))
( 3 (4.8 4.3 18.8))  (19 (6.3 -4.8 -20.3))
( 4 (5.3 4.0 16.7))  (20 (7.3 -4.3 -18.8))
( 5 (6.5 4.0 14.7))  (21 (8.4 -4.3 -15.8))
( 6 (7.3 3.8 13.2))  (22 (9.6 -3.8 -13.5))
( 7 (8.1 3.5 12.2))  (23 (10.4 -2.8 -10.3))
( 8 (8.4 3.5 11.0))  (24 (11.1 -2.3 -7.0))
( 9 (9.4 2.8 8.3))  (25 (11.9 -1.5 -5.0))
(10 (10.1 2.3 6.2))  (26 (12.1 -1.5 -3.7))
(11 (11.4 0.8 2.7))  (27 (12.1 -1.0 -2.7))
(12 (12.1 -0.1 0.0)) (28 (12.4 -1.0 -2.3))
(13 (12.1 -0.5 -1.3))(29 (12.1 -1.0 -2.7))
(14 (12.4 -0.5 -1.8))(30 (12.1 -1.3 -2.3))
(15 (11.6 -0.8 -1.3))(31 (11.6 -0.8 -1.3))

Figure 4: The robot’s capabilities stored in 32 gait cy-
cles.  The first number in each element of this list is the
gait cycle number.  When looked at as a five bit num-
ber, the first bit designates whether the turn is left or
right and the remaining four bits designate the strength
of turn.  A strength of 0 is a maximum turn, a strength
of 15 is no turn.  The left column shows the right turn
gait cycles and the right column shows the left turn gait
cycles.  The three numbers listed after each gait cycle

EVOLUTIONARY ROBOTICS1288



number represent the robot’s capabilities.  They are the
measured results of running that gait for one cycle.

Each gait cycle was tested for rate of turn by running the
robot for four cycles while taking three measurements
(Figure 5).  F was the distance in centimeters that it
moved forward.  The F axis was defined as the heading of
the robot before movement.  T was the distance traveled
left or right.  The T axis was defined as a perpendicular to
the F axis.  Left movement resulted in a negative T, right
in a positive T.  ∆H was a measurement (in degrees) of
the change in heading from the start heading F axis to the
heading after execution of the gait cycles.  Left was nega-
tive, right was positive.  After making these measure-
ments, each was divided by 4 to attain the average turn
rates.  The sharpest turns, effecters less than 3, resulted in
turns of greater than 90° after four gait cycles, so three
cycles were used in these cases.  Turn rates, defined using
F, T, and ∆H; were stored for each gait cycle.

Figure 5:  Gait cycle turn measurements.  The left dia-
gram shows F and T.  F is the distance moved forward
(relative to the start position heading).  T is the distance
moved in the turn direction (perpendicular to the start
position heading).  The right diagram shows ∆H, the
change in heading from before to after turn execution.

3.2 Simulated Environment
The test area (Figure 2) was simulated by an xy grid
where point (0,0) was the lower left corner.  The lower
right corner of the area was the point (180,0).  The lower
boundary was at y = 0, the left boundary was at x = 0, the
right boundary was at x = 180, and there was no upper
boundary.  Mines were considered to be in 60×60 square
blocks.  The first row had centers at (30,30), (90,30), and
(150,30).  The second row started at (90,30), etc.  The
robot’s start position was placed at (45,30) with an initial
heading of 090 (Figure 2).  This location assured acquisi-
tion of the first mine and put it in a good starting place to
acquire the first row of mines.  Motion was determined by
applying each gait cycle from the chromosome one at a
time.  Using the current xy position and heading of the
robot, a new position was calculated by applying the for-
ward (F) and left/right (T) movements stored for that gait
cycle as described in the previous section.  The new
heading was an addition of the current heading and the

gait cycle heading change (∆H).  The path was not re-
stricted from going outside of the area and the calcula-
tions remained the same if it did.  This allowed, if appro-
priate, for the robot to do its turns out of the area so that it
could attempt straight tracks within the area.

