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Abstract

Learning Classifier Systems use reinforcement
learning, evolutionary computing and/or heuris-
tics to develop adaptive systems. This paper
extends the ZCS Learning Classifier System to
improve its internal modelling capabilities. Ini-
tially, results are presented which show
performance in a traditional reinforcement learn-
ing task incorporating lookahead within the rule
structure. Then a mechanism for effective learn-
ing without external reward is examined which
enables the simple learning system to build a full
map of the task. That is, ZCS is shown to learn
under a latent learning scenario using the looka-
head scheme. Its ability to form maps in
reinforcement learning tasks is then considered.

1 INTRODUCTION

Traditional Learning Classifier Systems (LCS) [Holland
1976] use genetic algorithms (GA) [Holland 1975] and the
bucket brigade algorithm [Holland 1986] to produce an
interacting ecology of rules for a given task. Holland et al.
[1986] proposed a number of mechanisms by which LCS
could potentially realise many complex inductive proc-
esses. However, the basic architecture was difficult to use
and understand. Wilson [1994] presented ZCS which
"keeps much of Holland’s original framework but simpli-
fies it to increase understandability and performance"
[ibid.]. Bull and Hurst [2002] have recently shown that,
despite its relative simplicity, ZCS is able to perform opti-
mally through its use of fitness sharing. That is, ZCS was
shown to perform as well, with appropriate parameters, as
the more complex XCS [Wilson 1995] on a number of
tasks. The significant difference between the two systems
being XCS’s ability to build a complete, maximally general
map of the given problem.

In this paper the basic ZCS architecture is extended to
include mechanisms by which cognitive capabilities, along

the lines of those envisaged by Holland et al. [1986], can
emerge; the use of predictive modelling within ZCS is con-
sidered through an alteration to the rule structure. Using a
maze task loosely based on that of early animal behaviour
experiments, it is found that ZCS can learn effectively
when reward is dependent upon the ability to accurately
predict the next environment state/sensory input. This ZCS
with lookahead is then extended to work under latent learn-
ing. That is, an approach is presented which allows ZCS to
build a full map of its task without external reinforcement.
This result is then suggested as significant for traditional
payoff-based LCS when the aforementioned difference to
XCS is considered.

The paper is arranged as follows: the next section briefly
describes ZCS. Section 3 considers the use of lookahead in
general and presents results from its use within ZCS. In
Section 4 the use of latent learning with the predictive form
of ZCS is presented. Finally, all findings are discussed.

2 ZCS

ZCS is a "Zeroth-level" Michigan-style Classifier System
without internal memory, where the rule-base consists of a
number (N) of condition/action rules in which the condition
is a string of characters from the usual ternary alphabet
{0,1,#} and the action is represented by a binary string.
Associated with each rule is a fitness scalar which acts as
an indication of the perceived utility of that rule within the
system. This fitness of each rule is initialised to a predeter-
mined value termed Sj,.

Reinforcement in ZCS consists of redistributing fitness
between subsequent "action sets", or the matched rules
from the previous time step which asserted the chosen out-
put or "action". A fixed fraction (B) of the fitness of each
member of the action set ([A]) at each time-step is placed
in a "common bucket". A record is kept of the previous
action set [A]_; and if this is not empty then the members
of this action set each receive an equal share of the contents
of the current bucket, once this has been reduced by a pre-
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determined discount factor (). If a reward is received from
the environment then a fixed fraction (B) of this value is
distributed evenly amongst the members of [A]. Finally, a
tax (7) is imposed on all matched rules that do not belong
to [A] on each time-step in order to encourage exploitation
of the stronger classifiers. Wilson notes that this is a change
to the traditional LCS bucket-brigade algorithm [Holland
1986] since there is no concept of a rule ’bid’, generalisa-
tion is not considered explicitly, sets of rules are updated
and the pay-back is reduced by 1-y on each step (see [Bull
& O’Hara 2001] for related discussions).

ZCS employs two discovery mechanisms, a panmictic GA
and a covering operator. On each time-step there is a prob-
ability p of GA invocation. When called, the GA uses
roulette wheel selection to determine two parent rules
based on fitness. Two offspring are produced via mutation
(probability W, probability of inserting a wildcard pg) and
crossover (single point with probability ¥). The parents
then donate half of their fitnesses to their offspring who
replace existing members of the rule-base. The deleted
rules are chosen using roulette wheel selection based on the
reciprocal of rule fitness. If on some time-step, no rules
match or all matched rules have a combined fitness of less
than ¢ times the rule-base average, then a covering operator
is invoked.

The default parameters presented for ZCS, and unless oth-
erwise stated for this paper, are: N = 400, S,=20, 3=0.2, v
=0.71,t=0.1, x =05, u =0.002, p = 0.25, ¢ = 0.5,
p#=0.33.

3 LOOKAHEAD

Holland [1990] presented a general framework for incorpo-
rating future state predictions into LCS, termed lookahead
(after [Samuel 1959]). Lookahead allows a learning entity
to construct an internal model of its environment, " ... a
matter of implementing the rule ’IF the environment is in
state S AND action A is taken THEN (the system expects)
state S2 will occur’" [Holland 1990]. Under Holland’s
scheme tags, which (potentially) facilitate rule coupling
under normal operation [Holland 1986], would be used
rather than an explicit representation of the expected envi-
ronmental state. A "virtual" bucket brigade algorithm
would then pass payoff back through "cones" of likely
future outcomes to influence the action selection process
on any given step. Stolzmann [1998] has presented a heu-
ristic-driven LCS, ACS, which uses the explicit next-state
rule structure noted above to build anticipatory models of
an environment. The accuracy of the rules’ predictions are
factored into their utility. Later work added a GA which
used this measure for rule fitness resulting in improved per-
formance [e.g. Butz et al. 2000]. LCS which use rule-
linkage over succeeding timesteps [e.g. Tomlinson & Bull
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1998] also implicitly build predictions of future states; the
condition of a linked rule must represent the next environ-
mental state after the action of its predecessor is taken.

3.1 THE APPROACH

In this paper, as in [Riolo 1991][Stolzmann 1998][Gerard
& Sigaud 2001] and suggested in [Wilson 1995], an
explicit representation of the expected next environmental
state is used. That is, rules are of the general form:

<condition> : <action> : <anticipation>

Generalizations (#’s) are allowed in the condition and
anticipation strings. Where #’s occur at the same loci in
both, the corresponding environmental input symbol
"passes through" such that it occurs in the anticipated
description for that input. Similarly, defined loci in the con-
dition appear when a # occurs in the corresponding locus of
the anticipation. Each rule also maintains the usual fitness
parameter as in ZCS.

One further mechanism is incorporated: the first N random
rules of the rule-base have their anticipation created using
cover (with #’s included as usual) in the first [A] of which
they become a member. This goes some way to make " ...
good use of the large flow of (non-performance) informa-
tion supplied by the environment." [Holland 1990] and can
be seen to create a supervised learning task during initiali-
zation (this is particularly significant in Section 5). Rules
created under the cover operator also receive this treat-
ment. In this way the GA explores the generalization space
of the anticipations created by the simple heuristic (as
opposed to [Stolzmann 1998]).

All other system functionality is as described in Section 2,
except that members of a given [A] only receive bucket
payments if they correctly predicted the next state. Hence,
in effect, incorrect predictors are taxed at the learning rate.
Predictions are not tested for external reward receiving
rules.

3.2 THE TASK

The aim of this paper is to show that ZCS can be extended
to exploit lookahead and latent learning to build a more
comprehensive internal model of the task. The general
motivation for such work with machine learning algo-
rithms comes, in part, from experiments undertaken with
rats by Tolman [e.g. see Mackintosh 1974], Seward [1949]
and others. It was shown that rats appear able to construct
internal models of simple mazes of the general form shown
in Figure 1 so that, when later placed at the start (lowest
cell), they would find the food via the shortest route. This
will be returned to in Section 4, a goal-directed only ver-
sion being examined here.

In this section the task is seen as the well-known animat
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problem [Wilson 1987]. As such, ZCS is used to develop
the controller of a simulated robot/animat which must
traverse the maze in search of food. It is positioned ran-
domly in one of the blank cells and can move into any one
of the surrounding eight cells on each discrete time step,
unless occupied by a tree. If the animat moves into the food
cell the system receives a reward from the environment
(1000), and the task is reset, i.e. food is replaced and the
animat randomly relocated.

On each time step the animat receives a sensory message
which describes the eight surrounding cells. The message
is encoded as a 16-bit binary string with two bits represent-
ing each cardinal direction. A blank cell is represented by
00, food (F) by 11 and trees (T) by 10 (01 has no meaning).
The message is ordered with the cell directly above the ani-
mat represented by the first bit-pair, and then proceeding
clockwise around the animat.

The trial is repeated 10,000 times and a record is kept of a
moving average (over the previous 50 trials) of how many

T T T|T|T|T
TIF|T|T|T T
T T|T|T T
T T
T|T|T T|T|T
T|T|T T|T|T
T|T|T|T |[T|T|T

Figure 1: The Woods 10 environment.

steps it takes for the animat to move into a food cell on each
trial. Optimal performance is 3.5 steps to food. All results
presented are the average of ten runs.

3.3 RESULTS

Figure 2(a) shows the performance of standard ZCS in
Woods 10 with the same parameters as those in Section 2,
except B=0.45. Optimal performance can be seen during
the last 2000 trials where the GA was disabled and a deter-
ministic action selection scheme used such that the action
with the highest total fitness in [M] was always chosen
(after [Bull & Hurst 2002]). Figure 2(b) shows the perform-
ance of ZCS using similar parameters but with the
lookahead rule structure and scheme described above
(7=0.4, p=0.45). It can be seen that performance is equiva-
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lent and hence that ZCS is able to produce accurate next-
state predictions. However, ZCS does not form a full state-
action-anticipation map under reinforcement learning. The
next section presents a mechanism by which such a map
can be constructed under latent learning.

ZCS in Woods 10
T T I

201 .

Steps to Food

0 2000 4000 6000 8000 10000
Problems

(a)

ZCS$ with Lookahead in Woods 10
T T | T ‘ T

W0 -

Steps to Food

10+ -

WMMNMMMM -

-— | \ \
0 200 400 6000 8000 10000

Problems

(b)

Figure 2: Performance of ZCS in Woods 10 and
incorporating lookahead.
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4 ZCSL: USING LATENT LEARNING
WITH LOOKAHEAD

As noted above, one motivation for exploring the use of
learning without external reinforcement comes from early
experiments in animal behaviour. Typically, rats were
allowed to run around a maze of the shape shown in Figure
1 where the food cell would be empty but a different colour
to the rest of the maze. The rats would then be fed in the
marked location. Finally, the rats were placed at the start
location and their ability to take the shortest path, i.e. go
left at the T-junction in Figure 1, recorded. It was found
that rats could do this with around 90% efficiency. Those
which were not given the prior experience without food
were only 50% efficient, as expected.

Riolo [1991] extended a version of Holland’s LCS to con-
sider such learning without external reinforcement, using
the same general rule form as that above and tags. The
bucket brigade was then altered to consider the accuracy of
rule’s predictions of future states. Although Riolo did not
incorporate rule discovery, he showed his CFCS2 could
learn and exploit internal models to solve a version of the
maze task described above. Both ACS [Stolzmann & Butz
2000] and the related YACS[Gerard & Sigaud 2001] have
also been shown able to develop internal models under
latent learning using heuristics.

4.1 THE APPROACH

The internal model building task can be cast as a single-
step task. In the simplest case, using lookahead under latent
learning and the above rule structure, a single-step learning
task is created whereby reward is given only if a rule pre-
dicts the expected outcome of taking its action under the
condition matched. This is the approach used in ZCSL.

At the beginning of a trial, the animat is placed randomly
in the maze. A matchset is formed and an action chosen at
random. All rules which propose the chosen action form
[A] and pay P of their fitness into the bucket as usual. All
rules in [A] then construct their anticipated sensory input
for the next state, i.e. pass-through is considered, and the
action is taken. Each rule in [A] which correctly predicts
the next state is rewarded with payoff 1000 divided by the
number of correct rules in [A]; fitness sharing is used. Note
that taxing the other members of the matchset is no longer
appropriate as a full map of actions is required. This proc-
ess is repeated for ten steps and then the animat is randomly
replaced in the maze. It is important to note that although
the animat can sense the food, it is not able to move onto
that cell (but predictions are tested as if it had). All other
operations are as before.

4.2 RESULTS
Figure 3 shows the behaviour of this form of ZCS in the
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Woods 10 maze. The parameters used were the same as
those given in Section 2, except N=800, and the GA is
again turned off for the last 2000 trials.

- feeurate Predictions in [4]
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Figure 3: Showing the performance of ZCSL in the
Woods 10 environment.
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Figure 3(a) shows the fraction of rules of a given action set
which correctly predicted the next environmental state. It
can be seen that by around 5000 trials 80% (i.e. the major-
ity) of the rules in each action set were accurate predictors.
Figure 3(b) shows the number of actions represented in
each matchset has risen to eight around the same time.
Hence after 5000 trials (50,000 cycles) ZCSL has con-
structed a full and accurate map of the maze, assuming the
most numerous anticipated next state of a given [A] is used.
Note that ZCSL includes state-action pairs which lead to no
change in stimulus without the explicit consideration of
such circumstances. The original ACS did not develop
rules for such cases, but was later modified [Stolzmann
2000] (see also YACS).

TT|(T|T|T|T|T T
T F|T
T T T T
T T T
T T|T T
T T T T
T T T
T T T
T|(T|(T|T |T|T|T|T]|T

Figure 4: Maze 6.

Therefore, the resulting LCS systems could be used to
reproduce the rat experiments through any number of plan-
ning techniques, such as breadth-first search: from a given
input the most numerous anticipation of each [A] can be
considered to represent the next environmental input, and
so on, until the goal state is seen. If this is done from the
start location, firing the appropriate sequence of rules
would give 100% efficiency at the task. That is, the ZCSL
controllers have the ability to reproduce the general behav-
iour of the rats using a very simple LCS architecture. The
following four rules show an example solution found in
this way starting from the bottom cell (GA fitnesses not
shown):

#O##1#101#1#1010 : N : #000101000#01#00
0000101000101000 : NW : 1#1#0#001010000#
#H#10100#0#101# : NW : #0#H#0#0#0#0#010
#1#01#00#010#0#0 : N : ##10#0#0##10#010
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It can be noted that both generalization and pass-through
are contained in the solutions although no explicit pressure
for either exists within the simple system.
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Figure 5: Showing the performance of ZCSL in the
Maze 6 environment.
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ZCSL has also been applied to the more challenging Maze
6 [Lanzi 1997] environment (Figure 4). The parameters
used were the same as those above, except N=10,000.
Again, the animat could not move onto the food cell. Figure
5(a) shows the fraction of rules of a given action set which
correctly predicted the next environmental state. It can be
seen that by around 5000 trials the majority of each action
set (>75%) were accurate predictors. Figure 5(b) shows the
number of actions represented in each matchset has again
risen to eight around the same time. Hence, after 5000 trials
ZCSL has constructed a full and accurate map of Maze 6.

S DISCUSSION: XCS

As noted in the introduction, XCS attempts to build a full,
non-overlapping, maximally general map of the problem
space which can have advantages over traditional payoff-
based LCS, such as ZCS, if a posteri explanatory power is
required, as in data mining for example.

There seems no reason why the above modified ZCS sys-
tem of Section 4 cannot also produce such predictive maps,
particularly for single step tasks. That is, if the anticipation
is altered from being an expected environmental state to a
numerical payoff value, a similar map can be formed. l.e.
rules are of the general form:

<condition> : <action> : <anticipated payoff>

This version has been explored using the well-known mul-
tiplexer task. These Boolean functions are defined for
binary strings of length [ = k + 2 under which the first
bits index into the remaining 2K bits, returning the value of
the indexed bit. A correct classification results in a payoff
of 1000, otherwise 0.

All system functionality is as described in Section 4 except
that the appropriate value (1000 or 0) is written on as the
anticipation for a randomly created rule. Mutation causes a
change in the value to another valid payoff level (1000 to
0, or vice versa here). A trial is two evaluations here.

Figure 6 shows the percentage of correct predictions in a
given [A] and number of actions in [M] for the thirty seven
bit multiplexer, using the same parameters as for Woods 10
except N=5000, $=0.8 and pz=0.8. It can be seen that, on
average, correct predictors occur with highest numerosity
and that both actions are present in each matchset after
around 700,000 trials (1,400,000 evaluations). The evolved
rules for the first two data lines from an example solution
were as follows (GA fitnesses not shown):

O00000HHHHHHHHHHHHBHAFHEHBRAFAAA#AAH 00 £ 1000
O00000HHHHHEHHHHHHEHAHHEHEHBAAF#OA 0 1 : 0
00000 1 #HHHHHEHHHHEHEHAFREFBRBAABAOBHA 0 : 0
00000 | #HHHHHHFHHEHEHBHAFHEHBRAAEAFAAAE © 12 1000
0000 1 #OHHHHHFHHEHEHBHAFHEFBRAAAAAAAA 00 £ 1000
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0000 1 #OH#HO#HHHHHHEHAHOHEHEHAAREFIONA 0 1 : 0
0000 1# | HHHEHHHHOHBHAFHEHBRAAAAER 02 0
0000 1# | HHHEHHFHHHEHAFHEFBRBAAEFEEAEAA# 012 1000

It can again be noted that solutions are very general
although no explicit pressure for this exists within the sim-
ple system. Results show that, the longer the system is left
to run, the more general rules become.

Butz et al. [2001] have recently examined the behaviour of
XCS on a number of multiplexer problems, also solving the
thirty seven bit version. They note that a stronger
distinction between rule accuracies was required in
comparison to the smaller multiplexer tasks and a larger p.
ZCSL also appears to need a strong pressure toward
accurate predictors through an increase in the learning rate
since this is also essentially the tax rate for erroneous rules.
A large py also proved important. Butz et al. did not
manage to solve the equivalent seventy bit task and initial
attempts with ZCSL have also proven unsuccessful. This
remains open to future investigation.

Hence this system uses a simple heuristic to promote
accuracy in payoff predictions whilst the GA with fitness
sharing  apportions  resources and  encourages
generalization. In contrast, XCS uses a four-step fitness
update to promote accuracy in payoff predictions, an
explicit replacement strategy to apportion (balance)
resources and a triggered niche GA to encourage
generalization. Whether the simple approach described
here scales as well as XCS to tasks with more classes and
prediction levels, noisy data, or can be used in multi-step
tasks represents future work. The use of some of XCS’s
other features (subsumption, action set filling, etc.) may
help.

6 CONCLUSIONS

In this paper ZCS has been extended to incorporate looka-
head and latent learning. Using a simple maze task, based
on those used in early animal behaviour experiments, it has
been shown that ZCS can build partial internal models
under traditional goal-directed learning. The construction
of a full internal environment model under latent learning
with lookahead was then cast as a single-step reinforce-
ment task and ZCSL was shown able to form accurate maps
under fitness sharing. Future work will examine the inclu-
sion of other mechanisms, such as an explicit unchanging
component [e.g. Stolzmann 2000], to improve perform-
ance. Other schemes to encourage maximal generality
within solutions will also be explored.

