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Abstract

The natural immune system is very e�ective

at protecting the body from diseases. Several

researchers have analyzed the natural sys-

tem and created arti�cial systems which copy

mechanisms of the natural system in order to

improve computer security. We suggest that

the negative selection algorithm, which is at

work in the natural system, might have been

copied too closely. We argue against the use

of negative selection if space is �nite and self

comprises only a small fraction of the avail-

able space or if space is in�nite. We illustrate

this on the problem of user authentication us-

ing keystroke analysis.

1 MOTIVATION

The natural immune systems' task is to detect

molecules which don't belong to the organism. This

ability led several researchers to look closely at the

workings of the natural immune system. Inspired by

the natural system they have tried to copy mecha-

nisms which are at work in the natural system more

or less closely for use in the area of computer security

(D'haeseleer et al. 1996; Forrest et al. 1997; Forrest

et al. 1996; Forrest et al. 1994; Hofmeyr and For-

rest 1999a; Hofmeyr and Forrest 1999b; Kephart 1994;

Kim and Bentley 2001a; Kim and Bentley 2001b; So-

mayaji et al. 1998). After having a closer look on how

the natural immune system works, we brie
y review

some of the arti�cial immune systems and analyze the

advantages and disadvantages of using the mechanism

of negative selection in an arti�cial immune system.

2 THE NATURAL IMMUNE

SYSTEM

Our discussion of the natural immune system is based

on Alberts et al. (1994). A substance causing an im-

mune reaction is called an antigen. The immune sys-

tem is capable of distinguishing between highly similar

antigens. Even proteins which di�er by only a single

amino acid can be distinguished. The cells which are

responsible for the immune speci�city are called lym-

phocytes. They belong to the class of white blood

cells. The human body has approximately 2 � 1012

lymphocytes. Two classes of lymphocytes exist: B-

cells and T-cells. B-cells develop in the adult bone

marrow or the fetal liver. They produce antibodies.

T-cells develop in the thymus and are responsible for

the so called cell-mediated immune response.

The immune system is based on a mechanism which is

called clonal selection. Each lymphocyte is equipped

with a receptor which can be used to bind an antigen.

The term clonal selection comes form the fact that a

large variety of receptors exist which can be grouped

into families, or clones, of cell. Each receptor has a

speci�c shape and can only react with a certain anti-

gen. The receptors are generated at random and are

thought to cover the whole space of possible antigens.

If a lymphocyte binds an antigen, then the cell be-

comes activated. The cell proliferates, matures, and

�nally secretes antibodies. The antibodies have the

same shape as the receptor of the cell which secreted

it.

The antibody response includes the production of an-

tibodies which circulate through the blood and other

body 
uids. The antibodies consist of a Y-shaped

molecule which can bind an antigen at two locations.

An abstract representation of this Y-shaped molecule

and a close-up of the antigen-binding site of an anti-

body molecule is shown in Figure 1. The antibodies

METHODOLOGY, PEDAGOGY, AND PHILOSOPHY 957



S
S S

S

binding site
antigen

binding site
antigen

SS
S S

hypervariable
regions binding site

hypervariable

antigen−

regions

Figure 1: Antibody (left). Close-up of the antigen-

binding site of an antibody molecule (right). Redrawn

from Alberts et al. (1994).
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Figure 2: Binding of an antigen. Redrawn from Al-

berts et al. (1994).

bind antigens which �t into the receptors. Through

this binding process a virus may be inactivated. Anti-

gens coated with antibodies may also be digested or

killed by special cells.

In the course of an immune response B-cells increase

the aÆnity of the antibodies they produce. This pro-

cess is called aÆnity maturation. Changes to the shape

of the receptors are caused by mutations. This process

is referred to as somatic hypermutation. The muta-

tions happen with a frequency which is approximately

one million times higher than the mutations which

happen to the other genes. Cells which have a high

aÆnity binding reproduce better because they can

more easily dock on an antigen (Figure 2). This results

in a selection of those cells which closely match the

given antigen. Thus, an evolutionary process is em-

bedded in the immune system which produces highly

speci�c antibodies to any possible antigen.

The cell-mediated immune response consists of the

production of specialized cells, called T-cells. These

cells are used to detect cells which have been infected

by a virus. Peptide fragments of a foreign molecule are

brought to the cells surface by specialized molecules.

Inside the cell those molecules are invisible to the im-

mune system. Once these fragments show up on the

cells surface they can be detected by the T-cells. We

have two kinds of T-cells: cytotoxic T-cells and helper

T-cells. Cytotoxic T-cells kill infected cell directly

while helper T-cells activate other cells who then kill
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Figure 3: Response to antibodies. The response to

the second exposure to antigen A happens much faster

than the response to the �rst exposure. In addition the

response is also stronger. Redrawn from Alberts et al.

(1994).

the infected cells. In addition, the helper T-cells are

necessary for the activation of B-cells. Helper T-cells

stimulate themselves as well as other helper T-cells to

reproduce once they are activated. Only those helper

T-cells become activated which have detected an anti-

gen.

In addition to the immune responses the immune sys-

tem also has a memory. If an antigen is detected for

the �rst time then the immune response only happens

after a certain delay. This is called the primary im-

mune response. The immune response on a known

antigen, called the secondary immune response, hap-

pens quicker and more strongly in comparison to the

primary immune response. The di�erence between the

primary and the secondary immune response is shown

in Figure 3. This behavior of the immune system is

realized through di�erent stages of the T- and B-cells.

There are at least three di�erent stages: virgin cells,

activated cells and memory cells. Activated cells die

after a few days. However, memory cells can live for

several months or even years.

The main task of the natural immune system is to dis-

tinguish between own molecules and molecules belong-

ing to a foreign organism. Detecting foreign molecules

is mainly the task of the T-cells. The T-cells develop

in the thymus. Cells which bind to own peptide are

eliminated during development. This process is called

negative selection. Only T-cells which have a low aÆn-

ity to the organisms own molecules remain. B-cells

need helper T-cells to react to foreign antigen. There-

fore, helper T-cells also ensure that self-active B-cells

are harmless.
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Following this discussion of the human immune system

we now have a look at how the workings of the natu-

ral system have been mapped to an arti�cial immune

system.

3 PROPOSALS FOR AN

ARTIFICIAL IMMUNE SYSTEM

In the area of computer security one needs to distin-

guish original data from manipulated data, authorized

users from intruders and normal behavior from abnor-

mal behavior. This is exactly the problem the natural

system solves, namely to detect self from non-self. A

number of properties of the natural system would also

be useful for an arti�cial system: (a) distributed de-

tection, (b) multi-layered, (c) diversity, i.e. every in-

dividual has its own immune system, (d) disposability,

no single component is essential (e) the immune sys-

tem can work autonomously, (f) is adaptive and (g)

does not depend on secrets (Somayaji et al. 1998).

Kephart (1994) developed a biologically inspired im-

mune system to protect a computer system from pre-

viously unencountered viruses or worms. The analo-

gies between the natural system and the arti�cial sys-

tem are rather loose. Integrity monitors in conjunction

with activity monitors are used to determine if a virus

or worm has entered the system. The integrity moni-

tors check if �les have been changed or added. Activity

monitors check for dynamic behavior which is typical

of viruses. They also look at the type of change to see

if the change may have been caused by a virus. If it

is determined that a virus has entered the system a

scan is made to �nd any known viruses. In case the

virus is known, it is removed. Otherwise, decoy pro-

grams are used in order to get a sample of the virus.

This has been likened to the ingestion of antigen by

macrophages or B cells in the natural immune system.

Forrest et al. (1994) developed an arti�cial immune

system for change detection in executables. The sys-

tem learns to distinguish the original version of a pro-

gram from a program which has possibly been infected

by a virus. Forrest et al. generate a set of ran-

dom detectors (bit strings) in analogy to the workings

of the thymus of the natural immune system. The

negative selection algorithm is used to remove those

detectors which would detect the original programs.

The feasibility of generating detectors was analyzed

by D'haeseleer et al. (1996) who also proposed a more

eÆcient algorithm for generating detectors.

Hofmeyr and Forrest (1999a, 1999b) developed an ar-

ti�cial immune system for intrusion detection. This

system has a closer analogy to the workings of the

natural immune system. The system's task is to dis-

tinguish normal from abnormal connections between

two computers in a local area network. The system

basically consists of a set of detectors which are used

to detect non-self, i.e. abnormal behavior. Initially the

detectors are generated at random. During an initial

maturation period, it is checked if a detector matches

any part of the system which is to be protected. If a

match occurs then the detector is deleted. If a detec-

tor has survived this process for a speci�ed number of

steps then the detector matures and is now ready to de-

tect non-self. The set of mature detectors continually

monitor the data stream for non-self. If a detector is

not activated for some time then the detector is deleted

and replaced with a new mature detector leaving the

negative selection algorithm. Detectors are memorized

if a detector receives a special type of co-stimulation.

Detectors which have been memorized previously can

immediately detect non-self.

Forrest et al. (1996) have developed an arti�cial im-

mune system which monitors dynamic behavior of pro-

cesses. Sequences of system calls are used to de�ne

normal behavior for standard unix programs. Devia-

tions from this normal behavior are detected by com-

paring short sequences of system calls with normal se-

quences stored in a database. Plans to extend this

work include the addition of the negative selection al-

gorithm and using on-line learning.

Kim and Bentley (2001b) modeled clonal selection for

use in an arti�cial immune system for network intru-

sion detection. Basically, Kim and Bentley evolve de-

tectors which detect non-self antigens. A negative se-

lection operator is embedded in this process. Detectors

which match self antigens are deleted. Other authors

have used principles from arti�cial immune systems for

diversity maintenance in multi objective optimization

(Cui et al. 2001), to improve adaptability in the con-

text of time dependent optimization (Gaspar and Col-

lard 1999) or to recognize spectra for chemical analysis

(Dasgupta et al. 1999).

Many of the arti�cial systems stay very close to the

workings of the natural system, with all its advantages

and disadvantages. We now have a closer look at the

eÆciency of the negative selection algorithm.

4 ON THE EFFICIENCY OF THE

NEGATIVE SELECTION

ALGORITHM

Recently, Kim and Bentley (2001a) analyzed negative

selection in an arti�cial immune system for intrusion

detection. Their main result is that as the task be-
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Figure 4: (a) Covering non-self with detectors works

best if self is large and non-self occupies only a small

fraction of space. (b) On the other hand, covering self

with detectors works best if self is small and non-self

occupies a large fraction of total space.

comes more complex, the number of detectors has to

be unacceptably large and the time needed to gener-

ate a suÆcient number of detectors is impractical. In

comparison to this critique of the negative selection

algorithm our critique is much more general.

For this analysis we assume that we have n-

dimensional real valued vectors which represent anti-

gens and detectors. We also assume, that we have

some mechanism which is able to detect if a match oc-

curred between a detector and an antigen. This can be

some arbitrary measure such as correlation coeÆcient

or distance between the two vectors. Now we need a

de�nition of self. We de�ne self as a subset of points

in the n-dimensional space. The set of points describ-

ing self does not have to be static but can vary over

time. A threshold is usually used to determine if a

detector matches either an antigen or any point of the

self. This fact is modeled by placing a hyper-sphere

around each point which belong to the self. The ra-

dius of the hyper-sphere determines the sensitivity of

the detector. An antigen is detected if it lies inside the

hyper-sphere of a detector.

