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Abstract

It has beenshown that pseudo-randomnum-
ber generator (PRNG) choice can a�ect sim-
ple genetic algorithm (GA) performance.
However, theseperformanceimpacts arenon-
intuitiv e; PRNGs of poor quality can drive
GAs to superior performance, for certain
problems. The same PRNGs cause worse
performance for other problems. In this pa-
per we present a plausible explanation for
this phenomenon: PRNGs of poor quality
causehigher Vosediscrepancyvaluesthan do
higher quality PRNGs. Higher Vosediscrep-
ancy values could then be manifest as GA
performance di�erences, as GA populations
move toward �xed points of the Voseheuris-
tic far away from the expectation.

1 INTR ODUCTION

Several researchers have examined the im-
pact of pseudo-random number genera-
tor (PRNG) choice on genetic algorithm
(GA) performance. Meysenburg and Foster
[Meysenburg, 1997, Meysenburg and Foster, 1997]
examined several PRNGs, using the Knuth
[Knuth, 1997] and Marsaglia's Diehard
[Marsaglia, 1993] empirical test suites. They usedthe
PRNGs to drive a simple GA, applied to a collection
of several well-known GA test functions. Using a
relatively coarse-grained statistical measure, they
found no statistical evidence that PRNG quality
a�ected GA performance.

In a second study Meysenburg and Foster
[Meysenburg and Foster, 1999b] developed a set
of speci�c, empirical PRNG quality tests tailored
to the way a simple GA uses randomness. They

used a similar set of PRNGs and the same set of
GA test functions as in the previous work. They
found, however, that there wasno correlation between
good performance on the PRNG tests and good
performanceby the GA. In the secondstudy, however,
a �ner statistical measurewas usedthat did reveal an
interesting phenomenon.

One of the PRNGs used was a version of the Java
language Random generator, limited to a period of
1000numbers. With such a limited period, this PRNG
(rand1k) failed the PRNG tests miserably. However,
there was evidence that rand1k a�ected GA perfor-
mance. It would be reasonableto assumethat worse
PRNG quality would cause worse GA performance,
but this was not the case.

On several of the GA test functions, rand1k caused
the GA to perform better than other, much better,
PRNGs. On other functions, rand1k causedthe GA
to perform worse than the other PRNGs. In sum-
mary, Meysenburg and Foster's second study found
that there was evidencethat PRNG choice could im-
pact GA performance,although in non-intuitiv e ways.
Similar results have been noted for genetic program-
ming (GP) systems [Meysenburg and Foster, 1999a,
Daida et al., 1997, Daida et al., 1999].

In summary, the research to date on this subject shows
that PRNG choice can impact GA (or GP) perfor-
mance. However, the research shows no direct corre-
lation betweenimproved PRNG quality and improved
GA performance; in fact, better PRNGs can in some
casescauseworse GA performance. No one has yet
beenable to explain why PRNG choice can alter GA
performancein this manner.

2 GA THEOR Y

Vose[Vose,1999] has developed a generalmathemati-
cal theory describingthe behavior of simpleGAs. Vose



calls the search spaceexplored by the GA 
. If the
sizeof 
 is n, then GA populations can be represented
asvectors in n-space.Thesepopulation vectorsare el-
ements of a set that Voseterms the simplex:

� =
�

hx0; : : : ; xn � 1 i : 1T x = 1; x j � 0
	

: (1)

Elements of the simplex are column vectors of sizen,
where each component of the vector is non-negative,
and all components of the vector sum to one. A vector
p 2 � represents a population as follows: component
pj is the percentage of the whole of the j th element of

 in the GA population.

A GA is de�ned in terms of a transition rule � : � ! �,
describing how a GA population evolves over time.
Given an initial population vector p, the next gener-
ation would be � (p); the following generation would
be � (� (p)) = � 2 (p); and so on. Unfortunately , we
are unable to say with certainty what � (p) would be,
becauseGAs are stochastic algorithms.

To deal with the stochastic nature of GAs, Voseintro-
ducesanother function G : � ! �, called the heuristic
function. For a population vector p, the result of G(p)
is another vector q 2 �. q is then used as a sampling
distribution to produce the next generation. The j th

component of q is the probabilit y that the j th element
of 
 is selectedto be a member of the next generation.
The various operators of the GA (selection, crossover,
and mutation, for example) are implemented in the
particular heuristic G chosen. The GA population is
moved forward by applying G to the initial popula-
tion p, and using the resulting sampling distribution
to create the next population. The processrepeats
until termination criteria are met.

Given an initial population vector p, repeated appli-
cations of the heuristic G produce a path through n-
space. This is the expected path the GA population
should follow during a run. Fixed points of G cor-
respond to situations where the GA converges. The
actual path followed by a GA, of course, will vary
to a certain degreefrom the expectation, due to the
stochastic nature of the process.

Vosehas developed a formula for determining how far
away from the expected path a particular GA popula-
tion vector is.

For population vector p, the probabilit y that the next
population vector is q is shown in Figure 1. In the for-
mula, the summationsare only donefor indexeswhere
qj > 0, and r is the number of individuals in the GA
population.

In Figure 1, the term
X

qj log
qj

G(p) j
(2)

is called the discrepancy of q with respect to the ex-
pectation G(p). The discrepancyis a measureof how
far the actual next population vector, q, is from the ex-
pected next population vector, G(p). It is a measure
of the distance betweenexpectation and reality.

Our current research has shown that Vose's the-
ory can be used to explain the non-intuitiv e
GA behavior observed in previous studies
[Meysenburg, 1997, Meysenburg and Foster, 1997,
Meysenburg and Foster, 1999b]. Our hypothesis is
that a PRNG of quality poor enough to drive the
GA population far from the path predicted by Vose
theory, would cause the GA to perform di�eren tly
than a GA driven by a PRNG of higher quality.
We hypothesized that a PRNG like rand1k would
cause higher Vose discrepancy values for successive
GA populations than a high quality PRNG like the
Mersenne Twister [Matsumoto and Nishimura, 1998]
would. Then rand1k might drive the GA populations
into the basinsof attraction of di�eren t Voseheuristic
�xed points than the Mersenne Twister would; this
would account for GA performancedi�erences.

3 EXPERIMENT DESIGN

In order to test our hypothesis,we�rst collected42GA
test problems suitable for Vose discrepancy statistic
calculation. Since the complexity of the discrepancy
measureis O(3l ), for chromosomelength l , the statistic
can only be e�cien tly computed for chromosomesof
approximate length 20 or less. Our test functions were
created as part of an undergraduate research project.
The functions are basedon several di�eren t classesof
problems drawn from the literature, adapted to our
chromosomelength restrictions. The functions have
chromosomelengths ranging from eight to 20. Our GA
test problemsare brie
y summarizedin Table 1. More
detailed descriptions of each of the problems may be
found on the World Wide Web at the following URL:
http://ist.doane .ed u/ meysenburg /c ooper st uff
/index.html . This page describes each test prob-
lem, aswell asthe parameters(crossover and mutation
rates, population size,etc.) usedfor each run.

Next, we ran a simple GA (of the type described by
Vose [Vose,1999]) on each of the 42 GA test prob-
lems. We repeated the runs for each of 14 di�er-
ent PRNGs, ranging in quality from rand1k to the
Mersenne Twister. Finally, to reduce the likelihood
of anomaliescausedby poor seedvalue selection, we



repeated each of our runs for 32 di�eren t PRNG seed
values. For each problem / seedvalue combination,
we initialized the GA population identically , and then
usedthe PRNG under test for the rest of the GA run.
In this way, each of the runs for a problem / seed
value pair started at the samepoint in 
. The seed
values and initial populations were constructed using
the truly random sourceat www.random.org .

We then usedthe Mann-Whitney non-parametric sta-
tistical test to determine if PRNG choice causedper-
formancedi�erences in our GA runs. Wecomparedav-
eragepopulation �tness on a generationby generation
basis in a manner similar to Meysenburg and Foster's
secondstudy [Meysenburg and Foster, 1999b].

Finally, we calculated the Vose discrepancy statistic
betweeneach generationof each GA run. Thesecalcu-
lations are complete for every GA test function where
l < 20, and are still under way for the problemswhere
l = 20. We usedthe Wilcoxson non-parametric statis-
tical test to determine if discrepancyvaluescausedby
the rand1k PRNG were greater than those causedby
the other PRNGs.

4 RESUL TS

In our experiments, we again found that PRNG choice
impacts GA performance. Our statistical measures
heredid not indicate if a PRNG causedbetter or worse
GA performancethan the other PRNGs; the measures
only detectedthat a di�erence (in either direction) ex-
isted. Of all our GA runs, we found that the rand1k
PRNG causedperformance di�erences in 68% of the
cases. None of our other PRNGs caused consistent
performance di�erences across the 42 GA test func-
tions.

Having con�rmed that rand1k causesunexpected GA
performance, we next tried to determine if the poor
quality of rand1k causedhigher Vosediscrepancyval-
uesthan our other PRNGs. For the GA test functions
we have had time to calculate Vosediscrepancystatis-
tics for, this is indeed the case.Representativ e results
for three of our shorter-length GA test functions are
shown in Tables2, 3, and 4.

The DC 19 GA test function has chromosomelength
l = 12. The function is an instance of CNF-SAT, for
12 variables, 300clauses,and �v e variablesper clause.
The bits of the chromosomedetermine the values of
each variable.