The use of the mechanisms within a more complex frame-
work to exploit internal models during learning under
reinforcement, after Sutton’s Dyna [e.g. Sutton 1990] (see
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also [Donnart & Meyer 1996][Stolzmann et al. 200]), is
also under investigation.

Accurate Predictions in [A]
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Figure 6: Showing the performance of ZCSL on the
37 bit multiplexer problem.
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Abstract

Learning Classifier Systems traditionally use a
binary representation with wildcards added to
allow for generalizations over the problem
encoding. However, the simple scheme can be
limiting in complex domains. In this paper we
present results from the use of neural network-
based representation schemes within the
accuracy-based XCS. Here each rule’s condition
and action are represented by a small neural
network, evolved through the actions of the
genetic algorithm. After describing the changes
required to the standard production system
functionality, optimal performance is presented
using multi-layered perceptrons to represent the
individual rules. Results from the use of fuzzy
logic through radial basis fuction networks are
then presented. In particular, the new
representation scheme is shown to produce
systems where outputs are a function of the
inputs.

1 INTRODUCTION

Since their inception Learning Classifier Systems (LCS)
(Holland 1986) have been compared to neural networks,
both conceptually (e.g. Farmer 1989) and functionally
(e.g. Davis 1989, Dorigo & Bersini 1994, Smith & Cribbs
1994). In this paper we present a way to incorporate the
neural paradigm into the accuracy-based XCS (Wilson
1995). LCS traditionally incorporate a binary rule
representation, augmented with ‘wildcard’ symbols to
allow for generalizations. This can become limiting in
more complex domains (e.g. see (Schuurmans &
Schaeffer 1989) for early discussions). Recently, a
number of investigations have made use of other rule
representations, including real numbers (Wilson 2000),
messy GAs (Lanzi 1999a), logical S-expressions (Lanzi
1999b), and those where the output is a function of the
input, including numerical S-expressions (Ahluwalia &
Bull 1999) and fuzzy logic (e.g. Valenzuela-Rendon
1991).
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We present a neural network-based scheme where each
rule’s condition and action are represented by a neural
network. The weights of each neural rule being
concatenated together and evolved under the actions of
the genetic algorithm (GA)(Holland 1975). The approach
is closely related to the use of evolutionary computing
techniques in general to produce neural networks (see
(Yao 1999) for an overview). In contrast to most of that
work, an LCS-based approach is coevolutionary, the aim
being to develop a number of (small) cooperative neural
networks to solve the given task, as opposed to the
evolution of one (large) network. That is, a
decompositional approach to the evolution of neural
networks is proposed. Moriarty and Miikulainen’s SANE
(1997) is most similar to the work described here,
however SANE coevolves individual neurons to form a
large network rather than small networks of neurons as
rules.

2  X-NCS: ANEURAL LCS

21 XCS

In XCS rule-fitness for the GA is not based on rule
predictions but on the accuracy of the predictions. The
intention being to form efficient generalizations and a
complete and accurate mapping of the search space
(rather than simply focusing on the higher payoff niches
in the environment).

On each time step match sets [M] are created. A system
prediction is then formed for each action proposed by the
rules in [M] according to a fitness-weighted average of
the predictions of the rules. The system action is then
selected, typically either deterministically (exploit) or
randomly (explore). An action set [A] is then formed, the
appropriate system output given and a reward may or not
be received. If [M] is empty covering is used.

Reinforcement in XCS consists of updating three
parameters, Error (E), Prediction (p), and fitness (F) for
each appropriate rule. Each is updated every time it
belongs to [A ;] or [A] if it is a single step problem.

XCS uses a niche-GA (Booker 1985); the GA acts in
action sets [A]. Two rules are selected based on fitness. In
this paper we use a fixed size rule-base N; varying N as in
(Wilson 1995) is not incorporated here. Rule replacement
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is based on the estimated size of each match set a rule
participates in with the aim of balancing resources across
niches. The GA is triggered (see also (Booker 1989))
within a given match set if the number of time steps since
its last invocation in that set passes a fixed threshold,
based on the average time-stamp of the rules. Typically
this parameter is set to 25.

The reader is referred to (Butz & Wilson 2001) for full
details of XCS. Wherever possible parameter values are
in line with those used in (Wilson 1995) to facilitate
comparisons with XCS using a ternary alphabet. In
practice all parameter values lay within those used in
(Wilson 1995) apart from two areas: population size and
mutation rate which, as they relate to the higher number
of real number genes in the genotype, are higher; and in
function approximation, the relative value of the error
parameter is a percentage value rather than being fixed.
Further, we don’t incorporate subsumption or maintain a
rule for each action in a given [M].

All results in this paper are the average of ten runs.

2.2 NEURAL RULE REPRESENTATION

Each traditional condition-action rule is replaced by a
single, fully connected neural network. All rules have the
same number of nodes in their hidden layers (simplest
case (Bull 2001)) and one more output node than there
are possible actions. All weights are randomly initialized
in the range { —1.0, 1.0 }, concatenated together in an
arbitrary order and thereafter determined solely by the
GA here.

The production system cycles through the same input-
match-action-update cycle as the LCS, XCS in this case.
However, since all rules explicitly ‘see’ all inputs, unlike
the traditional scheme whereby defined loci can exclude
certain rules from certain match-sets, the extra output
node is added. This is used to signify membership of a
given match-set. After the presentation of an input, each
neural network rule produces a value on each of its output
nodes in the appropriate manner, e.g. feedforward. If the
extra ‘not match-set member’ node has the highest output
value, the rule does not form part of the resulting match-
set. In all other cases the rule forms part of the match-set,
proposing the action corresponding to the output node
with the highest activation. This matching procedure is
repeated for all rules on each cycle.

Rule discovery operates in the same way as usual for
XCS with real numbers (Wilson 2000). Hence the
mutation operator is altered to adjust gene values using a
normal distribution; small changes in weights are more
likely than large changes upon satisfaction of the
mutation probability (). The cover operator is altered
such that when the match-set is empty, random neural
networks are created until one gives its highest activation
on an action node for the given input.

LEARNING CLASSIFIER SYSTEMS

Results from using multi-layered perceptrons (MLPs) are
now presented in well-known single-step and multi-step
tasks. All nodes used a sigmoid transfer function.

3 A SINGLE-STEP TASK: 6-BIT
MULTIPLEXER

We have tested the new rule representation on the two
tasks used in (Wilson 1995), the first of which is a 6-bit
version of the well-known, single-step multiplexer task.
These boolean functions are defined for binary strings of
length [ = k + 2" under which the first k bits index into the
2" remaining bits, returning the indexed bit.

In order to make analysis easier for each neural net an
equivalent classifier was produced and recorded, though
it must be emphasized that it played no part in the XCS
processing, and was produced to measure the generality
or specificity of the particular neural rule.

X-NCS 6 bit Multiplexor
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Figure 1: Performance of accuracy-based neural classifier
system on the 6-bit multiplexer (/=6).

Figure 1 shows the results of using X-NCS on the single-
step problem, averaged over ten runs, with all parameters
as presented in (Wilson 1995) apart from the population
size and mutation. That is, N=800, u=0.08, 3=0.2, ¢=0.5,
0=0.1, x=0.8, 6=10, 8=0.1, pI/=10.0, F1=10.0, €1=0.0.
As in (ibid.), payoff is given in 100 increments from
300/0 for each classification. Rules contain five nodes in
their hidden layer.

From Figure 1 it can be seen that using the neural
representation requires around 5000 exploit problems to
solve the task, roughly equivalent to the binary
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representation (Wilson 1995). However, that an overhead
may be incurred for a more complex representation may
perhaps expected for such simple tasks. Analysis of the
resulting rule-bases shows that, as well as the usual rules
which match multiple inputs and propose a single action
at a given payoff prediction level, multiple action rules
emerge. That is, for a given prediction level, accurate
rules are evolved which suggest different actions
depending on the input.

4 A MULTI-STEP TASK: WOODS 2

Wilson (1995) presented the multi-step, and hence
delayed reward, maze task Woods 2 to test XCS. Woods
2 is a toroidal grid environment containing two types of
food (encoded 110 and 111), two types of rock (encoded
010 and 011) in regularly spaced 3 by 3 cells, and free
space (000) (see (ibid.) for full details).

The learner is positioned randomly in one of the blank
cells and can move into any one of the surrounding eight
cells on each discrete time step, unless occupied by a
rock. If it moves into a food cell the system receives a
reward from the environment (1000) and the task is reset,
i.e. food is replaced and the learner randomly relocated.
On each time-step the learning system receives a sensory
message, which describes the eight surrounding cells,
ordered with the cell directly north and proceeding
clockwise around it.

X-NCS Woods 2

steps to food
[9)]

0 ‘ ‘
0 1000 2000 3000

explore problems

Figure 2: Performance of the accuracy-based neural
classifier system in Woods 2.

Here, as in (Wilson 1995), the trial is repeated 8000
times, half explore and half exploit, and a record is kept
of the moving average (over the previous 50 exploit
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trials) of how many steps it takes the system to move into
a food cell on each trial.

Figure 2 shows results from using X-NCS in Woods 2
with all parameters as presented in (Wilson 1995) except,
more rules and more mutation are used. That is, N=1600,
u=0.08, f=0.2, v=0.71, ¢=0.5, 0=0.1, x=0.8, 6=25, 3=0.1,
p~=10.0, F=10.0, £=0.0. Rules again contained five
hidden nodes. It can be seen that it takes the system
around 2,000 explore problems, again roughly equivalent
to the traditional encoding, to reach optimal performance
(1.7 steps to food).

Analysis of the resulting rule-bases shows that neural
rules emerge which have no error and produce different
actions depending upon the input. Unlike in the
multiplexer problem, we find that for some payoff levels
these multi-action rules are more numerous than the
equivalent single action rules. We presume that, if left to
run for longer, the system would converge on a single
neural rule for each payoff level; maximal generalizations
would be produced in both the condition and action
space.

As noted above, XCS usually forms generalizations for
each action at each level of payoff. Within traditional
reinforcement learning (Sutton & Barto 1998) a neural
network is often used to produce generalizations for each
possible action, where the networks are trained using
gradient descent techniques. Under the scheme proposed
here, X-NCS forms generalizations at a level between
these two extremes using the GA to produce the neural
networks. An advantage of this scheme over the other two
is its ability to work with continuous action spaces. An
application which exploits this last aspect of the
representation scheme in a single-stepped task is now
presented.

S FUNCTION APPROXIMATION

It is well-known that multi-layered perceptrons with an
appropriate single hidden layer and a non-linear
activation function are universal classifiers (e.g. Hornick
et al. 1989). Until recently LCS had not been used to
solve tasks of the form y = f{x) since their traditional
representation scheme does not lend itself to such classes
of problem. Fuzzy Logic LCS (see (Bonarini 2000) for an
overview) represent, in principle, a production system-
like scheme which can be used for such tasks but this
remains unexplored. Ahluwalia and Bull (1999) presented
a simple form of LCS which used numerical S-
expressions for feature extraction in classification tasks.
Here each rule’s condition was a binary string indicating
whether or not a rule matched for a given feature and the
actions were S-expressions which performed a function
on the input feature value. Most recently, Wilson (2001)
has presented a form of XCS, termed XCSF, which uses
piecewise-linear approximation for such tasks; using only
explore trials all matching rules update their parameters,
where such trials are run consecutively as a training
period.
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We have tested the neural rule representation for tasks of
the form y = f{x), where both x and y are real numbers
between 0.0 and 1.0. The implementation estimated two
functions, x-squared and a six variable root-mean-square.
However, unlike the above mentioned work, the system
requires very few changes to the design of the standard
XCS system.

5.1 MODIFICATIONS TO X-NCS FOR
FUNCTION APPROXIMATION

5.1.1  Processing of Real Numbers

The real number inputs were scaled between 0.4 and 0.8
to accommodate the lack of discrimination of the upper
and lower end of the sigmoid function, as is usual in the
use of MLPs. Output layer nodes are now linear.

5.1.2  Changes to Error Threshold Processing and
System Error

In standard XCS, the error threshold & is a fixed fraction
of the payment range. However with function
approximation across a continuous (action) range, a fixed
value may result in very inaccurate classifiers at the
bottom end of the input range. It was therefore decided
that & should be variable to enable the accuracy, and
hence fitness, of the classifiers across the range to be
equivalent. The variable value was chosen as the
percentage of the target value at any particular point. The
percentage chosen was 1% so, for example under x-
squared, if the input was 0.3 the target output value (f{x))
would be 0.09. Here the required accuracy & would be
0.0009 and so classifiers that predicted within the range
0.0891 to 0.0909 would be given an accuracy of 1.0. In
the same way, when the performance of the system is
measured, the system error was calculated by taking the
absolute difference between the target value and the
prediction of the selected classifier, and dividing this by
the target value, i.e. the system error is the percentage
error between the target and the prediction value.

5.1.3  Match Set and Action Set Processing

The rule prediction value is taken from one output node
of the individual’s neural network. The selection of the
match set is similar to before (Section 2), the only
difference being that the ‘not match-set member’ output
node merely has to have a positive value, rather than a
value less than the primary output node, as above. The
aim being to reduce the complexity of the task faced by
individual rules.

In exploration all members of the match set are updated
and rule discovery invoked if appropriate as per standard
XCS. In XCS under exploitation, all classifiers which
advocate the same action are put into the same set [A].
The chosen action set is the one which has the highest
fitness weighted prediction. For function approximation
we are looking for the rule whose prediction is most
accurate, i.e. has the least error, and hence taking the
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classifier with the highest fitness weighted prediction
would be inappropriate. Instead, the counterpart of
prediction for such tasks is chosen, i.e. rule error, and so
we choose the rule with the lowest value of error divided
by fitness.

It was also found that for these function approximation
tasks a biased uniform crossover operator (75%) appeared
to give slightly better results than the single point
crossover operator used above. This aspect of the system
remains open to future investigation.

5.1.4  Rule Updating

The prediction value for each rule is taken as the value of
the output of the neural network, i.e. the prediction value
of the classifier can change at each iteration. By contrast,
the error value of a rule is determined as per standard
XCS. Accuracy is determined in the standard XCS way
except, as mentioned above, the accuracy criterion is
taken as a percentage of the current target value. Fitness
is again calculated in the standard XCS way.

Thus the output value for a particular rule will change for
each different input value. For example, for problem n
with input value 0.3 -> prediction 0.0891, but problem
n+1 with input 0.4 -> prediction 0.160. However the error
value for each accurate classifier, although it varies as the
predictions can deviate from their respective targets, is a
small value that oscillates according to &.

5.2 RESULTS FOR Y=X?

In this task training consists of (alternating) 50,000
explore trials and 50,000 exploit trials each presenting a
random input in the range [0.0, 1.0] scaled as mentioned
above.
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Figure 3: X-NCS on the x-squared function.
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Figure 3 shows the performance of the accuracy-based
neural classifier system on the x-squared function,
averaged over ten runs, with a runnning average over the
previous fifty exploit trials. The parameters used were:
N=1000, B=0.2, ¢=0.5, u=0.03, 0=0.1, ¥=0.8, 6=10,
6=0.1, p,=10.0, F;=10.0, €,=0.01. Rules contained five
hidden layer nodes. For the last 500 problems X-NCS is
run in test mode and hence under the exploit scheme;
after training with randomly generated examples the
performance of the resulting system was tested using a
number of unseen randomly generated examples.

From Figure 3 it can be seen that using the neural
representation requires around 40,000 explore problems
to solve the task, i.e. for the accuracy of the
approximations to fall within 1% of the real f{x).

Analysis of the resulting systems shows that better
performance is achieved when one neural network
emerges to cover the whole problem space, rather than
through the co-operative sets seen above. The reasons for
this appear two-fold: MLPs attempt to form global
models by approximating between known data points;
and the niche-based scheme of XCS encourages
maximally general rules through increased chances to
reproduce. This aspect of X-NCS will be returned to.

5.3  RESULTS FOR ROOT-MEAN-SQUARE

We have also examined the performance of the system on
functions which contain more than one variable. Wilson
(2001) presented a general, multi-dimensional function of
the form y = [(xI? + ... + xn®) / n] Y. We have used this
“root mean squared” function with n=6, where training
was identical to that of the x-squared task above.
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Figure 4: X-NCS on the 6 variable rms function.
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The parameters used were: N=1000, P=0.2, ¢=0.5,
u=0.09, a=0.1, x=0.8, 6=10, 6=0.1, p;,=10.0, F;=10.0,
€,=0.01.

From Figure 4 it can be seen that using the neural
representation requires around 50,000 explore problems
to solve the task to an accuracy of 1%. As with the x-
squared function, the most accurate solutions came from
those in which one classifier covered the whole input
range.

6 X-NFCS: A NEURO-FUZZY LCS

Radial basis function neural networks (RBFs) (e.g.
Poggio & Girosi 1990), in contrast to MLPs, construct
local function approximations using Gaussian functions
processed in the hidden layer of the network. It was noted
above (Sections 3 and 4) that in the discrete action tasks
the MLP-based neural system formed traditional LCS
coevolutionary solutions, whereas with continuous
actions a single rule/network emerged. Hence the use of
RBFs in X-NCS seems more likely to exploit the
system’s coevolutionary nature. There is another potential
benefit to the use of RBFs.

The similarity between RBF networks and fuzzy rule-
based systems is discussed in (Jang & Sun 1995). Fuzzy
rule sets consist of membership functions over
appropriate universes of discourse for input and output
variables and rules which define input-output relations.
The Gaussian functions of an RBF can be seen as fuzzy
membership functions and the hidden layer nodes the
fuzzy rules. In general, the benefits from combining
neural computing with fuzzy logic are potentially large
(see (Tsoukalas & Uhrig 1997) for an introduction). In
this context it also avoids the possible need to alter the
reinforcement process (see (Bonarini 2000) for
discussions).

GAs have been used to evolve RBFs as they have MLPs.
The most similar approach to that proposed here is
Whitehead and Choate’s (1995) scheme whereby the
individual members of the population are the basis
functions of a single network and heuristics tackle the
competitor/cooperator problem.