The negative selection algorithm distributes detectors

randomly over this space. Detectors overlapping any

points of self are removed (Figure 4a). This algorithm

works �ne if space is �nite and self occupies a large

fraction of the total space. But what if space is �nite

and self comprises only a small fraction of the available

space or what if space is in�nite? In this case it makes

more sense to describe only the self and then check if

an antigen falls outside of this area (Figure 4b).

Note that if the number of detectors is �nite then

learning a concept or learning its negation are not

equivalent. If self can be covered using a smaller

number of detectors in comparison to non-self then

it makes more sense to detect self instead of non-self.

If space is in�nite and one tries to cover all points be-

longing to non-self, only a �nite number of points will

original detector

detector
matching antigen

mutation and
selection

Figure 5: Somatic hypermutation and clonal selection

increases the aÆnity between detector and antigen.

This corresponds to a movement in shape space.

be covered. The sensitivity of the detectors need to be

reduced if one wants to be able to detect all possible

antigens. Reducing the sensitivity means enlarging the

radius of the hyper-spheres. However this also means

that during random generation of a detector it is very

likely that this detector will cover some part of self and

therefore will be removed from the set of detectors. If

the size of self is small and the number of detectors is

limited then self can be much better approximated by

placing the detectors inside of self.

Suppose we want to determine if a point is located

outside of a square. All we need is to check if the

point is not located inside the square. This negation

of a test can be done in a computer system quite easily

but is very diÆcult to realize in a natural system. For

the natural immune system it is simply not possibly to

check if a given molecule is equivalent to one of its own

molecules. The natural system would have to store

samples of the molecules which occur in the human

body in some part of the body and then check if the

intruder falls outside this class of molecules. That is,

the natural system would have to check that the given

molecule is unlike any of the stored molecules. Because

this is infeasible, the natural system is dependent on

the use of negative selection to detect molecules which

don't belong to its own organism. This works because

local shape space is only �nite (Kau�man 1993).

The natural system generates detectors which match

other molecules rather crudely. The match is then re-

�ned using somatic hypermutation. Detectors which

have a better match produce more o�spring. What

analog would there be in an arti�cial immune sys-

tem for the process of somatic hypermutation? In our

model, this would correspond to moving the detector

in the direction of the position of the antigen (Figure

5). But is this really necessary? If it is established that

some antigen is present in the system then it would be
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Figure 6: Molecule generated from the user's

keystrokes. Each molecule is composed of 7 �elds.

the best to store the position of the antigen as a sample

of an unknown intruder. The more samples are gained

the better our knowledge of the intruder becomes.

So far, our discussion was rather general with no par-

ticular problem in mind. We now have a look at solv-

ing the problem of user authentication with an arti�-

cial immune system.

5 A PRACTICAL EXAMPLE

Biometrics such as a �ngerprint or iris pattern may

be used to determine who is actually using a com-

puter system. For instance, Klosterman and Ganger

(2000) have developed a system for continuous user

authentication using a face recognition system. Other

examples for user authentication include the analysis

of keystroke patterns (Bleha et al. 1990; Brown and

Rogers 1993; Furnell et al. 1996; Furnell et al. 1995;

Joyce and Gupta 1990; Leggett and Williams 1988;

Monrose et al. 1999; Monrose and Rubin 1997; Obai-

dat and Sadoun 1997; Robinson et al. 1998; Shepherd

1995; Song et al. 1997; Umphress and Williams 1985).

As a practical example, we have chosen to analyze typ-

ing patterns. We want to make sure that the same user

is continually sitting in front of the keyboard. For in-

stance, if a person goes to lunch and forgets to lock

the screen, then somebody not authorized could use

the terminal. Keystroke analysis could also be used to

make sure that even if the password is known to an in-

truder it can only be used to gain access to the system

if the speed of typing corresponds to the authorized

user. That is, we want to develop an arti�cial immune

system for user authentication.

The system tries to determine if the same or a di�erent

user is using the system. This information is derived

by analyzing the user's keystrokes. The duration of

the key presses and the delay between key presses is

used to determine who is typing on the keyboard. A

stream of molecules is generated from the timestamps

which are recorded whenever a key is either pressed or

released. Each molecule contains data from three suc-

cessive key release events. The data is stored in seven

�elds as shown in Figure 6. The �rst �eld contains the

�rst character which was released. The second �eld

contains the duration of the key press. The third �eld

contains the delay between the release time and the

time of the next key press. The fourth �eld contains

the second character. The �fth �eld contains the du-

ration of the second key press. The sixth �eld contains

the delay between the release time and the time of the

third key press and �nally the last �eld contains the

third character pressed.

First we need a notion of self. Self is de�ned as the

normal typing behavior of a user. That is, all points

in our 7 dimensional space which describe the typing

behavior of the user belong to the set of self. All others

belong to the set of non-self. In order to detect a dif-

ferent user we could randomly generate detectors and

then check if the detectors match any of the molecules.

If a detector matches any part of self then we delete

this detector. The problem with this approach is how

can we cover an in�nite space? To solve this problem

we have chosen to store samples of the normal typ-

ing behavior of the user and to check the stream of

molecules against this sample. Thus, we do not use

the negative selection algorithm.

For our experiments we have used a pool of 2000 detec-

tors. Each molecule is stored in the pool of detectors

after a delay of 2000 iterations of our algorithm. An

activity level models the clonal reproduction of the ar-

ti�cial immune system. The stream of molecules is

checked against this pool of detectors. If a match

is made between a molecule and a detector, i.e. the

molecule is suÆciently similar to one of the detectors,

we decrease the activity level by 1% otherwise we in-

crease the activity level by 1%. The activity level is set

to 1.0 at the start of our algorithm. The activity can

reach a maximum of 2.0. If the activity level reaches

1.5 (half-way between maximum and minimum values)

then we assume that a di�erent user has gained unau-

thorized access to the keyboard.

For a match between a molecule and a detector to be

made we require that �elds one, four and seven are

equivalent. If these three �elds are equivalent, then

we look at �elds two, three, �ve and six to determine

how similar these �elds are. For each of these four

�elds we calculate the following similarity measure

similarity =
X

i2f2;3;5;6g

e
�

(a
i
�d

i
)2

�
2
i

where ai and di refer to the i-th element of the

molecule (a possible antigen) respectively detector and

�i = di=2:1. A match is made if the similarity measure

reaches a value of 3.2 or higher.

We obtained typing characteristics for 5 di�erent users.

Each user had to type the �rst two sections of the sem-

inal paper \Computing machinery and intelligence" by
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Table 2: Number of keystrokes until change is de-

tected.

User 1 2 3 4 5

1 - 141 100 139 267

2 39 - 67 459 46

3 53 52 - 71 54

4 123 322 209 - 113

5 120 101 131 119 -

Turing (1950). The data obtained from the keystroke

timestamps was saved and converted into a stream

of molecules. The stream of molecules was then an-

alyzed o�ine. Each stream consisted of between 5168

and 5741 molecules. For each user we randomly se-

lected a reading position from which we start read-

ing molecules. After 2000 molecules we start reading

molecules from the second users stream. Each user's

stream of molecules was compared against the streams

of all other users resulting in a 5� 5 matrix of activ-

ity graphs. If a user's stream was compared against

its own stream then we simply skipped 100 molecules

after 2000 molecules have been processed. The results

of all experiments are shown in Table 1. Table 2 lists

the number of molecules (or keystrokes) until non-self

was detected.

6 DISCUSSION

The results show that non-self is detected after a rel-

atively small number of keystrokes. Simply storing

samples of the user's typing behavior works well for

the task of user authentication. However, this is not

the only way to address this problem. Another pos-

sibility would be to average data and thereby to es-

tablish a model of the person sitting in front of the

keyboard. In this case, the task is to obtain a com-

pressed form of the data. For the task described here,

this can be achieved by calculating the mean and the

variance of the duration of keystrokes and the delay

between keystrokes.

In fact, deriving a model from keystroke characteris-

tics for user authentication was proposed by several re-

searchers (Bleha et al. 1990; Brown and Rogers 1993;

Furnell et al. 1996; Furnell et al. 1995; Joyce and

Gupta 1990; Leggett and Williams 1988; Monrose and

Rubin 1997; Obaidat and Sadoun 1997; Robinson et al.

1998; Shepherd 1995; Song et al. 1997; Umphress and

Williams 1985). Song et al. (1997) use the same rep-

resentation as we do for continuously monitoring the

user's keystrokes. In particular, the mean and stan-

dard deviation of the duration of a key press and the

delay between a key release and another key press are

calculated over two or more consecutive press and re-

lease events. Next, the probability that the current du-

ration of key presses and the delay between keystrokes

belong to the current user is calculated. If the sum of

probabilities is very low for a number of time steps

then a di�erent user is likely to be sitting in front of

the terminal.

The main problem with model based approaches is

how to treat outliers. Some researchers e.g. Joyce

and Gupta (1990), Leggett and Williams (1988), and

Umphress and Williams (1985) remove outliers. How-

ever the diÆcult task is to de�ne what is an outlier.

With our approach all user patters are stored. The au-

thorized user will occasionally produce outliers but the

large majority of typing patters will be consistent, i.e.

not raise the activation value. In contrast, an unau-

thorized user will almost always produce outliers which

keep raising the activation value of the system. Adap-

tation is achieved by storing molecules in the pool of

detectors after a delay of several iterations. Thus our

pool of detectors represents an undistorted view of the

user's typing pattern. Furnell et al. (1995) and Fur-

nell et al. (1996) achieve a detection rate of 85% within

160 keystrokes or less with a system based on statisti-

cal methods. Our system is simpler yet we detect 80%

of the intrusion attempts within 160 keystrokes or less.

7 CONCLUSIONS

The natural immune system does a very good job of

protecting the body from diseases. Analysis of the

natural system can provide many paths to increased

computer security. Several successful systems have al-

ready been proposed. In our research we focused on

the role of negative selection in the immune system.

The negative selection operator does a beautiful job in

the natural system but is not necessarily useful in an

arti�cial system. The natural system basically has no

other way to detect foreign antigens than to remove

those cells which produce antibodies which detect its

own molecules. However, in a computer system we are

able to determine easily if an element is not a member

of a given set. Thus we don't need to invoke the neg-

ative selection algorithm here. As a practical problem

to illustrate this case we have chosen user authenti-

cation using keystroke analysis. Samples of the user's

typing characteristics were stored in a pool of detec-

tors and compared with the current typing behavior.

If the typing behavior deviates too much from the nor-

mal typing behavior then a di�erent user is likely to

be using the keyboard. Experimental results were pro-

vided for 5 di�erent users. In each case non-self was
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Table 1: Self and non-self detection for 5 users. Each graph shows the activity level over time. The graphs in

the diagonal show how the system behaves for a single user when 100 molecules are skipped after 2000 molecules

have been processed. Because the typing behavior is still the same, no change is detected. In contrast, the

activity level rises sharply whenever a di�erent user's stream is processed. The vertical line denotes the time

when 2000 molecules have been processed.
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quickly detected after a change to a di�erent user oc-

curred.
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Abstract

Traditional areas of application of genetic

algorithms (GA) are engineering and tech-

nology. Success of genetic algorithms there

is well known. This paper explores the

use of genetic algorithms as models to in-


uence the design of organization. In par-

ticular, we outline the concept of evolution-

ary organization process based on two recent

cases: the Teamwork for a Quality Educa-

tion (TQE) and Free Knowledge Exchange

(FKE) projects. The distinguishing feature

of both projects is that computational evo-

lutionary processes in
uence the organiza-

tional environment, providing the structure

of interactions of people and facilitating their

communication. In both cases, the organiza-

tional structure and people become directly

involved into the evolutionary process inte-

grating the power of evolutionary computa-

tion with the competence of participating hu-

man beings.