The DC 37 and DC 41 GA test functions have
chromosome length l = 8. These functions are
a modi�ed version of the emergency-unit place-

ment problem described by Haupt and Haupt
[Haupt and Haupt, 1998]. In this case,an emergency
responsebuilding must be placed on a city map, rep-
resented asa 16 by 16 grid, with a river cutting across
the map at row seven. A bridge is placedover the river
to allow vehiclesto crossthe river. For the DC 37func-
tion, the bridge is in column one of row seven, while
in the DC 41 function, the bridge is in column seven
of row seven.

In the �gures, the letter 'W' represents a casewhere
the row-label PRNG causedstatistically higher Vose
discrepancy values compared to the column-label
PRNG. The �gures show that, for these GA test
functions, rand1k causes higher discrepancy values
than any of our other PRNGs. Other PRNGs cause
sporadic Vose discrepancy di�erences, but rand1k
causeshigher Vosediscrepanciescomparedto all other
PRNGs, in all of the GA test functions we have com-
puted the statistics on so far. We speculate that the
sporadic Vosediscrepancydi�erences of other PRNGs
are caused by the small population size of our GA
runs; Vosetheory says that higher discrepancyvalues
are likely in small population GAs.

It is interesting that the infamous RANDU PRNG
[Knuth, 1997], which scoresas badly as rand1k in the
Diehard suite of PRNG quality tests, doesnot impact
the GA in the same way rand1k does. In particu-
lar, RANDU never causedGA performancedi�erences
in our runs (while rand1k did 68% of the time), and
neither did RANDU causeconsistently higher discrep-
ancy valuesthan the other PRNGs (while rand1k did).
Therefore, it seemsthat the Diehard suite is not pre-
dictiv e for GA use. We have developed a GA-speci�c
empirical test of PRNG quality (described in a poster
presented at this conference[Meysenburg et al., 2002])
which eliminates this falsepositive problem. Our new
test, tailored to the speci�c GA parameters of our
test functions, givespoor scoresto rand1k but normal
scoresfor RANDU.

In summary, for the GA functions we have been able
to examine to date, rand1k does cause higher Vose
discrepancyvaluesthan other, higher quality PRNGs.

5 CONCLUSIONS AND FUR THER
W ORK

Wehaveshown that poor PRNG quality doescorrelate
with abnormally high Vose discrepancy values. We
feel that this correlation explains why a poor quality
PRNG, such as rand1k, can cause improved or de-
graded GA performance, compared to other PRNGs.
High enough discrepancy values could causethe GA



to enter the basins of attraction of unexpected �xed
points of the Voseheuristic; this would be manifest as
GA performancedi�erences.

In order to further bolster our con�dence in our hy-
pothesis, we are continuing Vosediscrepancycalcula-
tions on our larger GA test functions. As the results
becomeavailable, we will determine if the correlation
between poor PRNG quality and high Vose discrep-
ancy values continues. In addition, we would like to
determine the �xed points of the Voseheuristic for our
GA test functions, in order to con�rm that rand1k
drives GA populations to �xed points di�eren t than
other PRNGs do.
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Figure 1: Voseequation for probabilit y that population q camefrom population p.

Function Name Length Function Name Length
DC 01 Rastrigin's Function 20 DC 22 Ackley's Trap Function 20
DC 02 Michalewicz'sFunction 16 DC 23 Ackley's 1-Max Function 20
DC 03 Whitley's Function 20 DC 24 Ackley's Mix Function 20
DC 04 Rana's Function 20 DC 25 Ackley's Plateaus Function 20
DC 05 Schwefel's Function 20 DC 26 Hoelting's Projectile 16
DC 06 Griewangk's Function 20 DC 27 Koza's Cart-Pole 20
DC 07 Scha�er's Function 20 DC 28 New Light's Bug Bomb 16
DC 08 McElvain's Fibonacci 16 DC 29 Haupt's 4-letter Word Guesser 20
DC 09 Sha�er's Function 20 DC 30 Koza's Cart-Pole I I 20
DC 10 Keane'sBump Function 20 DC 31 Koza's Cart-Pole I I I 20
DC 11 Shopping Cart Packing 18 DC 32 Koza's Cart-Pole IV 20
DC 12 Function F9 20 DC 33 6-city TSP 18
DC 13 Schubert's Function 20 DC 34 Max Clique 16
DC 14 16-200-4CNF-SAT 16 DC 35 6-city TSP II 18
DC 15 16-50-3CNF-SAT 16 DC 36 6-city TSP II I 18
DC 16 20-80-3CNF-SAT 20 DC 37 Haupt's ERU Location 8
DC 17 15-5-5CNF-SAT 15 DC 38 Haupt's ERU Location I I 8
DC 18 20-80-3CNF-SAT II 20 DC 39 Real Topology Hill-Clim ber 9
DC 19 20-300-5CNF-SAT 20 DC 40 Binary-to-Gra y Circuit 17
DC 20 Ackley's 2-Max Function 20 DC 41 Haupt's ERU Location I I I 8
DC 21 Ackley's Porcupine 20 DC 42 Meysenburg's DFA 18

Table 1: Doane CollegeGA Test Suite functions
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Abstract

A no v el approac h to obtaining a tigh t link-

age b et w een genes in a genetic algorithm is

describ ed, and a new system based on that

approac h, LINK GA UGE, is prop osed. Ex-

p erimen ts presen ted dra w a comparison b e-

t w een the standard messy genetic algorithm

and LINK GA UGE, and sho w that the latter

a v oids deceptiv e traps and early con v ergence,

with minimal computational cost. The scal-

abilit y p oten tial of the new approac h is il-

lustrated with results for t w o hard deceptiv e

problems.

1 INTR ODUCTION

Since they w ere �rst in tro duced, genetic algorithms

(Holland, 1975; Goldb erg, 1989) ha v e b een considered

go o d all-round general problem solv ers, and ha v e since

b een applied to a v ariet y of problems, whic h sho w their


exibilit y and adaptabilit y . In the standard approac h,

eac h individual consists of a sequence of v alues, and

op erators are pro vided to exc hange and com bine those

v alues, so that building blo c ks (short, highly �t se-

quences of v alues) are constructed, and later com bined

to form correct solutions. Ho w ev er, there is no mec h-

anism to ensure a tigh t link age b et w een the v alues of

those sequences (Goldb erg, Deb, Korb, 1991); when

applying standard genetic op erators, this leads to an

easy disruption of building blo c ks, rather than their

main tenance (Harik, 1997), and therefore to an inabil-

it y to scale-up to more di�cult problems. F urther-

more, an individual's genes are p osition dep enden t,

in that a giv en lo cus on the genome alw a ys co des for

the corresp onding bit p osition in the phenot yp e. This

can mak e crosso v er ev en less lik ely to main tain useful

building blo c ks, esp ecially if they represen t geograph-

ically distan t p ositions in the phenot yp e.

According to (Goldb erg, Deb, Thierens, 1993), a suc-

cessful algorithm should not only concen trate on the

pro duction of building blo c ks, but also on their preser-

v ation and exc hange b et w een individuals.

In recen t y ears, m uc h w ork has b een done on ac hieving

a tigh ter link age b et w een genes, and a family of algo-

rithms called comp eten t GAs has emerged (Goldb erg,

2001); these are mostly based on the idea of genes co d-

ing b oth the p osition and the v alue of eac h elemen t of

an individual. These algorithms ha v e pro v en to b e

successful when applied to hard problems, suc h as de-

ceptiv e link age problems (Goldb erg, Korb, Deb, 1989;

Goldb erg, Deb, Kargupta, Harik, 1993; Harik, 1997;

P elik an, Goldb erg, Can t � u-P az, 1999).

In this pap er, w e presen t a new system, LINK GA UGE,

whic h tac kles the class of deceptiv e link age problems

b y using a simple y et e�ectiv e algorithm. This sys-

tem is an extension of GA UGE (Genetic Algorithms

Using Grammatical Ev olution), a system describ ed in

(Ry an, Nicolau, O'Neill, 2002) and based on the idea

of enco ding a p osition/v alue couple on eac h gene, to

create a p osition-indep enden t algorithm; GA UGE, in

turn, emplo ys man y of the ideas b ehind Grammati-

cal Ev olution (Ry an, Collins, O'Neill, 1998; O'Neill,

Ry an, 2001; O'Neill, 2001). So far, GA UGE has b een

successfully applied to b oth standard and deceptiv e

ordering problems.

Our aim when running the exp erimen ts describ ed in

this pap er w as to test the aptitude of LINK GA UGE

to solv e link age problems, and its scalabilit y when pre-

sen ted with more di�cult problems; to do so, w e ap-

plied the system to t w o hard deceptiv e link age prob-

lems, and compare its p erformance to the standard

messy Genetic Algorithm (Deb, Goldb erg, 1991). By

extending GA UGE's mapping mec hanism, w e ha v e

built a new 
exible approac h to this kind of prob-

lem; our results sho w b y comparison that it �nds a

solution faster, scales b etter to harder v ersions of the



problem, and requires far less hardw are resources than

the messy GA

1

.

This pap er is organized as follo ws: w e start b y brie
y

in tro ducing Grammatical Ev olution in section 2, fol-

lo w ed b y an explanation of ho w GA UGE w orks (sec-

tion 3) and its extension in to LINK GA UGE (section

4). In section 5 w e presen t the problems used for our

exp erimen ts, and in section 6 w e presen t our results.

Finally an analysis of those results is made and con-

clusions are dra wn in section 7, follo w ed b y the outline

of some future directions of researc h in section 8.