Genomes are again strings of real numbers: the positions
of the basis function centres, widths and weights of fully
connected networks are concatenated in an arbitrary order
to form the encoding. Output nodes (two) are again
linear. Carse et al. (e.g. 2001) have proposed a crossover
operator for fuzzy sets which alleviates the permutations
(Radcliffe 1990) problem that can arise under the
evolution of neural networks. That is, different genotypes
can give the same phenotype and hence crossover may
disrupt useful structures. The fuzzy logic crossover
operator works in the input space rather than by postion
on the genome. As with the MLPs, and perhaps due to the
niche GA of XCS, the permutations aspect of the
concatenated weights encoding does not appear to have
been significant in the tasks explored here. All other
system functionality is the same as in Section 5 — a
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positive response on the extra node means a rule doesn’t
join a given [M] and percentage error is used.
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Figure 5: X-NFCS on the x-squared function.
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Figure 6: X-NFCS on the 6 variable rms function.
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Figure 5 shows the performance of the accuracy-based
neuro-fuzzy classifier system on the x-squared function,
averaged over ten runs, with a runnning average over the
previous fifty exploit trials. All parameters are as in
section 5.2. It can be seen that the function is learnt to 1%
accuracy around 30,000 explore problems. That is, a
greatly reduced training period is required using the
neuro-fuzzy system (compare with Figure 3). Analysis of
the resulting systems shows that coevolutionary solutions
appear, i.e. different rules emerge to handle different
regions of the input space, together covering the total
problem space.

Figure 6 shows the performance of X-NFCS on the six
variable rms function. All parameters are as in section
5.3, but it was found necessary to use ellipsoid radial
basis functions. Here, each input node maintains a radius
for its Gaussian for each input node. It can be seen that
accurate performance is obtained after 40,000 explore
trials. Analysis again shows that a number of rules are
used in the evolved systems and that the decompositional
approach led to a reduced training period (compare with
Figure 4).

Results (not shown) from the discrete action tasks of
sections 3 and 4 also show optimal performance using
RBFs, with learning times similar to the MLP-based
system.

7 CONCLUSIONS

In this paper we have presented results from using a
neural rule representation scheme within an accuracy-
based learning classifier system. The effective
combination of evolutionary computing and neural
computing has long been an aim of machine learning (e.g.
Belew et al 1989). It is our aim to exploit the
coevolutionary and accuracy processes of XCS to realize
such systems. Hopefully, this will also ease the use of
LCS in more complex problem domains.

We are currently examining the use of the system for
more complex tasks, with discrete or continuous action
spaces, both single-step and multi-step. For the latter we
are also exploring the use of recurrent connections with
the neuro and neuro-fuzzy systems for non-Markov
domains (after (Bull & O’Hara 2001)).
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Abstract

This paper considers the application of XCS to
the complex, real-world problem of mapping
Boolean networks to technology-specific layout
of field programmable gate arrays (FPGAs). The
mapping is formulated as a temporal task, where
the XCS’s actions are to create blocks (based on
an abstract Boolean network) that can be placed
in the FPGA, one-at-a-time. Despite the
complexity of this task, we demonstrate that the
system is effective. We demonstrate the transfer
of knowledge stored in an XCS rule set from a
small FPGA mapping problem, to a larger
problem. We present a novel technique that
utilizes a problem-specific finite state machine
and two populations of classifiers to treat the
problem hierarchically. Final sections of the
paper discuss implications and future directions
for this work.

1 INTRODUCTION

Field-programmable gate arrays (FPGAs) are semi-
custom VLSI circuits that were first introduced by the
Xilinx company in 1984. They usually consist of a two-
dimensional matrix of configurable logic blocks (CLBs)
surrounded by special input-output blocks (IOBs) on the
perimeter of the CLB matrix. An important part of the
chip is formed by a programmable interconnect that can
be used to connect inputs and outputs of logic blocks to
form a desired circuit. The granularity of the logic blocks
differs from fine-grain (universal two-input logic gates in
the Xilinx XC6200 family) to coarse-grain (two four-
input and one three-input cascaded look-up tables (LUTSs)
in the Xilinx XC4000 family).

FPGAs are favored for their short design cycle (see
Figure 1), since one design cycle (one design
implementation) takes hours rather than days (in the case
of mask-programmable gate arrays), or months (in the
case of application-specific integrated circuits, ASICs).
This together with their low cost makes them suitable
both for low-volume production and for prototyping of
ASICs.
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Figure 1: A typical FPGA design cycle.

Current field programmable gate arrays are very complex
devices. Design software is needed to assist the user in
implementing a circuit. This software usually consists of
several subsequent optimization routines that transform
the information about the circuit to be implemented (the
netlist) to a more device-specific form.

These routines are usually referred to as
e the mapper,
e the placer and
e the router.

The software-assisted design procedure is typically as
follows:

l. A design is specified by an abstract Boolean
network (ABN) of logic gates and flip-flops.

2. The mapper performs a device-independent logic
optimization. This transforms logic functions so as
to obtain their minimal form.
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3. Then the mapper maps the design to the target
technology, which means that the gates in the
netlist that represent the minimized logic functions
and flip-flops are translated to blocks that are
supported by the target FPGA (up to five-input
LUTs and D-type flip-flops (DFFs) in the case of
XC4000 devices).

4. The mapper forms groups of these blocks that fit
into one CLB. Each CLB in the XC4000 devices
can implement two four-input LUTs (usually
referred to as F-LUT and G-LUT), one three-input
LUT, (usually referred to as H-LUT), and two
DFFs, (usually referred to as DXFF and DYFF).
See Figure 2.
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Figure 2: An internal structure of a configurable logic
block (XC4000).
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5. The placer assigns these groups (in fact, CLBs)
physical positions in the CLB matrix of the target
FPGA.

6. The router determines the way the CLBs are
connected by universal wire segments that
implement signal networks from the netlist. This
consists of assigning wire segments to individual
signal networks and of connecting these segments
together.

7. As a final step, based on all this information, a
device configuration bit stream is generated that
can be downloaded to the FPGA, such that it is
programmed to the desired function.

2 THE MAPPING TASK

The mapping phase takes an interconnection of abstract
operators (the subject Boolean network) and generates an
interconnection of logic cells selected from a given
library. For instance, in the case of the Xilinx XC4000
devices, these are up to four-input look-up tables and
edge-triggered D-type flip-flops.

The task of technology mapping in the case of LUT-based
FPGA:s is to find a set of clusters of technology dependent
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units that cover the whole Boolean network. A good
cluster selection mechanism should take into account both
the internal structure of the configurable logic block
(CLB) of the target device (for an example, see [15]) and
routing delays, in order to achieve good area and
performance results.

The mapping task is an NP-complete problem [8]. The
prevailing way to tackle it is to implement a heuristic
algorithm, based on a previously gained human
knowledge of the target architecture. This approach may
be limiting for more complex devices, because they may
contain features not recognizable at first sight. In addition,
there is the question of considering signal delays in the
mapping phase. Up-to-date mappers approximate delays
with a unit delay per one level of logic, or they use signal
delay values that were generated in previous iterations
[4]. The unit-delay approach is very fast and is optimal in
situations where the design topology is a sort of a planar
graph. The iterative approach is time-consuming, because
it requires several mapping runs interleaved with running
placement and routing algorithms, and it does not
guarantee the exactness of delay estimations, because they
are reliable only in cases when small modifications take
place.

The set of targeted logic cells in the mapping phase can
be given either by an enumeration (i.e., as a set of
standard cells (functions) for ASICs), or by a prescription
(i.e., by specifying the maximal number of inputs a
function may have, given that the function itself can be
anything).

The first case is called library-based mapping, and it is
suitable for all technologies that have fixed and relatively
small libraries. For FPGAs, and especially for FPGAs
based on look-up tables, this approach is not feasible, as
the number of functions (i.e., library elements) grows
rapidly with the increasing number of LUT inputs.

Currently, prescription-based mapping is very popular for
LUT-based FPGAs. The drawback is that while known
methods permit only simple prescriptions (commonly a
single LUT); the logic blocks of existing FPGAs can be
configured for more complex structures that are
comprised of multiple LUTs. FPGAs with this ability (for
example the Xilinx XC4000) are called heterogeneous.

The motivation for using heterogeneous FPGAs is a
compromise between predictability of future routing (by
increasing the number of routes with predictable delays -
the ones hidden inside configurable logic blocks) and
wasting logic that cannot be used (due to a fixed internal
structure of logic blocks).

A mapping algorithm for heterogeneous FPGAs should
combine the properties of both the approaches outlined
above. Fortunately, the number of distinct configurable
structures (regardless of the actual LUT contents) is
conveniently small. The description can then be
characterized as an enumeration of prescriptions.
Although the algorithm that generates all clusters to cover
the abstract Boolean network (see Figure 3) is relatively
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straightforward, the number of generated clusters
increases with the complexity of physical cells and the
proper cluster selection constraints become more

complicated [10].
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Figure 3: Covering an ABN with clusters - two cases.
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Figure 4: The XCS-based adaptive mapper.

3 ADAPTIVE MAPPING WITH XCS

This paper presents a rule-based, single-pass, adaptive
mapper (see Figure 4) based on Wilson's XCS classifier
system [12]. The XCS system was chosen due to its
relative simplicity and ease of analysis.
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It is intended that the mapper will operate by first being
trained on benchmark circuits, such that it evolves a set of
general mapping rules that perform well for any design,
then using these pre-evolved rules to map a different,
user-specified design in a single pass.

In the implementation presented here, the classifier
system calls elementary mapping actions, and it attempts
to evolve sequences of rules that lead to minimal CLB
usage and small critical signal path delays. The approach
used is similar to the FSM worlds used by Barry [2], but
here the situation is more complicated. The underlying
graph is not linear, but it is a directed tree with much
longer start-to-terminal node distances, and some
mapping actions group several nodes together and thus
directly modify the environment. If all goes well, the
adaptive nature of the classifier system should ensure that
the final rules take into account global properties of the
FPGA chip. Initially, the mapper is aware only of local
properties of the chip - the internal architecture of CLBs.
At the end of the run, we intend to be able to assemble
efficient sequences of actions for the mapping task.

4 IMPLEMENTATION DETAILS

The structure of the XCS adaptive mapper is outlined in
the following sections.

41 CONDITIONS

At any given stage of the mapping process, the state of the
problem is described to the XCS by a sense vector,
against which classifier conditions are mapped.

The sense vector used here consists of equal groups of
binary flags, with each group representing the current
CLB to be processed (the CLB that the XCS will place
next), and CLBs connected to the inputs and outputs of
that CLB. At present, only the maximum of four input and
four output blocks are considered. Each group contains
the flags representing the following binary characteristics
of the associated block:

e addable to the current F-LUT, G-LUT, H-LUT,
e addable to the current DXFF, DYFF,

e connected to the current F-LUT, G-LUT, H-LUT
(‘current F-LUT’ means F-LUT of the CLB that
will be generated by the next GenCLB action,
etc.)

e connected to the current DXFF, DYFF.

The sense vector also contains an extra group of flags that
validate the previous groups, and that reflect the
utilization of LUTs and DFFs of the CLB currently under
construction (see Figure 5).
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Figure 5: Diagram of sense vector that represents the
problems state to the classifier system.

The length of the resulting sense vector is 103 bits.
Although this represents a large state space, the advantage
of such a coding is the clear meaning of genetic
operations performed by the classifier system.

4.2 ACTIONS

The XCS adaptive mapper has three groups of mapping
actions:

e actions that construct clusters (that stand for
look-up tables (LUTs) or flip-flops) and assign
them to the current supercluster (a supercluster is
equivalent to a CLB),

e actions that generate the current supercluster, and

e actions that modify the current position in the
netlist and an auxiliary do nothing action.

The first group contains actions:

e expand F-LUT, G-LUT, H-LUT, which assign a
block to an empty cluster (LUT) or add a block
to an existing cluster,

e assign a flip-flop to DXFF, or DYFF.

The only action in the second group takes clusters that
were assigned to the current supercluster, generates the
supercluster and empties all clusters:

e generate a CLB.

The third group consists of eight actions that implement
different move backward and move forward commands,
and one do nothing action.

The total number of actions available to the mapper is 15.
The XCS software uses only the mutation operator for
actions; and it randomly generates a new action number
from the 15 alternatives.

43 REWARDS

The processing of rewards is based on reinforcement
learning techniques [1]. To formulate the reward function
correctly, it is necessary to declare the goals of the task
correctly. The final goal is to generate efficiently a high-
performance mapping of a design, which means:
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e to use CLBs to their capacity

e touse as few CLBs as possible,

e to minimize the critical path delay, and

e to accomplish it in as few steps as possible.

This suggests that the reward should reflect the decrease
in the number of CLBs used in the design and the
decrease in the critical path delay. Each (unsuccessful)
execution of an action should be given a negative reward.

A closer analysis of the interaction of the actions suggests
the introduction of another goal: using CLBs to their
capacity. Therefore, the reward received on a successful
completion of an action was formulated as a weighted
combination of factors:

reward = (w,,, * AnumCLBs)

+ (wddgy Y (Apath delays))
* CLBusage)

usage

+(w

where AnumCLBS is the change in the number of CLBs
used by the design at a time step 7, each Apathdelay is the
change in the delay of a single (two-point) signal path
delays at a time step 7 (and the sum is taken over all such
signal paths), and CLBusage is the utilization of the
possibly generated CLB (or zero) (see Figure 6). To
evaluate the reward function the number of CLBs (each
unassigned block is declared to occupy one CLB) and
actual values of path delays are calculated after an
execution of each action. So far only a simple unit-delay
model (see Section 2) is used, it is planned to replace it
with a more realistic estimation of individual signal
network delays in the future.
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Figure 6: Different CLB configurations and their cost.

S EXPERIMENTS

The target architecture for all runs presented here is the
XC4000 CLB, the delay estimation used the unit delay
model, and the evaluation was done for the LGSynth91
(also known as MCNC91) benchmark circuits [16]. The
benchmarks come in the widely accepted BLIF format
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and are translated to the Xilinx XNF format to be
compatible with the Xilinx tools.

Parameter values used in experiments are shown in Table
1:

Parameter Value
W,m 7

Waelay 12
Wusage 4

[ (learning rate) 0.2

¥ (discount factor) 0.8
Exploration policy Constant

Exploration probability 0.2

Table 1: Parameters for experiments presented here.

The constant exploration strategy [14] was used,
population size was 8000. Each explore run (a complete
mapping) was followed by one exploit run of the mapper.
One experiment consisted of at most 80000 mapping
trials. Each mapping trial was terminated when either all
blocks were assigned to CLBs, or when 200 actions were
executed. All plots shown contain values only for the
exploit runs.

Benchmark  #gates #DFFs #ABN Nodes
MUX 61 0 61
MODULO12 16 4 20
DK16 135 5 140

Table 2: Benchmarks and their parameters

5.1 ADAPTING TO A SPECIFIC
ARCHITECTURE

The principal results of this experiment are shown in
Figure 7 and Figure 8 (two figures are shown to
demonstrate the performance for examples of
combinatorial and sequential circuits). Note that each of
these results is from a single run. The performance plotted
in these graphs has a direct relation to the performance of
the resulting circuit and thus of the mapper, it shows a
cumulative reward (see Section 4.1) over one mapping
trial. Note that the actual performance plots are a 50 point
moving average (as is typical in XCS performance plots),
but the best performance plots may be a more realistic
performance measures on this task, since rule sets are
intended to be extracted, and used offline. A statistical
overview of the learning task is shown in Figure 9 and
Figure 10, which are averages over 10 learning runs.
Note that these results are not subjected to a moving
average, since that would tend to cloud the meaning of
error bars.
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Figure 7: Improvement in performance - combinatorial
circuit (MUX). Results from a single run, in training
mode.
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Figure 8: Improvement in performance - sequential circuit
(DK16). Results from a single run, in training mode.
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Figure 9: Simple sequential circuit (MODULO12),
training mode, 10 independent runs, mean and standard
deviation.

At the beginning, the mapper uses randomly generated
mapping rules. This corresponds to the initial region with
low performance. Then, as more mapping trials are
performed, the quality of the mapped circuit, in terms of
the performance, improves.
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Note the differences between Figure 7 and Figure 8. The
initial flat region lasts for more mapping steps in the case
of the sequential circuit than for the combinatorial circuit.

5000 T

4000

3000

2000

Performance

-1000

I I I I
1000 2000 3000 4000 5000 6000

-2000
0

Step
Figure 10: Sequential circuit (DK16), training mode, 10
independent runs, mean and standard deviation.

This is because learning a good mapping policy for
sequential circuits is more difficult than for combinatorial
circuits. Sequential circuits employ an additional logic
element not found in combinatorial circuits (a flip-flop),
and the critical path in such circuits is formed by stages of
combinatorial circuits connected by flip-flops, which
means that changes caused by mapping actions have a
more local effect. The differences between Figure 9 and
Figure 10 show that simple circuits can be mastered more
quickly and efficiently than more complex circuits.

5.2 KNOWLEDGE TRANSFER

In this application, it is desirable that the evolved rule-sets
can be shared among different designs, once they are
discovered. The results in Figure 11 show that this is
feasible for one design. Results in Figure 12 show that
rules evolved for a simpler design can be used to improve
the performance of the mapper for a more complicated
design. Compare these results to the early generations of
Figure 8, where no pre-evolved rules were included.
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Figure 11: Results of using rules evolved in an

experiment that started with an empty rule-set on the
same simple sequential circuit. Pre-evolved rules for this
experiment were taken from step 8000 of the training run.
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Figure 12: Rules evolved in an experiment that started

with an empty rule-set on a smaller circuit — MODULO12
used on a larger sequential circuit (DK16). Pre-evolved
rules for this experiment were taken from step 8000 of a
training run.

6 DISCUSSION

Despite the relative success shown in these experiments,
the task faced by the adaptive mapper is a complex one,
and methods of reducing these complexities must be
explored. Aspects of the task that may impede XCS
include:

e The task is highly sequential, which means that
the classifier system has to evolve long chains of
rules.

e The mapping task
Markovian,

environment is non-

e The states in the search space are visited far from
uniformly in the learning process, which may
cause difficulties in Q-learning [1]. An
improvement might be to consider only those
states that are important to find a good policy;
the problem is they are not known in advance. In
general, there may be an exponential number of
such states, because they are in tight connection
with all possible mappings of the abstract
Boolean network.

e The actions used by the classifier system have a
different probability of triggering a reward. The
reward is most often generated by the generate
CLB action, but the effect of this action depends
on all other actions in the (long) action chain that
are not rewarded most of the time. The Q-
learning mechanism is intended to ensure that the
reward is distributed equally among all actions to
reflect their effects, but the previously mentioned
complications may severely hamper this effect.

These observations suggest that the actions may be better
viewed as a hierarchy, according to the probability of
receiving a reward from the environment:

e Lowest level actions:
moveBk, moveFw,

positioning actions -
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e Mid-level actions: cluster generation - assign
DFF, expand LUT,

e Highest level actions: supercluster generation -
generate CLB

It may also be possible to improve the efficacy of the
classifier system approach either by reducing the state
space (omitting some information from the sense vector),
or by ‘'hard-wiring' some a priori knowledge in the
classifier system structure. The former approach is
undesirable, since it would only increase the amount of
hidden information in this non-Markov environment. The
second approach appears more viable.

In response to these observations, a modification of the
structure of the classifier system is introduced in the
following section.

7 MULTI-POPULATION CLASSIFIER
SYSTEM

The classifier system modifications introduced here are
based on the action hierarchy discussed above, and on
ideas presented in [11]. Also see [2] and [12].

