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Abstract

Quantitative quality assessment of approxima-
tions of the Pareto-optimal set is an important
issue in comparing the performance of multiob-
jective evolutionary algorithms. Most popular
are methods that assign each approximation set
a vector of real numbers that reflect different as-
pects of the quality. In this study, we investigate
this type of quality assessment from a theoreti-
cal point of view. We provide a rigorous analysis
of limitations and suggest a mathematical frame-
work on the basis of which existing techniques
are classified and discussed.

1 Introduction

With many multiobjective optimization problems, knowl-
edge about the Pareto-optimal set helps the decision maker
in choosing the best compromise solution. For instance,
when designing computer systems, engineers often per-
form a so-called design space exploration to learn more
about the trade-off surface. Thereby, the design space is
reduced to the set of optimal trade-offs: a first step in se-
lecting an appropriate implementation.

However, generating the Pareto-optimal set is computation-
ally expensive and often infeasible, because the complex-
ity of the underlying application prevents exact methods
from being applicable. Evolutionary algorithms (EAs) are
an alternative: they do not guarantee the identification of
optimal trade-offs but try to find a set of solutions that are
(hopefully) not too far away from the optimal front. Vari-
ous multiobjective EAs are available, and certainly we are
interested in the technique that provides the best approx-
imation for a given problem. For this reason, compara-
tive studies are conducted; they aim at revealing strengths
and weaknesses of certain approaches and at identifying
the most promising algorithms. This, in turn, leads to the
question of how to evaluate the quality of approximations
of the Pareto-optimal set.

In single-objective optimization, we can define quality by
means of the objective function: the smaller (or greater)
the value, the better the solution. In contrast, quality is
itself multiobjective in the presence of several optimization
criteria. The goal is to find an approximation set that is as
close as possible to the optimal front, covers a wide range
of diverse solutions, etc. Therefore, it is difficult to define
appropriate quality measures for approximation sets, and as
a consequence there is no common agreement about what
measure(s) should be used.

Most quantitative measures proposed in the literature are
unary, i.e., the measure assigns each approximation set a
number that reflects a certain quality aspect, and many
comparative studies use a combination of them, e.g., (Van
Veldhuizen and Lamont 2000; Deb et al. 2000). There are
also binary quality measures which assign values to pairs of
approximation sets (Zitzler 1999). Despite of this variety,
it has remained unclear up to now how the different mea-
sures are related to each other and what their advantages
and disadvantages are. Nevertheless, first steps in this di-
rection have been undertaken. Knowles, Corne, and Oates
(2000) compared the information provided by different as-
sessment techniques on two database management appli-
cations. Hansen and Jaszkiewicz (1998) discussed various
measures under the assumption that some knowledge about
the decision maker’s preference is given in terms of utility
functions.

In this paper, we will investigate and discuss unary quality
measures from a mathematical point of view, in particular
what type of conclusions they allow. The only assumption
made is that the decision maker prefers the nondominated
solutions among an arbitrary set of solutions. Taking this
as a basis, we will

• prove that in general it is impossible to define a finite
set of unary measures, e.g., distance and diversity, that
uniquely describe the quality of an approximation set,

• show that existing measures at best allow to infer that
an approximation is not worse than another,
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• present two measures that can detect dominance be-
tween approximation sets and also show why the use
of this type of measure is restricted, and

• classify and discuss existing unary measures.

Note that we focus on comparisons of approximation sets,
i.e., assume that for each multiobjective EA only one run is
performed. If we consider instead multiple runs, statistical
methods are required (Grunert da Fonseca et al. 2001); this
important issue will not be discussed in the present paper.

2 Scenario

Suppose an arbitrary optimization problem involvingn ob-
jectives and the following preference orders on the set of
objective vectors.

Definition 1 (Dominance relations) Let Z be the n-
dimensional objective space andz1 = (z1

1 , . . . , z1
n), z2 =

(z2
1 , . . . , z2

n) ∈ Z two arbitrary objective vectors. We de-
fine the following relations onZ:

• z1 � z2 (z1 dominatesz2) if z1 is not worse thanz2

in any objective and is better in at least one objective,

• z1 �� z2 (z1 strictly dominatesz2) if z1 is better
thanz2 in all objectives,

• z1 � z2 (z1 weakly dominatesz2) if z1 is not worse
thanz2 in any objective,

• z1 �ε z2 (z1 ε-dominatesz2) if z1 is not worse than
z2 by a factor ofε in any objective for a fixedε > 0,

• z1 ‖ z2 (z1 andz2 are incomparable to each other) if
neitherz1 weakly dominatesz2 nor z2 weakly domi-
natesz1.