1 INTRODUCTION

Traditionally, evolutionary computation (EC) is con-

sidered separately from the organizational environ-

ment in which it operates. The organizational envi-

ronment provides the problem to be solved and the

�tness criteria of solutions. As a result of EC execu-

tion a population of good-enough solutions is created

that feeds back into the environment. In this mode

of operation, EC does not in
uence the structure of

organizational environment from which it is invoked.

Instead, it serves just as a functional unit of a �xed

structural mechanism. However, if we look beyond

one run of the EC process, the organizational envi-

ronment has people who make changes to the problem

and the �tness function. This can be viewed as another

process of evolution: the evolution of human ideas or

memes (Dawkins, 1976). Intuitively, the two processes

of evolution, computational and human, have the same

nature. Several authors suggested that genetic al-

gorithms model human innovation (Goldberg, 1983;

Holland, 1995; Goldberg, 2000). If so, the e�cient

and convenient interface between the two might speed

up the evolution of the whole human-computer sys-

tem. This paper considers two applications which pro-

vide such an interface, creating a fusion of computa-

tional evolution and the evolution of human thoughts.

Such hybrid evolutionary process is interesting as (1)

a method of studying innovative behavior of humans,

(2) a natural method of embedding the competence of

human users into an evolutionary procedure, and (3)

an organizational method to improve the innovation

ability of a group of people.

In this paper, we consider two applications of GA prin-

ciple for social organization. The �rst project \Team-

work for a Quality of Education" (TQE) is a method

to organize an educational process after the model of a

genetic algorithm. The second project is \Free Knowl-

edge Exchange", the web-based virtual organization

that uses a human-based genetic algorithm (HBGA)

(Kosoruko�, 2001) for its internal knowledge manage-

ment and innovation.

2 TEAMWORK FOR A QUALITY
EDUCATION (TQE) PROJECT

The TQE project was an application of the basic con-

cepts of a genetic algorithm to create a more e�cient

educational environment (Goldberg, Hall, Krussow,

Lee, & Walker, 1998). It introduced teamwork and

design across the curriculum enlivened by a spirited,

yet friendly competition among teams. It also de�ned

the principles, projects, and the rules of the competi-

tion.
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TQE is a competition of student-led teams, each team

consisting of freshmen, juniors, and seniors together

with faculty and sta� advisors. Among TQE princi-

ples, the following three are most important for our

analysis:

� Pervasive Teamwork To achieve higher qual-

ity delivery of engineering education, integrated

teams should be employed throughout the engi-

neering academy as they have been employed in

industry.

� Friendly Competition Among a Population

of Teams Participation and excellence should be

driven by a friendly competition among a popula-

tion of teams to win team awards based on excel-

lence in academics, projects, and other categories.

� Multiobjective evaluation Each team is

charged with obtaining the highest quality educa-

tion possible for its members, and this goal is ac-

tuated through the series of competitions in three

broad categories: (1) academics, (2) service and

design, and (3) summer job placement.

TQE provides participants with a structure of interac-

tion built upon the principles of a GA. In the common

academic approach, faculty, sta�, and students are like

billiard balls that collide with one another when a

course, advising episode, or other event calls for it.

Under TQE program, the same collisions would take

place, but the individuals would also be supported by a

quasi-permanent interpersonal infrastructure of team-

work (Goldberg, Hall, Krussow, Lee, & Walker, 1998).

Additional information can be found elsewhere (Gold-

berg, Hall, Krussow, Lee, & Walker, 1998), but for the

purpose of this paper the key thing to keep in mind is

that the TQE was conceived partially because of the

second author's experience with GAs. In other words,

the very notion of a population of teams, a compe-

tition, a �xed (and multiobjective) \�tness function"

were drawn from the example of GAs. Additionally, it

was assumed that teams would emulate one another,

thereby promoting a kind of selection and crossover. It

was also assumed that a team member would sponta-

neously generate new and useful ideas, a kind of smart

mutation.

While the common academic approach is oriented to-

ward the development of the individual abilities of a

student, TQE emphasizes the development of cooper-

ative skills. Individual grading, the �tness function

of usual education, is augmented by team grading, so

the educational process optimizes the performance of

Table 1: Correspondence between elements and pro-

cedures of GA and TQE

GA TQE

Gene Member

Chromosome Team

Population Population of teams

Fitness function Judging + grades

Generation Semester

Initialization Team formation

Selection Team competition

Crossover Team swaps +

informal exchange

Mutation New idea of a team

member

a team rather than the peak performance of an indi-

vidual. This produces diverse teams capable of solving

tasks the complexity of which is beyond abilities of an

individual specialist.

A detailed description of the results of the TQE pilot

project is beyond the scope of this treatment. Stu-

dent feedback was generally good though the course

required a substantial workload for the credit given.

Detailed description of the results with the program

is available elsewhere (Goldberg, Hall, Krussow, Lee,

& Walker, 1998). Here we concentrate on the GA-

connection.

The TQE project was inspired by a genetic algorithm,

and there is a strong correspondence between its con-

cepts and the concepts of a GA. This is represented in

table 1

Most of the table is self-explanatory. New idea cre-

ation by a team member is analogous to a mutation of

one gene, which is a team member in this case. The

correspondence between TQE and GA procedures is

pretty strong, except for the following two di�erences:

crossover and reproduction operators.

The usual kind of GA crossover is di�cult to apply

to a team of people, because team members unlike

genes have their own preferences and desires. There-

fore, we cannot just swap members randomly between

two teams. The practice of team swaps is tightly con-

nected with the willingness of particular members to

change their team, and usually this process happens

actively only at the initial stages of TQE. After the

teams become more or less solid, crossover rarely hap-

pen, so its combinatorial potential cannot be fully uti-

lized.

Fitness-proportional reproduction is another problem
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in TQE. If some genotype is �t in GA we can easily

reproduce and make several copies of its genes. It is

clear that we cannot clone people of the �t team in the

same way.

Concluding this section, we note that generally TQE

is a working method of organization built after the

GA model with some modi�cations re
ecting social

speci�cs of this project.

3 FREE KNOWLEDGE
EXCHANGE (FKE) PROJECT

The Free Knowledge Exchange (FKE) project intro-

duces the concept of evolutionary knowledge manage-

ment based on concepts of GA. It used a human-based

genetic algorithm (HBGA) for the task of collabora-

tive solving of problems expressed in natural language

(Kosoruko�, 2000a). It was created in 1997 for a small

organization with the goal of promoting success of

each member through new forms of cooperation based

on better knowledge management. Currently it is a

virtual internet community of more than 500 people

from 92 countries. The FKE website www.3form.com

evolves solutions to the problems of its participants in

7 di�erent languages. It is supported by advertisement

and allows anyone to join this community through the

web and use it without a membership fee.

The FKE project explores evolution of natural lan-

guage strings to arrive at better answers to the prob-

lems submitted by its members. It organizes individu-

als into collaborative community and uses their ability

to perform intelligent crossover and selection operators

on existing knowledge.

The idea of knowledge evolution in the most explicit

form was suggested by Richard Dawkins (Dawkins,

1976). Evolution of natural language messages was

explored in neuro-linguistic programming (Bandler &

Grinder, 1976) and studied in the evolutionary the-

ory of language (Pinker, 1998). Some web projects

implicitly use evolution of messages to stimulate cre-

ativity, and the most relevant example is the Global

Ideas Bank (GIB). Its main idea is collecting more

successful and humane ways of doing things, and then

re-presenting them in new mixes and matches, the ac-

cumulation of systems and arrangements that work a

little better (Eno, 1998).

FKE makes the evolution of messages systematic and

explicit using the framework of evolutionary computa-

tion. The four main ideas and their sources are shown

in table 2: human interaction, emphasis on recom-

bination, using natural language as a genotype, and

Table 2: Main ideas behind FKE and their sources

Idea Source

Human interaction IGA

Natural language as Meme theory

a genotype representation by Dawkins

Emphasis on Recombination GA

Diploidy Creative

questioning

diploidy.

The idea of human interaction came from interac-

tive genetic algorithms (IGA) that introduced hu-

man evaluation interfaces in evolutionary computa-

tion. Human-based genetic algorithm (HBGA) used

in FKE is basically an IGA combined with human-

based innovation interfaces (crossover and mutation).

In comparison with a typical interactive genetic algo-

rithm using only human judgment (Herdy, 1996; Tak-

agi, 1998), HBGA enjoys a balanced approach allowing

and encouraging both convergent and divergent think-

ing of participants in the form of evaluation and recom-

bination, correspondingly. This is accomplished by

selecto-recombinative interfaces, where a person can

perform selection or evaluation or both, based on one's

preferences at the particular moment.

The use of natural language as a genotype representa-

tion was inspired by meme theory (Dawkins, 1976). It

can be said that natural language strings have a tight

linkage of building blocks, since in the most frequently

used patterns of language their constituent parts tend

to be located close to each other. Thus our natural

language by itself has a good encoding for the pur-

pose of genetic algorithm. We can hypothesize that

the structure of language has itself evolved to allow

this tight linkage of building blocks. Such a structure

makes the evolutionary method of natural language

processing e�cient.

The emphasis on recombination is the main feature of

GA. From an EC point of view, online interfaces of

Global Ideas Bank are built on selection and muta-

tion. They show ideas one at a time and allow users

to evaluate them, to add new ideas and comments.

Human-based mutation happens when one idea in-

spires another, and the result is submitted back to

the ideas bank. This mechanism of evolution pro-

duces incremental continuous improvement, but lacks

e�ciency without recombination operator (Goldberg,

2000). The FKE project puts much emphasis on the

process of recombination as do many GA implementa-

tions.
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Table 3: An example of evolved answers in FKE

Q How do you know that you are in the right

career to really exceed in life and to do

well overall?

18 You are in the right career if you

wake up excited to go to work.

12 You need to feel it. If you're enjoying

yourself, nothing else matters. As long

as the money is enough to live by, you're

�ne there.

12 Rely on your intuition and senses. It should

feel good to be in the right carreer :-)

11 You are in the right carreer if you wake up

every day and can't wait to get to work. You

spend all day doing what you love and then

when its time to go home you really don't

want to.

8 What is the de�nition of the right? If people

want, then they can do anything and enjoy

doing it. Nobody preassigns you from the

birth to be a cook or a janitor, it is a

choice which is made based on the life

experience and the environment.

The use of diploidy came from creative questioning

method (Ray & Myers, 1989). It assumes the sepa-

ration of messages into the two classes: problems and

solutions. After such a separation, we can evaluate

the �tness of each solution for a particular problem,

not just evaluate if some message is a good idea in

general (the case of GIB). FKE divides all processed

text strings into the two mutually exclusive classes:

problems and solutions, by analogy with female and

male distinction. This distinction creates two levels

of co-evolution in FKE, each having the same recom-

bination methods, but di�erent methods and criteria

for selection. The interplay between problems and an-

swers in the FKE create an e�ect similar to the e�ect

of creative questioning method.