In typical classifier systems there is only one population
of rules (or a set of actions) and the system considers all
rules (and the associated actions) at every time step. This
approach presents difficulties in the mapping task, since
the classifier system has to learn an efficient ordering of
actions that can be deduced beforehand.

Simply stated, an optimal sequence of actions would be of
the form

1. Repeat the following for some (unknown)
number of steps

a. move from the current position to a
neighboring position

b. decide whether the current position is to
be a part of any of the currently
generated clusters

2. generate a CLB.

Each high-quality sequence contains move to a neighbor
block and assign to/expand a cluster actions, and is
terminated with a generate CLB action. After performing
a non-positioning action (i.e., cluster formation) at a
position, it does not make sense to perform another non-
positioning action, because a block can be part of only
one cluster. On the other hand, it makes sense to perform
a positioning action directly after another positioning
action, for the same reason. Given this prerequisite
knowledge, one can easily divide the actions the classifier
system works with into several sets. One can supply a
finite state machine (FSM) that uses the sense vector and
a history of past actions to switch among the sets. This
results in reducing the information that the classifier
system has to discover, because it is contained in the
FSM. It also reduces the search space that needs to be
sampled by the genetic algorithm, because the action
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subsets are usually smaller than the original action set,
and because the sense vector can be reduced according to
the character of the actions in each set. The reward is
calculated as if there was only one set of actions, so that
the action sets influence each other directly.

To implement this idea in the adaptive mapper, we
construct one population of positioning actions, and
another population of all other actions (supplemented
with a do nothing action). The FSM has only two states
(each of which corresponds to one of the two
populations). The FSM switches states when the last
action was a non-positioning action, or the last action was
a positioning action and the current block has yet to be
included in any cluster.
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Figure 13: Single population mapper - sequential circuit
(DK16), training mode, single run.
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Figure 14: Two population mapper - sequential circuit
(DK16), training mode, single run.

The performance of equivalent single- and multi-
population mappers is shown in Figure 13 and Figure 14,
respectively.  Clearly, the two-population mapper
performs better than the single-population mapper (note
the ‘Actual performance’ curves rather than the ‘Best so
far’ curves). The results shown are for single runs, to
clarify behavior, but they are typical of many runs that we
have performed.
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8 FINAL COMMENTS AND FUTURE
DIRECTIONS

Although this is a work in progress, at least two
promising results have been described. First, it has been
demonstrated that knowledge gained through XCS
training on a small problem can improve performance of
the system on a larger problem. Second, a novel approach
to hierarchical tasks, using two populations and a
problem-specific finite state machine, has been
demonstrated to be effective. On the other hand, it is fair
to say that any conventional heuristic would perform
better than XCS at this moment, mainly because a
heuristic was fully adapted to the problem domain by a
human programmer. Clearly, given the complexity of this
task, more study is needed. In addition to considering
additional cases, several points need to be further
addressed, including:

e Different methods of credit assignment,
particularly epochal schemes, given the episodic
nature of this task.

e Consideration of modifications to the classifier
system, including the introduction of memory,
and examination of ZCS [2], [7].

There are also key concepts in this work that deserve
further broader consideration in other applications. These
include knowledge transfer from simpler to more complex
problems. Another promising area is the use of FSMs and
multiple classifier populations to deal with hierarchical
tasks. The application presented here used problem-
specific information to construct the appropriate FSM,
and its interactions with the classifier populations. Such
problem-specific design is always good practice in GA-
based applications. However, one can also imagine
exploring this technique more generally, and allowing the
FSM itself to be a subject of adaptation. This remains an
interesting area for future investigation.
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A Modified Classifier System Compaction Algorithm

Chunsheng Fu
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28 Green St,
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Abstract

Although classifier systems have displayed
performance levels equaling or exceeding those
of other techniques on a variety of benchmark
classification problems, they usually solve those
problems with a very large number of classifiers.
In most cases, a large portion of the final
classifier set is unneeded or wrong, with
behavior masked by the correctly-functioning
rules in the system. Wilson described a post-
processing procedure for reducing the number of
classifiers in an XCSI classifier system while
minimizing the impact of the reduction on the
performance level of the system as a whole
(Wilson 2001). Wilson’s procedure was
designed for classifier systems that had been
highly trained so that the classifiers were general
in nature, and that were always correct in their
classifiction of test data. In this paper, we
describe some different compaction procedures
that can be applied to classifier system sets that
are less well-trained, that classify some instances
incorrectly, or that contain classifiers that are not
fully general.

1 MOTIVATION

XCS classifier systems (Wilson 1995) are competitive
with other techniques on real-world classification
problems and on benchmark classification problems.
XCS’s fitness is based on the accuracy of a classifier’s
payoff prediction. This gives XCS significant
improvements on prior classification with respect to
prediction accuracy and generality of rules. XCS’s
capability in both classification and knowledge
abstraction makes it unique in solving a variety of real
world problems.

One potential benefit of using a classifier system for
classification that is frequently mentioned is the
possibility that a human might inspect the rules in the
system and thereby understand what the system is doing,
as compared, for example, with a trained neural network,

Lawrence Davis
NuTech Solutions, Inc
28 Green St,
Newbury, MA 01951

that contains procedures embedded in a network
described by matrices of real-valued numbers. This
potential benefit is not fully achieved when the standard
approach of training a classifier system to produce
hundreds or thousands of classifiers is used, for the
following reasons:
e Most of the members of the final set of classifiers do
not contribute to the performance of the system as a
whole

e Many of those classifiers produced late in the
evolutionary process have not been tested, and would
degrade performance of the system as a whole,
except that more experienced classifiers mask their
effects

e  Many of those classifiers that are less accurate or less
general could be eliminated from the system without
impacting performance

For these reasons, when a classifier system is trained, it is
likely to contain a majority of macroclassifiers that
confuse a human inspecting the system, are inferior in
performance to other classifiers in the system, or are
wrong but were generated through the evolutionary
process and have not yet been eliminated.

Wilson addressed the need for a process that “compacts”
a trained set of classifiers by specifying a procedure that
could be used on an XCSI system to reduce its size from
thousands of classifiers to 20-30, in the examples he
considered (Wilson 2001). Wilson’s procedure yielded
dramatic reductions in classifier system size while
resulting in low levels of performance reduction on test
sets. Wilson used the Wisconsin Breast Cancer data
(Blake 1998) as one of the reference problems on which
he conducted his experiments, and we have followed him
in the use of this problem in the experiments reported
below.

Wilson’s procedure works well with highly-trained
classifier systems containing accurate and general
classifiers. But it cannot be used to reduce the size of less
well-trained  classifier systems, if they produce
classifications on training examples that differ from and

9. <6

example’s “true” classification.
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In this paper we consider some variant procedures that
can be used in these other types of situations.

2 ALGORITHM ANALYSIS

2.1 APPROACH1

Wilson’s compact ruleset algorithm (“CRA”) operates on
a well-trained XCSI classifier system, and begins after the
classifier system has achieved perfect performance. The
reader is referred to Wilson 2000 for an explanation of
that procedure. The procedures here are heavily inspired
by Wilson’s approach, but have some different features
owing to the need to handle classifier systems that do not
display 100% performance after training.

The procedure we began with is closest to Wilson’s
approach, although it differs in several respects. We call
it Approach 1. It proceeds as follows.

Step 1: Beginning with the first classifier in the list,
eliminate that classifier from the system and determine
the level of performance of the resulting system on the
training data. If the level of performance is worse or
unchanged, delete the classifier from the system.
Terminate step 1 as soon as a classifier is found whose
deletion reduces the level of performance of the system as
a whole. The remaining set of classifiers, including the
one whose deletion reduces performance, is used as the
input to step 2.

Step 2:  Continuing along the list of classifiers, now
eliminate each classifier, in order, and consider the
performance of the remaining members of the classifier
set. If the level of performance is reduced on deletion,
retain this classifier. However, do not use this classifier
in the subsequent tests in this step. The set of retained
classifiers—those that caused performance reductions in
this step—is used as the input to step 3.

Step 3: Construct a final set of classifiers (initially
empty), a reference set of instances (initially equal to the
training data set) and a set of trial classifiers (initially
equal to the output of step 2. Repeat the following
procedure until the reference set is empty or no classifier
in the trial classifier set matches any member of the
reference set: Determine how many members of the
reference data set each member of the current trial
classifier set matches; move the classifier matching the
highest number of members of the reference data set to
the final set; and delete the instances that it matches from
the reference set. Step 3 could create a set of classifiers
that match all the examples in the training set, while
preferring general classifiers over specific ones. The final
set of classifiers produced in this way is the output of our
Approach 1 to classifier system compaction.
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2.2 COMMENTS ON APPROACH 1

Approach 1 also results in dramatic levels of compaction
on the Wisconsin Breast Cancer database problem. In
Wilson’s paper, Wilson uses classifier systems trained by
presentation of 2,000,000 instances, and we suspected that
an approach somewhat inspired by his might be sensitive
to training levels. As we will show, a high level of
training is necessary for best performance of Approach 1.
The Wisconsin Breast Cancer problem can be solved to
an equally high level of performance after the
presentation of 40,000-80,000 instances. One question
we consider below is how well Approach 1 works when
training levels are in that range.

It is important to note that any rule compaction procedure
has two metrics of interest: performance on the training
data set (the data used to train the system), and
performance on the test data set (a set of instances drawn
from the same distribution that were not used in training).
The more important metric is the second, and it is the
second that we will primarily consider in this paper. It is
well-known that classification systems working on data
sets with “noisy” or inappropriate classifications can
degrade performance on test data if they are overtrained—
trained for extremely long periods of time, or trained so
that they have the ability to “memorize” anomalous
instances in the training set, resulting in reduced levels of
generalization on the test set. There is a danger that a
procedure requiring very high levels of training, while
resulting in high performance on the training set, will
actually degrade performance on the test set. We have
shown that this can be the case for the Wisconsin Breast
Cancer database (Fu 2001). Thus, there may be a
practical as well as a performance-related need for rule
compaction procedures that work well on classifier
systems that are not highly trained. In addition, for a
complicated real-world problem (or even a synthetic one
such as the 70-multiplexer problem) there may not be
enough time available to fully train a classifier system.

With regard to performance on the training set, it is worth
noting that Approach 1 maintains performance levels
explicitly in steps 1 and 2—no classifier is deleted whose
performance reduces the level of performance of the
classifier system as a whole. In step 3, performance is not
used as a criterion. Instead, coverage of the training set is
used. As we will show later, this causes a significant
degradation in terms of prediction accuracy.

Step 3 of Approach 1 has some advantages over a
performance-related criterion. The final set of classifiers
produced by Approach 1 can be smaller than our
performance-related criteria, as we will see.
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In the remainder of this paper, our version of XCSI uses
the following parameter values throughout all
experiments: Population size is 3200, learning rate is
0.25, a is 0.1, Error threshold (e0) is 1, vy is 5,
GAThreshold is 48, Crossover Probability is 0.8,
Mutation Probability is 0.04, Deletion Threshold
Experience is 50, Deletion Threshold Fitness is 0.1,
Subsumption Threshold Experience is 100, Minimum
Number of Actions in match set is 1, Fitness Updating
Coefficient is 0.1, Error Updating Coefficient is 0.25,
CoverRange ([0,r0]) is 6, Mutation Range ([1,m0]) is 2,
and the reward/penalty values are 100/-100

3 RESULTS AND DISCUSSION

The Wisconsin Breast Cancer database, donated by Prof.
Olvi Mangasarian, is a database of real-world data
collected by Dr. William H. Wolberg to serve as a test
case for classification data mining systems (Blake 1998).
There are 699 records in the database, and each contains
values for 9 attributes. The attribute values are integers,
and each ranges between 1 and 10. The attributes have to
do with properties of tissue samples, such as: clump
thickness, uniformity of cell size, etc. Each record is
classified as either benign or malignant. The task of a
data mining system on this database is to use the attributes
of records whose classification is known (“training
records”) to learn to predict whether an unseen case (a
“test record”) is benign or malignant. In other words, the
task is to discover patterns and regularities in the data that
allow reliable prediction of an unseen record’s
classification. The measure of performance of a system
on this task is the system’s accuracy at predicting records
that it has not seen during training. It should be noted that
a small number (16) of the records in the WBC database
have some missing attributes. Our version of XCSI
followed the procedure in Wilson’s version by regarding a
missing attribute as matched by any classifier.

Table 1: Performance of Approach 1 on different
classifier sets

Training 5K 50K 200K 1000K
instances
Initial P 0.9282 0.9207 0.9422 0.9544
Step 1 P 0.9282 0.9137 0.9422 0.9572
Step 2 P 0.9064 0.9062 0.9356 0.9529
Step 3 P 0.6982 0.8919 0.8790 0.9072
Size of CR 23.5 24.0 15.5 14.5

(P means performance; CR means compact rule set)

Approach 1 produces some reduction of performance
level on both the training set and the test set as shown in
Table 1 and Table 2.

In Table 1, we show the results of using Approach 1 on a
run of tenfold stratification of the Wisconsin Breast
Cancer (WBC) database, using our implementation of
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XCSI (Fu 2001). Classifiers (actually, macroclassifiers,
many of which have numerosity greater than 1) are
ordered by numerosity throughout the experiments
reported in this paper. Results are presented for four
levels of training of the classifier system: 5,000, 50,000,
200,000 and 1,000,000 trials.

The table shows the level of performance of the output of
each of the three steps of the compaction procedure on the
test data. Wilson’s statement that his compaction
procedure works best on highly trained classifier systems
is borne out here for Approach 1. The highest levels of
performance on test data, after compaction, are achieved
when the compaction procedure is carried out on classifier
systems that have seen the highest number of training
examples—much higher numbers than those required to
train the system to its optimal level of performance.

Let us consider some points related to the level of
performance reduction in Table 1. As a reference,
Wilson’s application of XCSI without rule compaction to
the Wisconsin Breast Cancer database produced results
(95.5% accuracy on unseen instances, using tenfold cross-
validation) that were better than any previously published
results, which were in the range of 94-95% accuracy. A
rough characterization of the levels of accuracy on this
problem is that 93% accuracy could be achieved by nearly
any technique applied to the data—decision trees and
neural networks easily achieved this level of accuracy.
Prior to Wilson’s work on XCSI, 94.5% was state of the
art, and anything higher was new ground.

Considering these levels of performance, we see that
compaction of the data using Approach 1 reduces the
performance of the system in each case well below the
level achievable by most of the rival techniques. This
might be a problem for classifier system acceptance in,
for instance, the commercial arena: if compaction of a set
of classifiers to a human-comprehensible size results in
performance levels well below those of competing
techniques, then classifier systems may not be preferred
to decision trees, for example, whose classification
strategy is also human-readable, but has higher
performance when pruned to comparable levels of
simplification.

For this reason, we did extensive experiments on
Approach 1, monitoring each of its three reduction steps
with regard to performance on the training data. Table 2
displays the initial prediction performance over training
data, the initial rule set size, size of the compact rule set
after each step, and the final compact rule set’s
performance on the training data.
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Table 2: Performance of Approach 1 on training set
during compaction

Training instances 5K 50K 200K
Initial P 0.9730 0.9952 0.9984
Initial Size 1859.0 1863.5 1381.5
CR size after S1 1188.5 585.5 252.0
CR size after S2 80.0 52.0 38.5
CR size after S3 23.5 24.0 15.5

0.7989 0.9793 0.9499

(P means performance; CR means compact rule set; S;
means step 1)

Final Performance

As shown in Table 2, the size of the compact rule set
decreases if the initial classifiers are trained over more
instances. The more training, the less classifiers are
needed to represent the system. Also, we note that the
more training, the more classifiers are removed by the
first and second reduction steps. Finally, note that
performance was significantly degraded even over the
training data. Since the first two steps of Approach 1
prevent performance degradation over the training data,
the performance loss results from step 3. Thus, we
considered modification to step 3 in our work on
compaction algorithms. We experimented with two
variations on Approach 1, which we describe below.

Two modifications to Approach 1

The first variation we implemented was incremental
deletion of classifiers. Note that Wilson’s original
algorithm works at the macroclassifier level—each
macroclassifier with numerosity greater than 1 really
represents multiple classifiers, and Approach 1 follows
him in this. We hypothesized that deleting
microclassifiers one at a time, and testing the result on
subsequent performance, might yield better “balanced”
sets of classifiers. The all-or-nothing approach might
produce performance degradations related to the high
numerosity of the surviving macroclassifiers, or so we
thought.

We applied our incremental deletion procedure to step 2
of Approach 1, yielding what we called Approach 2. We
didn‘t consider step 1, since the result of both approaches
to deletion is the same in step 1. In step 2, deleting
microclassifiers has the potential to “reweight” the
classifier system, yielding more appropriate strengths on
the relative recommendations made by the system, after
deletion of classifiers whose weight was important to the
system’s performance.

As we show below, microclassifier deletion does not
improve the performance of the system after compaction,
and it appears to slightly degrade performance over
macroclassifier deletion on the WBC problem. This is
very likely because of the “reweighting” effect. Since
step 2 only considers the performance of M; over M, (not
all classifiers), the reweighting may result in a problem
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for a slightly-favored action (Fu 2001). We believe that
further study of the incremental deletion is necessary,
although our experiments did not show that it is useful for
the compaction approaches we tested.

The second variation we studied was a different procedure
for step 3 of Approach 1, yielding Approach 3. Table 1
shows that the most significant reductions in performance
of the compaction algorithm occur at step 3, where
performance is not considered when the final classifier set
is built. We experimented with a variant version of step 3
that was more in the spirit of steps 1 and 2. The step can
be described as following. For a macrostate ordered by
numerosity or experience in increasing order, delete the
last classifier and check the performance of the remaining
classifiers. If the performance is degraded, then the just
deleted classifier is reinserted into the head of the
classifier list, and so is retained and used in subsequent
tests. Repeat the process until every macroclassifier has
been tried by this kind of deletion.

Table 3: Performance of Approach 3 on test data

Training instances 5K 50K 200K
Initial P 0.9282 0.9282 0.9422
Step 1 P 0.9282 0.9137 0.9422
Step2 P 0.9064 0.8921 0.9356
Step 3 P 0.8915 0.8772 0.9217
CR size 41.5 26.0 24.0

(P means performance; CR means compact rule set; )

Table 4: Performance of Approach 3 on the training data

Training instances 5K 50K 200K
Initial P 0.9730 0.9952 0.9984
Initial Size 1859 1863.5 1381.5
CR size after S1 1188.5 585.5 252.0
CR size after S2 80.0 52.5 38.5
CR size after S3 415 26.0 24.0

0.9738 0.9960 0.9992

(P means performance; CR means compact rule set; S;
means step 1)

Final Performance

Table 3 shows the performance levels of Approach 3 on
identical classifier systems trained on the Wisconsin
Breast Cancer database for 5,000, 50,000, and 200,000
instances. If we contrast the data in Table 3 with that in
Table 1, and if we note that both tables were constructed
based on the compaction of identical initial classifier
systems, we can see several differences between the
behavior of Approach 1 and Approach 3.