2 GRAMMA TICAL EV OLUTION

GA UGE is based up on man y of the tec hniques imple-

men ted in Grammatical Ev olution, so w e start with an

in tro duction to this system, to highligh t the similari-

ties and di�erences b et w een the t w o systems.

Grammatical Ev olution (GE) is an ev olutionary al-

gorithm approac h to automatic program generation,

whic h ev olv es strings of binary v alues, and uses a BNF

(Bac kus-Naur F orm) grammar to map the strings in to

programs. This mapping in v olv es transforming the bi-

nary individual in to a string of in teger v alues, and then

using those v alues to c ho ose transformations from the

giv en grammar, so that a start sym b ol is mapp ed in to

a syn tactically correct program.

This pro cess is based on the idea of a genot yp e to phe-

not yp e mapping: an individual comprised of binary

v alues (genot yp e) is ev olv ed, and, b efore b eing ev al-

uated, is sub jected to a mapping pro cess to create a

program (phenot yp e), whic h is then ev aluated b y the

�tness function. This creates t w o distinct spaces, a

searc h space and a solution space.

The degenerate genetic co de emplo y ed in GE also pla ys

a role in the p erformance of the system, as seen in

(O'Neill, Ry an, 1999); b y using the mo d function to

normalize eac h in teger to a �nite n um b er of pro duc-

tion rules, di�eren t in teger v alues can b e used to select

the same rule. The genot yp e can therefore b e mo di-

�ed without necessarily a�ecting the phenot yp e, in a

pro cess kno wn as neutral m utations (Kim ura, 1983;

Banzhaf, 1994).

Finally , the functionalit y of the v alues in the in teger

string is dep enden t on the v alues preceding it, as those

determine whic h non-terminal sym b ols remain to b e

mapp ed. This creates a link age b et w een eac h gene

1

Due to its v ariable length nature, some messy GA

runs required o v er 1GB of memory to store a p opula-

tion, comparing to less than 1MB for the most demanding

LINK GA UGE runs.
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Figure 1: Genot yp e to Phenot yp e mapping

on the c hromosome and all those whic h precede it,

and helps the individual in preserving go o d building

blo c ks during the ev olution pro cess, where it is sub-

jected to the harsh e�ects of op erators lik e crosso v er.

This has b een termed the \Ripple E�ect" (Keijzer,

Ry an, O'Neill, Cattolico, Bab o vic, 2001).

3 GA UGE

GA UGE is based on man y of the same ideas b ehind

the implemen tation of GE. It uses a genot yp e to phe-

not yp e mapping in m uc h the same fashion: an indi-

vidual is comp osed of a binary sequence (genot yp e)

whic h, once ready for ev aluation, is mapp ed on to a

string of in teger v alues, whic h are deco ded as a col-

lection of (p osition, value) pairs to �nally build a new

binary string (the phenot yp e), ready to b e ev aluated.

Figure 1 illustrates this pro cess, and compares it to

GE's analogy to molecular biology .

Another feature of GE up on whic h GA UGE is based is

that the function of a gene in an individual dep ends on

the v alue of the genes preceding it; this creates a tigh t

link age b et w een adjacen t genes in that individual.

Since the p osition and v alue of eac h bit of the pheno-

t yp e string are expressed on eac h gene, geographically

disparate v alues of the phenot yp e can b e group ed to-

gether on the genot yp e. This leads to the creation of

tigh t building blo c ks at the start of the genome that

can b e gradually gro wn b y the ev olutionary pro cess,

in a pro cess w e call comp etitiv e building blo c ks.



W ork b y Bean (Bean, 1994) with the Random Keys

Genetic Algorithm (RK GA) hin ted that a tigh t link-

age b et w een genes w ould result in b oth a smo other

transition b et w een paren ts and o�spring when genetic

op erators are applied, and an error-free mapping to a

sequence of ordinal n um b ers.

3.1 EXAMPLE GA UGE MAPPING

In this subsection w e tak e a lo ok at ho w an individual

is created and ev aluated using GA UGE. Let us tak e as

an example individual the follo wing binary sequence:

0110 0111 0001 0100 0111 1001 0010 0011

The �rst step is to map it on to an in teger string. F or

the purp ose of brevit y , w e will use four bits to enco de

eac h in teger (rather than the standard eigh t used in

the actual GA UGE co de), and therefore end up with:

6 7 1 4 7 9 2 3

This string will b e ev aluated as a sequence of four

( p osition, value ) pairs, and will b e used to �ll in a

string of four bits. W e therefore tak e the �rst p osition,

6 , and map it on to the n um b er of a v ailable p ositions in

the �nal string (i.e., 4 ), b y calculating the remainder

of the division of 6 b y 4 ( 6 % 4 ), giving the v alue 2

(i.e., the third p osition in the phenot yp e string). W e

use the same mapping pro cess to transform the v alue

for that p osition, 7 , in to a binary v alue: 7 % 2 = 1 .

This is the state of the �nal arra y after the ab o v e

steps are executed:

? ? 1 ?

By taking the next pair, ( 1,4 ), w e again map the

p osition on to the n um b er of a v ailable p ositions, in

this case 3, whic h giv es us 1 % 3 = 1 (second free

p osition), and normalize the v alue 4 on to a binary

v alue, whic h giv es us 4 % 2 = 0 :

? 0 1 ?

With the next pair, ( 7,9 ), w e map the p osition 7 on to

the n um b er of a v ailable p ositions, 2 , b y calculating

7 % 2 = 1 (second free p osition, whic h is the last

p osition in the string), and the v alue 9 on to a binary

v alue, 9 % 2 = 1 :

? 0 1 1

Finally , with the last pair, w e map the p osition

2 on to the n um b er of remaining places, in this

case 1 , giving the v alue 2 % 1 = 0 , and place the

v alue 3 % 2 = 1 in it. Note that the last p osition

will alw a ys b e mapp ed on to v alue 0 , since there

is only one free p osition left in the �nal individual.

Our phenot yp e, no w ready for ev aluation, is the string:

1 0 1 1

3.2 EARL Y RESUL TS

In (Ry an, Nicolau, O'Neill, 2002), GA UGE w as ap-

plied to b oth a standard genetic algorithm problem

and a deceptiv e ordering problem. On the former,

its p erformance w as as go o d as that of a simple ge-

netic algorithm, sho wing that its o v erhead pro cessing

(namely its mapping pro cess) do es not re
ect in a loss

of p erformance in simple problems, while on the latter,

its ( p osition,value ) sp eci�cation w as sho wn to pro vide

the 
exibilit y of sw apping elemen ts in a solution, help-

ing the system to a v oid lo cal optima. The in terested

reader is referred to the men tioned pap er.

4 LINK GA UGE

In this section the LINK GA UGE system is presen ted.

The idea is to extend the tigh t link age b et w een the

gene p ositions, as seen in GA UGE, to the gene v alues

themselv es. This is ac hiev ed b y extending GA UGE's

mapping pro cess: ev ery time a v alue is to b e placed on

the phenot yp e string, it is calculated b y adding all the

previous value �elds in eac h ( p osition, value ) pair and

then normalizing the result o v er the range of accepted

v alues. The v alue eac h gene will pro vide can therefore

b e calculated b y the form ula

(

n

X

i =0

x

i

)% v

where

n = order of the gene (i.e. gene 0, gene 1, etc)

x

i

= n um b er in value �eld for gene i

v = v alue to normalize (for binary strings, 2 is used)

It should b e noted that, theoretically , an y function

could b e used to in tro duce dep endency b et w een the

v alues; the suitabilit y of other functions will b e the

sub ject of further researc h.

4.1 EXAMPLE LINK GA UGE MAPPING

F ollo wing the GA UGE mapping example, the pair

( 6,7 ) will generate the same string as b efore:

? ? 1 ?



In the next pair, ho w ev er, the v alue is calculated b y

(7+4) % 2 (i.e., the cum ulativ e total of the previous

value �elds normalized o v er the range of binary n um-

b ers), giving the v alue 1 . The p osition calculation is

the same as b efore ( 1 % 3 = 1 ), so w e end up with

the string:

? 1 1 ?

In the next pair, the v alue will b e calculated b y

(7+4+9) % 1 , giving the v alue 0 , and the �nal v alue

is calculated b y (7+4+9+3) % 1 = 1 . The �nal string

will b e:

1 1 1 0

The ob jectiv e of this mapping is to create a tigh t link-

age b et w een the v alue of the genes. The previously

men tioned "Ripple E�ect" is therefore extended to the

v alues within the genes themselv es.

5 DECEPTIVE PR OBLEMS

In this section w e in tro duce the t w o deceptiv e prob-

lems whic h w e used on our exp erimen ts. These w ere

used to test the p erformance of LINK GA UGE, and to

compare it to the messy GA, using the mGA co de

a v ailable in the IlliGAL w eb site and describ ed in

(Deb, Goldb erg, 1991). W e c hose to compare our

system to the messy GA as the latter is the origin

of most mo dern comp eten t GAs, in tro ducing the con-

cepts of primordial and juxtap ositional phases, o v er-

and under-sp eci�cation, and comp etitiv e templates.

F uture w ork should include comparisons to other more

recen t comp eten t GAs.