The relations≺, ≺≺, �, and�ε are defined accordingly,
i.e.,z1 ≺ z2 is equivalent toz2 � z1, etc.

The dominance relation reflects the weakest assumption
about the preference structure of the decision maker: a so-
lution is preferable to another solution if the former domi-
nates the latter in objective space. Accordingly, those ob-
jective vectors that are not dominated by any other objec-
tive vector are denoted asPareto optimaland the entirety
of all of these objective vectors asPareto optimal front.1

Unfortunately, generating the Pareto-optimal set is often
infeasible, and we can only hope to find a good approxi-
mation of it. By approximation, we usually mean the set of
nondominated solutions found in one optimization run. In
the following, the term approximation set is used in order
to formally describe what we consider as the outcome of a
multiobjective EA (Hansen and Jaszkiewicz 1998):

1For a detailed discussion of these concepts, the interested
reader is referred to (Deb 2001).
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Figure 1: Outcomes of three hypothetical algorithms de-
noted asO1, O2, andO3 with respect to a two-dimensional
maximization problem. The Pareto-optimal frontP consist
of a single objective vector.

Definition 2 (Approximation set) Let A ⊆ Z be a set of
objective vectors.A is called anapproximation setif any
two members ofA do not dominate each other:∀ z1, z2 ∈
A : z1 = z2 ∨ z1 ‖ z2. The set of all approximation sets
is denoted asΩ.

Now, consider the outcomes of three hypothetical algo-
rithms as depicted in Figure 1. Can we say that any of
these approximation sets is better than another? To answer
this question, we will extend the dominance relations from
above to approximation sets.

Definition 3 (Dominance relations on approximation sets)
Let A1, A2 ∈ Ω be two approximations sets. We write
A1 � A2 (A1 dominatesA2) if every member inA2 is
dominated by at least one member inA1; the relations
��, �, �ε, ≺, ≺≺, �, and�ε are defined accordingly.
Furthermore, we sayA1 is better thanA2 (A1 B A2 resp.
A2 C A1) if A1 � A2 and A1 6= A2; A1 and A2 are
incomparable to each other (A1 ‖ A2) if neitherA1 � A2

nor A2 � A1.

According to this definition, we consider an approximation
set to be better than another (A1 B A2), if any solution
in the latter is weakly dominated by the former and if the
former contains at least one solution not weakly dominated
by the latter. In the above example,O1 is better thanO2

and strongly dominatesO3; O2 dominatesO3.

The statements we can make using theB relation is
whether the outcome of one approximation algorithm is
better than the outcome of another method or not. However,
we would like to be able to make more precise statements:

• If one algorithm is better than another, can we express
how much better it is?

• If no algorithm can be said to be better than the other,
are there certain aspects in which respect we can say
the former is better than the latter?

For this reason, quantitative quality measures have been in-
troduced. As mentioned in the introduction, they usually
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assign real numbers to approximation sets, and then a com-
mon metric can be used to quantify the quality difference
of two approximation sets. In the following, we will use
the term quality indicator (as quality measure is often used
with different meanings): it is a function that assigns each
tuple of approximation sets a number that somehow reflects
aspects of the quality or quality differences.

Definition 4 (Quality indicator) An m-ary quality indi-
catorI is a functionI : Ωm → IR, which assigns each
vector (A1, A2, . . . , Am) of m approximation sets a real
valueI(A1, . . . , Am).

The goal is that we can draw conclusions about the relation
between approximation sets by comparing their indicator
values. Ideally, a greater (or smaller) indicator value would
imply that one set is better than the other. On the other
hand, we also would like to ensure that wheneverA is better
thanB also the indicator value ofA is greater (or smaller)
than that ofB. Thus, there are always two directions we
have to consider: conclusions we can draw from the indi-
cator values with respect to the dominance relations, and
the implications of any dominance relation on the indicator
values. In Section 4, we will introduce the terms compati-
bility and completeness for these purposes.

The remainder of this paper focuses on unary indicators as
they are most commonly used in the literature; what makes
them attractive is their capability of assigning quality val-
ues to an approximation set independent of other sets under
consideration. We will classify and discuss existing unary
indicator with regard to compatibility and completeness in
Sections 4 and 5; first, however, we will investigate what
we must not expect from them.