The first is that Approach 1 yields smaller sets of
classifiers—the output of step 3 is 15.5 classifiers versus
24.0, in the 200,000 case. A second difference is in the
levels of performance. After step 2, the microclassifier
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deletion technique shows slightly worse performance on
the 50,000 case. However, after step 3, the performance-
based compaction technique shows substantially higher
levels of performance on the test data. We see 89%
versus 70% and 92% versus 88% for the 5,000 case and
the 200,000 case, although in the 50,000 case, the original
procedure does better, with 89% versus 88%. (Our later
experiments showed in Table 6 that the ~1% loss is
created during step 2.)

As shown in Table 2 and Table 4, both original step2 and
the modified step2 reduced the same number of
classifiers. To summarize, we can see that lower training
levels produce compact rule sets with lower levels of
performance for both versions of the compaction
algorithm, but performance loss is much greater for
Approach 1. We see that Approach 1, however, produces
rule sets that are smaller than those produced by
Approach 3, and so some tradeoffs are possible when
selecting compaction algorithms.

We wished to learn more about the effects of the variant
versions of the three steps. To do this, we used highly-
trained sets of classifiers (one million instances of
training) as input to three versions of the compaction
algorithm: Approach 1, Approach 2, and Approach 3.
Table 5 shows the results of this study.

Table 5: Comparison of Approach 1 with Approach 2 and
Approach 3 on a classifier system trained over 1,000,000

instances
Alg Names S1S2S3  S1S2mS3  S1S2mS3m
Initial P 0.9544  same same
Step 1 P 0.9572  same same
Step2 P 0.9529 0.9515 0.9515
Step 3 P 0.9072 0.9015 0.9343
Size of CR 14.5 14.5 20.9

(P means performance; CR means compact rule set; Si
means Approach 1°‘s step i; Sim means our modified
procedure for step i; Si P means step i’s performance )

There are several points to note concerning the data in
Table 5. First, we see again that the size of the final set is
larger when the performance-based version of step 3 is
used, as in Approach 3. Second, we see that Approach 3
produces higher levels of performance on the test data.
Third, we see that Approach 2 yields worse performance
for the original step 3.

Our experimental results suggest a reduction procedure
using Approach 3, unless rule set size is an important
consideration. That is, we recommend in general using
step 1 and step 2 of Approach 1 and our modified step 3.
We implemented this reduction procedure and the results,
shown in Table 6, support this recommendation.
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Table 6: Performance of suggested CRA (S1S2S3m) on
different classifier sets

Training instances 5K 50K 200K
Step 2 P 0.9064 0.9062 0.9356
Step 3 P 0.8915 0.8990 0.9217
CR size 41.5 26.0 24.0

(P means performance; CR means compact rule set; )

4 CONCLUSIONS

The XCS family of classifier systems already competes
well with other approaches to classification. If it is to
compete on problems requiring compact, human-readable
solutions, then effective classifier system rule compaction
procedures will be needed. In this paper we have
discussed three approaches to rule set compaction that
were inspired by Wilson’s work, but that differ so that
they can be applied to the compaction of classifier
systems that do not have high levels of generalization or
perfect accuracy on all test set examples. Approaches 2
and 3 yield classifier systems of compact size on the
Wisconsin Breast Cancer database. They also yield
higher levels of performance than Approach 1 on unseen
data, and they yield lower numbers of unmatched
instances. They also yield reduced sets of larger size than
Approach 1.

To conclude, we know that uncompacted -classifier
systems are already competitive with all other
classification techniques with regard to performance
level, but they are not compact and are not human-
comprehensible. We hope that Wilson’s paper and this
one will stimulate further work in classifier system
compaction, in order to increase the range of real-world
situations in which classifier systems are indeed the
algorithm of choice for solution of classification
problems, and to realize the possibility that the classifier
system approach produces both high-performance results
and compact sets of high-quality rules.
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Abstract

In this paper we present ATNoSFERES, a
new framework based on an indirect encoding
Genetic Algorithm which builds finite-state
automata controllers able to deal with per-
ceptual aliasing. We compare it with XCSM,
a memory-based extension of the most stud-
ied Learning Classifier System, XCS, through
a benchmark experiment. We then discuss
the assets and drawbacks of ATNoSFERES
in the context of that comparison.
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1 Introduction

Most Learning Classifier Systems (LCS) (5) are used
to tackle problems where situated and adaptive agents
are involved in a sensori-motor loop with their environ-
ment. Such agents perceive situations through their
sensors as vectors of several attributes, each represent-
ing a perceived feature. The task of the agents is to
learn the optimal policy — ¢.e. which action to per-
form in every situation, in order to fulfill their goals
the best way they can. Like in the general Reinforce-
ment Learning (RL) framework (17), the goals of LCS
are defined by scalar rewards provided by the envi-
ronment. The policy is defined by a set of rules — or
classifiers — specifying which action to choose accord-
ing to conditions about the perceived situations.

In real world environments, it may happen that agents
perceive the same situation in several different loca-
tions, some requiring different optimal actions, giving
rise to perceptual aliazing problems. In such cases,
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the environment is said non-Markov, and agents can-
not perform optimally if their decision at a given time
step only depends on their perceptions at the same
time step. Though they are more often used to solve
Markov problems, there are several attempts to ap-
ply LCS to non-Markov problems, like (18, 10) for in-
stance.

Within this framework, explicit internal states were
added to the classical (condition, action) pair of the
classifiers (11, 10, 20). These internal states provide
additional information to choose the optimal action
when the problem is non-Markov. The problem of
properly setting the classifiers, and setting the internal
states in particular, is devoted to Genetic Algorithms
(GA).

In this paper, we will compare LCS to “ATNoS-
FERES”, a new system that also uses GA to automat-
ically design the behavior of agents facing problems in
which they perceive situations as vectors of attributes,
and have to select actions in order to fulfill their goals,
in non-Markov environments. In ATNoSFERES, the
goals are defined thanks to a fitness measure.

In the first section, we present the features and prop-
erties of the ATNoSFERES model (9, 15). It relies
upon oriented, labeled graphs (§ 2.1) for describing
the behavior and the action selection procedure. The
specificity of the model consists in building this graph
from a bitstring (§ 2.2) that can be handled exactly like
any other bitstring of a Genetic Algorithm, with addi-
tional operators. Then we show that the graph-based
representation is formally very similar to LCS repre-
sentations, and, in particular, to XCSM (§ 3.2); thus
we compare both approaches through classical experi-
ments (§4). As a result of this comparison, we discuss
the assets and drawbacks of both representations ac-
cording to different criteria (§5). Finally, we conclude
by stating what should be added to ATNoSFERES so
as to improve it further where the comparison is not
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in its favor.

2 Description of ATNoSFERES

2.1 Graph-based expression of behaviors

The architecture provided by our model involves an
“Augmented Transition Networks” (ATN)-like graph
(21) which is basically an oriented, labeled graph with
a Start (or initial) node and an End (or final) node (see
figure 5). Nodes represent states and edges represent
transitions of an automaton.

Such graphs have already been used for describing the
behavior of agents (9). The labels on edges specify
a set of conditions (e.g. ¢l ¢3 7) that have to be
fulfilled to enable the edge, and in a sequence of actions
(e.g. ab a2 a4!) that are performed when the edge
is chosen. We use those graphs as follows:

e At the beginning (when the agent is initialized),
the agent is in the Start node (S).

e At each time step, the agent crosses an edge:

1. It computes the set of eligible edges among
those starting from the current node. An
edge is eligible when either it has no condi-
tion label or all the conditions on its label are
simultaneously true.

2. If the set is empty, then an action is chosen
randomly; else an edge is randomly chosen in
the set.

3. The edge occurs by performing the actions
on the label of the current edge. When the
action part of the label is empty, an action is
chosen randomly.

4. The new current node becomes the destina-
tion of the edge.

e The agent stops when it is in the End node (E).

Note that most of behavioral structures involved in
classical evolutionary approaches, e.g. program trees
in Genetic Programming (7), are entirely interpreted
at each time step to determine the actions to perform.
It is not the case in our approach which relies on inter-
nal nodes. An example of the perception-action cycle
performed during each time step is given further on
figure 3.

2.2 The graph-building process

The behavioral graph is built from an hereditary sub-
strate, by adding nodes and edges to a basic structure
containing only the Start and End nodes.
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There are many different evolutionary techniques to
automatically design structures such as finite-state
machines (2), neural networks (22) or program trees
(7). Very roughly, we can sketch an opposition be-
tween, on the one hand, approaches that use the geno-
type as an encoding of a set of parameters (like Ge-
netic Algorithms (5, 1, 3) or Evolution Stategies (16))
and, on the other hand, approaches that use the geno-
type as a structure producing the phenotype (such as
Genetic Programming (7, 14), Evolutionary Program-
ming (2), L-systems (12), developmental program trees
(6, 4, 13)...).

In the ATNoSFERES model, we try to conciliate ad-
vantages from both kind of approaches: on the one
hand, since the behavioral phenotype is produced by
the interpretation of a graph, we want it to be of any
complexity; on the other hand, we use a fine-grain
genotype (a bitstring) to produce it, in order to allow
a gradual exploration of the solution space through
“blind” genetic operators.

Therefore, we follow a two-step process (see figure 1) '
1. The bitstring (genotype) is translated into a se-

quence of tokens.

2. The tokens are interpreted as instructions of a ro-
bust programming language, dedicated to graph
building.

b
tokens stack

|
| Y
—/
==
 — | ~
——

. —

translator —
/
bitstring / interpreter

structure

Figure 1: The principles of the genetic expression we
use to produce the behavioral graph from the bitstring
genotype. The string is first decoded into tokens (a),
which are interpreted in a second step as instructions
(b) to create nodes, edges, and labels (c).

2.2.1 Translation

Translation is a simple process that reads the bitstring
genotype and decodes it into a sequence of tokens
(symbols). It uses therefore a genetic code, i.e. a func-
tion G :{0,1}" — T (|T] £ 2") where T is the set

More details about those mechanisms and the nature
of the tokens are provided in (9, 15)
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of possible tokens (the different roles of which will be
described in the next paragraph). Depending on the
number of available tokens, the genetic code might be
more or less redundant. Binary substrings of size n
(decoded into a token each) are called “codons”.

2.2.2 Interpretation

Tokens are instructions of the ATNoSFERES graph-
building language. They operate on a stack in which
data tokens or parts of the future graph are stored.
All tokens fall into the following categories:

e condition or action tokens, which only put data
in the stack, which will be used to label edges
between nodes;

e node creation or node connection tokens (the lat-
ter use nodes and action/condition tokens already
in the stack);

e stack manipulation tokens (swap, copy...) which
have an action upon the stack containing nodes
and action/condition tokens.

In order to cope with a “blind” evolutionary process
(i.e. based on random mutations on a fine-grain geno-
type), the graph built has to be robust to mutations
(15). For instance, the replacement of a token by an-
other, or its deletion, should only have a local impact,
rather than transforming the whole graph.

If an instruction cannot be executed successfully, it
is simply ignored; for the same reasons, when all to-
kens have been interpreted, the graph is made consis-
tent, e.g. by linking some nodes to Start/End nodes.
Any sequence of tokens is meaningful, thus the graph-
building language is robust to variations affecting the
genotype (there is no specific syntactical nor semanti-
cal constraint on the genetic operators).

2.3 Integration into an evolutionary
framework

In this paper, the ATNoSFERES model has been ap-
plied to produce agents behaviors within an evolution-
ary algorithm.

Therefore, each agent has a bitstring genotype from
which it can produce a graph (the genetic code de-
pends on the perception abilities of the agent and on
the actions it can perform). The fitness of each agent
is computed by evaluating its behavior in an envi-
ronment. Then individuals are selected depending on
their fitness and bred to produce offspring.
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Selected Action
[E] : Move East

Local Perception -

1 1
1 0
1 1

- 0>

Current Situation

[E ~NE N ~NW ~W ~SW S ~SE]

lM\thmg
NE?
NEI NE,
(&
Selection E
2 E-NZ s?
' st

E-N?
s1

&

Figure 2: In this example, the agent, located in a cell
of the maze, perceives the presence/absence of blocks
in each of the eight surrounding cells. It has to de-
cide whether to try to move towards one of the eight
adjacent cells. From its current location, the agent
perceives [E —=NE N —NW —W —SW S —SE] (token E is
true when the east cell is empty). From the current
state (node) of its graph, two edges (in bold) are eli-
gible, since the condition part of their label match the
perceptions. One is randomly selected, then its action
part (move East) is performed and the current state is
updated.

The genotype of the offspring is produced by a classi-
cal crossover operation between the genotypes of the
parents. Additionally, we use two different mutation
strategies to introduce variations into the genotype of
new individuals: classical bit-flipping mutations, and
random insertions or deletions of one codon. This
modifies the sequence of tokens that will be produced
by translation, so that the complexity of the graph it-
self may change. Nodes or edges can in fact be added
or removed by the evolutionary process, as can condi-
tion/action labels.

3 Learning Classifier Systems

As explained in the introduction, the problems tackled
by LCS are characterized by the fact that situations
are defined by several attributes representing perceiv-
able properties of the environment. A LCS has to learn
classifiers, which define the behavior of the system as
shown in figure 3. Within the LCS framework, the
use of don’t care symbols “#” in the condition parts
of the classifiers results in generalization, since don’t
care symbols make it possible to use a single descrip-
tion to describe several situations. Indeed, a don’t care
symbol matches any particular value of the considered
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Selected Action

[E] : Move East
-_—

Local Perception

T v

Current Situation
[01010111]

Matching

Condition Action
[#00#0#1#]  [N]
[#1010##1]  [S]
[#10##14#1] [E]
[10###101] [NE]
[o#10#0#0]  [W]

Selection
}—’ [#10##1#1] [E]

Classifiers List

Figure 3: The agent perceives the presence/absence
(resp. 1/0) of blocks in each of the eight surround-
ing cells (considered clockwise, starting with the north
cell). Thus from its current location, the agent per-
ceives [01010111]. Within the list of classifiers char-
acterizing it, the LCS first selects those matching the
current situation. Then, it selects one of the matching
classifiers and the corresponding action is performed.

attribute.

The main issue with generalization is to organize con-
ditions and actions so that the don’t care symbols are
well placed. To do so, LCS usually call upon a GA.

In the Pittsburg style, the GA evolves a population of
LCS with their whole lists of classifiers. The lists of
classifiers are combined thanks to crossover operators
and modified with mutations. The LCS are evaluated
according to a fitness measure and the more efficient
ones — with respect to the fitness — are kept. Thus, like
in the ATNoSFERES model, a Pittsburg style LCS
evolves a population of controllers.

On the contrary, in the Michigan style, the GA evolves
a population of classifiers within the list of classifiers
of a single agent. Here, this is the classifiers which
are combined and modified. A fitness is associated
to each classifier and the best ones are kept. Thus
Michigan style LCS use GA to perform online learning:
the classifiers are improved during the life time of the
agent. Usually, such LCS rely on utility functions that
depend on scalar rewards given by the environment, as
defined in the RL framework (17).

In most of the early LCS (5), the fitness was defined
directly according to the utility associated to the clas-
sifier. After having defined a very simple LCS called
ZCS in (19), Wilson found much more efficient to de-
fine the fitness according to the accuracy of the utility
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prediction. Its system, XCS (20), is now the most
widely used LCS to solve Markov problems.

3.1 XCSM

Dealing with simple Condition-Action classifiers
does not endow an agent with the ability to behave op-
timally in perceptually aliazed problems. In this kind
of problems, it may happen that the current perception
does not provide enough information to always choose
the optimal action: as soon as the agent perceives the
same situation in different states, it will choose the
same action though this action may be inappropriate
in some of these states (see figure 4).

For such problems, it is necessary to introduce inter-
nal states in the LCS. Tomlinson and Bull (18) pro-
posed a way to probalistically link classifiers in or-
der to bridge aliazed situations. Lanzi (10) proposed
XCSM, where M stands for Memory, as an extension
of XCS with explicit internal states. XCSM manages
an internal memory register composed of several bits
that explicitely represent the internal state of the LCS.
Therefore, a classifier contains four parts (cf. table 1)
an external condition about the situation, an internal
condition about the internal state, an external action
to perform in the environment and an internal action
that may modify the internal state.

The internal condition and the internal action contain
as many attributes as there are bits in the memory
register. In order to be selected by the LCS, a clas-
sifier has to match with both external and internal
conditions. When it is selected, the LCS performs the
corresponding action in the environment and modifies
the internal state if the internal action is not composed
only of don’t change symbols “#”. When a classifier is
fired, a don’t care symbol in the internal action re-
sults in letting the corresponding bit in the memory
register at its value before applying the classifier. As
XCS, XCSM draws benefits from generalization in the
external condition, but also in the internal condition
and the internal action.

The memory register provides XCSM with more than
just the environmental perceptions. It permits to deal
with perceptual aliazing by adding information from
the past experience of the agent.

3.2 Formal relations between ATNoSFERES
and Learning Classifier Systems

An ATN such as those evolved by ATNoSFERES can
be translated into a list of classifiers, whether they
have been obtained through a Michigan or a Pitts-
burgh style process. The nodes of the ATN play the
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role of internal states and permit ATNoSFERES to
deal with perceptual aliazing. The edges of the ATN
carry several informations which can be translated in
a rule-based formalism: the source and destination
nodes of the edge can be respectively represented by
an internal condition and an internal action; the condi-
tions associated to the edges correspond to the exter-
nal conditions of the classifiers; the actions associated
to the edges correspond to the external actions of the
classifiers.

It is clear in our example that an important differ-
ence between both formalisms is due to the possibility
to perform a sequence of actions (such as a3-ab) as
a consequence of matching conditions. We restricted
this feature to a single action in the experiments de-
scribed below (§ 4.3).

There are two other differences, that have been kept
in our experiments:

e When the action part of the edge label is empty
(represented by a # on the graphs), an action is
randomly chosen among possible ones. We repre-
sent it by a classifier containing only # in the LCS-
like formalism. The consequences of that feature
will be discussed in §5.

e In XCSM, the “internal state” is regarded as an
extension, while it is an inherent feature of the
graph-based approach. Hence XCSM may have
general rules that match in any situation (what-
ever the internal state can be, i.e. #).

4 Experiments

4.1 The perceptual aliazing problem

In some environments (like Maze10 on figure 4), some
states may induce identical perceptions by the agent,
though different actions must be performed. This de-
fines the “perceptual aliazing” issue that is frequently
encountered in real-world environments.

We have compared the nature of the results that have
been obtained through Evolution to those produced by
a LCS like XCSM (10) in the Maze10 environment.

4.2 Experimental setup

We tried to reproduce an experimental setup close to
that used in Lanzi (10) with the Maze10 environment,
with regards to the specificities of our model.