5.1 ORDER-THREE DECEPTIVE

PR OBLEM

The order-three deceptiv e problem w as the �rst prob-

lem rep orted using the original mGA, in (Goldb erg,

Korb, Deb, 1989). In the original problem, ten order-

three deceptiv e sub-functions are concatenated to-

gether to form a 30-bit length problem. W e ha v e ex-

tended the problem, and used lengths of 30, 45, 60, 75,

90 and 105 bits.

Eac h sub-function has a global optim um ( 000 ) and

a deceptiv e lo cal optim um ( 111 ). The ob jectiv e is

to create a series of lo cal optima that will attempt

to k eep the systems from reac hing the one and only

global optim um; on the 105-bit problem, this means

there are 2

105

( 4.05e+31 ) p ossible solutions, with 2

35

( 3.44e+10 ) optima (lo cal and global optim um com-

binations within eac h of the sub-functions), of whic h
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Figure 2: Order-Fiv e Deceptiv e Problem Unitation

Graph.

only one is the global solution for the en tire string.

T able 1 sho ws the function v alues for ev ery 3-bit com-

bination.

T able 1: Order-Three Sub-function V alues.

String V alue String V alue

000 28 100 14

001 26 101 0

010 22 110 0

011 0 111 30

5.2 ORDER-FIVE DECEPTIVE PR OBLEM

In (Goldb erg, Deb, Kargupta, Harik, 1993), a

p erformance comparison b et w een the original messy

GA and the F ast Messy Genetic Algorithm is made, b y

using b oth the order-three sub-function and an order-

�v e sub-function; w e used the same problems in our

tests.

In this problem, substrings of �v e bits are con-

catenated together, with the global optim um b eing

( 11111 ) and the lo cal optim um ( 00000 ). Figure 2

sho ws this problem in terms of a unitation graph, i.e.

the n um b er of 1 s in a sub-function determines its �t-

ness. This function is fully deceptiv e, as can b e seen

in (Deb, Goldb erg, 1994).

6 EXPERIMENTS

In this section w e presen t the results obtained on the

t w o describ ed problems, using b oth LINK GA UGE and

the original messy GA. W e start b y describing the ex-

p erimen tal setup used on eac h system, follo w with an

o v erview of the results obtained in our exp erimen ts,

and conclude this section with a discussion of those

results.
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2 TEST PROBLEMS

�1� ��	��1���� ���	��� 1��� �������� 4�� ������
�	����� 	 ���%��	����	� ������!	���� ���%��� K �2�
�������� I�	��	�0 ���%���� 	�� 	� ��$�������$ ���%�
��� K �2� ����$� �4 	� �����	� 	����	4� C��$�
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�2� �������� I�	��	�0 �� 	 �	.���!	���� ���%����
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�. �� 	 ������!	���� ���%���'
�2�� ��������� �� ����12	� 	�%���	��� %�� �� �������
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���. ���%����# �2� C��$�
�. �� 	� ��$�������$ ����$�
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2.1 THE WING-BOX PROBLEM
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12��� ������!��$ �2� �	�� �4 �2� 1��$ 	�� �������$
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� 4��� ����������� �4 	 �������	� �������� �� �2� C��$�

�. ���%��� ��D����� �2� ��6������ �4 �2� ���%�� �4
��%� � 	�� �2� �2��0���� �4 �2� � � � �	����' �2���
�� 	 ������	��� �� �2� �2��0���� �4 �2��� �	���� 12��2
�� �2	� 	��	���� �	���� �2���� ��� ��>�� �� �2��0����
%� ���� �2	� �'*) ��' �2� �������� 1	� �� 	�����
����2 �2��� �� �� ������ �2� ��>������� �� �2��0���� %��
�1��� 	��	���� �	���� �	�2�� �2	� �2� 	%������ �2��0�
���� �4 �2� �	����' �4 1� 0��1 �2� ��>������ �� �2��0�
���� ��� 7	8 %��1��� �	���� 	 	�� 	 (� 4�� 	 � 7�
 � � �8�
�2� 	%������ �2��0���� �4 �2� 6��� �	��� �� ����$2 ��
��6�� ������2��$ ����'

J��$��	���� �2� C��$�
�. �	�	������ 1��� ������� 4���
��1��$ �2� ����� ������%�� %� -�$��� *' -�� �2� �.����
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�4 �2� 1��$' G����� 	��� �2	� �� %��2 �2� �������$ �4
�2� 6��� �������� 	�� �2� ���	����� � � * ���������
�2��� �� 	� 	����� �4 ������	��� �� �2� $������� ��
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�, ( , � /� 5 �+�'

N:   Number of ribs

th(i): Thickness of i    panelth

th(2)-th(1) th(N-1)-th(N-2)
. . .. . . � �th(i)= th(N-2)=

th(i+1)-th(i)
th(1)=�

N th(1)

-�$��� *# ������� ������������	� 	� ��� ���
 �����������

2.2 THE MULTIPLE KNAPSACK
PROBLEM
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3 METHODS

-�� �����	���$ �����	� ���	���� �	��� �� 3�� 1� ����
�� ��6�� 12	� 	� �����	� �� ��	�������	� ���	����
�	�� ��' �2� 1��0��$ ��6������ ���� 2��� ��# 	� ���
���	� ���	���� �	�� �� �2	� ��������$ �����	� ���4���
�	���' 
�� �2��� 1� ���� 	 $��� 1	� �4 ��	����
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�� �2� ��	��	�� ���4���	��� ��	����� 4�� 3�� 	��
�2� 	���	$� 	�� %��� 6����� �	���� 	��	���� 	4��� 	
���6.�� ������	���� ���������� 	���	$�� ���� �����	�
����' C��2�� 	 $���� ���� �2� %��� 6����� ����� %�
���2�� �2� ������� %��� �� �2� �����	����� �� �2� %���
6����� 	��	���� �� 4	�' �2��� ��	����� 	�� ����������
	4��� 	 6.�� ������	���� ���������� �� ���� 6.�� ������
�	�� �2���$2��� �2� 3� ���' -�� �2� �.��������� ��
�2�� �	���� 1� 1��� �������� �2� %��� 6����� 	��	����
�� 4	� 	4��� 	 6.�� ������	���� ���������' �2�� ������
���� 1��� %� �	��4���� �������� �� �	�2 �	�� �� %� ���$
����$2 �� ��	%���!� �2� %��� 	�� 	���	$� 6����� �4 �2�
�����	����' �2� 	���	$� �4 �����	� ���� 1��� %� ����
������� 7�����	��� )�8 	�� �2� ��	��	�� ����	���� 1���
%� �2�1� �� ���� �	���' �2� 6��� �������	� ��������
2�1����� ������� �2� ���� ���������� �4 �2� ���	����
�	��' �� �2�� �	�� %�������4	� 6����� �	���� 	�� ��������
	� 6.�� ������	��'

�� ����� �2� 	�����	%����� �4 �2� � �� 2��������� 1� �.�
����� �2� �>��� �4 ����4���$ ���� �����	�� ����������
	�� �	�	������ �� �2� �	$������ �4 �����	� ���	����
�	���' 
����6�	���� 1� �.����� �2� �>���� �4 ����4��
��$ �2� ��������� �������� 	�� �����	���� ��!�' ������
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4 RESULTS

�2��� $����� �4 �.��������� 1��� ���4����� 1��2 �2�
	�� �4 �.������$# 7�8 �2� ��������������� �4 �2� ���
�	���� �	��� 7��8 �2� �>��� �4 ����4���$ �2� ���������
��������� 	�� 7���8 �2� �>��� �4 ����4���$ �2� �����	�
���� ��!�' ".��������� 1��� ��� �� %��2 ���� ���%�
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�. 	�� I�	��	�08' -�� 	�	��!��$ �2�
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�.
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4.1 TIME-DEPENDENCY
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-�� �2� ���������	�� ��	$� �4 �2� ��	��2� �� �2� C��$�
%�. ���%��� �2� ���	���� �	��� �4 � �� 	�� * �� ����
����� �2� %��� ������� 	�� ���4����� �����	��� 7-�$���
,� ���8' J� �2� I�	��	�0 ���%���� 	 ���	���� �	��
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4.2 SELECTION PRESSURE
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4.3 POPULATION SIZE

�2�� ��%������� �.������ �2� �>��� �4 ����4���$ �2�
�����	���� ��!� �� �2� �	$������ �4 �����	� ���	����
�	���' �2��� �����	���� ��!��# ��� )�� 	�� ���� 1���
������' �2� ���%�� �4 $����	����� ���� 	� 	 ���� ����
������ �	���� 	�������$ �� �2� �����	���� ��!� �����
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5 DISCUSSION

�2�� �	��� 2	� %��� 	 6��� 	������ �� �.����� �2� �	�
������ �4 �2� 2�������� ��$$�����$ 	 ���	���� �	�� �4 � ��
4�� 3�� 1��2 %��������$ �������$' �1� ���������� ���
���	��� 	�� ������. ��	��1���� ���	��� 1��� ��������
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���� �4 �����	� ���	���� �	���' �2� ��� �4 �������
����	� ��������� 712��� �2��� �� �� ������� ���� �2� ���
������� ��������8 �	� ������� ���2 ��	���� �����	�
���	���� �	��� 	� ����	��� �� �����	���� ���������'
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�4 ��!� ���8� �����	� ���	���� �	��� �������� %��1���
�'� 	�� *'� ���	����� ��� $�������� 12���	� 4�� �����
�	���� ��!� �4 / �2�� �����	��� �� *') � ,'� ���	�����
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Population size: �2� �>��� �4 �����	���� ��!� �� �2�
�	$������ �4 �����	� ���	���� �	��� 1	� ��� 4����
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�����	� ���	���� �	��� ���� �� ��	%���!� 4�� �����	����
��!�� �4 )� 	�� �	�$��'

6 CONCLUSION

�� �� ���� ��M���� �� ��$$��� $����	� ���������� 4�� ����
���$ ���������	�� �	�	������' �2� �������� $	�2����
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Abstract

Competitive �tness is the assessmentof an in-
dividual's �tness in the context of competition
with other individuals in the evolutionary sys-
tem. This commonly takes one of two forms:
one-populationcompetitive �tness, wherecom-
petition is solely between individuals in the
samepopulation;andN-populationcompetitive
�tness, often termed competitive coevolution.
In this paper we discusscommon topologies
for one-populationcompetitive �tness functions,
thentesttheperformanceof two suchtopologies,
Single-EliminationTournamentand K-Random
Opponents,on four problem domains. We
show that neitherof theextremesof K-Random
Opponents(RoundRobin andRandom-Pairing)
gives the bestresultswhen using limited com-
putationalresources.We also show that while
Single-EliminationTournamentusually outper-
forms variations of K-Random Opponentsin
noise-freeproblems,it cansuffer from premature
convergencein noisydomains.