3 Limitations

Naturally, many studies have attempted to capture the mul-
tiobjective nature of approximation sets by deriving distinct
indicators for the distance to the Pareto-optimal front and
the diversity within the approximated front. Therefore, the
question arises whether we can define a minimal combina-
tion of unary indicatorsI = (I1, I2, . . . , Ik) such that bet-
ter quality goes hand in hand with greater indicator values,
i.e., (∀ 1 ≤ i ≤ k : Ii(A) > Ii(B)

) ⇔ A B B

for any approximation setsA, B. Such a combination of
indicators, applicable to any type problem, would be ideal,
because then any approximation set could be characterized
by, e.g., two real numbers that reflect the different aspects
of the overall quality. The variety among the indicators
proposed, however, suggests that this goal is, at least, diffi-
cult to achieve. The following theorem shows that in gen-
eral it cannot be achieved: a fixed number of indicators is
not sufficient for problems of arbitrary dimensionality. The

statement behind is that in order to detect weak dominance
among objective vectors as many indicators as objectives
are necessary.

Theorem 1 Let Z = IRn with n ≥ 2 and I =
(I1, I2, . . . , Ik) be a vector of unary quality indicators such
that for anyz1, z2 ∈ Z:(∀ 1 ≤ i ≤ k : Ii({z1}) ≥ Ii({z2})) ⇔ z1 � z2

Then it holds thatk ≥ n.

Proof. We will exploit the fact that inIR the number of
disjoint open intervals(a, b) = {z ∈ IR ; a < z < b} with
a < b is countable (Hrbacek and Jech 1999); in general,
this means thatIRk contains only countably many disjoint
open hyperrectangles(a1, b1)× (a2, b2)×· · ·× (ak, bk) =
{(z1, z2, . . . , zk) ∈ IRk ; ai < zi < bi, 1 ≤ i ≤ k}
with ai < bi. The basic idea is that whenever fewer in-
dicators than objectives are available, uncountably many
disjoint open hypercubes arise—a contradiction. Further-
more, we will show a slightly modified statement, which
is more general: ifZ contains an open hypercube(u, v)n

with u < v such that for anyz1, z2 ∈ (u, v)n:(∀ 1 ≤ i ≤ k : Ii({z1}) ≥ Ii({z2})) ⇔ z1 � z2

thenk ≥ n.

Without loss of generality assume a maximization problem
in the following. We will argue by induction.

n = 2: Let a, b ∈ (u, v) with a < b and consider the
incomparable objective vectors(a, b) and (b, a). If
k = 1, then eitherI1({(a, b)}) ≥ I1({(b, a)}) or vice
versa; this leads to a contradiction to(a, b) 6� (b, a)
and(b, a) 6� (a, b).

n − 1 → n: Supposen > 2, k < n and that the statement
holds forn − 1. Choosea, b ∈ (u, v) with a < b,
and consider then − 1 dimensional open hypercube
Sc = {(z1, z2, . . . , zn−1, c) ∈ (u, v)n ; a < zi <
b, 1 ≤ i ≤ n − 1} for an arbitraryc ∈ (u, v).

First, we will show that Ii({(a, . . . , a, c)}) <
Ii({(b, . . . , b, c)}) for all 1 ≤ i ≤ k. Assume
Ii({(a, . . . , a, c)}) ≥ Ii({(b, . . . , b, c)}) for any i.
If Ii({(a, . . . , a, c)}) > Ii({(b, . . . , b, c)}), then
(b, . . . , b, c) 6� (a, . . . , a, c), which yields a contradic-
tion. If Ii({(a, . . . , a, c)}) = Ii({(b, . . . , b, c)}), then
Ii({z}) = Ii({(a, . . . , a, c)}) for all z ∈ Sc, because
(b, . . . , b, c) � z if z ∈ Sc. Then for anyz1, z2 ∈ Sc

it holds

∀1 ≤ j ≤ k, j 6= i : Ij({z1}) ≥ Ij({z2}) ⇔ z1 � z2

which contradicts the assumption that for anyn−1 di-
mensional open hypercube inIRn−1 at leastn−1 indi-
cators are necessary. Therefore,Ii({(a, . . . , a, c)}) <
Ii({(b, . . . , b, c)}).
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Now, we consider the image ofSc in indica-
tor space. The vectorsI({(a, . . . , a, c)}) and
I({(b, . . . , b, c)}) determine an open hyperrectangle
Hc = {(y1, y2, . . . , yk) ∈ IRk ; Ii({(a, . . . , a, c)}) <
yi < Ii({(b, . . . , b, c)}), 1 ≤ i ≤ k} whereI(z) =
(I1(z), I2(z), . . . , Ik(z)). Hc has the following prop-
erties:

1. Hc is open in allk dimensions as for all1 ≤
i ≤ k: inf{yi ; (y1, y2, . . . , yk) ∈ Hc} =
Ii({(a, . . . , a, c)}) < Ii({(b, . . . , b, c)}) =
sup{yi ; (y1, y2, . . . , yk) ∈ Hc}.