Here we draw several examples that were evolved in

the system. Table 3 shows the question having the

highest �tness at the time of writing this paper. An-

swers are ordered according to their �tness which is

shown in the �rst column of the table.

Table 4 shows another example clarifying the meaning

of word \knowledge" in FKE. Questions about word

de�nitions are common in FKE. One of the extentions

of the projects suggested by its participants is to cre-

ate a self-maintaining web dictionary evolving with the

language itself.

Table 4: Word de�nition question

Q What is knowledge?

4 Approximation of the outside world in our

local observable vicinity. It is usually

expressed in some alphabet of a limited

size and doesn't approximate well beyond

the local limits.

4 Knowledge is our personal extrapolation

of information. Our minds take in informa-

tion (or data) and spew out knowledge {

even when we're wrong.

3 Knowledge is information valuable for us,

that we gather, select and generalize

throughout our life.

3 Something that keeps us from making the

same errors twice.

3 Something very powerful and hard to attain.

It is knowledge about things as they are or

reality. With the correct knowledge

almost everything is possible.

The selection process in FKE is delegated to its par-

ticipants as in interactive genetic algorithms (Takagi,

1998), but processing of the individual evaluations is

di�erent. The system acts as a mechanism that col-

lects, processes, and integrates the individual selec-

tions made by humans. We assume that humans are

error-prone and consider them as unreliable classi�ers,

so the main purpose of the whole classi�cation system

is to minimize the overall error of classi�cation. This

purpose can be achieved by di�erent decision-making

mechanisms: ensemble averaging, arcing and boosting,

or multi-stage classi�cation (Kosoruko�, 2000b).

The selection of problems is performed according to

their importance, based on expressed interest of par-

ticipants in each particular problem. This measure of

�tness based on the summed interest of all participants

is used to include a problem into the generated web

pages shown to people. This process happens in inter-

faces of HBGA, which generate the interactive WWW

pages dynamically. Roulette wheel selection method

is used for this purpose. In this way, the problem in

which many people are interested will appear in the

interfaces more frequently. The frequency of appear-

ance of the particular problem in the interfaces and in

dynamically generated WWW pages can be thought as

a measure of attention the system pays to a particular

problem.

The selection of solutions is performed according to

their �tness in the context of speci�c problem. The

method of cascading classi�cation used for this pur-
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Table 5: Self-awareness question

Q What is a goal of FKE?

10 Allow people to cooperate e�ectively,

and optimize the technologies of their

interaction.

8 To help people

4 Help every member to achieve his/her goal,

succeed in his/her enterprise no matter

commercial or non-commercial. Success of

every member makes our community more

successful, and expands opportunities of

other members.

4 Attract many people, provide them with

e�ective technology of creative cooperation,

test new ideas, develop and implement them,

evolve fast to satisfy continuously changing

demands of participants.

8 Attract people and increase creative

potential of their community.

pose is based on creating an optimal classi�cation

structure from individual elements and letting solu-

tions propagate through this structure. The method

of structure assembly described in details elsewhere

(Kosoruko�, 2000b) is based on evolving the represen-

tations of classifying networks with a genetic algorithm

to achieve the minimum of the overall classi�cation er-

ror.

The interesting thing about the FKE system is that

it can de�ne its identity, purpose, and evaluate its

own performance, evolving the answers to the corre-

sponding questions: what is FKE? what is the purpose

of this community of people? is it uselful? what is

needed to make it better? By collecting this informa-

tion the FKE system becomes 'aware' of what people

think about it and which changes and improvements

are needed. Most of these self-awareness questions ap-

peared spontaneously in the process of evolution, as

was the one shown in table 5.

These questions are circulating through the system,

because participants express an interest to them. In

this process the questions gather human opinions and

evaluations, making the system aware of its purpose.

Another self-evaluating question had the second best

�tness at the moment of writing this paper. It is shown

in table 6 with a list of the top 5 responses.

It this way, the FKE system becomes aware of its own

performance. The satisfaction of people using the sys-

tem is not a quantitative metric, but it agrees very

well with the idea of this social system made for peo-

Table 6: Self-evaluation question

Q What is your impression from this website?

10 It's very unique and really a good thing.

This way people won't be afraid to ask.

9 This is a good way to continuously stimulate

the thinking brain matters to keep one

mentally �t

9 Could be helpful

8 The idea is quite smart. Here's hoping it can

succeed, it's certainly got the potential

8 Interesting

Table 7: Correspondence between elements and pro-

cedures of GA and FKE

GA FKE

Gene Word of natural language

Chromosome Text of question/answer

Population Knowledge base

Fitness function Human preference

Generation Meta-interface cycle

for solving a set of problems

Initialization Solicitation of initial answers

and migration of them from

other populations

Selection Ideas competition

Crossover Crossover of answers

Crossover of problems

Mutation Random creativity technique

ple. It can be said that FKE has no de�nite purpose.

Human participants �ll the purpose of FKE with their

concerns and problems, and as long as these problems

�nd solutions, the purpose of the whole organization

is also full�lled. To paraphrase Lao Tsu, FKE \has no

purpose, but its purpose is full�lled" (Tsu, 1972).

We still need to learn much about the mechanisms

of evolutionary knowledge creation. The FKE project

provides us with valuable data for this purpose: statis-

tics about preferences of di�erent people, methods

of recombination and evaluation of natural language

strings. What is clear by now is that FKE interfaces

allow co-evolution of related populations of problems

and solutions and this evolution results in selection of

creative solutions and problems of interest. We believe

that this is a sure way to new knowledge and under-

standing.

The correspondence between the FKE project and a

GA is outlined in table 7. This table looks similar to

the one for TQE. These are the same processes work-

ing in a di�erent context. Di�erent levels of evolu-
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tionary process are emphasized in these two models.

Comparing TQE and FKE, we can see that the former

model represents better the processes in the higher lev-

els (group and participating individuals), while the lat-

ter pays more attention to the lower levels (individual

problems and �nding solutions to them). Nevertheless

the very same methods work on these levels to achieve

the goal of quality of education (TQE) and e�ective

creative problem solving (FKE).

Additional information about FKE and HBGAs can

be found elsewhere (Kosoruko�, 2000a; Kosoruko�,

2001), but for the purpose of this paper the important

thing is that despite major representation and imple-

mentation di�erences, the core concepts of FKE are

the same as those of early GAs and most of the theo-

retical concepts of GAs are applicable to the processes

of knowledge evolution in FKE.

4 EVOLUTIONARY
ORGANIZATION

In this section, we present the two projects described

earlier as examples of a single evolutionary organiza-

tion process. We identify its structure and components

and try to �nd the areas where it has advantages over

more traditional forms of organization.

Our case study has shown how similar the processes

behind TQE and FKE are to the main concepts of

genetic algorithms and evolutionary computation in

general. This similarity makes the two projects like-

minded, so we can view them as two social applica-

tions of evolutionary computation. However, although

these projects use the principles of evolutionary com-

putation, we cannot call them strictly computational,

since they use human intelligence as part of them. We

suggest the term evolutionary organization process to

re
ect the hybrid fusion of computational and human

e�orts.

Examples of the evolutionary organization processes

that we considered so far had their own meta-

structure. We call it meta-structure to distinguish

from the structure of organization that is created. We

separate meta-structure into three components: inno-

vation (mutation and recombination), selection, and

organization. Each component can be computational

or human-based. TQE is an example of a process

where all components are human-based. In FKE or-

ganizational component is computational, while inno-

vation and selection components are human-based. In

processes such as FKE, where both computation and

human-based components are present, interfaces be-

tween them become an important part of computa-

Table 8: Meta-structure of TQE

Organization component

(human-based)

Innovation component Selection component

(human-based) (human-based)

Table 9: Meta-structure of FKE

Organization component

(computational)

Human-computer Human-computer

innovation interface selection interface

Innovation component Selection component

(human-based) (human-based)

tional component. The meta-structures of TQE and

FKE are shown in table 8 and 9 respectively. Innova-

tion and selection components can be represented by

multiple agents, or their parts.

If we imagine the situation where organizational, in-

novation, and selection components are all computa-

tional, we will get a typical GA. This suggests that we

can apply knowledge about the design of e�ective GAs

to the engineering of the organizational component,

which controls major parameters of the evolutionary

process (such as selection pressure and probabilities of

di�erent kinds of innovation). However, we should al-

ways keep in mind the di�erence between the goals of

evolution in a typical EC application and in evolution-

ary organization process: in the former case, the goal

is fast convergence to the optimal design; in the latter

case, the goal is an on-going process of innovation that

should never get to a halt.

Now it is time to go from implementation to the results

and discuss the actual system of organization that we

get with evolutionary approach. Table 10 compares a

traditional system organization with an evolutionary

one.

Traditional organization is characterized by a struc-

ture that does not change often. The structure of orga-

nization is de�ned by its lines of communication. Usu-

ally the structure of communication is de�ned by rules,

for example, \in case of computer failure call computer

maintenance department". As with a mechanical de-

vice, traditional organization assumes that each part

will perform its function. In our case, a person in the

computer maintenance department will answer the call

and handle the problem. In this case, the communica-

tion process follows a �xed pattern or structure. Most

violations of this pattern are harmful for the system as
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Table 10: Comparison of traditional and evolutionary

system of organization

Traditional

organization

Evolutionary

organization

Fixed form Free form

Pre-designed based on

static assumptions

Emerging and changing

in the process: no apri-

ori assumptions

Hard parts Soft parts

Functional design: each

part performs a speci�c

pre-de�ned function

Organic design: mul-

ti-functional parts, not

con�ned to performing a

particular function

Emphasizes structure Emphasizes process

Obligatory: based on

contract

Participatory: based on

contribution

Error correction: rejects

spontaneous changes

Error utilization: uses

spontaneous changes

Correctness based

�tness

Achievement based �t-

ness

a whole. For example, the failure of some part to per-

form its function often leads to the failure of the whole

organization or at least some large part of the organi-

zation. Routing the problem to the wrong specialized

unit will also result in functional failure. In these cir-

cumstances, reliability of parts and adherence to the

established structure becomes the major priority.

When we consider an evolutionary organization, we

notice many contrasts to the traditional one. There

is no �xed structure. For example, we can not deter-

mine to which participant a particular problem will be

routed in the FKE project. No matter who this person

will be, his/her failure to solve the problem does not

mean the failure of the whole system. Instead of a �xed

structure of interactions, we have a stochastic process

that recreates the new structure each time when com-

munication is needed. It is easy to notice that in this

case the relationship between structure and process is

the opposite. Parts of the organizations are rather or-

ganic than functional, in other words they have ability

to perform di�erent functions in di�erent time.

Since evolutionary organization process is built after

the principles of EC, we can use the design principles of

e�ective GAs to evolutionary organizations. However,

we should keep in mind that the goal of evolution-

ary organization is di�erent from the goal of standard

GA. It is clear that fast convergence is not a goal of

evolutionary organization. Convergence in the case of

FKE would mean leaving a participant without any

freedom of choice, and insisting that one 'correct' an-

swer will work for the problem, in the case of TQE

convergence would mean that all teams lose their iden-

tity, in the pursuit of perfection. That is not what we

want in social environment. In this case any conver-

gence will be premature, because the real-world does

not stop there. A living organism which stops to adapt

to changes will eventually die no matter how perfect

it was before unless someone will take care of it. Con-

vergence has little meaning in the living world, that is

why traditional metrics of quality of the genetic algo-

rithm based on time-complexity are often inadequate

in these cases. For evolutionary organization we need

an on-going evolutionary process, one that adapts eas-

ily to the changes of environment, never converging to

the current best solution.