The agents used for the experiments are able to per-
ceive the presence/absence of blocks in the eight adja-
cent cells of the grid. They can move in those adjacent
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S8 :S4.1:S5.1:542:S52:543: S9

Figure 4: The Mazel0O environment. F represents the
goal to reach (food) from any cell of the maze; a few
cells are unambiguous (S;) but in the other ones the
same perceptual situations may require either similar
actions or different ones (e.g. go north in Sy {154y
but go south in 52_3)

cells (the move will be effective when the cell is empty
or contains food). Thus the genetic code includes 16
condition and 8 action tokens. In order to encode 24
condition-action tokens together with 7 stack manipu-
lation and 4 node creation/connection tokens, we need
at least 6 bits to define a token (26 = 64 tokens, which
means that some tokens are encoded twice).

Each experiment involves the following steps:

1. Initialize the population with N = 300 agents
with random bitstrings.

2. For each generation, build the graph of each agent
and evaluate it in the environment.

3. Select the individuals with higher fitness (namely,
20 % of the population) and produce new ones by
crossing over the parents. The system performs
probabilistic mutations and insertions or deletions
of codons on the bitstring of the offspring.

4. Iterate the process with the new generation.

In order to evaluate the individuals, they are put into
the environment, starting on any blank cell in the grid,
and they have to find the food within a limited amount
of time (20 time steps). The agent can perform only
one action per time step; when this action is incom-
patible with the environment (e.g. go towards a wall),
it is simply discarded (the agent loses one time step).
Its fitness for each runis: F=D - K+ B+ 2+ R (F":
fitness for the run; D: number of blank cells that have
been discovered during the run; K: time steps spent
on already known cells; B: bonus when the food is
found (30 points); R: remaining time if the food has
been found within the time limit (R < 19)). It was
designed to advantage exploring agents (see D and K)
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that reach quicker the food (thanks to the R coeffi-
cient, remaining time steps are more rewarding than
the discovering of any more new cells). Since there
is no reinforcement learning during the run, the fit-
ness has to provide delayed information to measure
the quality of the behavior. Each agent is evaluated 4
times starting on each empty cell, then its total fitness
is the sum of the fitnesses computed for each run. In
the optimal case, the fitness is 4500.

The experiments reported here were carried out on var-
ious initial genotype sizes, from 300 to 540 bits. The
original population genotype sizes change during evo-
lution. Each experiment has been bounded by 10,000
generations, which in most cases is sufficient to reach
high enough fitness values.

4.3 Results

Figure 5: Graph of the best individual in a represen-
tative experiment

A representative example is reported on figure 6, which
shows the best and average fitness values.

Table 1: A LCS-like representation of the graph on fig-
ure 5. EC: external conditions, IC: internal conditions,
EA: external actions, [A: internal actions

EC IC||EA|IA
E NE N NW W SW S SE
1 # # # # # # # |00|| N |01
O # # 1 # # # # |00l E|O1
# O # # # # # # |[OO|[NE|O1
# 1 0 # # # # # |01 N |##
# O # # # # # # |O1l| NE|##
O # # # # # # # |01 E |##
1 # 1 # # # # #|01|| W |10
# 0 # # # # # # |[10(| S |##
# # 1 1 # # # # |10 | SW|##

Figure 5 presents a behavioral graph obtained by the
best individual in a representative experiment. It has
also been represented in a LCS-like formalism (ta-
ble 1).

The agent whose graph is described in figure 5 has the
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Figure 6: Best and average fitness obtained with 360-
bit genotypes

following behavior: from any vertical corridor, it first
reaches horizontal corridor, then the NE corner, and
finally goes straight to the food. This is a nearly op-
timal solution. The graph presented in figure 5 shows
that a nearly optimal behavior can be obtained. Espe-
cially, there are clear distinctions between the bottom
of vertical corridors (N —NE identifies cells Sg1 23 »),
the top of vertical corridors (NE — Sg, 57,53 »), the
horizontal corridor (E — Ss, S{453 ) and the crucial
NE corner (Sy is identified by =E —N —NW).

5 Discussion

5.1 Readability and Minimality of
Representation

One important advantage of ATNoSFERES with re-
spect to XCSM is that the ATN resulting from the
evolution is very easy to understand. But this feature
is not only a question of graphical representation.

XCSM produces a constant size list of classifiers into
which the size of the external conditions part and of
the memory register must be chosen in advance. As
a result, there are generally more classifiers and more
internal states than necessary.

By contrast, ATNoSFERES builds a graph whose
number of nodes, edges, and labels on the edges are
not given in advance. Thus it can build a minimal
controller to solve the given problem.

Another key difference is that, in XCSM, the sequence
of internal states of the agent during one run is not ex-
plicitely stated and must be derived by hand through
careful examination. On the contrary, this sequence is
perfectly clear when one reads an ATN. Furthermore,
the internal state is very stable in ATNoSFERES. But
this advantage of ATNoSFERES has its counterpart
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that will be discussed in § 5.2: ATNoSFERES cannot
represent Condition-Action rules that can be fired
whatever the internal state is, as it is the case in XCSM
with an internal condition composed of “#” only.

5.2 Generalization

An important difference between XCSM and ATNoS-
FERES formalisms call upon the elements on which
generalization can take place. In the current imple-
mentation of ATNoSFERES, generalization is not pos-
sible with respect to the internal conditions and ac-
tions. This prevents ATNoSFERES from dealing with
a default behavior, regardless of the internal state.

In XCSM, a # in the internal condition allows the clas-
sifier to be applied whatever the internal state repre-
sented by the memory register is. This mechanism
permits to act regardless of the internal state.

Furthermore, in the current implementation of AT-
NoSFERES, there is no explicit selection pressure on
the generality of the conditions on the labels, while
the production of generalized classifiers is inherent to
the LCS approach. Thus, we do not necessarily obtain
general rules and the condition labels still contain re-
dundant information, e.g. in the identification of the
NE corner.

However, the conditions that are actually encountered
in the graphs are quite general. In fact, once a good
solution has been found, the population tends to be-
come homogeneous and the size of genotypes stabi-
lizes. Many different genotypes can lead to similar
behaviors, but we assume that there is a bias towards
compact solutions.

5.3 Reinforcement Learning and Classifier
Selection

Another important difference between the ATN pro-
duced by ATNoSFERES and the list of classifiers pro-
duced by XCSM is that in the latter each classifier
is endowed with a prediction representing its propen-
sity to be fired, while in the former the edges get an
equal probability to be selected if their condition token
matches with the current situation.

Thus, in ATNoSFERES, if two edges can be selected
simultaneously, the selection will not be deterministic.
Since the optimal behavior is compatible with non-
determinism only if both behaviors are strictly equiva-
lent, the selection pressure in ATNoSFERES will pre-
vent non-determinism in situations where it is detri-
mental. This provides a strong bias towards minimal
controllers.
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By contrast, in XCSM, several classifiers can match
with the same situation, but only the strongest will be
fired. Thus, it is not necessary that the other matching
classifiers are deleted.

However, one important advantage of LCS with re-
spect to ATNoSFERES is that the strength of classi-
fiers are learned through a RL algorithm. Combining
GA with RL is well known to help finding better indi-
viduals faster. In the Markov decision process (MDP)
context, RL algorithms use more information about
the experience of the agent than GA. While the GA
only selects agents according to a global fitness func-
tion, RL algorithms distribute the reward obtained
when the goal is reached only to the rules which have
contributed to the behavior, taking into account the
exact sequence of actions performed by the agent in
the way the reward is back-propagated.

In order to remedy the fact that ATNoSFERES does
not use RL, it has been necessary to include into the
fitness function elements that carry some information
about the actual behavior of the agent (see §4.2). But
tuning such a fitness function is both difficult and cru-
cial for the success of the experiment.

5.4 Optimality

The behaviors that have been obtained are still not
completely optimal: when the agent starts from the
west corridor, it should recognize the NW corner and
then go directly in the third vertical corridor without
checking the NE corner as it does. This is partly due
to the fitness function we used: part of the time lost in
exploring the NE corner is balanced by the exploration
reward. Additionally, the structure for recognizing the
NW corner would require at least two nodes and five
edges and associated condition/action tokens. Thus
it would constitute a major structural change in the
graph with respect to the small selective advantage.

6 Conclusion and Future Work

From the perspective adopted in this paper, ATNoS-
FERES is similar to a Pittsburgh style LCS endowed
with the ability to tackle non-Markov problems. By
contrast with Michigan style LCS like XCSM, ATNoS-
FERES is deprived from any RL mechanism. We have
shown that ATNoSFERES can produce controllers
that are both very efficient in terms of the behavior
they generate and very parsimonious in the way they
specify that behavior. Thus we believe that ATNoS-
FERES is a good starting point to address more com-
plex non-Markov problems than the benchmark exper-
iment studied here.
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The comparison with XCSM suggests two points in
our agenda of research. First, it seems useful to inves-
tigate the possibility of adding a parameter equivalent
to the classifier force, so as to combine RL with the
GA already in use.

Second, it seems necessary to address the sub-
optimality problem highlighted in §5.4. It seems that
finding an optimal individual in the Mazel10 environ-
ment from the one presented in figure 5 requires a very
expensive structural modification. As a result, it is
unlikely that the GA will find this modification with-
out further improvements in the representation or the
mechanisms. In that respect, the ability of classifiers
to deal with unspecified internal states seems a key
advantage, and we should try to find a way to give
that property to ATNoSFERES. Though this feature
has not been implemented at this time in the model,
it would only consist in copying the same edge on each
existing node, by adding one special connection token
to the genetic code.
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Abstract

This paper deals with the coevolution of dif-
ferent knowledge representations using fine-
grained parallel learning classifier systems
for data mining tasks. The objective is to
demonstrate that a fine-grained parallel clas-
sifier systems can evolve individuals codify-
ing different knowledge representations at the
same time. This goal is achieved exploiting
spatial relations of fine-grained parallel al-
gorithms to favor the coevolution of knowl-
edge representations, as well as extinction
patterns. Experiments were performed with
GALE2, a fine-grained parallel learning clas-
sifier system. Experiments focused on the
diversity of the coevolved individuals, their
classification accuracy, and the usefulness of
the method proposed.

1 INTRODUCTION

The goal of a data mining process for classification
tasks is the extraction of a certain knowledge from a
given data set. The knowledge obtained from a data
set (P) to be mined is usually expressed in a certain
formal language or representation. The knowledge rep-
resentation used by data mining algorithms may differ
between approaches. For instance, common knowledge
representations for data mining are rules or decision
trees, among others. On the other hand, some data
mining algorithms are specially tailored for a given
knowledge representation, constraining the scope of
their application. Fine-grained parallel learning clas-
sifier systems can overcome this situation. Further-
more, they provide a knowledge-independent model
for data mining [Llord and Garrell, 2001¢c]. This pa-
per explores how this kind of classifier systems can

coevolve different knowledge representations simulta-
neously.

Learning classifier systems, like XCS [Wilson, 1995],
have been applied to data mining problems, often
looking for rule sets induction. Some examples of
the application of XCS to data mining problems
can be found in [Wilson, 2000, Saxon and Barry, 2000,
Bernadé et al., 2001]. But, there has also been some
attempts to introduce changes into the knowledge rep-
resentation used by XCS, using, for instance, Lisp-
like s-expressions as the condition part of the rules
[Lanzi and Perrucci, 1999, Lanzi, 2001]. On the other
hand, fine-grained parallel learning classifier systems,
like GALE [Llora and Garrell, 2001c], differ from this
type of learning classifier systems using evolutionary
models that exploits knowledge independence.

This paper explores how different knowledge repre-
sentations can be coevolved in a fine-grained learn-
ing classifier scheme. This characteristic is useful
when dealing with data mining problems. Present-
ing the knowledge using different representations may
help further understanding and usage of the knowledge
mined. Thus, in order to achieve this goal, GALE
is modified to deal with heterogeneous runs, where
individuals of the population codify different knowl-
edge representations in their genotypes. However, the
coevolution of different knowledge representations at
the same time has some problems that must be taken
into account. Among others, knowledge representa-
tions usually require different amounts of time to find
a solution. Therefore, the knowledge representations
that can achieve a solution (or a local optima) rapidly
may over-take the space in the board. But, these so-
lutions may not be the best ones in the long term run.

Therefore, this approach leads to a fine-grained par-
allel learning classifier system (GALE2) that exploits:
(1) spatial relations to favor the coevolution of indi-
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viduals using a board, and (2) extinction patterns to
avoid local optima [Kirley and Green, 2000] and the
take over of the board for a given knowledge represen-
tation. This paper focuses on extinction patterns and
explores how they can help GALE2 to coevolve effi-
ciently different knowledge representations at the same
time. Using these two new contributions, GALE2 be-
comes a knowledge-independent data mining model ca-
pable of expressing the induced knowledge using sev-
eral knowledge representations.

The rest of the paper is structured as follows. Section 2
describes the modification introduced in GALE to en-
able the coevolution of different knowledge representa-
tions that led to GALE2. The description presents the
evolutionary model used, as well as the coevolutionary
mechanisms introduced (selective neighborhood and
extinction patterns). Next, section 3 presents the re-
sults obtained using GALE2 solving well-known data
mining problems for classification tasks. Finally, sec-
tion 4 presents some conclusions for the work pre-
sented.

2 GALE2 VERSUS GALE

Genetic and Artificial Life Environment (GALE) is
a classifier scheme based on fine-grained parallel
genetic algorithms. GALE was firstly introduced
in [Llora and Garrell, 2001c] as a data mining algo-
rithm, being designed for solving classification tasks
[Llora and Garrell, 2001b, Llora, 2002]. This section
begins describing GALE2, focusing on its parallel evo-
lutionary model and the main differences when com-
pared to GALE. Then, the section pays attention to
the knowledge representations evolved by GALE2 in
this paper. Finally, section concludes discussing one
of the main issues of GALE2: extinction patterns.

2.1 MODELING GALE2

GALE uses a 2D grid (board T) form by m x n cells
for spreading spatially the evolving population. Each
cell (7;;) of the grid contains either one (¢ (7;;) = 1)
or zero individuals (¢ (7;;) = 0); thus, for instance a
32x32 grid can contain up to 1024 individuals, each
one placed on a different cell. Each individual (7;}) is a
complete solution to the classification problem, in fact,
each individual codifies the knowledge that describes
the mined data set. GALE2 differs from GALE in the
fact that the individuals are not homogeneous. Thus,
an individual in GALE2 codifies one of the different
knowledge representations available, as later explained
(see section 2.2). Genetic operators are restricted to
the immediate neighborhood (7;%) of the cell in the
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grid. The size of the neighborhood is r. Given a cell
7ij and r = 1, the neighborhood 7;']’ of 7T;; is defined
by the 8 adjacent cells to T;; (being ¢ (7;%) the num-
ber of occupied cells in 7;¥). Thus, r is the number of
hops that defines the neighborhood.

To introduce the coevolution of different knowledge
representations, GALE2 uses a modified version of the
neighborhood definition proposed in GALE. Selective
neighborhood (7;7) is defined in terms of the whole
neighborhood 77, but the selective neighborhood is
restricted to the cells in 77 that contain individu-
als codifying the same knowledge representation of
T (€ (T3) € ¢(T))- Changing the neighborhood
definition implies a change in the way that genetic op-
erators are used in GALE2 in comparison to GALE,
as we introduce later. Every cell in GALE runs the
same algorithm in parallel which summarizes as:

GALE2(T ,P)
FOR-EACH Ti;; € T
DO IN PARALLEL
t <« 0
initialize T7j;
evaluate 7;§ using P
REPEAT
t — t+l
merge T among 7?]9
split 7;; among T;;
evaluate 7;; using P
survival of 7;; among 7:}9
extinction of 7;; among T;)
if O(T) reaches a 100}
UNTIL Q(7;;,t)
DONE
RETURN T

During the initialization of each cell, GALE2 builds
a random individual, as it is done in GALE. Not
all the cells contain individuals (probability of occu-
pation pc), thus they can be full (with one individ-
ual) or empty. Each knowledge representation used
has the same likelihood to be used in this process.
O (T) is the percentage of occupied cells in the board

<O (T) = M) The individual T;} is evaluated

nxm

using the data set P to be mined. The fitness function
used in GALE2 is the same used in GALE, fit(I) =
(Il—c)2 [De Jong and Spears, 1991], being I° the num-
ber of correctly classified instances and ! the number
of instances of the P data set. Next, the evolutionary
cycle starts. This process runs until  (7;;,¢) is sat-
isfied. € (7;;,t) is satisfied when all the instances are
correctly classified (fit(I) = 1), or a certain amount
of iterations (kp,4.) are completed.
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The merge in GALE2 crosses the individual in the cell
with one individual randomly chosen among its selec-
tive neighborhood 7,5 , with a given probability pu,
instead of using the whole neighborhood 77 proposed
by GALE. This implementation used in GALE2 leads
to restricted mating among individuals codifying the
same type of knowledge representation. Merge gener-
ates only one individual that replaces the individual in
the cell, as later explained (see section 2.2).

Then, split is applied with a given probability
ps(Ti) = ksp - fit(T55), being ksp € [0,1] the max-
imum splitting rate. In GALE2, split works in the
same way as proposed in GALE, but combining the
whole and the selective neighborhood information.
Split clones and mutates the individual in the cell.
The new individual is placed in the empty cell Ty
of the whole neighborhood Ty € 7% with higher
number of occupied cells in its whole neighborhood
(max(¢ (Tg;))- If all cells of the whole neighborhood
are full (¢ (7%) = 8), the new individual is placed in
the cell of the selective neighborhood 77; that contains
the worst individual (lower fitness).

The last step in the evolutionary cycle, survival, de-
cides if the individual is kept for the next cycle or
not. This process uses the neighborhood informa-
tion. If a cell has up to one neighbor (((7;7) < 1),
thenu the probability of survival of the individual is
pgg—"j)sl(’ﬁj) = fit(T;), as proposed in GALE. Else
if a cell has seven or eight neighbors ((7;7) > 7 then

pﬁET“ )27(721-) = 0, where the individual is replaced by
the best selective neighbor in 7:’19 This method, intro-
duced in GALE2, proposes a restricted selective pres-
sure among individuals codifying the same knowledge
representation. On the other neighborhood configura-
tions (1 < ¢(7;7) < 7), an individual survives if and
Only if f@t('ﬁf) Z ﬁzei + k«‘"‘ x agei; ﬁZei is the av-
erage fitness value of the occupied selective neighbor
cells 7,7, and o,; their standard deviation. k,, is a
parameter that controls the survival pressure over the
current cell.