2. Hc contains an infinite number of elements.

3. Hc ∩ Hd = ∅ for anyd ∈ (u, v), d > c: assume
y ∈ Hc ∩ Hd; thenI({(b, . . . , b, c)}) ≥ y ≥
I({(a, . . . , a, d)}), which yields a contradiction
as(b, . . . , b, c) 6� (a, . . . , a, d).

Sincec was arbitrarily chosen within(u, v), there are
uncountably many disjoint open hypercubes of dimen-
sionalityk in thek dimensional indicator space. This
contradiction implies thatk ≥ n. 2

This theorem is a formalization of what is intuitively clear:
we cannot reduce the dimensionality of the objective space
without loosing information. Unfortunately, the situation
gets even worse when we consider approximation sets in-
stead of single objective vectors. Theorem 2 states that
there is no way of representing any dominance relation
from Definition 3 by a finite combination of unary quality
indicators—independent of the dimensionality of the ob-
jective space. This means the number of criteria, that de-
termine what a good approximation set is, is infinite; or in
another words: the aforementioned goal to define two (or
more) indicators, one for distance and one for diversity, that
uniquely characterize the quality of an approximation set,
cannot be attained.

Theorem 2 If Z = IRn with n ≥ 2, then there is no vector
of unary quality indicatorsI = (I1, I2, . . . , Ik) and a re-
lation I such that for any approximation setsA1, A2 ∈ Ω:

I(A1) I I(A2) ⇔ A1 B A2 (1)

whereI(A) = (I1(A), I2(A), . . . , Ik(A)) for A ∈ Ω.

Note thatI can be any relation (<, >, etc.), i.e., indepen-
dently of what relationI we choose, there is no indicator
vector such that Statement 1 holds.

To prove this theorem, we need the following fundamental
results from set theory (Hrbacek and Jech 1999):

• IR, IRk, and any open interval(a, b) in IR resp. hyper-
cube(a, b)k in IRk have the same cardinality, denoted
as2ℵ0 , i.e., there is a bijection from any of these sets
to any other;

2
z

z
1

b

a

a b

(a,a)

(b,b)

S

Figure 2: Illustration of the construction used in Theo-
rem 2 for a two dimensional maximization problem. We
consider an open hypercube(a, b)n and define an − 1 di-
mensional hypercubeS within. For S holds that any two
objective vectors contained are incomparable to each other,
and therefore any subsetA ⊆ S is an approximation set.

• If a setS has cardinality2ℵ0 , then the cardinality of
the power setP(S) of S is 22ℵ0 , i.e., there is no injec-
tion fromP(S) to any set of cardinality2ℵ0 .

The proof is based on the construction of a setS (cf. Fig-
ure 2) such that any two points contained are incomparable
to each other. The power set ofS is exactly the set of all
approximation setsA ⊆ S, the cardinality of which is22ℵ0 .
As any two approximation sets must be mapped to a differ-
ent indicator vector (shown in Lemma 1), an injection from
a set of cardinality22ℵ0 to IRk is required, which finally
leads to a contradiction.

Lemma 1 Let Z = {(z1, z2, . . . , zn) ∈ IRn; a < zi <
b, 1 ≤ i ≤ n} be an open hypercube inIRn with n ≥ 2,
a, b ∈ IR, anda < b. Furthermore, assume there exists a
vector of unary quality indicatorsI = (I1, I2, . . . , Ik) and
a relationI such that for any approximation setsA1, A2 ∈
Ω:

I(A1) I I(A2) ⇔ A1 B A2

where I(A) = (I1(A), I2(A), . . . , Ik(A)) for A ∈ Ω.
Then,I(A1) 6= I(A2) for all A1, A2 ∈ Ω with A1 6= A2.