The experience with evolutionary organization process

shows that the type of EC must correspond to the

area of its application. Technical areas need compe-

tent GAs. Social areas need balanced or enlightened

GAs (Goldberg, 1989). While competent GAs are de-

signed to achieve fast convergence, balanced GAs can

be designed to achieve innovation and creativity as a

continuing process. Balanced GAs should be able to

adapt to always changing environment, they should

check if their assumptions about the world are still

valid, and should be able to 'unlearn' them easily if

they are not.

5 SUMMARY

The paper has considered two social systems designed

explicitly with a GA in mind. The �rst of these or-

ganizes an educational process e�ciently. The second

promotes collaborative problem solving on the web.

In both cases the inspiration and connection to GAs

is clear. In the �rst, all functions of the system were

performed by human beings. In the second, a mix of

computational infrastructure and human interaction

worked together. In both cases, interesting system be-

havior was observed and is continuing.

The paper continued by generalizing these types of

systems and by calling such combines of human and

computational power, evolutionary organization pro-

cesses. The meta-structure of social organization pro-

cesses was developed and more generally social orga-

nization processes were contrasted with traditional or-

ganizations.

While many if not most of the attendees of this con-

ference are pleased to solve their organization's techni-

cal problems using the latest in genetic algorithms and

evolutionary computation, this paper suggests that we

may all have a larger role to play in the solution of
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our organization's organizational problems by appeal-

ing to our GAs and EC for inspiration, speci�c struc-

ture, and even population parameter settings. There

is much work to do, but we believe that the examples

and framework of this paper may be useful to these

future e�orts.
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Abstract

The Turing Test is of limited use for programs
falling far short of human performance levels.  We
suggest an extension of Turing’s idea to a more
differentiated measure - the "Turing Ratio" - which
provides a framework for comparing both human
and algorithmic task performance.  Games provide
an example of the concepts. It is argued that
evolutionary computation is a key method for
amplifying human intelligence, an assertion which
future scientists can empirically decide through
measuring Turing Ratios and considering task
breadth, prior knowledge, and time series of the
measures.

1  INTRODUCTION

1.1  MEASURING TASK PERFORMANCE

Boundaries between computational and human intelligence
will blur given sufficient algorithmic advances. Hence we
may wish to rank computational performance directly
against humans, or against an objective standard if possible;
this allows comparisons and time series extrapolations to be
made objectively.

However, task performance for open-ended tasks (like
Turing’s suggestion of unrestricted conversation with a
human) has not heretofore been sufficiently formalized, in
a manner allowing easy comparison across task domains and
time scales.  As well, no program is close to being ready to
take a broad-based intelligence test.

1.2  THE TURING RATIO

As a solution, we propose a framework: measure the
performance of computational entities on well-defined tasks,
and compare these performances with each other and with
human performance. This will provide an objective and
reproducible measure of "intellectual ability", upon which
further analysis can be based.

Once many domains have been assigned Turing Ratios, one
might rank the domains by increasing Ratio to quantify the
"automatizability" of different kinds of tasks. This will tell

us something about the intrinsic difficulty of the domain -
perhaps it will confirm our current intuition about what tasks
are difficult, or perhaps there will be surprises in store.

With human and computer performance measured on the
same scale, one may compare economic value. Due to
Moore's Law and algorithmic advancement, trends of Turing
Ratios may suggest tasks which will become economically
unviable for humans, and conversely point out situations
currently overloading human cognitive limits that may be
alleviated via algorithmic assistance.

We discuss refinements to this basic idea: the amount of
prior knowledge used by a program gives insight into the
robustness and domain-specific customization currently
necessary for good performance in the given domain.
Learning from scratch is more impressive than being
thoroughly customized for a domain, and this is a strength
of Evolutionary Computation (EC) that is quantifiable in
principle.  Breadth of the domain in which good
performance has been achieved is also important; one
practical definition of “intelligence” is the ability to survive
in diverse environments.

Turing Ratios can quantify empirical EC progress, generate
objective data for inference about the algorithmic properties
of hard tasks, and suggest areas of human uniqueness.

1.3  RELATED WORK

In [Koza 1999], domains are listed in which computers have
outperformed humans who tried the same problems. As
well, benchmarks for ranking GP results as
human-equivalent in a domain are suggested; most are
variants of the idea that a reputable publication, patent, or
competition result should be regarded as valid evidence of
achievement regardless of the source.

The Turing Test was first proposed by Alan Turing in
[Turing 1950].  By providing an operational benchmark
which could plausibly be passed by an entity if and only if
that entity was in some sense human, Turing moved the
discussion of artificial intelligence to a new and more
productive plane.  Many variants have been proposed; the
extensive discussion in the half century since Turing’s
seminal paper is reviewed in [French 2000]

As a signal indicating the presence of strong AI, the Turing
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Test is arguably as good as any other single measure yet
devised. However, it has the drawback of being relatively
binary; there is no provision for partial success, and hence
the Test may not be of use until far in the future when
researchers have neared the goal of creating
human-equivalent AI.  (See [Saygin et al 2000] for further
discussion of the Test and its instantiation in the Loebner
Prize competition.)

2  TURING RATIO THEORY

2.1  ASSUMPTIONS AND SUITABLE TASKS

No single-dimensional measurement can adequately capture
all the varieties of “intelligence”.  Hence, we restrict our
claim for the validity of the Turing Ratio (TR) to
measurement of task performance.  Some key assumptions
are necessary:

• Task definition and performance are reproducible and
unambiguously defined.

• Task-solving entity is clearly delineated.
• Finally, task performance should be adequately

represented with a single-dimensional variable.

Although the single-dimensional assumption may seem
restrictive for open-ended tasks, the original Turing Test
manages to cleverly reduce conversational performance to
a single variable: number of judges who agree that the
speaker is human.  (For multiobjective tasks with “stable
subobjectives”, the subobjectives could be treated
independently.  Extension to complex multiobjective cases
is deferred for future research.) 

Coming up with tasks that encapsulate other interesting
domains is a challenge (the “progress parameterization
problem”) akin to finding the right fitness function for a
complex EC instance.  This suggests that task measurements
for domains where quantizing performance is non-obvious
might be derived from fitness functions for EC programs for
those domains, and vice versa.

In addition to the necessary conditions above, we suggest
three properties a task should have for the Turing Ratio to be
a suitable measure on it:

1. Task measures an “important” ability.
2. Task admits a series of increasingly better strategies,

which are qualitatively different.
3. Reproducible and relevant for decades.

To the degree that a particular task requires intelligent
solution methods, a high TR value for that task indicates the
presence of intelligence.

2.2  SINGLE AND MULTIPLE MEASUREMENTS

There are four basic types of single-dimensional variable:
nominal, ordinal, interval, and ratio.  These correspond to
different types of TR measurement tasks:

• Nominal: A single contest of the Turing Test - where a

judge rates a conversant as human or not - could be
viewed as a single nominal-valued measurement.

• Ordinal: Games are the prototypical task where ordinal
measurements are taken, as discussed later.

• Interval: Ideal for task measurements without a known
absolute reference point, such as many human test scores.

• Ratio: Ratio scales give the most information, possessing
an absolute reference point.  Such measurements are
commonly used in computational complexity, where the
time or space requirements for an algorithm are precisely
defined.

What happens with repeated task measurements?  In the
context of TR, statistics confer two main benefits:  the
reduction of uncertainty, and synthetic generation of more
detailed task measurements.  The first benefit is widely
understood, e.g. multiple Turing Test judges induce a
binomial random variable with associated confidence
intervals; [Jain 1991] discusses similar “classic”
performance measurement.

The second benefit of synthetic derived variables is easily
understood in the context of games.  Given a particular
ordinal task measurement - say a win or loss against a game
opponent - we can infer only a limited amount about
underlying abilities.  However, repeated trials allow an
increasingly precise demarcation to be made between
various ability levels, generating a synthetic interval or ratio
scale - an issue we discuss further in our chess example.  For
competitive situations like the game example, it’s important
to note that repeated single-dimensional measurements are
limited in the resolution of the derived synthetic variable by
the number of measurements, the variability of the task
performer, and (to the degree that abilities are not totally
ordered) the distribution of opponents.

2.3  ABSOLUTE AND RELATIVE TR

We distinguish absolute and relative performance.  The
intuition is that a well-defined algorithmic task that can be
measured in isolation is an absolute task, while a game
against opponents is a relative task depending on the current
opponent ability distribution.  (One could make an analogy
to evolution in a static environment versus coevolution.)

An Absolute Turing Ratio is therefore defined as a TR
independent of when the result was achieved, the
performance levels of others, and the competence level of
the performance evaluation past a given threshold
requirement.  Note that this is a strong requirement:  most
open-ended tasks rely directly or indirectly upon fitness
comparisons between competitors.  What would be required
is a completely specified task, measuring important abilities,
valid for decades, admitting a series of increasingly better
(and qualitatively different) strategies, where the task is
performed without reference to other competitors and
evaluated algorithmically.  We regard it as an open
challenge to specify such tasks.  (Ideally, they would be
“human-complete”, in analogy with NP-complete tasks. 
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Turing’s task of conversation imitation, for example, is
arguably rich enough to be a sufficient indicator for human-
level thought.  It is not an Absolute task, though, since the
worth of the evaluation depends strongly on the competence
and insight of the human judges.)

In contrast, a Relative Turing Ratio result needs to specify
the opponent distribution along with the environment.  If the
task is widespread enough, it may be sufficient to simply
specify the time period in question, e.g. the chess
environment circa 2000.  (If Absolute versus Relative is not
specified, one can assume Relative.  This is due to the
current lack of well-specified Absolute task domains - a key
area to be formalized.)

Usually a given algorithm will vary its performance
depending on the resources available to it:  time and space
are the two typical ones.  More generally, having access to
an “oracle” that performs a specified black-box function
may make a substantial performance difference, e.g. access
to the Internet.  Thus, TR ratings should specify CPU,
memory, and any salient modules or prior information
incorporated.

We note that the requirements of resource and opponent
specification are consequences of the original assumption
that task performance be unambiguously reproducible.  This
is essential for systematic comparison between problem
domains, solution methods, and task performance over time.

2.4  FORMAL SPECIFICATION

Let’s look at two examples of formally specifying TR.  First,
consider the general specification.  Given a program p for a
specified task domain D (where p belongs to P, the
population of competitors), the computational performance
of p in D will be denoted by M(p, D). (M returns one of the
four variable types defined previously.)  We are then
interested in measuring:

M(p, D, TimeStamp, Resources, P)

Resources could be any set of computationally-useful
resources; if one or more of these resources can be
parameterized by a scalar variable, we can do some
informative statistical extrapolation, as we’ll see. (P would
not need to be specified for an Absolute Turing Ratio
result.)  One could also include additional information in a
TR measurement; the underlying idea is that a well-specified
minimal set of information should always be present, so that
long-term analysis can usefully be accomplished, including
perhaps reparameterization of TR based on a user’s
judgement.

In the case of n repeated trials, we get:

Mn(p, D, Resources, ...)

i.e. M repeated n times.  If M is a nominal variable, then Mn

will be drawn from a binomial or multinomial distribution;
in the binomial case, we can use a Beta distribution to infer
the probabilities of M taking each possible value.