2.2 KNOWLEDGE REPRESENTATION

The evolutionary model of GALE2 coevolves different
knowledge representations. In this paper, GALE2 co-
evolves three different knowledge representations in its
heterogeneous runs: (1) sets of fully-defined instances
[Llora and Garrell, 2001b], (2) orthogonal decision
trees [Quinlan, 1993], and (3) oblique decision trees
[Breiman et al., 1984, Van de Merckt, 1993]. Rules
can be extracted from orthogonal decision trees. In-
stance sets are evolved sets of instances that de-
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scribe the set P mined, based on mnearest neigh-
bor algorithms.  Merge uses two-point crossover
[De Jong and Spears, 1991], and splitting is done us-
ing mutation based on generating some new values for
genes randomly. The other two evolved knowledge
representation are based on decision trees, codified as
dynamic trees [Llord and Garrell, 2001a]. The genetic
operators used are one point crossover and random
constants perturbation [Koza, 1992].

2.3 EXTINCTION PATTERNS

The last modification introduced by GALE2 is the
usage of extinction patterns. The idea behind these
patterns is the deletion of individuals from 7 leav-
ing some room. The goal is to help the evolutionary
algorithm to avoid local optima and the over-take of
the space in 7 by a single type of knowledge repre-
sentation. This idea is similar to the work proposed
by [Kirley and Green, 2000], although they were solv-
ing optimization problems using cellular genetic algo-
rithms [Whitley, 1993]. Nevertheless, extinction pat-
terns have to favor the diversity across the board, and
ensure the coevolution of all the knowledge representa-
tions used. This is a key point if we want to coevolve all
the knowledge representations at the same time, with-
out losing any of them along the evolutionary path.

There are several ways to approach to extinction pat-
terns. This paper explores two different types of ex-
tinction patterns: (1) lower bound extinction pat-
terns, and (2) upper bound extinction patterns. Lower
bound extinction patterns bias board evolution to-
ward selective neighborhoods with higher connection
degrees (C (7;39) ) On the other hand, upper bound ex-
tinction patterns favors selective neighborhoods with
lower connection degrees. Section 3 discusses, among
others, which one of these patterns is the most suited
for the coevolution of different knowledge representa-
tions.

The extinction patterns used by GALE2 are applied
when the occupation of the board (O(T)) reaches
100%. We introduce two kinds of extinction pat-
terns: (1) lower bound extinction patterns defined as
¢ (7;;9) < k, and (2) upper bound extinction patterns
¢(T) > k, being k € [0,8]. Once the board T
reaches full occupation, each cell 7;; test the extinc-
tion pattern used. If it is satisfied, the individual 7;5 is
deleted, leaving the cell empty, ((7;;) = 0. For a given
run, GALE2 uses only one extinction pattern. For in-
stance, if the extinction pattern were ¢ (7;7) < 4, this
test would delete all the individuals that were kept in
cells that satisfy that they have less than five selective
neighbors.
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3 RESULTS

This section focuses on the coevolution of several
knowledge representations using GALE2. The results
presented in this section do not deal with the gen-
eralization capabilities of classification accuracy (in
terms of cross-validation runs) of the algorithm. Some
previous work in this direction using GALE can be
found in [Llora and Garrell, 2001c]. This previous
work evaluate the competence of GALE when com-
pared to well known classifiers like XCS [Wilson, 1995],
C4.5 [Quinlan, 1993], or IBL [Aha and Kibler, 1991],
among others. Instead, the experiments conducted in
this paper look inside the evolutionary process focus-
ing on the coevolution of individuals that encode differ-
ent knowledge representations. Moreover, the exper-
imental runs were also prepared to study the impact
of the extinction patterns, presented in the previous
section, in the behavior of the coevolution that takes
place in the board T of GALE2.

In the experiments, GALE2 coevolved simultaneously
the three different knowledge representations pre-
sented in the previous section. This means that an
individual in a run encode in its genotype either an
orthogonal decision tree, or an oblique decision tree,
or a set of fully-defined instances. In order to illus-
trate the behavior of GALE2, it was used to solve
two well-known data sets provided by the UCI repos-
itory [Merz and Murphy, 1998]: (1) the Iris data set
(irs) , and (2) the Wisconsin Breast Cancer data set
(wbc). A deeper analysis using other data sets is part
the further work of this paper. Thus, the experiments
were designed to show the usefulness of using extinc-
tion patterns in GALE2. If they are not used, GALE2
behavior is constrained by the spatial distribution of
individuals at the initialization phase, being unable to
guarantee the right coevolution of all the knowledge
representations available.

Table 1 summarizes the results obtained when the ex-
tinction patterns presented in the previous section are
used. For each extinction pattern, GALE2 was run
50 times using different random seeds, averaging the
results obtained. This table presents, on the left hand
side, the results obtained for irs data set, whereas
on the right hand side, table shows the results for the
wbc data set. Results for each data set are summa-
rized in terms of the extinction pattern used. Lower
bound extinction patterns, defined as ¢ (7;7) < k, are
presented at the top, whereas the bottom of the table
presents the results provided by the upper bound ex-
tinction patterns ¢ (7;7) > k. Each row in the tables
shows the accuracy of the individuals in board 7, as
well as the number of spatial demes and the board oc-
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cupation O (T) for different k values. A spatial deme
is defined as the set of individuals that are kept in con-
nected cells that contain the same type of individuals.
One cell ¢q is connected to another cell ¢, if there is a
set of cells {cg,¢1, ¢z ... ¢p} that satisfies that ¢; € ¢?,;
given i = {0,1,...n — 1}

The lower bound extinction patterns, ¢ (7;7) < k,
present a clear behavior. When the extinction pressure
increases (k gets close to 8), the diversity of demes in
T falls. Patters where k£ > 4 produce less than three
demes. Therefore, 7 does not contain individuals for
all the knowledge representations available. These ex-
tinction patterns favor that the most rapidly suited
spatial deme takes over the board. This fact holds
when we take into count the mean accuracy of the
population, as it can be seen in table 1. Nevertheless,
these results show that the lost of diversity is a serious
drawback for the coevolution of different knowledge
representations.

On the other hand, upper bound extinction patterns,
¢ (7;;9) > k, present a different behavior. When the
extinction pressure increases (k gets close to 0), the
diversity holds. This is the result of favoring demes
with a small connection degrees. This fact can be
observed on the amount of demes kept in 7, and in
the accuracy of the board. Special mention must be
done on the extinction pattern ¢ (7;7) > 4. This pat-
tern produces the larger number of accurate spatial
demes. This fact was observed in both problems, irs
and wbc. Thus, the balance between diversity and uni-
formity, proposed by upper bound patterns, produce in
GALE2 rich boards. The worth of these boards is that
they are examples of how different demes can be effi-
ciently coevolve at the same time for all the knowledge
representations available, without destroying diversity.
Therefore, as a result of the tests done, upper bound
extinction patterns help the coevolution and diversity
of different knowledge representations in GALE2. This
issue is important for achieving the goal of coevolving
different knowledge representation in data mining.

Some look inside GALE2 dynamics can be found in
figures 1 and 2. These figures show how an extinc-
tion pattern can change the behavior of GALE2. The
two figures are obtained using GALE2 solving the irs
problem. The runs presented in the figures share the
same parameters values (as shown in the appendix),
as well as the random seed. This means that all the
runs share the same behavior until the board collapses,
presenting no empty cells. Then, when O(T) reaches
100% (no cell remains empty in the board), GALE2
applies an extinction pattern (see section 2.3).

Lower bound extinction patterns tend to produce a
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big extinction at the first application of the pattern
(figure 1). But evolution adapts the spatial demes lo-
cation contained in 7T, reducing the scope of extinction
in following pattern applications. But this adaptation
is obtained by losing the diversity of the board, as early
explained. This fact can be observed in figure 2. Each
cell T;; is represented using the following color code:
white (empty cell), black (oblique decision three), dark
gray (orthogonal decision tree), light gray (set of fully-
defined instances). On the other hand, upper bound
extinction patterns tend to produce a greater diversity,
but eventually (as the extinctive pressure increases)
they turn unstable leading to the total extinction of
the population in 7, as shown in figure 1. Figure 2
also presents some snapshots of the board evolution
using upper bound extinction patterns.

The main characteristic of GALE2 is that it can evolve
several knowledge representations in the same het-
erogeneous run. As a data mining algorithm, it can
provide different explanations for the data set being
mined, helping the user to understand the problem be-
ing solved. We want to conclude this section of results
showing some examples of the solutions coevolved us-
ing GALE2. The individuals presented are solutions
to the irs problem. This problem is defined using 4
attributes (sepal length (S.L.), sepal width (S.W.),
petal length (P.L.), and petal width (P.W.)), as well
as three different classes (iris setosa (set), iris versi-
color (ver), iris virginica (vir)). At the right hand
side of each individual we also present its accuracy us-
ing the whole irs, by showing its confusion matrix.
Fach row in the matrix represents the class of the in-
stance to classify, whereas each column is the predicted
class by the individual. The first individual is an or-
thogonal decision tree (* marks the leaf that misclas-
sified one instance), whereas the second one is a set of
fully-defined instances.

S.W. < 3.023 : set
P.W. < 1.537
P.L. < 4.957
P.W. <0.702 : set
P.W. > 0.702 : ver
P.L. > 4.957 : vir
P.W. > 1.537
P.L. < 4.957 : vir Hoow~
P.L. > 4.957 s

P.L. < 4.957 : ver
P.L. > 4.957 : vir
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S.L. S.W. P.L. P.W. Cis foog
4665 3.608 3.573 0.414 set .

5574 2.844 3.444 1952 vir £°B°
5.574 2.858 3.444 1.631 ver v ooo
4882 2.281 5.600 1.836 vir g
5574 2.353  6.627 2.450 vir —
5.574 2.844 6.627 1.302 vir 5y H

4 CONCLUSIONS

This paper presented how different knowledge repre-
sentations can be coevolved in a fine-grained learning
classifier scheme. In order to achieve this goal, a pre-
vious learning classifier systems (GALE) was modified
to deal with heterogeneous runs, where individuals of
the population codify different knowledge representa-
tions in its genotype (GALEZ2). This approach leads
to a classifier scheme that exploits: (1) spatial rela-
tions to favor the coevolution of individuals, and (2)
extinction patterns to avoid local optima.

Results show that the coevolution of different knowl-
edge representations is possible. Moreover, the results
obtained also show that, when an adequate extinction
pattern is used, accurate individuals belonging to dif-
ferent knowledge representations can be coevolved ef-
ficiently. Upper bound extinction patterns also help
GALE2 to avoid that a particular type of knowledge
representation over-take the space of the board. Ex-
periments show that upper bound extinction patterns
tend to favor diversity (e.g. ¢ (T;7) > 4).

GALE2 also shows that with few more efforts, it per-
forms as GALE. Nevertheless, GALE2 can effectively
coevolve different knowledge representations at the
same time reducing the number of homogeneous runs
previously needed by GALE (one for each knowledge
representation). Therefore, this leads to an important
reduction of the resources needed (using the same pa-
rameter configuration for GALE and GALE2). On
the other hand, as a data mining tool, GALE2 has
the advantage, when compared to other approaches,
of showing the user different kinds of solutions, favor-
ing a deeper look at the knowledge mined.
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Table 1: Results obtained using the irs (left) and wbc (right) data sets

¢(Ty) < Accuracy #Demes Occupation ¢((Tij) £ Accuracy #Demes Occupation
0 81.87+3.12  37.16+4.89  100.00%0.00 0 72.77+4.16  29.18+7.89 100.00£0.00
1 85.60+3.32 18.32+3.48  100.00+0.00 1 76.34+3.27  32.20+4.32 100.00+0.00
2 88.11+3.58 12.62+£2.90  100.00+£0.00 2 84.24+2.80  14.82+3.23 100.00£0.00
3 92.114+3.26 5.02+1.50 99.9940.03 3 87.32+2.67 6.30+1.73 98.56+0.04
4 96.57+1.87 2.14+0.76 99.94+0.18 4 93.24+2.33 1.964+0.57 99.62+0.02
5 97.28+1.30 1.94+0.65 99.531+0.67 5 95.98+1.20 2.014+0.40 99.0440.05
6 97.09+1.55 1.82+0.56 98.88+1.76 6 96.66+0.01 1.96+0.60 98.80+0.12
7 97.26+1.56 1.58+0.53 98.05+3.42 7 96.4240.01 1.92+0.60 97.9940.24

¢ (Ti;) >  Accuracy #Demes Occupation ((Ti;) > Accuracy #Demes Occupation
8 80.98+3.20  43.30+6.08 98.93+1.23 8 90.58+0.01  40.02+5.07 99.60+0.43
7 81.08+3.48  40.42+5.93 99.96+0.09 7 90.33+0.01  37.82+5.00 99.9940.03
6 83.55+3.47  30.46+5.41 100.00+0.00 6 91.36+0.01  28.90+5.64  100.00£0.00
5 83.984+3.06  37.44+6.06 99.9940.01 5 91.03+0.01  37.64+6.02 100.00£0.00
4 84.1943.40 85.78+23.24 94.61+8.51 4 87.80+0.01 124.80+10.91 99.9940.03
3 87.37%£6.50 14.62+8.04 54.54436.50 3 92.65+0.01 19.544+10.81  69.47+30.36
2 42.34+29.87 0.94+1.28 22.544+1.50 2 56.821+0.28 1.00+0.97 23.06£19.19
1 1.68+8.36 0.1010.51 0.68+0.01 1 0.0010.00 0.00+0.00 0.00+0.00

ve the quality and the clarity of this paper.

Appendix

In order to allow the replication, the parameters of GALE2
mxn=32x32, Kkmaz=100, pc=.4,
pm=4, ksp=.5, Pm.=.003, ksr=-.25. Discussion about pa-
rameter setting can be found in [Llora, 2002].

were set as follows:
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Figure 1: Board occupation for the irs problem using different extinction patterns. Each figure presents the
board occupation percentage behavior, O(7), through the run. The only difference between runs is the extinction
pattern used. Therefore, all the runs share the same occupation behavior until iteration t=26. After the full
board occupation, the extinction pattern is applied, leading to different evolutionary paths. The pattern used is
shown below each figure. These curves are the ones obtained in the runs also presented in figure 2. As it can
be seen, lower bound extinction patterns produce steady occupation of the board. On the other hand, upper
bound extinction patterns produce oscillating occupation of the board favoring diversity, but eventually leading
to a total extinction when extreme extinction pressure is applied.
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C(TY) <1,t=44 ¢ (T¥) <1, t=50

ﬁ A A

T” <2, t=38 ¢(TF) <2, t=44 ¢ (T¥) <2, t=50

C(TF) <3,t=26  ((T5) <3,=32  ((7) <3,e=38  ((T7) <3,t=44  ((Tij) <3, 150

C(T3) >5,t=26 , g(’r;f) > 5, t=62 ¢ (T37) > 5, t=100

Figure 2: Board evolution for the irs problem using lower (C (7;}9) < k') and upper (C (7;;9) > k) bound extinc-
tion. Color code: white (empty cell), black (oblique decision three), dark gray (orthogonal decision tree), light
gray (set of fully-defined instances).
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Abstract

Evolutionary algorithms (EAs) often appear to be
a ‘black box’, neither offering worst-case bounds
nor any guarantee of optimality when used to
solve individual problems. They can also take
much longer than non-evolutionary methods. We
try to address these concerns by using an EA, in
particular the learning classifer system XCS, to
learn a solution process rather than to solve in-
dividual problems. The process chooses one of
various simple non-evolutionary heuristics to ap-
ply to each state of a problem, gradually trans-
forming the problem from its initial state to a
solved state. We test this on a large set of one-
dimensional bin packing problems. For some of
the problems, none of the heuristics used can £nd
an optimal answer; however, the evolved solution
process can £nd an optimal solution in over 78%
of cases.

1 INTRODUCTION

Heuristic algorithms are very widely used to tackle practi-
cal problems in operations research, because so many are
NP-hard [12] and exhaustive search is often computation-
ally intractable. Evolutionary algorithms (EAs) can be ex-
cellent for searching very large spaces, at least when there
is some reason to suppose that there are ‘building blocks’
to be found. A *building block’ is a fragment, in the cho-
sen representation, such that chromosomes which contain
it tend to have higher £tness than those which don’t. EAs
bring building blocks together by chance recombination,
and building blocks which are not present in the population
at all may still be generated by mutation.

However, the use of EAs are often justifed simply by re-
sults. If you knew what building blocks looked like in ad-
vance, you would not need an EA to bring them together.
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Nor, usually, are there performance guarantees: in epistatic
problems it can happen that the best solutions cannot sim-
ply be fabricated from good-looking building blocks. Be-
cause of this, EAs often have a problem of acceptability —
they look like a ‘black box’ algorithm that you run until it
delivers a solution, but you often do not know whether that
solution is even close to optimal, and while it is running
you have no easy way to forecast properties of the outcome.
The delivered solution may also be fragile, in the sense that
there is little continuity between problem speci£cation and
EA solution: if you change the problem only slightly, the
solution found by re-running the EA changes drastically. It
is not surprising therefore that in many practical applica-
tions, people may prefer to use a simple heuristic that is
comprehensible and perhaps also offers worst-case perfor-
mance guarantees.

This paper represents a step towards a new way of using
EAs that may solve some problems of acceptability for
real-world use. The basic idea is as follows: instead of
using an EA to discover a solution to a specifc problem,
we use an EA to try to fabricate a solution process applica-
ble to many problem instances and built from simple, well-
understood heuristics. Such a solution process might con-
sist of using a certain heuristic initially, but after a while
the nature of the remainder of the task may be such that a
different heuristic becomes more appropriate.

For example, in [21] an early version of this idea was used
to tackle large exam timetabling problems by choosing two
heuristics and associated parameters, together with a test
for when to switch from using the £rst to using the sec-
ond. This was motivated by the unsurprising observation
that different academic institutions have very different con-
straints. One institution might have some very large exams,
limited exam seating and many smaller exams, so that the
important task early on is to pack those large exams to-
gether as far as possible in order to plenty of space to deal
with placing the many smaller exams. Another institution
might have no very large exams, but instead the exams can
be clustered such that there are very few inter-cluster con-
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straints, and exam clusters can therefore be viewed as rela-
tively independent sub-problems, for which you might nat-
urally choose some other heuristic that placed little empha-
sis on packing large exams.

An obvious objection to the general idea of hyper-heuristic
methods is that, if you combine the use of several heuristics
when solving a problem, you will probably lose any worst-
case performance guarantee that an individual heuristic
had. But against this, there is a simple way to judge the
ef£cacy of a composite algorithm against the use of any
single heuristic — you might be able to seed the initial EA
population with a few chromosomes that represented the
process of using only a single heuristic from start to £nish.
If such chromosomes do not survive, it is because compos-
ite algorithms outperformed them.

In what follows, we describe an example of using hyper-
heuristic methods to tackle one-dimensional bin-packing
problems. A modern learning classifer system, XCS [22],
is used to learn a set of rules which associate characteristics
of the current state of a problem with specifc heuristics.
The set of rules is used to solve problems as follows: given
the initial problem characteristics P, a heuristic H is chosen
and it packs a bin, thus gradually altering the characteris-
tics of the problem that remains to be solved. At each step
a rule appropriate to the current problem state P’ is chosen,
and the process repeats until all items have been packed.