3.3 Cyclic Genetic Algorithms
Cyclic genetic algorithms (CGAs) were developed to al-
low for the representation of a cycle of actions in the
chromosome (Parker and Rawlins, 1996). They differ
from the standard GA in that the chromosome can be
thought of as a circle with up to two tails (Figure 6) and
the genes can represent subtasks that are to be completed
in a predetermined segment of time. The tails of the CGA
chromosome allow for transitional procedures before
and/or after the cycle, if required. In our area coverage
experiments, we used only the cyclic portion since the
start position was known and the search tactic was to be
applicable for any duration. The CGA genes can be one of
several possibilities. They can be as simple as primitive
subtasks (activations) or they can be as complicated as
cyclic sub-chromosomes that can be trained separately by
a CGA. For the area coverage problem the genes repre-
sented a set of gait cycles that were to be sustained for
one cycle each. The trained chromosome contained the
cycle of these gait cycles that was continually repeated by
our robot's controller to produce a path that was to effi-
ciently cover the designated area.

Figure 6: CGA chromosome with three genes in the
start section (before cycle), nine genes in the cyclic
section, and two genes in the tail section (after cycle).

3.3.1  Area Coverage Chromosome

The controller program has a provision for nine changing
gait cycles in the search cycle.  Each gait cycle (there are
32 possible) takes 5 bits to identify and the repetitions of
each gait cycle can be from 0 to 63.  The CGA chromo-
some used directly resembles the required input to the
controller.  Each chromosome is made up of 9 genes (9
genes fit within the storage capacity of the BASIC Stamp
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and were judged to be sufficient to perform the task) and
each gene of the chromosome is made up of 2 parts (a 5
bit number and a 6 bit number).  The scheme representa-
tion of the chromosome is shown in Figure 7.  The first
number in each pair represents the gait cycle while the
second represents the number of times to repeat that gait
cycle.

((GS1  R1)  (GS2  R2)  (GS3 R3)  (GS4  R4)  . . .  (GS9 R9))

Figure 7:  Area coverage chromosome.

3.3.2 Implementation of the CGA

An initial population of 64 individuals, made up of chro-
mosomes described in the previous section, was randomly
generated.  Each individual, representing a cycle of gait
cycles that would form a path, was tested to determine its
fitness after 100 of these gait cycles were executed (this
would be a total of 5800 activations); 100 gait cycles were
enough to ensure that some turning was required to cover
the optimal number of mines.  It was not, however,
enough to force the formation of a cycle that could pro-
vide continuing full coverage.  Due to this limitation, the
required number of gait cycles was randomly (with a 1
out of 2 probability) increased to 200.  This allowed for
faster fitness computations while using 100 gait cycles,
yet put selection pressure on the population to evolve in-
dividuals capable of performing well at 200 gait cycles.
The CGA was run for 5000 generations with the best so-
lution (individual chromosome) saved whenever there
was an increase in fitness (more mines covered in the
allotted time).

Figure 8:  Fitness calculation.  This track would result
in a fitness of 4.  The first row of mines, plus the second
row’s right mine are covered.  The second row’s middle
mine is not considered covered because the robot’s
body at the midsection was not entirely within the
block.  The third row middle mine would be detected by
the robot, but will not count since there were mines in

the second row that were not covered.  However, it
would be counted if the robot circled back around and
covered the two mines missed in the second row.  Also
note that the robot is free to depart the area with no di-
rect fitness penalty.

3.3.3  Solution Fitness

Selection probability was determined by the individual’s
fitness.  This fitness was calculated by counting the num-
ber of mines detected (mine blocks covered by robot’s
path) after it had completed a specified number of gait
cycles (Figure 8).  Counting, which was not done until the
search path was completed, began by rows from the bot-
tom of the area.  As soon as a mine block was missed no
more rows were counted, although the mines from the
partial row were counted.  The idea was for the robot to
ensure that the area covered was completely free of
mines.  For the fitnesses calculated during training, mines
visited more than once were not counted, although they
did count for row completions.  This was to discourage
paths that were wasting time re-searching covered area.
Once a fitness was calculated for each individual in the
population, pairs were stochastically selected for repro-
duction.  The genetic operators used were the same as
described in previous work (Parker, 2001).