1 INTRODUCTION

Traditionalevolutionarycomputationassessesthe�tnessof
anindividual independentlyof otherindividualsin thesys-
tem. But therealso exist evolutionary procedureswhere
this is not the case: an individual's �tness is dependent
on cooperationor competitionwith peersin theevolution-
ary run,andthusmaychangedependingon themakeupof
thosepeers.

Suchprocedureshaveseveralattractivefeatures.First,they
permitevolution to searchfor solutionsto problemsin the
absenceof any obvious way to gaugean objective (peer-
independent)�tness. Consider: how doesonedetermine
the quality of a soccerplayerprograma priori? Second,

they can gradually ramp up problemdif�culty as evolu-
tion �nds bettersolutions.Thispromisesto smoothout the
searchgradient.Third, they seema naturalmatchfor �nd-
ing solutionsto problemsthat naturallyrequireteamwork
or thataremosteasilydiscoveredthroughcompetition.

We are temptedto bring all theseproceduresunder the
aegis of coevolution, but thereare nomenclaturedif�cul-
tieswith theuseof thisterm.In biology, coevolutionis best
reservedfor situationswherethereis morethanonepopu-
lation,andanindividual's �tness is assessedin thecontext
of individualsin otherpopulations.Suchmulti-population
coevolution is usuallyusedasa self-adaptive mechanism
to increaseproblemdif�culty asmembersof the popula-
tion becomemoreadaptat solvingthegivenproblem.The
classicexampleof multi-populationcompetitive coevolu-
tion is [Hillis 1991],whichcoevolvedapopulationof sort-
ing networksanda populationof problemsets.The�tness
of sortingnetworks wasbasedon the numberof problem
setsthey properlysolved,andthe�tnessof theproblemsets
wasbasedonthenumberof sortingnetworksthey stumped.
[RosinandBelew 1995] alsouseda two-populationcom-
petitive systemto evolve playersfor the gamesof Nim,
Tic-Tac-Toe, andGo with a 7x7 board. Multi-population
coevolution is alsousefulascooperativecoevolution. Here
individualsfrom differentpopulationseachlearnsubparts
of a commonsolution, and their �tness is basedon the
combinationof thosesubparts. Examplesof cooperative
coevolution include[ErikssonandOlsson1997;Potterand
De Jong2000;Wiegandetal. 2001].

One-population“coevolution” rarelyif ever takescoopera-
tive form. Instead,this techniqueis nearlyuniversallyused
to evolvegameplayersby competingamongstthemselves.
For lack of a standardizedterm for one-populationtech-
niques,we call theseone-populationcompetitive�tness
functions; for therestof thispaper, wheneverwesay“com-
petitive �tness functions” we imply the one-population
sort. [Luke 1998] usedsuchcompetitive �tness to evolve
soccer-playing softbot teams,and [Fogel 2001] usedthe
techniqueto evolve a highly human-competitive check-



ers program,Blondie24. One-populationcompetitive �t-
nesshasalso beenusedto �nd solutionsto the Iterated
Prisoner's Dilemma [Axelrod 1987], Tic-Tac-Toe [Ange-
line andPollack1993],Backgammon[Pollacket al. 1997;
PollackandBlair 1998], Othello [Smith andGray 1993],
pursuit-evasion[Clif f andMiller 1995],Go [Lubbertsand
Miikkulainen2001]andTag[Reynolds1994].

Oneimportantpartof a competitivesystem's successis its
topology: how the�tness-evaluationcontext is established
for a given individual. Do all individualsplay againstall
otherindividualsin thepopulation?Are they simplypaired
upfor asinglegameeach?Sometopologiesrequirea large
numberof gamesto evaluatean individual, but may be
moreaccuratethanthoserequiringfewergames.

This paper comparestwo topological families in one-
populationcompetitive-�tness games. We begin by dis-
cussingcommontopologiesin the literatureandtheir ad-
vantagesanddisadvantages.Thenwe introducefour prob-
lem domains,and show how various topologiesfare in
thesedomainsandunderdifferentamountsof noisein the
�tness-assessmentprocess.

2 COMPETITION TOPOLOGIES

Not all competitive �tness topologiesare appropriatefor
all problems;the primary issuebreaksdown along lines
of �tness-assessmentmethodology. Imagineif one were
trying to evolve chessplayers. How doesone establish
that player A is better than player B? The duel method-
ology statesthatA is betterthanB if andonly if A usually
beatsB in amatch.This is themethodologybehindsingle-
and double-eliminationtournaments. The rennaisance-
manmethodology saysthat A is betterthanB if A beats
morecompetitorsthanB doesonaverage(or scoresagainst
competitorsby a wider margin on average),even if A
wouldloseto B in amatch.Thisis themethodologybehind
chessrankings,for example. It is interestingto notethat
many sportsuseacombinationof thesetwo methodologies,
usuallyby usingaveragesuccessagainstopponentsduring
the seasonto determinethe entrantsto a single elimina-
tion tournament,whichthendeterminesthe�nal champion.
Whetherthereis someinnatesuperiorityto this combina-
tion is questionable:morelikely it is dueto theexcitement
of duels:afterall, “in theendtherecanbeonly one”.

Thereareother interestingissuesin designingtopologies
which we will not delve into save to mentionthemhere.
Oneissueis whetheror not individualsshouldplayagainst
themselvesaspartof their evaluation.Anotheris whether
or not to permit statisticaldependenciesin �tness assess-
ment:whenindividualA playsagainstindividualB, should
theoutcomeaffect individualA's �tness alone,or shouldit
alsoaffect individualB's �tness?

2.1 ROUND ROBIN

One simple topology is RoundRobin, where eachindi-
vidual playsevery other individual in the population. An
individual's �tness is the averageof its scoresagainstev-
eryotherindividual in thepopulation[Axelrod1987;Koza
1992]. The primary drawbackto this methodis the rela-
tively largenumberof gamesnecessaryto evaluatea pop-
ulation of sizeN. The numberof gamesis (N2 � aN)=b,
wherea = 0 if individuals may play againstthemselves,
elsea = 1, andb = 2 if a gamecontributesto the �tness
of both individuals, elseb = 1. At �rst glanceit would
appearthat Round Robin topologieswould promotethe
rennaisance-manmethodology. At thebeginningof anevo-
lutionary run, this is plausible.But asthe run progresses,
thetrajectoryof therun might shift to the“better” players,
so to speak,so thatnearthe endof the run it is searching
notfor individualswhowin themostpointsonaverage,but
oddly for individualswho win themostpointson average
againstothersuch individuals.

2.2 RANDOM-PAIRING

The other extremein the numberof gamesis to pair all
individualsup and play one gamefor eachpair. This is
theapproachusedin [Luke1998]for evolving soccerteam
strategies. The justi�cation for this low numberof games
wastheextremecomputationalcostof agame:to beevalu-
ated,thetwo teamswerepluggedin asimulator, andastan-
dardgamecouldlastfor upto 10minutes.Random-Pairing
requiresonly N=2 gamesfor a populationof sizeN. The
costsavings is dramatic: for a populationof 100 andten
minutespergame,Axelrod'sRoundRobinapproachwould
require833hourspergeneration,whereasRandom-Pairing
would requireabout8 hours. SmithandGray [1993] also
usedthis techniqueto evolve Othelloplayers.Thedanger
of Random-Pairing is that noisy evaluationmight make it
all but impossibleto determinethe real quality of an in-
dividual basedon a singletrial. Note too that like Round
Robin,Random-Pairinghasasimilar tenuousclaimto pro-
motingtherennaisance-manmethodology.

2.3 SINGLE-ELIMIN ATION TOURNAMENT

[Angeline and Pollack 1993] proposed using single-
eliminationtournaments(“SET”) ratherthanRoundRobin
or Random-Pairing. Here, individuals are pairedat ran-
dom,andplay onegameperpair. Thelosersof thegames
areeliminatedfrom thetournament;tiesarebrokenby ran-
domdecision.Thewinnersareagainpairedoff at random,
and play one gameper pair, with the losersagainelimi-
nated. This continuesuntil the tournamenthasonly one
“champion”left. The�tness of anindividual is thenumber
of gamesit played.Single-EliminationTournamentis sim-



plestto implementwhenthepopulationis a power of two.
AngelineandPollackreportedgoodinitial resultswhenus-
ing SETto evolveplayersfor thegameof Tic-Tac-Toe.