Proof. Let A1, A2 ∈ Ω be two arbitrary approximation
sets withA1 6= A2. If A1 B A2 or A2 B A1, then either
I(A1) I I(A2) ∧ I(A2) 6I I(A1) or vice versa. Thus,
I(A1) 6= I(A2). If A1 ‖ A2, there are two cases: (1) both
A1 andA2 contain only a single objective vector, or (2)
either set consists of more than one element.

Case 1: Choosez ∈ Z with A1 ‖ {z} andA2 ‖ {z} (such
an objective vector exists asZ is an open hypercube in
IRn). ThenA1 ∪ {z} B A1 andA1 ∪ {z} ‖ A2. The
former implies thatI(A1∪{z}) I I(A1) ∧ I(A1) 6I
I(A1 ∪ {z}). Now supposeI(A1) = I(A2); it
follows that I(A1 ∪ {z}) I I(A2) and therefore
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A1∪{z} B A2, which is a contradiction toA1∪{z} ‖
A2.

Case 2: Assume, without loss of generality, thatA1 con-
tains more than one objective vector, and choosez ∈
A1 with {z} ‖ A2 (such an element must exist as
A1 ‖ A2). Then, A1 B {z}, which implies that
I(A1) I I({z}) ∧ I({z} 6I I(A1). Now sup-
poseI(A1) = I(A2); it follows thatI(A2) I I({z})
and thereforeA2 B {z}, which is a contradiction to
A2 ‖ {z}.

In summary, all cases (A1 B A2, A2 B A1, andA1 ‖ A2)
imply thatI(A1) 6= I(A2). 2

Proof of Theorem 2. Let us suppose that such a qual-
ity indicator vectorI in combination with a relationI ex-
ists. Furthermore, assume, without loss of generality, that
the first two objectives are to be maximized (otherwise the
definition of the following setS has to be modified accord-
ingly).

Choosea, b ∈ IR with a < b, and considerS =
{(z1, z2, . . . , zn) ∈ Z ; a < zi < b, 1 ≤ i ≤ n ∧ z2 =
b + a − z1}; obviously, for anyz1, z2 ∈ Z eitherz1 = z2

or z1 ‖ z2, becausez1
1 > z2

1 implies z1
2 < z2

2 . Further-
more, letΩS ⊆ Ω denote the set of approximations sets
A ∈ Ω with A ⊆ S.

As S ∈ Ω and any subset of an approximation set is again
an approximation set,ΩS is identical to the power setP(S)
of S. In addition, there is an injectionf from the open
interval(a, b) to S with f(r) = (r, b+a−r, (b+a)/2, (b+
a)/2, . . . , (b + a)/2), it follows that the cardinality ofS is
at least2ℵ0 . As a consequence, the cardinality ofΩS is at
least22ℵ0 .

Now, we will use Lemma 1; it shows that for anyA1, A2 ∈
ΩS with A1 6= A2 the quality indicator values differ, i.e.,
I(A1) 6= I(A2). Therefore, there must be an injection
from ΩS to IRk, the codomain ofI. This means there is an
injection from a set of cardinality22ℵ0 (or greater) to a set
of cardinality2ℵ0 . From this absurdity, it follows that such
a vector of unary quality indicators in combination with a
relationI cannot exist. 2

Note that Theorem 2 also holds (i) if we only assume thatZ
contains an open hypercube inIRn for whichI has the de-
sired property, and (ii) if we consider any other dominance
relation from Definition 3. However, ifZ is finite, we can
easily construct an appropriate unary indicator.

Corollary 1 If Z is finite, there is a unary quality indicator
I and a relationI such that for any approximations sets
A1, A2 ∈ Ω:

I(A1) I I(A2) ⇔ A1 B A2

Proof. As Z is finite, alsoΩ is finite. Therefore, there
exists an injectionI fromΩ to IR. Accordingly, the relation
I can be defined asI(A1) I I(A2) ⇔ I−1(I(A1)) B
I−1(I(A2)) ⇔ A1 B A2. 2

This result is rather of theoretical than of practical use, be-
cause we are mainly interested in indicators that are appli-
cable to arbitrary problems. In general the power of unary
indicators is restricted according to Theorems 1 and 2—so,
what can we achieve using unary quality indicators?

4 Classification

There are two questions on the basis of which we will cat-
egorize quality indicators:

1. Which conclusions can be drawn from the indicator
values with regard to the dominance relations?

2. Which portion of a specific dominance relation can be
covered on the basis of the indicator values?

Let us go back to the example depicted in Figure 1 and
consider the following unary indicatorIε, which is inspired
by concepts presented in (Laumanns et al. 2001).

