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Influences of Clustering modifications on the performance of the
Genetic Algorithm driven Clustering algorithm

Dirk Devogelaere, Marcel Rijckaert

K.U.Leuven, Chemical Engineering Department
De Croylaan 46, B-3001 Leuven,Belgium
Email: {dirk.devogelaere}@cit.kuleuven.ac.be

Tel: +16 32 23 68

SUMMARY solution space. The EA is not aware of the similarity of
H1ese individuals. To overcome redundancy in the
dividuals’ space, the EA has to update the offspring .
wo variants for replacing the value proposed by the GA

One way to look at basic modeling approaches is to spl
them up into mechanistic and data based models. A fe

years ago we developed our own data based mod or the cluster centers were implemented. In the first

approach [1], calle@eneticAlgorithm driven Clustering variant (centroid), we replace the GA value by the mean

(GAdC). The proposed methodology relies on semi-

supervised clustering with a generative floating-pointvalue of the cluster calculated based on the elements in

genetic algorithm and local learning. In this contributionthe cluster. In the second variant (closest) we replace the

we investigate the influence of clustering modification Oncluster center by the closest element of the cluster to the

the performance of the prediction of a real Worldggn\:ja;?g; The variant without replacement is called

application [2]. The task is the prediction of alga
frequency distributions on the basis of the measure8for each variant we predicted the outcome of all the seven
concentrations of the chemical substances, the globalgae distributions 30 times. For each algae distribution
information concerning the season when the sample wake mean squared error on the test set and the standard
taken, the river size and its flow velocity. deviation were calculated depending on the variant used

We deal with an evolutionary algorithm (EA) by to update the cluster centers. Contrary to what was

implementing the GAdC as a generative roating-pointeXpeCted neither the centroid nor the closest variant

genetic algorithm. An EA acts on a set of individuals. Anperforms better on the test set in general. Another way to

individual is a representation of a point within the searcrp'€Sent the results is plotting the error on the test set
space of the EA. In its simplest form, this individual i versus the ultimate fitness value obtained during training.

represented as a one-dimensional string of variabled"ere i @ general tendency that training stops at lower
itness values in the case of the closest variant, while

called a chromosome. Each chromosome of the Etr ining stops at the higher fithess values in the case of the
represents the coordinates of the cluster centers and g stop 9

scaling factor for each dimension. If the dimensionality of iﬂsv%rg;?;'ﬁgt; stae‘sct?r;i%q‘l‘Jceenn(;?o(i)c];”tr(]:?)\\/,\elzar‘);osfurgng::neg
the data is D, and there are K cluster centers, there will 6 X u . ubsp

D*K genes for the cluster centers and D genes for thd the solution space of the “standard” variant. This might
scaling factors. The chromosome can be evaluated. Thigdicate that less generations of the GA are necessary to
means that a certain fitness value (based on the objectig&ni€ve the same error on the test set. Secondly it might
value) is assigned to the individual depending on th@€ IMPortant, as itis in training of neural networks, that
problem at hand. In our case, the chromosome is decod ﬁlglggoig(r)ﬂgir?; Stgggjﬂg aa‘\tnt?\e/vcr)lrg']srét rrggl:ﬂinghlihneoiégt
into a solution of the clustering. This solution is evaluate 9

(“goodness of prediction”) and the value is assigned to th et are obtained. The results of a preliminary run indicate
chromosome in the EA at the test error indeed seems to decrease but after

obtaining a minimum at about 250 generations the error
The research in this paper is focused on how themoothly increases again as a function of the number of
performance of prediction is influenced by choosing egenerations.
representative for the cluster centers. In all the variant
the genetic algorithm (GA) determines the cluster centers.
By replacing the value determined by the GA in the nonfl] D. Devogelaere, P.Van Bael, and M. Rijckaert
empty clusters, we influence the mapping realized1999). Regression Through Genetic Algorithm driven
between the search space and the solution space of t@tistering,Proceedings of the European Conference on
GA. Different cluster centers in the search space mighintelligent Techniques and Soft Computing (EUFIT),
resolve to the same distribution of the cases over th8eptember 7-10, Aachen, Germany.
different clusters, resulting in the same solution in thg2] URL (1999) ftp.mitgmbh.de/pub/problem.zip
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Genetic Algorithm Wrappers for Feature Subset Selection in
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We derive a validation-based genetic algorithm for[GW99]. This breadth of applicability demonstrates the
feature selection in supervised inductive learning, basedenerality of simple genetic algorithms as wrappers for
upon the following loss functions: performance tuning in supervised inductive learning.

In experiments using the UC Irvine Machine Learning
gjatabase repository, this system is shown to be
competitive with search-based feature selection wrappers.

1. Inferential loss: Quality of the model produced
by an inducer as detected through inferential los
evaluated over a holdout validation data Bgj
2D\ Dtrain

2. Model loss “Size” of the model under a
specified coding or representation

3. Ordering loss: Inference/classification-
independent and model-independent measure of
data quality given only training and validation
dataD and hyperparameteis

1{7.0.1.) = axt,(§,D.,1.)+ bxf,(§.0) + cxt.(.0)

1)
; :
faBN ",D,Ye)=l- ; 9 (P x )- Plx >
R A L
faDT(y,D) =1- Morrect (3)
n]/al
wherem,,...® hclassificsion- accurac{D,,.selecty))
h© hytrain(D,, selecty)) Figure 1. Itinerary for MLJ-CHC
My © |Duaf Figure 1 illustrates a real-world application [HWRCO02] —
Ry ( & xma C~)a 1)) automobile insurance risk analysis — that uses the GA
Xl & 1%, 7, ‘l wrapper system (depicted in the Ilower-left inset).
f.2N({y,D) =1- — 4 Preliminary results on this test bed also indicate that the
Oa 4) system is competitive with search-based wrappers.
=1
(E’y ) = K 2(y’Dtrain) . . . .
hsizd ) [Be90] D. P. Benjamin, editorChange of Representation
£27(y,D)=1- &) eg g =m and Inductive Bias Kluwer Academic Publishers,
Stnax Boston, 1990.
£0T() = 1y (5) [GW99] C. Guerra-Salcedo and D. Whitley. Genetic
JTy)=1- = Approach to Feature Selection for Ensemble Creation. In
a+tb+c=1 (6)  Proceedings of the 1999 International Conference on

(7)  Genetic and Evolutionary Computation (GECCO-99)
Morgan-Kaufmann, San Mateo, CA, 1999.

In related work on genetic wrappers for variable selectiofHWRC02] W. H. Hsu, M. Welge, T. Redman, and D.

in supervised inductive learning, we adapted Equation (3¢!utter. ~ Constructive Induction Wrappers in High-
[HWRCO02] from similar fitness functions developed by Performance Commercial Data Mining and Decision
Cherkauer and Shavlik for decision tree pre-pruning ancUPPOrt Systems. Knowledge Discovery and Data

by Guerra-Salcedo and Whitley for connectionist learning¥ining, Kluwer, 2002.
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