SEThasinterestingproperties.First, it wouldseemto pro-
mote the duel methodologyrather than the rennaisance-
man methodology. However, it only truly promotesthe
duelmethodologyunderthestrongtransitivityassumption:
that if playerA beatsplayerB, andplayerB beatsplayer
C, thenplayerA mustbeatplayerC. Without this assump-
tion, Single-EliminationTournament's real dynamicscan
be murky. The other interestingpropertyof SET is that
it seemsto allocategamesto thoseplayersthatmostneed
them.A populationof sizeN needsonly N � 1 games.But
“�tter” playerswill be evaluatedin more of thesegames
thanthe“less�t” players— theworstindividualsplayonly
one gameeach,while the championplays ln(N) games.
Since selectionwill tend to pick the �tter players,SET
would seemto proportionmoregames,hencemoreaccu-
racy, amongthoseplayersmorelikely to beselected.

2.4 K-RANDOM OPPONENTS

In K-RandomOpponents,eachindividual playsagainstK
individuals picked at randomfrom the population. If a
given gamebetweentwo individualsaffectsthe �tness of
justthe�rst individual,thenatotalof K(N� 1) gamesmust
beplayed.This is theapproachtakenin evolving tagplay-
ers [Reynolds 1994]. K-RandomOpponentscan also be
usedto affect the�tness of bothindividualsin a game.For
example,to evolve the Blondie24checkersplayer, Fogel
[2001] hadevery individual play asredagainst� ve oppo-
nentschosenat randomwith replacementfrom thepopula-
tion. An individual's �tness wasbasednot only on its � ve
gamesas red, but also as its additionalgamesasa black
opponent.

This approachdoes not distribute games very evenly
throughout the population, however. With some fore-
thought,it' spossibletoadaptK-RandomOpponentssothat
agivengameaffectsbothindividuals,with eachindividual
usingthesamenumberof gamesperevaluation.Thetech-
nique,which we will usein experimentsbelow, works as
follows. Eachindividual maintainsa count of the num-
berof gamesit hasplayed,andwho it hasplayedagainst.
WhenanindividualI is to beevaluated,anopponentis cho-
senatrandomfrom thepopulationto playagainstI with the
constraintthatno individual mayplay againstI morethan
once.At theendof thegame,thenumber-of-gamescoun-
ters for I andfor the opponentare incremented.If either
counterreachesK, thenthat individual is “removed” from
the populationin the sensethat it may no longerbe con-
sideredasa futureopponent.A new opponentfor I is cho-
sen,andthis processcontinuesuntil individual I hasbeen
removed. Thena new playerJ is picked, andevaluation

continuessimilarly. At somepoint, for someindividualK,
theremayexist no individualsin thepopulationwhich can
play K. Whenthis occurs,opponentsfor K arepicked at
random,withoutreplacement,from amongtheremovedin-
dividualsin thepopulation.This approachyieldsbetween
d(KN)=2eandd(KN)=2e+ bK2=2c games.

RoundRobin andRandom-Pairing may be viewed asex-
tremesof K for this secondkind of K-RandomOpponents.
When K = N � 1, K-RandomOpponentsis identical to
RoundRobin.WhenK = 1,K-RandomOpponentsis iden-
tical to Random-Pairing. Laterin thepaper, we will exam-
ine K-RandomOpponentsto determinewhat value of K
seemsto give thebestresults:asit will turn out, it is nei-
therof theseextremes.

2.5 HALL OF FAME

Onelast approachin the literatureis a family of “hall of
fame” techniques,whereindividualsin thepopulationare
evaluatedagainstthegoodindividualsdiscoveredsofar in
theevolutionaryrun. Karl Simsuseda simplehall of fame
whenevolving creatureswhich competedto snatcha cube
[Sims1994]. Individualswereevaluatedagainstthe�ttest
individualdiscoveredin thepreviousgeneration.

3 PROBLEM DOMAINS

The problem domainswe will test againstfall into two
categories. First, we usetwo true competitive �tness do-
mains, namely versionsof the Nim game. Second,we
have adaptedtwo standardevolutionary algorithm prob-
lemsandcasttheminto a competitive �tness form. They
are the well-studiedRosenbrockand Rastrigin problem
sets.Thesealgorithmsarecastinto competitiveform using
a techniqueproposedby Ken De Jong: eachindividual's
Rosenbrock(or Rastrigin)valueis assessed,andan indi-
vidual's scorein a gameagainstan opponentis basedon
differencein theirvalues.

3.1 THE INTERNAL ROSENBROCK DOMAIN

The Rosenbrockfunction is a well-known minimization
problemwidely usedto studypropertiesof differentevolu-
tionaryalgorithms[De Jong1975]. TheRosenbrockfunc-
tion for genomesof n variablesis:

Ros(x1; :::;xn) =
nX

i= 1

100(xi
2 � xi+ 1)

2
+ (1� xi

2)



Rosenbrockis converted to the “Internal Rosenbrock”
competitive �tness function as follows. When a player
A plays an opponent B, the score for A, known as
Reward(A : B), is givenby the following normalizingfor-
mula:

Reward(A : B) =
Ros(B) � Ros(A)

max(Ros) � min(Ros)

...wheremax(Ros) and min(Ros) are the maximum and
minimum values of the Rosenbrockfunction over the
entire domain, which we had precomputed. Thus
Reward(A : B) rangesfrom -1 to 1, where 0 represents
a draw. Note that this is a zero-sum,transitive game,
hence Reward(B : A) = � Reward(A : B). Keep in mind
that Rosenbrockis a minimizationfunction: thereforethe
smallerRos(A) is comparedto Ros(B), the higher the re-
wardfor A.

Parameters Internal Rosenbrockexperiments used a
genomeof 100realvalueseachbetween-5.12and5.12,a
populationsizeof 32,a0.5probabilityof mutation,1-point
crossover with a probability of 1.0, 5-individual elitism,
binary tournamentselection,and a maximal run limit of
50,000games.

3.2 THE INTERNAL RASTRIGIN DOMAIN

TheRastriginfunctionis anotherwell-known testin func-
tion optimization;it is considereddif�cult to minimizebe-
causeit hasasingleglobaloptimawith numerouslocalop-
tima in its vicinity [Cervone et al. 2000]. The Rastrigin
functionis de�ned as

Rastrigin(x1::::xn) =
nX

i= 1

xi
2 + a(1� cos(2pxi))

...wherea is a constant(set to 10.0 in our experiments).
Like Rosenbrock,Rastrigin is a minimization problem.
Rastriginis convertedto the “Internal Rastrigin” compet-
itive function in exactly thesameway asRosenbrockwas
converted(thoughmax(Ras) wasestimated).

Parameters Internal Rastrigin experiments used a
genomeof 100 real valueseachbetween-5.12 and5.12,
a populationsize of 32, a 0.5 probability of mutation,
1-point crossover with a probability of 1.0, 5-individual
elitism, binary tournamentselection,and a maximal run
limit of 100,000games.

3.3 THE NIM VERSION 1 DOMAIN

Thereare many variationson the gameof Nim, and we
have chosentwo differentversionsas competitive �tness
functiondomains.TheNim Version1 domainfollows the
Nim gameasdescribedin [RosinandBelew 1995,1996].
This versionuses4 heapscontaining3, 4, 5, and4 stones
respectively. Playerstaketurnsremovingstonesfrom these
heaps. A playermay remove asmany stonesashe likes
from any single heap. Whichever player takes the last
stonewins thegame.Giventheserules,thereexistsawell-
understoodoptimalplayerstrategy for the�rst player.

A genomic representationfor a player behavior in this
gameis a vectorof 599 bits, onefor eachpossiblesitua-
tion (4� 5� 6� 5� 1,becausetheh3;4;5;4i positiondoes
not ever needto be considered).A playermakesits deci-
sion asfollows: for eachpile p from 1 to 4, andfor each
numberx of stonesfor the given pile in decreasingorder
down to 1, the individual considerswhetheror not to re-
move x stonesfrom pile p. Removing thesestonesyields
a new gamestatewhichcorrespondsto oneof the599bits
in thegenomevector. If this bit valueis 1, thentheplayer
commitsto makingthatmove, andno otherconsideration
is made.If all suchvalid stateshave0 bit values,theplayer
makesthe�rst valid move it hadconsidered.

As theexistenceof aperfectstrategy dependsonwhogoes
�rst, a competitionbetweentwo individualsconsistsof 2
games,eachplayerstartingoneof them.Reward(A : B) is
thesumof scoresfor playerA in thesetwo games.For each
game,a0.5is rewardedfor a win anda -0.5for a loss.The
sumof therewardsfor thetwo gamesis therefore-1, 0, or
1.

ParametersExperimentsin this domainusedagenomeof
599 bits, a populationsizeof 128, a 0.003probability of
mutation,1-point crossover with a probability of 1.0, 10-
individual elitism, binary tournamentselection,anda run
limit of nomorethan100,000games.

3.4 THE NIM VERSION 2 DOMAIN

The secondversionof Nim usedin this papercontainsa
singleheap,but thenumberof stonesa playercanremove
is boundedby aminimumandamaximumvalue.For these
experiments,theheapstartsat 200stones,andeachplayer
is allowed to pick 1, 2 or 3 stonesat a time. In this con-
�guration, thesecondplayerhasanoptimalstrategy which
will forcea win.