3.3.4  Tests

Five initially random populations were each trained using
the CGA.  Tests were done on the individuals saved dur-
ing training to record the progress of the best individual in
solving the area coverage problem.  The average of the
best fitnesses for each recorded generation from the five
populations was then calculated.  The initial growth was
relatively fast.  The rate of improvement slowed as each
population gained a near optimal back-and-forth boustro-
phedic pattern and only make slight improvements after
that.  All the solutions had a fitness of at least 30 by gen-
eration 500.  This means that 30 blocks were covered as
the robot completed 200 gait cycles.  The average fitness
of the five final solutions was 34 and the best solution
resulted in a path where the robot attained 37 blocks.

4. DYNAMIC SOLUTION USING THE CO-
EVOLUTION OF MODEL PARAMETERS
The CGA worked well in learning a good solution for
area coverage, but its answer was only as good as the
model used for training.  The model was produced
through accurate measurements of the actual robot as it
performed each gait cycle.  Due to natural changes in the
robot's capabilities, this model quickly becomes inaccu-
rate.  Only through continual adjustments to the model's
parameters can the CGA continue to find an optimal so-
lution.
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4.1 The Co-Evolution of Model Parameters
Previously introduced and used as a learning system de-
signed to generate gaits for hexapod robots (Parker,
2000), co-evolving model parameters dynamically links
the model to the actual robot.  It involves doing periodic
tests of evolved solutions on the actual robot to co-evolve
the accuracy of the robot’s model with the CGA produced
control solution.  This extension of anytime learning al-
lows for an adaptive real-time learning system that needs
only global  observation to make corrections in the robot
model.

Figure 9 shows how it affects the learning.  The model’s
parameters are constantly under review while anytime
learning is in process.  Training with a GA takes place
off-line on a simple model.   Periodic checks on the actual
robot help to verify the model’s accuracy.

                              GA

             GA trains                            GA modifies
               on Model              Robot controller

        Model                               Robot
                           Robot performance
                                    Modifies Model
               using the Co-Evolution of Model Parameters

      Figure 9:  Co-evolving model parameters.

The form of evolutionary computation used to co-evolve
the model parameters in past experimentation (Parker,
2000) has been a basic genetic algorithm.  A population
of individuals is randomly generated before training be-
gins.   This population can start out either as randomly
generated individuals or as a combination of perturbations
(to varying degrees) of the original model parameters.
Each individual is made up of a set number of genes.
Each gene represents a corresponding field in the robot’s
model. These genes evolve to produce models that corre-
spond in performance to the actual robot.  After each n
generations the best and two other area coverage solutions
are tested on the actual robot.   These measurements are
used to judge the accuracy of a population of model pa-
rameters by comparing the performance of the area cover-
age solutions on the actual robot with their performance
on each model.   The most accurate individual in the
population of model parameters is used for continued
controller evolution.  Fitnesses for each individual in the
population of model parameters are used as they co-
evolve with the controller solutions.  The population of
model parameters will continue to evolve until interrupted
by updated actual test information.   This solution requires
three actual tests every n generations.

4.2   Partial Recombination Used in the
        Evolution of Model Parameters
The model parameters that are needed to be co-evolved
for area coverage are the components of the gait cycle
table shown in Figure 4.  The F, T, ∆H for each affector
needs to be learned.  The chromosome for co-evolution is
shown in Figure 10.

((0 (F T ∆H)) (1 (F T ∆H)) (2 (F T ∆H)) . . .  (31 (F T ∆H)))

Figure 10: Model parameter chromosome.

Each gene was made up of affector number (including the
one bit indicating the turn direction) and a set of three
numbers representing the robot's distance moved and
change in orientation.