Definition 5 (Unary ε-Indicator) Without loss of general-
ity assume a maximization problem and letP ∈ Ω be the
Pareto-optimal front. The unaryε-indicatorIε is defined as

Iε(A) = inf{ε ∈ IR ; A �ε P}
for A ∈ Ω.

For the three algorithms we getIε(O1) = 2, Iε(O2) = 2,
andIε(O3) = 2.5. How does the order of the indicator
values reflect the dominance relations?

In general, for any pair(A, B) ∈ Ω2 it holds

A �� B ⇒ Iε(A) < Iε(B)

and (which follows from this)

Iε(A) < Iε(B) ⇒ A 6≺6≺ B ⇒ A 6C B

A smaller Iε value tells us that an approximation is
not worse than another; we say the pair(Iε, <) is
6B-compatible.2 Furthermore, if an approximation set
strongly dominates another, also itsIε value is smaller;
here, we say that(Iε, <) is ��-complete. Taken together
that means: wheneverA strongly dominatesB, we will be
able to infer thatA is not worse thanB. In our example, by
looking at theIε values we can conclude thatO1 andO2

are not worse thanO3.

The terms compatibility and completeness address the two
questions at the beginning of this section and will be used
in the following to characterize and compare indicator-
relation pairs.

2We use the same term as Hansen and Jaszkiewicz (1998)
here, however, with a slightly different meaning.
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compatibility completeness
none �� � B 6�6� 6� 6B

�� + - - - - - -
� + ? - - - - -
B + ? ? - - - -

6�6� + + + + - ? ?
6� + + + + - - ?
6B + + + + - - -

Table 1: Overview of possible compatibility/completeness
combinations. A minus means there is no pair(I, I) that
is compatible regarding the row-relation and complete re-
garding the column-relation. A plus indicates that such a
pair (I, I) is known, while a question mark stands for a
combination for which it is unclear whether a correspond-
ing indicator-relation pair exists.

Definition 6 (Compatibility and completeness)Let I be
a vector of unary quality indicatorsI = (I1, I2, . . . , Ik)
and I a corresponding relation in indicator space. Fur-
thermore, consider an arbitrary binary relation� on
approximation sets. The pair(I, I) is denoted as�-
compatibleif either for anyA, B ∈ Ω

I(A) I I(B) ⇒ A � B

or for anyA, B ∈ Ω
I(A) I I(B) ⇒ B � A

The pair(I, I) is denoted as�-completeif either for any
A, B ∈ Ω

A � B ⇒ I(A) I I(B)
or for anyA, B ∈ Ω

B � A ⇒ I(A) I I(B)
We have seen that(Iε, <) is 6B-compatible and��-
complete. However, it is neitherB-compatible (as will
be shown indirectly in Theorem 3 in Section 4.1) norB-
complete (as in the above exampleO1 B O2 butIε(O1) =
Iε(O2)).
Now, we can ask what combinations of compatibil-
ity and completeness are feasible. Theorem 2 proves
that there does not exist any indicator-relation pair that
is B-compatible andB-complete at the same time.
This rules out also other combinations, Table 1 shows
which. It reveals that the best we can achieve is ei-
ther ��-compatibility without any completeness, or6B-
compatibility in combination withB-completeness.

In the following, we will classify and discuss existing unary
indicators according to three categories:B-compatibility,
6B-compatibility, and incompatibility, i.e., no compatibility
with any dominance relation. Table 2 summarizes the re-
sults. In this context, we would also like to point out the
relationships between the dominance relations, e.g.,��-
compatibility implies B-compatibility, 6B-compatibility
implies 6�-compatibility, andB-completeness implies��-
completeness.

4.1 B-Compatibility

In order to achieveB-compatibility, at least two indicators
are needed as the following theorem shows.

Theorem 3 ConsiderZ = IRn with n ≥ 2 and a unary
quality indicatorI. If for all A1, A2 ∈ Ω

I(A1) > I(A2) ⇒ A1 B A2

thenI is a constant function, i.e.,I(Ω) = c with c ∈ IR.