Justasin Nim Version1, in this gamethe individualsare
representedasvectors,with asimilarmappingof bits to the
199 possiblestates(exceptingthe initial state). Decision-
makingis alsosimilar. Theplayer�rst considersremoving
3 stones(assumingthat3 stonesareleft in theheap).If 1
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InternalRosenbrockDomainwith 40%noise
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is in thebit positioncorrespondingto theresultingstateaf-
ter removing those3 stones,thentheplayerwill make that
move. Otherwise,theplayerconsidersremoving 2 stones.
Barringthat, it will considerremoving 1 stone.If all three
resultantstateshave0 in their bit positions,thentheplayer
will remove the most stonespermissible. A competition
betweentwo individualsis doneidenticallyto theNim Ver-
sion1 problem.

ParametersExperimentsin this domainusedagenomeof
199booleanvalues,a populationsizeof 128,a 0.03prob-
ability of mutation,1-pointcrossoverwith a probabilityof
1.0,10-individualelitism,binarytournamentselection,and
a run limit of nomorethan100,000games.

4 EXPERIMENTS

Theexperimentspresentedhereprobethefollowing ques-
tion. You have 3 monthsuntil the deadlineto submit
an evolved gameplayer to a computergamingcompeti-
tion. Evaluationis expensive andyou'll only getoneshot.
With a �x ed maximum numberof gamesplayableuntil
competition-time,what topologiesare likely to get good
results?

We will compareSET and variousK-randomopponents
topologiesover the four problemdomains,usinga single-
population, generationalgenetic algorithm, with binary
tournamentselection,mutation,crossover, andelitism. Ex-
perimentalruns are doneby evaluatingindividualsup to
somemaximalnumberof games;themaximalnumberwas
previously speci�ed in the parametersfor eachdomain.
Keepin mind thatanevaluationis not thesamething asa
game. Sometopologiesrequireagreatmany gamesplayed
before an individual's �tness is determined. Thus each
graphcomparesdifferent topologies'performancesgiven
thesamenumberof resources.

Ultimately we are trying to determinewhat topology is
likely to give the “best results”. To comparetopologies,
we needa �nal external �tness usedfor comparingbest-
of-run resultsbetweentopologies,asopposedto the sub-
jective internal �tnessusedto selectindividualsduringthe
runsthemselves.For theInternalRosenbrockandInternal
Rastriginproblems,theexternal�tness of an individual is
clearlyobjective andclearlycomputable:it' s just theindi-
vidual'sperformanceontheRosenbrockor Rastriginfunc-
tions.

For theNim gameshowever, we arefacedwith theclassic
external-�tnessconundrum:theonly obvious external�t-
nessmeasuresavailablearesubjective, that is, they' re de-
terminedin thecontext of otherindividuals.In theabsence
of any clearobjectivemeasure,we mustresortto a subjec-
tive way to scorethe �nal performanceof the best-of-run
individuals for any given Nim topology. To do this, our

SET K=1 K=25 K=50 K=127
SET and K- Random Opponents

- 0.75

- 0.5

- 0.25

0

0.25

0.5

0.75

1

F
in

al
R

ou
nd

R
ob

in
S

co
re

SET K=1 K=25 K=50 K=127
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Figure8: Rankingof SET andK-RandomOpponentsfor
theNim Version2 game

approachis to determinethe bettertopologiesby literally
playingtheir “best” individualsagainsteachother. For any
given applicationof a topology, we perform 50 indepen-
dentruns. For eachrun, we determinea “best of run” by
takingthebest-of-generationindividualsfrom eachgener-
ation,andplacingthemin asingleeliminationtournament.
Thusfor eachapplicationof a giventopology, we have 50
best-of-runindividuals.To compareseveral topologiesfor
a particularproblemdomain,we thentake the50 best-of-
run individualsof eachtopologyandplay all of themin a
RoundRobin tournament.The “quality” of a best-of-run
individual in the �nal tournamentis equal to its average
scoreagainstothersin the tournament. Thus the “qual-
ity” of a particulartopology is the meanof the qualities
of its best-of-runindividuals. This maynot necessarilybe
anidealcomparisonmetric(wedon't know if anidealeven
exists),but we feel it is a reasonableone.



4.1 RESULTS

We ranall experimentson theECJ7 evolutionarycompu-
tationsystem[Luke2001]. Figures1 through8 show box-
plots1 comparingSETwith K-RandomOpponents.Figures
1 through6 usevaluesof K rangingfrom 1 to 31;Figures7
and8 useK valuesof 1 to 25,30,35,40,45,50,60,70,80,
90,100,127.Theverticalaccessplotsexternal�tness val-
uesof thebest-of-runindividualsfor varioustopologies.In
theRosenbrockandRastrigindomains,theexternalscores
weretheactualRosenbrockor Rastriginfunctionvaluesfor
thebest-of-runindividuals. In the Nim domains,the �nal
RoundRobincompetitiontodetermineexternalscorescon-
sistedof every best-of-runindividual plotted in the com-
binedgraph.

Figures2 and 3 show the effects of addingnoise to the
Rosenbrockdomain,andFigures5 and6 show similar ef-
fects for the Rastrigindomain. Noisewasaddedby �ip-
ping a coin with the givennoiseprobability that theplay-
ers' scoreswereto beswapped.Noisewasnot usedin the
displayof external�tness results.

K-Random OpponentsResults We foundthattheover-
all layout of the graphsis very similar acrossall four do-
mains: as the valueof K increased,external �tness rose,
thendropped.Thedome-likeresultsfor K-RandomOppo-
nentssuggeststhatneitherRandom-Pairing(whereK = 1)
nor RoundRobin (whereK is large) is likely to yield a
good result. Indeed,we imaginethat RoundRobin will
often comein deadlast! In the InternalRosenbrockand
InternalRastrigindomainswith no noise,Random-Pairing
performedreasonablywell, but with morenoise,it did in-
creasinglypoorly.

Why is this happening?Our hypothesisis that in noisyor
intransitivedomains,only afew gamesperevaluationis not
suf�cient to cut throughthenoise,andevolution proceeds
slowly. Then as the numberof gamesper evaluationin-
crease,at somepoint it becomesoverkill: moregamesare
simplycuttingthetotal availableevolution time.

This result is similar to the one obtained for non-
coevolutionary EAs [Grefenstetteand Fitzpatrick 1985]
whendeterminingtheoptimalnumberof evaluationsof an
individual in a noisy environment,wherethe �tness was
calculatedas the averageof the resultsof several evalua-
tions. Grefenstetteand Fitzpatrick too reportedthat one
samplemight not provide enoughinformation,while too
many samplesmightnotleaveenoughgenerationsfor good
resultswhen the total numberof evaluationsis bounded.
They reportedthattensamplesperevaluationgavethebest

1In aboxplot,therectangularregioncoversall valuesbetween
the�rst andthird quartiles,thestemsmarkthefurthestindividual
within 1.5 of the quartile ranges,and the centerhorizontalline
indicatesthemedian.Dotsshow outliers,and� marksthemean.
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mainwith 0% noise
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Figure10: Best-so-far curvesfor InternalRosenbrockDo-
mainwith 30%noise
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resultsin an imageregistrationproblem. While we typi-
cally foundfewer sampleswerenecessaryin our coevolu-
tionaryapproach,tengavereasonableresultsin mostcases.

Single-Elimination Tournament Results The SET re-
sultsweresurprising.Whentheamountof noiseis small,
SET performsasgoodasor betterthanall othermethods
presented,eventhoughit hasrelatively few gamespereval-
uation. As noiseis increasedto 40% in the Rosenbrock
domain,though,SET'sperformancelosesits luster. Why?

Figures9, 10 and11 comparetheexternal�tness best-so-
far curvesof SETandthebestperformingK-RandomOp-
ponentstopology, with 0%, 30% and 40% noiserespec-
tively. These�gures suggestthat SET is converging too
rapidly: asthe�eld improves,thisbecomesahindrance.In
Figure11, ultimately7-RandomOpponentsis statistically
signi�cantly better(usinga t-testat 95%).

It seemsthat K-Random Opponentsmight be a better
choicethanSET, particularly if noiseis high. The trick,
though,is determiningwhatvalueof K to use. In theab-
senceof any prescience,SETmightbethebestoption.

5 CONCLUSIONS AND FUTURE WORK

Our experimentsshowed that the extremes of the K-
RandomOpponentsmethodusually lead to worse �nal
resultsthan intermediate(preferablysmall) valuesfor K.
Even if gamesare very expensive, the concernthat led
to Random-Pairing in [Luke 1998], we still think 5 to 10
gamesper evaluationis likely to yield a betterresult. A
full Round-Robintournamentappearsto be alwaysa bad
choice.OurdatasuggeststhattheSingle-EliminationTour-
namentmaybetooaggressive in noisycompetitions,lead-
ing to prematureconvergencerelative to 5- to 10-Random
Opponents.Otherwiseit seemsto bea goodchoice.