Although the basic GA worked well in co-evolving the
model parameters for hexapod gait generation (Parker,
2000), it was deemed inappropriate for evolving the
model parameters for area coverage.  Since a turn cycle
used up to nine gait cycles, 23 of the 32 gait cycles would
have no bearing on the fitness.  They would be altered as
a side effect while the nine or less being evolved tended
toward an optimal.  This could result in the loss of vital
building blocks required to evolve the gait cycles destined
for future use.  In addition, since some means of keeping
related building blocks close to each other should be ad-
vantageous (Holland, 1975), related gait cycles needed to
be together during evolution.    Although several gait cy-
cles may be related by their probable use together in the
execution sequence, predicting these relations in advance
is difficult. Both of these problems are addressed by using
partial recombination.

In a standard GA, the chromosome is fixed and related
building blocks can be separated by significant distances.
One means of lessening this gap is to group related
building blocks together, but this requires that one knows
which are related.  Another solution, messy GA’s (Gold-
berg, Deb, and Korb, 1991) can be used to learn this or-
dering.  In the model parameter learning problem, the
related building blocks cannot be predetermined, but they
become better known during runtime.  There is no need to
learn the best building block positions; they can be as-
signed during learning.  They do change, however, so re-
assignments must be possible.  No previous research
dealing with the problem of evolving only part of the pa-
rameters could be located.  Partial recombination solves
this problem by extracting the needed gait cycles for ap-
plication of the genetic operators.  These gait cycles (each
of which could be considered a building block) were used
to build a new chromosome by placing them in the order
they were needed in the CGA generated turn cycle, which
was probably the best guess for related order.  The genetic
operators were applied to this partial list of all the gait
cycles for the designated number of generations.  Upon
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completion of training, they were re-inserted into the
main model parameter population.  This allowed for
training on the appropriate gait cycles (building blocks)
arranged in the proper order without disturbing the rest of
the building blocks.

Co-evolution starts when a best solution is sent to the
Model parameter GA by the turn cycle generating CGA.
Two more turn cycles are generated using this best solu-
tion.  One is a perturbation of up to 1±  on each of the
non-zero repetitions in the turn cycle.  The other uses a
.25 probability starting from the first gene to find a gene
that it sets the repetitions to 50.  The partial recombina-
tion GA chromosome is built by extracting the needed
gait cycles from each individual of the model parameter
population.  The three turn cycle solutions (the best found
by the CGA, plus two perturbations) are each run on the
actual robot and on the 64 partial robot models.  The fit-
ness of each is judged by comparing (finding absolute
difference) its performance to the actual robot’s perform-
ance.  Two figures are compared for each gait cycle solu-
tion—the number of blocks covered and the number cov-
ered only once.  This done on the three turn cycle solu-
tions results in six total differences which are added to-
gether to get the fitness.  This fitness is used to perform
the standard GA operators of selection, crossover, and
mutation.  After 50 generations, the partial chromosomes
are re-inserted into the main chromosome with the best
designated as the current model for further CGA training.

4.3  Tests
To test anytime learning in simulation, a “correct”  gait
cycle list that differed from the one created through capa-
bility measurements was generated.  It had each turn rate
shifted to be off by one.  Each turn strength was to be less
than expected.  Gait cycle n of the new list would be
equivalent to gait cycle n + 1 of the old list.  The max
turns (strength 0 for both left and right) were thrown out
and the turns with strength 14 were equal to strength 13
turns.  This new gait cycle list was used to simulate the
actual robot.  This simulated actual robot did not turn as
sharply as the training model indicated so all the path
planning solutions would be slightly off.  This could
match an actual situation where the robot lost some of its
turn capability in all turns.