Often, we are interested in comparing two performances
(either of distinct programs or of the same program with
different resources):

MRelative(M(p1),M(p2))

This should be a function returning a meaningful “ratio”:
three empirically-common options are simple division (in
the ratio-variable case), differences in log performance (so
a constant increase in TR implies a constant multiplicative
factor increase in M), and percentile differences (i.e. relative
population ranking).

Finally, we note that the spatial distribution of TR scores
could be of interest; this can be modeled by placing
competitors in some graph, and measuring TR ratios relative
to other scores within some distance.

Now consider a specific program and task.  We measure:

• CompScore = M(p, D).
• MaxCompScore = max M(pi, D) over all programs pi in D.
• RefHumanScore = e.g. max or median M(Humani, D) over

all human performances in D.

Then we can define the program’s TR, and similarly a
domain-wide TR for the best computational performance:

TR(p, D) = MRelative(CompScore, RefHumanScore)
TR(D) = MRelative(MaxCompScore, RefHumanScore)

An actual TR measurement would contain more detail -
enough to unambiguously specify and reproduce the result,
including particularly the domain, resources, and program.
The construction of MRelative may also change over time,
depending on the opponent distribution and the meaning of
a particular score.

We can divide task domains into three broad categories by
their domain-wide TR:  TR(D) << 0 dB (computer much
worse than human), TR(D) >> 0 dB (computer much better
than human), and TR(D) ~ 0 dB (rough equality).  The
interesting domains at any point in time will be those on the
ever-expanding “Turing Frontier", where algorithmic task
performance is improving rapidly relative to human
performance.

3  TURING RATIO EXAMPLES

3.1  A CASE STUDY: CHESS RATINGS

Consider two agents A and B playing a stochastic game
involving personal talent against one another.  Let us label
the talent levels of A and B as a and b.  A simple model sets
the win expectancy for player A as:

 pwin(A)= a/(a + b)

If we take the ratio of the ratings of two individuals playing,
we can let ρ be a/b, and we get the single-parameter form:

pwin(A) = ρ / (1 + ρ); pwin(B) = 1 / (1 + ρ)

Intuition suggests a logarithmic scale would be best to
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evaluate the wide range of abilities in most domains; one
candidate is the decibel scale commonly used to measure
signal strength.  We therefore define:

TR (in dB) = 10 log10 (ρmeasured) – ReferenceAbility

We suggest the convention of letting the median human
performance in a domain, where ascertainable, be given the
reference level 0 dB.  CompScore and MaxCompScore are
then the empirically measured TR values of the current and
best program respectively. This Turing Ratio scale
represents each person’s performance as a real-valued
parameter.  (The dB unit is easy to understand; however, TR
could be quoted in other units.)

Note that deriving the parameter ρ from observed wins and
losses can be a complex procedure.  We are reducing a two-
dimensional matrix of observed wins and losses to a single-
dimensional measure; this can only be done in a reasonable
way if the original matrix is well-behaved (e.g. there are not
too many transitive winner cycles A-B-C-A).  Even if the
measure can be found, it may be only approximate due to
measurement and performance errors, performance
nonstationarity, and so on.  We note that a practical
implementation of the Turing Ratio would need to consider
all these issues, and refer the interested reader to [Glickman
1999] for one scheme to infer ratings from large
competitions.

Our TR scale is not without precedent; there is a close
relationship with the United States Chess Federation rating
system.  We outline the similarities and show how chess
programs and humans can be effectively rated on the same
scale.

The USCF rating system rates a decimal order of magnitude
performance difference at 400 rating points [USCF 2002].
Therefore:

USCF rating = 40(dB rating) + HumanMedian

where HumanMedian is median human chess performance,
around 600 USCF rating points.  We can even use the USCF
rules directly to measure performance in any pairwise
competitive endeavour where the possible outcomes are
Win/Lose/Draw [USCF 2002].

In addition, the Swedish Computer Chess Association
(SSDF) has approximate empirical scaling laws for size of
the in-memory hash tables used in computer chess programs,
and for performance at chess as a function of processor
speed.  (Note that the SSDF calibrates its point scheme
against the World Chess Federation (FIDE) system, which
uses a Gaussian distribution scheme with a slightly larger
spread then the USCF.  In FIDE, there are roughly 410-
points in an order-of-magnitude performance difference1.

As quoted in the SSDF FAQ [Grottling 1998], Kathe
Spracklen estimated the effect of doubling the in-memory
hash tables at 7 ratings points, or a performance factor of
107/410 = 1.04, about a 4% improvement in relative Turing
Ratio.  The same FAQ also estimates the effect of doubling
processor speed at 70 ratings points, for a performance
factor of 1070/400 = 1.48, or a 48% improvement.

We thus have a practical case where both computer and
human performance have been compared on the same scale,
in a Turing Ratio framework.

3.2 POTENTIAL METRICS AND TASKS

A canonical metric is time to complete task, or size of task
that can be completed, for e.g. combinatorial and NP-hard
problems.  More generally, computational complexity theory
suggests many metrics measuring aspects of problem
hardness.

Games are particularly good domains due to unambiguous
task scope and “complex strategies from simple rules”.
Checkers and chess both have computer players rated higher
than any human since the 1990's, with Schaeffer's Chinook
victories and Deep Blue respectively.  Go programs are still
well short of the best humans. Go has a well-defined rating
system, and algorithms have slowly been improving in rank;
[Bouzy 2001] discusses the algorithmic challenges.  (Note
that since human reference levels change slowly with
respect to computer performance, we might take them to be
fixed as a first approximation.  Also, we certainly do not
claim strategy games are fully open-ended tasks, but relative
to their simplicity of definition they do admit a vast series of
increasingly creative strategies.)

An important human rating method is tests of competence
and "practical substitution": put someone in a situation and
see how well they perform. Exams, aptitude tests, and IQ
tests - usually relative since they are scaled to student body
ability - attempt to estimate likely performance and measure
current competence.  (They have been widely criticized for
measuring only part of "intelligence". Reduction to a single
parameter probably cannot summarize a complex mind’s
performance - the same will be true of computational
performance in broad enough domains.)

One might quantify human judgement of performance, e.g.
ranking in a music competition, money earned, market or
attention share, double-blind human comparison, or votes by
an audience.  Clearly literature, art and music are among
many such tasks with very low TR at present.

Although many computational testbed tasks are intellectual
in nature, we believe TR should also be applied to tasks  that
are embedded in the physical world.  Two practical
examples of such tasks are driving in real-world conditions,
and building a cockroach-killing robot; both these would
fulfil very practical needs while demonstrating a wide range
of competencies, and will likely admit slowly-increasing
performance for decades.

1 From a Levenberg-Marquardt fit for A in the function
pwin = 1/(10-∆R/A + 1) to the FIDE win expectation curve
for rating differences from –100 to 100 [FIDE 2000].
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4  BOOTSTRAPPING INTELLIGENCE

What does a given TR value mean?  One of our main goals
is to define a simple operational measure, from which
characteristics of performance at open-ended tasks can be
empirically derived.  For such analysis, one needs to
consider factors in addition to TR value.  One key factor is
the amount of "bootstrapping" provided by the algorithm;
others include normalizing the TR-value achieved by
breadth of task scope, computing power available, or human
assistance.

4.1  INTELLIGENCE AMPLIFICATION

A game player may not care which method was used to
generate an excellent Go-playing program, or whether it
achieves its results through a clever billion-move opening
book and straightforward many-ply search. However, an
algorithm designer may value methods using a minimum of
prior knowledge more highly, both for conceptual reasons
and for their greater likelihood of rapid future advancement
and robustness.

How impressively a program performs depends not just on
its performance but also on how much prior customization
and problem-specific hardwiring went into it. A program
that has millions of moves or answers prestored by human
hand may be regarded as correspondingly less impressive,
regardless of its TR-value - this is why Fogel's evolved
checkers player in [Chellapilla & Fogel 2000] is as
significant an accomplishment as Schaeffer's hand-tuned
Chinook, even though the latter won against the human
world champion (as recounted in [Schaeffer 1997]).

To some extent, these opposing goals represent a
task-centered versus a program-centered point of view. In
the former, the main goal is to understand computational
performance levels in a certain task, with the specific
computational methods (and even to some extent the cost or
time investment involved) being a secondary concern. Such
a point of view may be suitable for assessing trends in
performance levels over time, for understanding the
automatizability of a task or cognitive domain, or for
understanding the state of the art. In contrast, a
program-centered point of view also considers the
“intelligence amplification” aspect: how the program
achieved its performance level is as important as what that
performance level turns out to be. This point of view is
appropriate to those trying to understand the relative
adaptability of various computational methods.

At one extreme, a program has a full list of answers given to
it; at the other extreme it starts with zero domain knowledge,
and succeeds in learning good solutions. In between, there
are various degrees of "cooking": exhaustive enumeration of
cases, hand-designed primitive functions, intermediate
reinforcements, externally supplied fitness functions, and so
forth. This distinction is analogous to that between rote and
deep learning: in the former all knowledge is given by the

teacher, while in the latter the teacher suggests insights and
poses problems but the student does most of the
problem-solving (and hence develops better metastrategies
and metaphors which increase general learning power).

With tongue somewhat in cheek, we suggest the terms
"cooked AI" and "raw AI" to name these distinctions.
Cooked AI has a high degree of problem-specific heuristics,
expert knowledge, and fixed representation; raw AI is more
readily generalizable, and autonomously learns. Cooked AI
solutions may be good for many domains where one does
not mind spending the time and money to customize a
solution; raw AI solutions (e.g. EC) tend to learn or
bootstrap more during their operational phase, and be
cheaper computationally and financially - and hence likely
more flexible if the domain changes.

How could intelligence amplification be measured? It would
be a way of measuring the distance between a program's
starting state of knowledge and the results it eventually
achieves. One method might be to measure the increase in
Turing Ratio as the program adapts to and learns its
computational task:

TR(final high-performance state) - TR(start state)

This difference would objectively measure the improvement
in performance of the program. Of course, in many
programs this iterative improvement occurs via human
programmers providing the improvement, so we look
specifically for "autonomous increase in TR", i.e. that due
to the program itself once completed and running. By this
measure, Chinook shows a much smaller increase in TR
than Fogel's checkers player.

A more practical definition may be to scale TR by the cost
of different approaches. A heavily customized expert system
typically requires the combined efforts of many
programmers and knowledge engineers working for years to
achieve adequate performance.  In contrast, EC approaches
have often achieved comparable performance with
substantially less effort. One might empirically measure:

CostApproach = CostProgramming + CostProcessing

We hypothesize that this measure will tend to be lower for
methods with higher intelligence amplification.

Computational depth may suggest formalizations of
intelligence amplification. Intuitively, an object is
computationally deep if it has a short generating program
but that program takes a long time to produce its output.
Perhaps the benefits of interaction with a rich environment
could be algorithmically described as access to a rich store
of precomputed computationally deep objects.  The basic
definition of computational depth using Kolmogorov
Complexity is in [Antunes et al 2001], but the ramifications
of this idea remain to be explored.

Explicitly measuring prior knowledge and intelligence
amplification may become a nonissue in the long run, since
approaches which rely on massive pre-knowledge or
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customization for each problem may be increasingly
difficult to program for more human-complete problems -
and hence the easier-to-program methods will naturally win
out over time.