Proof. Assume there are two approximation sets
A1, A2 ∈ Ω with I(A1) > I(A2); consequently,
A1 B A2. Now considerA3 ∈ Ω that is incomparable to
both A1 andA2; as a consequence,I(A3) ≤ I(A2) and
I(A1) ≤ I(A3). Therefore,I(A1) ≤ I(A3) ≤ I(A2)
which contradicts the assumption. 2

However, even if we consider two or more indicators, the
use ofB-compatible indicator-relation pairs is restricted
according to Theorem 1: in order to predict dominance
between objective vectors at least as many indicators as
objectives are required. Hence, it is not surprising that—to
our best knowledge—noB-compatible indicators have
been proposed in the literature; their design, though, is
possible:

• Consider the lineL = {(a, a, . . . , a) ∈ IRn} and let

IL
1 (A) = sup{a ∈ IR ; {(a, a, . . . , a)} C A}

IL
2 (A) = inf{b ∈ IR ; {(b, b, . . . , b)} B A}

We assume a maximization problem and thatZ is
bounded, i.e.,IL

1 (A) and IL
2 (A) always exists. As

illustrated in Figure 3,IL
1 (A) determines the point

(a, a, . . . , a) that is closest to and worse thanA,
and IL

2 (A) gives the point(b, b, . . . , b) that is clos-
est to and better thanA. If we define the indica-
tor IL = (IL

1 , IL
2 ) and the relationI asIL(A) I

IL(B) ⇔ IL
1 (A) > IL

2 (B), then the pair(IL, I) is
B-compatible.

• Suppose a maximization problem and let

IO
i (A) = sup{a ∈ IR ; ∀(z1, . . . , zn) ∈ A : zi ≥ a}

for 1 ≤ i ≤ n and

IO
n+1(A) =

{
1 if A contains two or more elements
0 else

We see thatIO
1 , . . . , IO

n describe the closest objec-
tive vector that is weakly dominated by all points
in A; IO

n+1 serves to distinguish between single ob-
jective vectors and larger approximation sets. Let
IO = (IO

1 , . . . , IO
n+1) and define the relationI as

IL(A) I IL(B) if and only if IO
i (A) > IO

i (B) for
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Figure 3: TwoB-compatible indicators. On the left hand
side, it is depicted how theIL indicator defines a hyper-
cube around an approximation setA, whereIL

1 (A) = a
andIL

2 (A) = b. The right picture is related to theIO in-
dicator: for any objective vector in the shaded area we can
detect that it is dominated by the approximation setA.

all 1 ≤ i ≤ n + 1. Then, the pair(IO, I) is B-
compatible; it detects dominance between an approx-
imation set and those objective vectors that are dom-
inated by all members of this approximation set (see
Figure 3).

Note that both indicators are even��-compatible, but nei-
ther is complete with regard to any dominance relation.

4.2 6B-Compatibility

As stated above, the unaryε-indicator is6B-compatible, and
it is ��-complete but neitherB- nor �-complete. That
is wheneverA �� B, we will be able to state thatA
is not worse thanB. On the other hand, there are cases
A � B for which this conclusion cannot be drawn, al-
thoughA is actually not worse thanB. The same holds for
the two indicators proposed by Esbensen and Kuh (1996)
and Czyzak and Jaskiewicz (1998). We will not discuss
these in detail and only remark that the following exam-
ple can be used to show that both indicators in combination
with the< relation are not�-complete (norB-complete):
let A = {(1, 3)}, B = {(1, 2)}, and the Pareto-optimal
front beP = {(4, 4)}.

An indicator that is6B-compatible andB-complete is the
hypervolume indicatorIH (Zitzler and Thiele 1998; Zitzler
1999). It gives the hypervolume of that portion of the ob-
jective space that is dominated by an approximation setA.3

We notice that fromA B B follows thatIH(A) > IH(B);
the reason is thatA must contain at least one objective vec-
tor that is not weakly dominated byB, thus, a certain por-
tion of the objective space is dominated byA but not by
B. This observation implies both6B-compatibility andB-
completeness: by comparing theIH values of two approx-

3Note thatZ has to be bounded, i.e., there must exist a hyper-
cube inIRn that enclosesZ. If this requirement is not fulfilled, it
can be easily achieved by an appropriate transformation.

imation sets we are able to conclude that one is not worse
than the other—provided either is actually better than the
other.

Van Veldhuizen (1999) suggested an indicator, the error ra-
tio IER, that is not6B-compatible but6�-compatible: the ra-
tio of Pareto-optimal objective vectors in the approximation
set. Obviously, if any approximation setA consist of only
a single Pareto-optimal point, thenIER(A) ≥ IER(B) for
all B B A; if B contains not only Pareto-optimal points,
thenIER(A) < IER(B). Therefore,(IER, >) is not 6B-
compatible. However, if we consider just the total number
(rather than the ratio) of Pareto-optimal points in the ap-
proximation set, we obtain6B-compatibility. Nevertheless,
the power of these indicators is limited because neither is
in combination with the> relation complete with respect
to any dominance relation.