Using any Michigan-style classifer system means, of
course, that we cannot do what we suggested above and
inject pure heuristics into the initial population in order to
compare them against composite ones. In a Michigan-style
system, the whole population represents one composite al-
gorithm. Nevertheless, XCS represents a simple way to try
to fabricate a composite algorithm and the interest lies in
seeing how well it can work. In particular, if the system
is trained using a few problems, does it then generalise by
also performing well on lots of unseen problems? If so
(and, to spoil the story, the answer given below is ‘yes’),
then this is a useful step towards the concept of using EAs
to generate strong solution processes rather than merely us-
ing them to £nd good individual solutions.

The approach is tested using a large set of benchmark one-
dimensional bin-packing problems and a small set of eight
heuristics. No single one of the heuristics used is capa-
ble of £nding the optimal solution of more than a very few
of the problems; however, the evolved rule-set was able to
produce an optimal solution for over 78% of them, and in
the rest it produced a solution very close to optimal.

2 ONE-D BIN-PACKING

In the one-dimensional Bin Packing problem (BPP1), there
is an unlimited supply of bins, each with capacity ¢ (a posi-
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tive number). A set of n items is to be packed into the bins,
the size of item i is s; > 0, and items must not over-£Il any
bin:
s <c
iebin(k)

The task is to minimise the total number of bins used. De-
spite its simplicity, this is an NP-hard problem. If M is the
minimal number of bins needed, then clearly:

n

M > [(;Si)/ﬂ

and for any algorithm that does not start new bins unnec-
essarily, M < bins used < 2M (because if it used 2M or
more bins there would be two bins whose combined con-
tents were no more than c, and they could be combined into
one).

Many results are known about speci£c algorithms. For ex-
ample, a commonly-used algorithm is First-Fit-Decreasing
(FFD): items are taken in order of size, largest £rst, and
put in the £rst bin where they will £t (a new bin is opened
if necessary, and effectively all bins stay open). It is
known [15] that this uses no more than 11M/9+4 bins. A
good survey of such results can be found in [6]. A good in-
troduction to bin-packing algorithms can be found in [18],
which also introduced a widely-used heuristic algorithm,
the Martello-Toth Reduction Procedure (MRTP). This sim-
ply tries to repeatedly reduce the problem to a simpler one,
by £nding a combination of 1-3 items that provably does
better than anything else (not just any combination of 1-3
items) at £lling a bin, and if so packing them. This may
eventually halt with some items still unpacked; the remain-
der are packed using a ‘largest £rst, best £t” algorithm.

Various authors have applied EAs to bin-packing, notably
Falkenauer’s grouping GA [9, 11, 10]; see also [16, 19]
for different approaches. For example, Reeves [19] used a
GA to £nd the order in which to feed items to a sequen-
tial heuristic such as First-Fit, with reasonable success on
a subset of the problems we use in this paper. Falkenauer
also produced two classes of benchmark problems. In one
of these, the so called triplet problems, every bin contains
three items; they were generated by £rst constructing a so-
lution which £lled every bin exactly, and then randomly
shrinking items a little so that the total shrinkage was less
than the bin capacity (thus the same number of bins is nec-
essary).

As ever, specifc knowledge about problems can help
greatly. Suppose you know in advance that each bin con-
tains exactly three items. Take items in order, largest £rst,
and for each item search for two others that come very close
to £lling the bin. A backtracking algorithm that consid-
ers such “Eller pairs’, taking pairs in which the two mem-
bers at most nearly equal in size £rst and permitting only
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limited backtracking, solves many of the Falkenauer triplet
problems very quickly. See [13] for some questions about
whether these problems are hard or not.

The reader may wonder if the simple strategy of search-
ing for a combination of items which come as close as
possible to £lling a bin, thereby reducing the problem to
a simpler one in which there seems to be more available
slack, is a good one. But consider a problem in which bins
have capacity 20 and there are six items: 12, 11, 11, 7, 7,
6. One bin can be completely £lled (7 + 7 + 6) but then
three more bins are needed since the three largest items are
each larger than half a bin. If bins are under-£lled, then a
three-bin solution is possible, for example 12 +7, 1147,
11+ 6. We hope this will help to convince the reader that
even one-dimensional bin-packing problems have their in-
terest. And they are worth studying because bin-packing
is a constituent task of many other optimisation problems;
exam timetabling is just one such example.

3 ABOUT XCS

Learning classifer systems of the Michigan type evolve a
set of condition-action rules, by measuring the performance
of individual rules and then periodically using crossover
and mutation to breed new rules from old. An early account
can be found in [14], a more modern account and recent
work is in [17].

In early learning classifer systems, rules occasionally did
an action that earned external reward, and this contributed
to the rule’s £tness and to the £tness of those that enabled it
to £re. Earned rewards were spread by the so-called ‘bucket
brigade algorithm’ (effectively a trickle-down economy)
or ‘proft-sharing plan’ (essentially a communal reward-
sharing) or other such algorithm. However, in those early
systems, a rule’s £tness was a measure of the reward it
might earn (when considering what rule to £re) and also
a measure of the reward it had earned (when selecting rules
for breeding). This caused various problems, notably that
rules which £red very rarely but were crucial when they
did would tend to be squeezed out of the population by the
evolutionary competition long before they could demon-
strate their true value. XCS [22] largely £xed this by in-
stead valuing a rule for the accuracy rather than the size of
its prediction of reward.

For this reason — because, in our application, there might
be heuristics which were rarely used but crucial — we chose
to use XCS rather than, say, Goldberg’s SCS.
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4 BIN-PACKING BENCHMARK
PROBLEMS

We used problems from two sources. The £rst collection
is available from Beasley’s OR-Library [1], which contains
problems of two kinds that were generated and largely stud-
ied by Falkenauer [10]. The £rst kind, 80 problems named
uN_M involve bins of capacity 150. N items are generated
with sizes chosen randomly from the interval 20-100. For
N in the set (120,250,500,1000) there are twenty prob-
lems, thus M ranges from 00 to 19. The second kind, 80
problems named t N_M are the triplet problems mentioned
earlier. The bins have capacity 1000. The number of items
N is one of 60, 120, 249, 501 (all divisible by three), and
as before there are twenty problems per value of N. Item
sizes range from 250 to 499 but are not random; the prob-
lem generation process was described earlier.

The second class of problems we study in this paper comes
from the Operational Research Library [2] at the Technis-
che Universitat Darmstadt. We used their ‘bppl-1’ set and
their very hard ‘bppl1-3’ set in this paper. In the bppl1-1 set
problems are named NxCyW _a where x is 1 (50 items), 2
(100 items), 3 (200 items) or 4 (500 items); y is 1 (capac-
ity 100), 2 (capacity 120) or 3 (capacity 150); z is 1 (sizes
in 1...100), 2 (sizes in 20...100) or 4 (sizes in 30...100);
and a is a letter in A. .. T indexing the twenty problems per
parameter set. (Martello and Toth [18] also used a set with
sizes drawn from 50...100, but these are far too easy.) Of
these 720 problems, the optimal solution is known in 704
cases and in the other sixteen, the optimal solution is known
to lie in some interval of size 2 or 3. In the hard bppl-3
set there are just ten problems, each with 200 items and
bin capacity 100,000; item sizes are drawn from the range
20,000...35,000. The optimal solution is known in only
three cases, in the other seven the optimal solution lies in
an interval of size 2 or 3. These results were obtained with
an exact procedure called BISON [20] that employs a com-
bination of tabu search and modi£ed branch-and-bound.

In all, therefore, we use 890 benchmark problems.

5 COMBINING HEURISTICSWITH XCS

The £rst subsection describes the heuristics we decided to
use, and why. The next subsection describes the representa-
tion used within XCS. Then we describe how XCS is used
to discover a good set of rules.

5.1 The set of heuristics

We £rst evaluated a variety of heuristics to see how they
performed on our benchmark collection. Of the fourteen
that we tried, some were taken directly form the literature,
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others were variants created by us. Some of these algo-
rithms were always dominated by others; among those that
sometimes obtained the best of the fourteen results on a
problem, some were always £rst equal rather than being
uniquely the best of the set. We do not have space here to
describe the full set, but we chose to use four whose perfor-
mance seemed collectively to be representative of the best.
These were:

e FFD, described in Section 2 above. This was the best
of the fourteen heuristics in over 81% of the bppl-
1 problems, but was never the winner in the bppl1-3
problems.

e Next-Fit-Decreasing (NFD): an item is placed in the
current bin if possible, or else a new bin is opened and
becomes the current bin and the item is put in there.
This is usually very poor.

e Djang and Finch’s algorithm (DJD), see [7]. This puts
items into a bin, taking items largest-£rst, until that
bin is at least one third full. It then tries to £nd one,
or two, or three items that completely £11 the bin. If
there is no such combination it tries again, but looking
instead for a combination that £1Is the bin to within 1
of its capacity. If that fails, it tires to £nd such a com-
bination that £IIs the bin to within 2 of its capacity;
and so on. This of course gets excellent results on, for
example, Falkenauer’s problems; it was the best per-
former on just over 79% of those problems but was
never the winner on the hard bpp1-3 problems.

e DJT (Djang and Finch, more tuples): a modifed form
of DJD considering combinations of up to £ve items
rather than three items. In the Falkenauer problems,
DJT performs exactly like DJD, as we would expect;
in the bppl-1 problems it is a little better than DJD.

In addition we also used these algorithms each coupled
with a “Eller’ process that tried to £nd any item at all to
pack in any open bins rather than moving on to a new bin.
This might, for example, make a difference in DJD if a bin
could be better £lled by using more than three items once
the bin was one-third full. Thus, in all we used eight heuris-
tics. The action of the £ller process is described later.

5.2 Representing problem state for XCS

As explained above, the idea is to £nd a good set of rules
each of which associates a heuristic with some description
of the current state of the problem. To execute the rules, the
initial state is used to select a heuristic and that heuristic is
used to pack a bin. The rules are then consulted again to
£nd a heuristic appropriate to the altered problem state, and
the process repeats until all items have been packed.
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The problem state is reduced to the following simple de-
scription. The number of items remaining to be packed are
examined, and the percentage R of items in each of four
ranges is calculated. These ranges are shown in Table 1.
These are, in a sense, natural choices since at most one

Table 1: Item size ranges

Huge: items over 1/2 of bin capacity

Large:  items from 1/3 up to 1/2 of bin capacity
Medium: items from 1/4 up to 1/3 of bin capacity

Small: items up to 1/4 of bin capacity

huge item will £t in a bin, at most two large items will £t
a bin, and so on. The percentage of items that lie within
any one of these ranges is encoded using two bits as shown
in Table 2. Thus, there are two bits for each of the four

Table 2: Representing the proportion of items in a given
range

Bits  Proportion of items

00 0-10%
01 10-20%
10 20-50%

11 50-100%

ranges. Finally, it seemed important to also represent how
far the process had got in packing items. For example, if
there are very few items left to pack, there will probably be
no huge items left. Thus, three bits are used to encode the
percentage of the original number of items that still remain
to be packed; Table 3 gives the details.

Table 3: Percentage of Items Left

Bits | % left to pack
000 | 0-125

001 | 125-25
010 | 25-375
011 | 375-50
100 | 50-62.5
101 | 625-75
110 | 75-875
111 | 875-100

The action is an integer indicating the decision of which
strategy to use at the current environmental condition, as
shown in Table 4. As mentioned earlier, the second four
actions use a £ller process too, which tries to £l any open
bins as much as possible. If the £1ling action successfully
inserts at least one item, the £lling step £nishes. If no in-
sertion was possible, then the associated heuristic (for ex-
ample, FFD in ‘Filler+FFD”) is used. This guarantees a
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change in the problem state. It is important to remember
that the trained XCS chooses deterministically, so that it is
important for the problem state (if not the state description)
to change each time, to prevent endless looping.

Table 4: The action representation

Action | Meaning, Use
000 FFD
001 NFD
010 DJD
011 DJT

100 Filler + FFD
101 Filler + NFD
110 Filler + DJD
111 Filler + DJT

The alert reader might wonder whether the above problem
state description in some way made heuristic selection an
easy task. However, when we evaluated each of our 14
original heuristics we found many cases where two prob-
lems had the same initial state description but different al-
gorithms were the winners of the 14-way contest. For each
of the 14 algorithms we tried using a perceptron to see
whether it was possible to classify problems into those on
which a given algorithm was a winner and those on which
it was not a winner. In every case, it was not possible, and
therefore the learning task faced by XCS was not a trivial
one.

6 THE EXPERIMENTS

We used Martin Butz’ version of XCS [3, 4, 5] available
free over the web from the IIliIGAL site.

We used a single step environment, in which a reward is
available at every step, and we defned a step as packing
one bin (FFD was modifed to pack no more than one bin
before returning). The reward earned is proportional to how
well £lled that packed bin is. For example if the bin is
packed to 94% of capacity, then the reward earned is 0.94.
(Following the suggestion of Falkenauer and Delchambre
[8], an alternative worth trying in future would be to use
the square of this instead). Remember that ‘packing’ here
means continuing to the point where the heuristic would
switch bins, rather than optimally packing. Full reward
is paid for packing the £nal bin. Otherwise, an algorithm
which, say, placed the £nal item of size 1 in a £nal bin in
order to complete the packing would earn only 0.01. The
Eller is rewarded slightly differently; it is rewarded in pro-
portion to how much it reduces the empty space in the open
bins.

The XCS parameters used were exactly as used in [22],
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with a 50/50 explore/exploit ratio.

For training, we divided each set of bin-packing problems
into a training and a test set. In each case the training
set contained 75% of the problems; every fourth problem
was placed in the test set. Since the problems come in
groups of twenty for each set of parameters, the different
sorts of problem were well represented in both training and
test sets. We also combined all problems into one large set
of 890 problems and divided that into a training and a test
set in the same way. In the results below, we only report
on what happened with this combined collection, in which
the training set has 667 problems and the test set has 223
problems. Other results are omitted for space reasons; the
combined set provides a good test of whether the system
can learn from a very varied collection of problems.

The experiments proceeded as follows. We set a limit of L
explore/exploit cycles for XCS, where the values we tried
were L = 100,500, 1000,5000,10000,25000. During the
learning phase, XCS £rst randomly chooses a problem to
work on from the training set. One step (whether explore
or exploit) corresponds to £1ling one bin. In an explore step
the action is chosen randomly, in an exploit step it is cho-
sen according to the maximum prediction appropriate to
the current problem state description. This is repeated until
all the items in the current problem have been packed. A
new random problem is then chosen. Clearly, a large prob-
lem such as one of the u1000_Mwill consume a great many
cycles. We recorded the best result obtained on each prob-
lem during this training phase. Remember, however, that
training continues, so the rule set may change after such a
best result was found. In particular, the £nal rule set at the
end of all training might not be able to reproduce the best
result on every problem. Nevertheless, it is reasonable to
record the best result found during (rather than at the end
of) training on each problem, because these are still repro-
ducible results, by re-running the training with the same
seed, and easily so.

At the end of training, the £nal rule set is used on every
problem in the training set to assess how well this rule set
works. It is also applied to every problem in the test set.

7 RESULTS

For the problems we used, details of optimal results are
available from [2] and from [1], see Section 4. In the six-
teen problems where only a range is known within which
the optimal number must lie, we use the upper bound.

The results were as follows:
e during training, XCS found the optimal result for

78.1% of all problems, and for all the others the best
result was only one or two bins worse than optimal.
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This is encouraging, because for some heuristic al-
gorithms the performance on certain problems can be
considerably worse than optimal.

o after £nding a £nal rule set, this was tested. On the
training set it found the optimal result on 77.7% of
problems. On the test problems, not used during train-
ing, it found the optimal result for 74.6% of problems
(166 of 223) and again, results were close to optimal
on all the rest.

Are these results good? The classifer system was able to
achieve the optimal result in 78.1% of all the benchmark
problems, whereas the best single performer of the heuris-
tics considered (namely, our own DJT, introduced in this
paper for the £rst time) achieved only 73%. Even though
these two results might seem close, it is worth noting that
DJT solved none of the very hard bppl-3 problems while
the XCS-generated rule set solved seven out of the ten. It
is also noteworthy that, when XCS was trained only on
a training set composed of seven of the ten hard bppl-3
problems, it solved six of those seven, and also one of the
three unseen problems. In both cases no other heuristic
used alone was able to solve any of these problems.

The worst heuristic is NFD; alone, it was never a winner
among the original 14 heuristics we considered. We did
include it in the set of heuristics that the classifer system
could invoke, and interestingly it was indeed sometimes in-
voked as part of a sequence that led to an optimal result,
although this happened rarely.

8 CONCLUSIONSAND FUTURE WORK

This paper represents a step towards developing the con-
cept of hyper-heuristics: using EAs to £nd powerful com-
binations of more familiar heuristics.

From the experiments shown it is also interesting to note
that:

e XCS was able to create and develop feasible hyper-
heuristics that performed well on a large collection
of benchmark data sets found in literature, and better
than any individual heuristic.

e The system always performed better than the worst of
the algorithms involved, and in fact produced results
that were either optimal (in the large majority of cases)
or else were close to optimal.

e The system is able to generalise well. Results of
the exploit steps during training are very close to re-
sults using a trained classifer on new test cases. This
means that particular details learned (a structure of
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some kind) during the adaptive phase (when the classi-
£er rules are being modifed according to experience,
etc.) can be reproduced with completely new data (un-
seen problems taken from the test sets). For example,
for one of Falkenauer’s problems DJD (and our DJT)
produced a new best, and optimal, result (this had al-
ready been reported in [7] where DJD was described).
Even if this problem is excluded from the training set,
the learned rule set can still solve it optimally.

In the work reported here we used a single-step environ-
ment (reward available after each step). It might be thought
that a multi-step environment, with reward proportional to
solution quality paid only at the end of a problem or at least
after a number of steps were performed. However, learning
is likely to be much slower, and we do not even know the
number of steps needed to reach a solution in advance. In
some problems, such as the u1000_M we have 1000 items
to pack and the number of steps to reach a solution and earn
any reward could be very large.

We recognise that the reward mechanism perhaps over-
values the £lling of bins, and intend to investigate alter-
native reward schemes.

Other possible ways to use the multi-step environment
could be to allow a chosen rule to continue to perform its
action until one of the following happens:

e the problem state has changed so that the rule which
chose the action is no longer applicable; or,

e a certain sizeable percentage of items have been
placed, eg 20%. This would limit the chain of actions
to be at most 5 steps long.

Perhaps also including some extra information about the
status of the open bins might be useful. For example, if
many open bins contained very little free space and there
were many small items still to pack, it might be useful to
be able to invoke a heuristic which tried to £l and £nally
close those bins.

Although we have focussed on bin-packing problems in
this paper, similar hyper-heuristic ideas could be applied
to many other kinds of problem, in which heuristics can be
used step by step to transform the problem state from an ini-
tial to a £nal one. This raises interesting research questions
about how sensitive the approach might be to the choice of
heuristics and to the problem state description used.
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