To perform anytime learning, a population of 64 gait cy-
cle lists was generated by perturbing the original gait cy-
cle list used for CGA training.  The final (5000 genera-
tion) population of path plans generated by the CGA was
used for continued training.  The anytime learning system
tested all these solutions using the original gait cycle list
(the best known model at the time).  This test was done
for 50 gait cycles as opposed to 100 or 200 since this is
what would be done on the actual robot.  The best solu-
tion plus two perturbations of it, as described in Section
4.2, were used to find a fitness for each gait cycle list

(model) in the population of models.  A genetic algorithm
with partial recombination was run for 40 generations.  At
the completion of this training, the best model was used to
replace the original model.  The CGA was run again for
40 generations using this new model to evolve a new best
path planning solution.  This process was continually re-
peated for a total of 1000 CGA generations.  The best
path planning solution (judged by its performance on the
best know model at each 40 generation mark) replaced the
simulated robot’s operational solution if its performance
was better on the actual robot.

The results of applying anytime learning to these resultant
populations are shown in Figure 11.  The simulated robot,
which was the “corrected”  model, was used to test the
best solution (plus two perturbations) for fitness calcula-
tions used to co-evolve the model parameters.  Although
the same simulated robot was used for all five tests, the
starting populations differ since they came from the pre-
vious test.  In addition, the model parameter populations
differ since they were randomly generated.

Figure 11:  With the co-evolution of model parameters.
The vertical axis shows the number of blocks covered
after 50 gait cycles (this is also referred to as fitness).
All lines represent the results of running the operational
control path (the best generated up until that point). The
baseline is the average fitness of the five without any-
time learning.  The horizontal axis shows the number of
training iterations.  Each iteration is equal to 3 trials on
the robot, 40 generations of model training, and 40 gen-
erations of path planning training.

Each Popx listed represents what one would see as a robot
was training using anytime learning with the CGA learn-
ing the turn cycle control sequence and the GA with par-
tial recombination learning the model parameters.  As the
best model was updated it was stored in the operational
side of the control system.  The best model remained in
effect until a new model evolved that was found to be
superior.  The graphs trace these best models as the ro-
bot’s performance continually improved.  As can be seen,
four of the five populations reached a fitness of 10 by the
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sixth iteration of the learning system.  Each iteration con-
sisted of three tests on the robot, 40 generations of model
evolution, and 40 generations of control evolution.  The
fifth population got stuck at a fitness (blocks covered) of
9, but finally reached 10 after 16 iterations.

The heavy dashed and solid lines show average perform-
ance of the best models.  The dashed line indicates what
the average fitness of the five populations would be if
there was no anytime learning.  There is no improvement
over time since the system’s best model never changes.
The solid line shows the average when anytime learning
is employed. Now the best model is continually improved,
which results in a more accurate training environment for
the CGA.

5  CONCLUSION
Area coverage path planning provided an interesting
problem for the CGA to solve.  The setup was such that
only a cycle of actions (turns and straights) could provide
a useable solution.  The learned cycle of actions provided
the basis for a robot controller to repeat its pattern of
movement as required to cover an area of any specified
length.  Although testing was done using only dead reck-
oning to strive for the best solution, the assumption is that
some rough navigational device that makes minor posi-
tion adjustments after each single cycle would be required
for actual implementation.

The addition of anytime learning improved the practical
usefulness of the system and confirmed the ability of the
co-evolution of model parameters to provide real-time
corrections.  Tests in simulation showed that this type of
anytime learning only needs global observation to im-
prove the outcome.  The average increase in blocks cov-
ered after training with the co-evolution of model pa-
rameters was nearly two times its starting average.  This
system moves the work in learning away from the robot
allowing it to go about its operations while the path plan-
ning takes place off line.

These tests demonstrate that an anytime learning system
based on the co-evolution of a path plan using cyclic ge-
netic algorithms and of a simulation model using a ge-
netic algorithm with partial recombination is an effective
means of learning adaptive control strategies for hexapod
robots performing area coverage.  The CGA was success-
ful in generating strategies for five out of five random
start populations within 5000 generations.  The anytime
learning based on co-evolution of model parameters was
shown to successfully adapt all five populations to the
specifics of the simulated robot.

Further research will be conducted to test the use of the
co-evolution of model parameters in tests on the actual
robot as it performs practical applications.  Research will
also be done to explore the usefulness of partial recombi-
nation in other domains of evolutionary computation.
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