4.2  TASK BREADTH

Many customized programs work well in a narrow domain,
but have little or no computational capability elsewhere.
Whether this is an issue depends on the user - a
task-centered user wanting only a black-box resource to
solve subproblem X or an analysis of the level of best
current computer performance at the task will care little
about what else the black box can and cannot do, while a
program-centered user analyzing the intrinsic merit of the
heuristics used by the program may care a great deal. (Note
though that even a task-centered user may be wary of
low-intelligence-amplification programs due to potential
brittleness and high knowledge capture costs.)

It would be nice to be able to define a notion of task breadth
in an objective way, so that one could speak of e.g. a
program’s high TR ratio on a narrow-scope task, versus a
lower TR on a larger-scope task. One could then compare
different methods and heuristics for their breadth-scaled TR.
Parameterization of tasks by breadth is also essential in
comparing task areas, and perhaps in forming an "ontology
of task space".

A definition of task breadth could give an alternative
definition of intelligence amplification as "degree of
adaptiveness": the breadth of tasks for which the program
performs adequately, given initial adequate performance on
a limited task.  Perhaps an objective and operational
measure of intelligence itself could also be derived, as
adaptiveness on a sufficiently-diverse environment set.

If we think about measuring the Turing Ratio of human-
complete tasks in the near future, values will likely be close
to zero for quite a while. Hence we could measure
competence on a very restricted subset (which would give
reasonably differentiated values), competence on the full set
(which would be very low, e.g. the Loebner prize
competition as discussed in [Saygin et al 2000]), or finally
competence in some series of successively more difficult
tasks between what is achievable now and the full task. This
last option might be best, but would require a nested series
of tasks with successively higher task breadth; one might
expect to see a series of logistic curves on the task series,
which would need to be chosen at the right difficulty level
to be doable given competence at the previous task (similar
to teaching a human, and to how solutions for a tough EC
task might be evolved in stages).

4.3  DEGREE OF HUMAN ASSISTANCE

We can distinguish three general cases:

1. Isolated algorithm. Once the task is defined and the
program complete, the solution process is autonomous.

(The border between this category and the next is
fuzzy, e.g. human selection of "interesting output" from
evolutionary art programs.)

2. Human-algorithm symbiosis. A human is involved in
significant parts of the computational process.

3. Isolated human. The "base case" from which our
historical and social experience before the 20th century
is derived.

We have been comparing the first and third cases; the
second may also be of interest for certain applications, in
particular those for which

TR(algorithm+human) - TR(algorithm) 

is large. As with intelligence amplification, for some
purposes one might not care if superhuman performance is
achieved by an autonomous program or by a
human-computer symbiosis; for instance, one could picture
a Go grandmaster using a Go AI program to explore
possible moves, and beating an unassisted grandmaster of
equivalent ability. For other purposes such as program
analysis or identification of areas of future rapid progress in
performance or cost savings, it would be important to
maintain the distinction.

5  USAGE

5.1  GAMES AND TIME SERIES

Games would be an excellent testbed for the Turing Ratio.
They are well-specified domains, almost always with clear
conditions for winning and losing, and are a domain of
much interest among both researchers and the public at
large. Scoring systems have been developed for many
games, and a great deal of knowledge and experience (both
human and computational) has been gained in the more
popular human games. Many AI systems have been
developed; see e.g. the first part of [Bouzy 2001].  Note too
that handicapping allows meaningful ranking comparison
between a human and a program with superhuman
performance.

Games are usually multiplayer. One-person "games" like
combinatorial optimization problems (or even solitaire
games) seem less open-ended. In contrast, multiplayer
games specify an "interaction protocol" which (for good
games) can be played with increasingly higher
sophistication by players that keep learning. Hence
multiplayer games encourage a coevolutionary increase in
strategy sophistication; see [Funes 2001] for an example
where Tron agents were evolved using GP in competition
with human players.

Time series of ratings will give tools for visual and trend
analysis. The statistical significance of a Turing Ratio result
for a particular domain (e.g. the variance or stationarity of
a particular TR rating) may be an issue in some cases;
empirically, however, humans do still get ranked in many
domains. For many tasks, improvements in TR will probably
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come in large discrete jumps (e.g. when a clever data
structure reduces the algorithm's time complexity by an
order of magnitude). We hypothesize that tasks which are
more open-ended and creative will have more and smaller
jumps, leading perhaps to more predictability in the rate of
improvement of such problems (via the Central Limit
Theorem).

Similarly, it may be possible to derive taxonomies of
domains by the current Turing Ratio. Looking at relative
computational strengths between different types of cognitive
tasks in some sense tells us how well we understand those
tasks, since being able to build an algorithm to perform a
task is a strong form of knowledge. As Richard Feynman
said: "What I cannot build, I do not understand."

5.2  RESOURCE-SCALED TR

We can use a "resource-bounded Turing Ratio" by bounding
computational resources (time, space, etc), and comparing
competing algorithms by their rating under the given
resource bounds. This factors out improvement due solely to
resource differentials.

Complementarily, TR scales with increasing computational
power. The inverse of the time required for adequate
performance tells how the size of problem scales with
resources; more subtly, the graph of TR achieved versus
processor power may have a variety of behaviors, the
qualitative categories of which form another way of
characterizing difficult domains

A low average slope would indicate cases where throwing
more hardware at the problem is insufficient to significantly
increase performance - an example might be PSPACE-hard
problems without good probabilistic approximation
schemes.  Perhaps in such cases EC methods improve
slowly with computational power, and must pass through an
inherently sequential “critical path” series of inferences as
well as spend time interacting with the real world in order to
come up with creative solutions.

Once there exist algorithms with sufficiently high TR for a
domain, there may still be a human in the loop for part of the
task (including pre or post processing). We can then divide
the total time of the symbiotic human-computer team
SymbTime into human and computer portions, and consider
the long-term distribution of these portions. The continuing
progression of Moore's Law implies that the cost for a given
level of TR performance will decay exponentially for tasks
whose improvement scales fast enough with increasing
computational power, at least for as long as Moore's Law
continues to hold. This in turn suggests the following
definitions and ratios:

• SymbTime = TimeComp + TimeHuman

• HumanTime = unaided human time for task
• HumanRatio = TimeHuman / HumanTime
• CompRatio = TimeComp / HumanTime

TimeComp accounts for the portion which has been

algorithmized, while TimeHuman is the portion needing
humans to perform adequately.  HumanRatio then represents
the limiting reduced time that can be achieved as a fraction
of the time required by an unaided human.  This is so since
the Moore’s Law assumption implies

TimeComp (now+T) = 2-cT * TimeComp (now)

so CompRatio will decrease exponentially.  (Although poor
user interfaces could result in a HumanRatio greater than 1,
the cases of greatest interest are cognitively complex tasks
with HumanRatio close to 0, since they are the tasks which
can be usefully outsourced from humans to computers.)

Note that this result also holds for other exponentially-
increasing computational properties with which a problem’s
TR scales well, such as memory.  Although exponential
growth of a computational property is a temporary
phenomenon in a bounded universe, the fact that we are in
the middle of several such temporary regimes makes the
analysis relevant to the early 21st century.  [Hanson JAIR]
discusses further consequences of machine intelligence for
economic growth.

Ranking domains by HumanRatio - and graphing values for
domains over time - will give empirical evidence as to the
cognitive tasks for which human thought is most suited and
required, and the tasks best done by computers. Similarly,
one could potentially objectively identify heuristics or
approaches that caused large decreases in this ratio for
particular domains, and perhaps see some "meta-patterns" in
the types of approaches that give the most leverage.

6  CONCLUSIONS

We have demonstrated the formalization of algorithmic
performance through the Turing Ratio, and conceptually
validated it through empirical examination of chess program
performance.  Along with the companion notions of
intelligence amplification and task breadth, the Turing Ratio
forms a conceptual foundation for measuring long-term
progress in evolutionary computation.

As [Bentley & Corne 2002] vividly show, evolutionary
computation techniques are already producing many results
that deserve the label “creative”.  To the degree that
progress in open-ended and creative tasks can be
meaningfully quantified, increasing amounts of empirical
performance results will become available for analysis. 

Three key challenges now are to further develop the theory,
identify suitable applications, and begin to measure TR
values systematically.  It is true that TR as we have defined
it is applicable only to the subset of tasks satisfying the
conditions of Section 2.1.  However, we hypothesize that
this subset consists of tasks which, once identified and
explored, may serve as windows into creative algorithmic
performance.  With links to other areas of AI, performance
measurement, and game playing, we believe this is fertile
ground for future research.
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Abstract
In this paper we show how the performance of
two meta-heuristic algorithms and two simple
search routines varies as these algorithms are
applied singly, in pairwise combinations, and in
larger, finer-grained combinations.  The area of
application is f6 and f17, two well-known
optimization benchmark problems.  Our
conclusion is that when these algorithms are
combined in complex ways, their performance is
much better than when they are used alone or in
pairs, and so there is strong evidence that the
current approach to optimization followed by
many current practitioners with, for instance, an
evolutionary algorithm succeeded by a hill-
climber, could be improved on if more complex
algorithm topologies were used.

1 MOTIVATION
This paper is designed to suggest that the approach
currently used by many persons doing real-world
optimization and doing optimization of test functions can
be improved if those persons consider using combinations
of optimization algorithms, rather than individual
algorithms, or individual algorithms followed by a round
of hill-climbing.

The conclusions of this paper will not be surprising to
many readers, as they have been touched on before by
other writers [e.g. Powell, Skolnick, and Tong 1991] each
of whom has suggested that combinations of many
algorithms can be noticeably more effective in
optimization than those algorithms are in isolation or in
pairs.  The novelty in our paper stems from two sources.
First, we will show that fine-grained algorithm topologies,
in our parlance, do much better than simpler ones in
optimizing.  Second, we will show that for f6 and f17 (the
test problems on which the results in this paper were
generated) what arises from the best topologies is a type
of algorithm topology different in type from those that
many of us are use when we carry out optimization.

2 THE INITIAL PROBLEM
For our experiments, we used the test function f6, first
suggested as an evolutionary computation benchmark by
David Schaffer [1989].  This problem was used in
extensive testing of evolutionary algorithms by Schaffer
and his collaborators, and it was the problem that carried
the weight of the expositional burden in the extended
tutorial in [Davis, 1990].  It is a two-dimensional, damped
sine wave that has been shown to be difficult for some
types of hill-climbers and for simulated annealers.  A
cross-section of the f6 function is shown in Figure 1.  The
function is to be maximized, and so the optimal point is
located at the center of the curve.  The full function is
generated by rotating the curve about its center point, so
that it appears as a series of concentric ripples in a pond,
with the highest ripple located at the very center of the
pond.  If one is searching for the optimal point without
prior knowledge of the shape of the curve, it can be very
difficult to locate.  The function is extremely hilly, and
since the ripple containing the optimal point is the
smallest ripple in the pond, an extremely small part of the
whole search space is occupied by the hill containing the
optimal point.

The f6 function is formally stated as follows:

A solution to the f6 problem consists of two real-valued
numbers x and y, each in the range between –100 and
+100.  The evaluation of such a solution is the value that
the f6 functions returns when those numbers are plugged
in as x and y.