4.3 Incompatibility

Section 3 has revealed the difficulties when trying to sep-
arate the overall quality of approximation sets into distinct
goals. Nevertheless, it would be desirable if we could look
at certain aspects such as diversity separately, and accord-
ingly several authors suggested formalizations of specific
aspects by means of unary indicators. However, we have
to be aware that often these indicators aregenerallynei-
therB-compatible norB-compatible in combination with
the > and< relations, which on the other hand does not
mean that they may not be useful for specific applications.
We only have to be careful what to infer from the indicator
values.

One class of indicators that do not allow any conclusions
to be drawn regarding the dominance relationship between
approximation sets is represented by the various diversity
indicators (Srinivas and Deb 1994; Schott 1995; Zitzler
1999; Deb 2001). If we consider a pair(A, B) ∈ Ω2 with
A B B, the indicator value ofA can be less or greater
than or even equal to the value assigned toB (for the di-
versity indicators referenced above). Therefore, these indi-
cators are neither compatible nor complete with respect to
any dominance relation or complement of it.

The same holds for the three indicators proposed in (Van
Veldhuizen 1999): overall nondominated vector genera-
tion, generational distance, and maximum Pareto front er-
ror. The first just gives the number of elements in the
approximation set, and it is obvious that it does not pro-
vide compatibility and completeness. Why this also ap-
plies to the other two, both distance indicators, will only
be sketched here. Assume a two-dimensional maximiza-
tion problem for which the Pareto-optimal frontP consists
of the two objective vectors(10, 0) and(0, 10). Now, con-
sider the three setsA = {(5, 5)}, B = {(4, 1), (1, 4)},
and C = {(0, 0). For both distance indicators holds
I(B) < I(A) < I(C), but A �� B �� C. Thus, we
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symbol relation name reference compatibility completeness
IL I1 > I2 reference line indicator Section 4.1 �� -
IO > objective vector indicator Section 4.1 �� -
IH > hypervolume (Zitzler and Thiele 1998) 6B B
IW < average best weight combination (Esbensen and Kuh 1996) 6B ��
ID < distance from reference set (Czyzak and Jaskiewicz 1998) 6B ��
Iε < unaryε-indicator Definition 5 6B ��
IP > number of Pareto points contained Section 4.2 6B -
IER > error ratio (Van Veldhuizen 1999) 6� -
ICD < chi-square like deviation (Srinivas and Deb 1994) - -
IS < spacing (Schott 1995) - -
IONV G > overall nondominated vector generation(Van Veldhuizen 1999) - -
IGD < generational distance (Van Veldhuizen 1999) - -
IME < maximum Pareto front error (Van Veldhuizen 1999) - -
IMS > maximum spread (Zitzler 1999) - -
IDU < deviation from uniform distribution (Deb 2001) - -

Table 2: Overview of unary indicators discussed in this paper. With respect to compatibility and completeness, not all
relations are listed but only the strongest as, e.g.,��-compatibility, impliesB-compatibility (cf. Section 4).

cannot conclude whether one set is better or worse than an-
other by just looking at the order of the indicator values.

Finally, one can ask whether it is possible to combine
several non-6B-compatible indicators such that the result-
ing indicator vector is6B-compatible. Van Veldhuizen and
Lamont (2000), for instance, used generational distance
and overall nondominated vector generation in conjunction
with the diversity indicator of Schott (1995), while Deb
et al. (2000) applied a similar combination of diversity
and distance indicators. As in both cases counterexamples
can be constructed that show these combinations to be not
6B-compatible, the above question remains open and is not
investigated in more depth here.

5 Conclusions
In generalthe use of unary quality indicators is restricted:
either the indicator values allow us to make strong state-
ments (”an approximation set is better than another”) for
a rather small number of approximation set pairs as, e.g.,
with the reference line indicator presented Section 4.1; or
we cover a wider range of pairs, but at maximum can con-
clude that an approximation set is not worse than another
as, e.g., with the hypervolume indicator (Zitzler and Thiele
1998). This does not mean that for a specific application
unary indicators allow more powerful statements as above.
However, binary indicators may be a promising alternative
as they overcome the aforementioned problems, though are
more difficult to handle. The investigation of this type of
indicators and the statistical analysis of data from multiple
optimization runs are the subject of ongoing research.
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