3 ALGORITHMS USED
We used four algorithms in the experiments reported here:

• A random search (RS) algorithm that generates x, y
pairs with uniform probability from the variable
range of –100 to +100.  The random search algorithm
preserves the best solution it has found so far, and
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Figure 1.  cross-section of f6

halts when it has carried out a predetermined number
of evaluations.

• An opportunistic hill-climber (HC) that begins from a
random position in the solution space.  It maintains a
current solution <x, y> and generates new solutions
from a uniform distribution around the current x and
y values.  If the new solution is equal to or better than
the current solution, then the new solution becomes
the current solution.  The hill-climber we use stops
when it has carried out a predetermined number of
evaluations.

• A simulated annealer (SA) that begins from a random
position in the search space.  The starting temperature
is 2.0, and the cooling factor is 0.80.  Our simulated
annealer, given a number of evaluations n to work
with, carries out n/20 of those evaluations at each
temperature during optimization, and proceeds until it
has carried out n evaluations.

• A genetic algorithm (GA) that begins with a
randomly-generated set of solutions from the solution
space.  The genetic algorithm, given a number of
evaluations n to work with, uses 10% of those as its
population size, and proceeds until it has carried out
n evaluations.  The genetic algorithm is steady-state,
allows no duplicates, represents solutions as lists of
real values, and deletes the worst member of the
population after a new solution is inserted.

4 INDIVIDUAL ALGORITHM
PERFORMANCE

Many optimization systems, both commercial and
academic, use a single algorithm or heuristic when
optimizing.  In cases when it is known that one will find
the global optimum in the time available—when doing
linear programming, for example, on a small problem—
there is no need to consider alternatives, as long as one
has sufficient computer resources with which to optimize.
It is cases in which one is searching for good answers
with limited computer resources that concern us here.

What we will show below is that using any of our four
algorithms in isolation to solve f6 and f17, or even using
one followed by another for post-processing, is a strategy
that is inferior to using fine-grained combinations of these
algorithms.

Algorithm Mean Maximum
evaluation

Minimum
evaluation

HC 0.991236 1 0.986304

GA 0.990170 1 0.972698

SA 0.960624 1 0.933464

RS 0.959234 1 0.903464

Table 1.  Single algorithm performance

Algorithm Mean algorithm Mean

GAàHC 0.990848 HCàGA 0.990689

GAàSA 0.987373 HCàSA 0.990459

GAàRS 0.986847 HCàRS 0.990658

SAàHC 0.990585 RSàHC 0.990434

SAàGA 0.988114 RSàGA 0.988383

SAàRS 0.960609 RSàSA 0.962413

Table 2. Mean score of pairwise combination of
algorithms

As Table 1 shows, our four algorithms vary widely in
performance as they solve f6.  Table 1 shows the mean,
best, and worst scores for each of our algorithms after
3000 evaluations, as each algorithm solves f6 from a
random start.  The results in the table describe 500 runs of
each algorithm, with a different random seed for each run.
Table 1 shows us that, when using the same step size, the
best single algorithm of these four for solving f6 is the
hill-climber.
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Figure 3. impact of step size for single GA and HC on f6

Let us now consider what the best pairwise combination
of algorithms is.  Table 2 shows the average of the best
solution found for 500 runs each of each of the different
seeding possibilities between our four algorithms.  In each
single run, one of the algorithms was run for 1500
evaluations and its best solution found was used as the
seed for the second algorithm.  Table 2 shows us that the
best combination consists of a genetic algorithm seeding
the hill-climber.  The table also shows us that the
performance of this combination is inferior to the
performance of the hill-climber used alone.  We do not
show the maximum evaluation in this table since it is
generally 1. The mean is the most significant value, while
the minimum is less significant, so, we present the mean

as the best representation of related algorithm pair
performance.
It is possible that a different ratio of evaluations between
these two algorithms would yield better solutions.
However, this is not the case.  Figure 2 shows the mean of
10 runs for each of the weight ratios between the hill-
climber and the genetic algorithm, carried out at intervals
of .2 and with 3000 evaluations per run.  When
evaluations are allotted to the genetic algorithm,
performance is degraded.  As the ratio rises to 3 or higher,
the hill-climber is effectively carrying out search on its
own, and the results are not significantly different for
higher ratios.
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5 THE IMPACT OF STEP SIZE
For the single-algorithm case and the two-algorithm case,
the best algorithm is the hill-climber—especially
interesting, when we remember that f6 is an algorithm that
looks like it should frustrate hill-climbers.  Why is it that
the hill-climber does so well on a problem with a large
number of hills?  The answer is that the maximum step size
used by the hill-climber in these experiments is .05, which
allows the algorithm to jump from peak to peak in the
search space. We set the step size at .05 for the three
algorithms that use step size, having found empirically that
it gave the best collective performance.  Perhaps settings
tailored for each algorithm will give better individual
performance.

Figure 3 shows the effects of varying step size for the
genetic algorithm and for hill-climber, considering their
performance alone.  The optimal step size for the hill-
climber, considered in isolation, is actually about .02,
whereas for the genetic algorithm the optimal value has
less impact on performance, but lies at about .07. We see
from Figure 2 that when the step size is set at .02, the hill-
climber does even better than in the experiments described
above, showing mean performance above .992 at that
setting.

6 MORE COMPLICATED ALGORITHM
TOPOLOGIES

In the remainder of this paper, we shall consider more
complicated algorithm topologies.  We use the term
“algorithm topology” to refer to a set of algorithms linked
to form a directed, acyclic graph whose links represent
seeding relationships.  These algorithms may be of the
same type or of different types, and individual members of
the topology may have parameter settings that vary from
other algorithms of the same type in the topology.  For
example, Figure 4 shows a topology consisting of five hill-
climbers (represented by an icon containing a hill-climbing
figure) and five genetic algorithms (represented by an icon
containing a male-female couple). This topology has
seeding relationships that proceed from genetic algorithm
to hill-climber to genetic algorithm, and so forth.  The
different hill-climbers and genetic algorithms have
different settings for the step size parameter.  The first
algorithm to run in the topology will be the leftmost
genetic algorithm, which has a step size of .05.  Its best
solution will seed the leftmost hill-climber, which also has
a step size of .05.  The hill-climber’s best solution seeds
the second genetic algorithm, which has a step size of .04,
and so forth.  The effect of running this topology will be
that we will alternate between an evolutionary approach
and a hill-climbing approach, always using the best
solution found as a seed for the next algorithm.  As we
proceed through the run, the step size of the mutation
operator will decrease in size until, on the final run of the
genetic algorithm and the hill-climber, the step size is .01.

Figure 5 shows the results of running a number of different
algorithm topologies on f6.  In order to explain the results,
we need first to explain what these algorithm topologies
were.

Our experiments used algorithm topologies constructed
from basic topology units. We used five different types of
topology units in these experiments, and each was a
variation on a basic GAàHC chain. In our notation, “1
GAàHC chain” refers to a single GAàHC pair, with the
genetic algorithm seeding the hill-climber.  The notation “2
GAàHC chain” describes two pairs of algorithms, each
pair consisting of a genetic algorithm seeding a hill-
climber. If this pair is run in serial fashion (Figure 6b), the
output of the hill-climber in the first pair will seed the
initial genetic algorithm of the second pair.  If it is run in
parallel (Figure 6a), then both pairs of algorithms will run
without communicating, and the best solution found by
either one will be returned as the solution found by the
topology. To illustrate this, please refer again to Figure 4,
which shows a 5 GAàHC chain run in serial fashion.  As
shown in Figure 4, we interpolated the step size for all
algorithms in the topologies in the current set of
experiments from .05 to .01.

In addition to experimenting with parallel and serial
topologies of the GAàHC chains, we also experimented
with higher-level configurations of the basic serial
topologies. Figures 6c, 6d, and 6e show three types of
hybrid topologies whose performance is reported in Figure
5.

Each of these three hybrids is a serial topology based upon
the same components. Hybrid1, as shown in Figure 6c, is a
serial topology with two similar component blocks, each of
which, in this example, is a 3 GAàHC chain running
serially. (Note that the output of each hill-climber in the
first block seeds the genetic algorithm that begins the
second block.)  Hybrid2, as shown in Figure 6d, is a serial
topology with three similar component blocks, connected
serially. Hybrid3, as shown in Figure 6e, is a topology
containing four similar component blocks, connected
serially.

It should be noted that in our experiments, each of these
topologies was given the same number of evaluations to
use in solving the problem. The number of evaluations in
these experiments is 3,000. In the case of a 1 GA à HC
chain, performance with 3,000 evaluations was shown in
Table 2.  In the current set of experiments, the genetic
algorithm runs for 1500 evaluations and seeds the hill-
climber, which also runs for 1500 evaluations, and returns
its best solution.  Thus, for this configuration, we have 2
algorithms sharing the 3000 evaluations equally.

It is worth noting that for the 5 GAàHC chain run under
the hybrid3 regime, we have 10 algorithms in each
component times four components = 40 algorithms
running. Since they share the same number of evaluations
as the 1 GAàHC chain running serially, in this case each
algorithm will have only 75 evaluations.
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Figure 7  A best topology for f17

The purpose of our experiments was to determine whether
fine-grained topologies consisting of genetic algorithms
and hill-climbers could do better than genetic algorithms
and hill-climbers alone and, if so, just how fine the grain
should be to get the best performance.  Figure 6 shows the
results.  We see that the worst results were obtained by the
parallel topologies, which consisted of independent
GAàHC runs.  The next-best results were obtained by the
serial topology, which linked up those runs so that each
GAàHC pair was seeded by the output of the prior pair.
The next-best results were obtained by the hybrid1
topology, which duplicated the topology serial and seeded
the second block of serial runs with the output of each hill-
climber in the first block.  The next-best was the hybrid2
topology, which used two serial blocks in serial.  Finally,
the hybrid3 topology used three serial blocks in serial, and
did better than all other higher-level topologies.

It should be noted that each basic configuration—whether
one, two, three, four, or five GAàHC pairs—did better
under finer-grained topologies.  It should also be noted that
the best number of GAàHC pairs in the basic unit was 3.
When four or five GAàHC pairs were used, results were
not as good.

7 RESULTS FOR F17
In order to broaden the applicability of our results, we
carried out similar studies for f17, a 30-dimensional,
complicated mathematical optimization function described
in (Baeck 1998).  The results were similar.  Using single
algorithms, with parameters tuned to solve the problem, or
using two algorithms in a seeding relation, optimal
solutions could not be found by the best topologies in
10,000,000 evaluations.  The convergence speed was so
slow that we estimated it would take about
100,000,000,000 evaluations to get the optimal solutions.
When we used the topology shown in Figure 7, with
multiple iterations in which each run through the topology
was seeded by the best result from the prior topology’s run,
the optimal solution was found, on average, in about
1,750,000 evaluations.

8 CONCLUSIONS
We have two principal conclusions from the results
presented here.  First, when the number of evaluations
allowed is the same, the performance of simple topologies
of our four types of optimization algorithms is vastly
inferior to fine-grained, serial topologies of those
algorithms.  Second, we have shown that modifying the
parameter values of those topologies across the
optimization process leads to better results than holding
them constant.  We have shown that these conclusions
obtain for the classical f6 function with two real-valued
inputs, and for the much more difficult f17 function with
30 real-valued inputs.

Given that most current practice in evolutionary
computation involves the use of simple topologies, we

hope that these results will suggest refinements to our
current practice that will allow us to find better solutions in
the same amount of time.
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