Thoughmany graphsare similar, nonethelessinteresting
featuresstandout. Onesurpriseis thevery strongperfor-
manceof Single-EliminationTournamentin theNim Ver-
sion1 game.Thissuggestsdynamicsspecialto thisdomain
which, on closer investigation,may shedlight on SET's
performancein general.DoesNim Version1 promotethe
duelmethodologyin awaynot foundin Nim Version2, for
example?Exceptfor noise,theInternalRastriginandInter-
nalRosenbrockdomainsarefully transitive: might thisex-
plain thedeteriorationof SETundernoise?In futurework
we hopeto examinethe dynamicsof suchtopologiesin
theseandotherdomainsmoreclosely.
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Abstract

This pap er prop oses a metho d that com bines

comp eten t genetic algorithms w orking in dis-

crete domains with adaptiv e ev olution strate-

gies w orking in con tin uous domains. W e use

discretization to transform solution b et w een

the t w o domains. The results of our exp er-

imen ts with the Ba y esian optimization al-

gorithm as a discrete optimizer and � -self-

adaptiv e m utation of ev olution strategies as

a con tin uous optimizer com bined using k -

means clustering suggest that the algorithm

scales up w ell on all tested problems. The

prop osed metho d can b e used to �ll the gap

b et w een other optimization metho ds w orking

in con tin uous and discrete domains and allo w

their h ybridization.

1 INTR ODUCTION

In genetic and ev olutionary algorithms, the searc h is

guided b y selection and v ariation op erators. Selection

biases the searc h to w ards high-qualit y regions b y mak-

ing more copies of go o d solutions and less copies of the

bad ones. V ariation op erators (suc h as recom bination

and m utation) ensure exploration of promising regions

of the searc h space after applying selection. There are

t w o commonly used v ariation op erators: (1) recom-

bination and (2) m utation. Genetic algorithms fo cus

primarily on r e c ombination that com bines solutions b y

exc hanging some of their parts. On the other hand, the

dominan t v ariation op erator in ev olution strategies is

mutation that p erturbs the solutions sligh tly . There

has b een a lot of progress in b oth m utation-based and

recom bination-based approac hes o v er the last decades.

Ho w ev er, only little has b een done to com bine the most

adv anced results of these t w o lines of researc h.

The purp ose of this pap er is to sho w ho w some of the

adv anced algorithms based on the t w o aforemen tioned

approac hes can b e com bined to solv e problems de�ned

in con tin uous domains. In particular, the Ba y esian op-

timization algorithm (BO A) based on recom bination

is com bined with a m utation-based ev olution strat-

egy (ES) with adaptiv e m utation strength. Ho w ev er,

since BO A w orks only on �nite-alphab et strings of

�xed length while ES w orks directly with v ectors of

real n um b ers, it is not p ossible to com bine the t w o

approac hes without an in termediate step in b et w een.

The problem of inconsisten t represen tations is o v er-

come b y discr etization . The resulting approac h can

b e seen b oth as the Ba y esian optimization algorithm

with adaptiv e discretization or a recom binativ e ev olu-

tion strategy capable of link age learning. The same

metho d can b e used to com bine other comp eten t ge-

netic algorithms and ev olution strategies with no or

only minor mo di�cations and to solv e problems that

con tain b oth con tin uous and discrete v ariables.

The pap er starts b y in tro ducing the Ba y esian opti-

mization algorithm and ev olution strategies with adap-

tiv e m utation, whic h are used as the basic building

blo c ks of the prop osed algorithm. Discretization is

then discussed in con text of genetic and ev olutionary

computation. Section 3 describ es ho w a comp eten t

recom bination-based genetic algorithm in a discrete

domain can b e com bined with a m utation-based ap-

proac h in a con tin uous domain. Section 4 pro vides our

exp erimen tal results. Section 5 concludes the pap er.

2 BA CK GR OUND

Genetic and ev olutionary algorithms start with a ran-

domly generated initial p opulation of candidate solu-

tions. In eac h iteration, the set of promising solutions

is selected where the n um b er of copies of eac h candi-

date solution is someho w prop ortional to the solution's

qualit y . New candidate solutions are constructed b y

applying recom bination and m utation op erators to the

selected solutions. The new solutions replace some of



the old ones or all of them and the pro cess is rep eated

un til the termination criteria are met.

This section starts b y in tro ducing t w o fundamen-

tally di�eren t approac hes based on the ab o v e sc heme.

First, it describ es the Ba y esian optimization algorithm

(BO A), whic h is based on recom bination and has b een

recen tly sho wn to solv e b oundedly di�cult decomp os-

able problems de�ned on �xed-length binary strings

e�cien tly and reliably . BO A is capable of learning

and exploiting a decomp osition of the problem b y ana-

lyzing the promising solutions. Subsequen tly , the sec-

tion describ es ev olution strategies (ES) that pro cess

�xed-length v ectors of real n um b ers and use m utation

as the primary v ariation op erator. Sev eral metho ds

for adapting m utation parameters are presen ted. The

section ends b y discussing discretization in con text of

genetic and ev olutionary computation that will later

b e used as a w a y to bridge the recom bination-based

discrete BO A and the m utation-based con tin uous ES.

2.1 BA YESIAN OPTIMIZA TION

ALGORITHM

Recom bination-based genetic algorithms generate new

solutions b y com bining bits and pieces of promis-

ing solutions. The simple genetic algorithm (Gold-

b erg, 1989) uses problem-indep enden t crosso v er op er-

ators to com bine promising solutions, suc h as uniform

crosso v er and one-p oin t crosso v er. Mutation is usually

used as only a bac kground op erator capable of tuning

near-optimal solutions at the end of the run or in tro-

duce div ersit y in to the p opulation.

Pr ob abilistic mo del-building genetic algorithms (PMB-

GAs) (P elik an, Goldb erg, & Lob o, 2002) also try to

com bine imp ortan t parts of the selected solutions but

they approac h recom bination in a di�eren t w a y . They

view the set of selected solutions as a sample from the

region of the searc h space that w e are in terested in.

PMBGAs �rst estimate the distribution of the selected

solutions and then use this estimate to generate new

solutions. The estimated distribution can enco de the

in teractions among the di�eren t v ariables in the prob-

lem as w ell as sup eriorit y of certain com binations of

v alues of di�eren t subsets of v ariables. The algorithms

based on this principle are also called estimation of

distribution algorithms (M • uhlen b ein & P aa�, 1996),

or iter ate d density estimation algorithms (Bosman &

Thierens, 2000). It is b ey ond the scop e of this pap er

to giv e an o v erview of PMBGAs. F or a surv ey of PM-

BGAs, please see P elik an, Goldb erg, and Lob o (2002).

In this pap er, w e fo cus on the Ba y esian optimization

algorithm (BO A) (P elik an, Goldb erg, & Can t � u-P az,

1998) that uses Ba y esian net w orks to mo del promis-

ing solutions and subsequen tly guide the exploration

of the searc h space. The �rst p opulation of strings is

generated randomly with a uniform distribution. F rom

the curren t p opulation, the b etter strings are selected

using one of the con v en tional selection metho ds suc h as

tournamen t or truncation selection. A Ba y esian net-

w ork that �ts the selected set of strings is constructed.

Besides the set of go o d solutions, prior information

ab out the problem can b e used in order to enhance

the estimation and subsequen tly impro v e con v ergence.

New strings are generated according to the join t distri-

bution enco ded b y the constructed net w ork. The new

strings are added in to the old p opulation, replacing

some of the old ones.

A Ba y esian net w ork is a directed acyclic graph with

the no des corresp onding to the v ariables in the mo d-

eled data set (in our case, to the p ositions in the so-

lution strings) and the edges de�ning the conditional

dep endencies among the v ariables. A directed edge

relates the v ariables so that in the enco ded distribu-

tion, the v ariable corresp onding to the terminal no de is

conditioned on the v ariable corresp onding to the initial

no de. More incoming edges in to a no de result in a con-

ditional probabilit y of the corresp onding v ariable with

a conjunctional condition con taining all its paren ts.

T o learn the net w ork structure, a scoring metric, suc h

as the Ba y esian-Diric hlet metric or the Ba y esian in-

formation criterion (BIC), can b e used to discriminate

comp eting mo dels. A searc h pro cedure then searc hes

the space of all p oten tial net w ork structures to �nd the

one that scores the most. A greedy searc h pro cedure is

often used that iterativ ely adds, remo v es, or rev erses

the edge that impro v es the score of the net w ork the

most un til no more impro v emen t is p ossible.

In BO A, the built Ba y esian net w ork enco des imp or-

tan t in teractions in the problem as w ell as its decom-

p osition. The decomp osition simpli�es the problem,

while the in teractions allo w the use of reasonably sized

p opulations and con v ergence times. It has b een sho wn

that BO A is indeed capable of learning ho w to prop-

erly break up the problem to optimize the problems

decomp osable in to subproblems of b ounded di�cult y

in sub quadratic or quadratic time.

2.2 EV OLUTION STRA TEGIES

Ev olution strategies (ES) (Rec hen b erg, 1973) use m u-

tation as the driving force of the searc h and usually

w ork on solutions represen ted b y v ectors of real n um-

b ers. Mutation is usually p erformed b y adding a n um-

b er generated according to a zero-mean normal distri-

bution to the solution. This section reviews the ba-

sic principle b ehind using m utation as the primary



v ariation op erator. W e start b y discussing a simple

m utation op erator that m utates eac h v ariable inde-

p enden tly and therefore the non-diagonal elemen ts in

the co v ariance matrix of the m utation distribution are

equal to zero. Subsequen tly , w e describ e the basic idea

b ehind some more sophisticated approac hes that allo w

adaptation of the co v ariance matrix.

A simple m utation that m utates eac h v ariable indep en-

den tly using a normally distributed random v ariable

con tains one parameter p er v ariable. Eac h parame-

ter sp eci�es the standard deviation of the m utation

for the corresp onding v ariable. The standard devia-

tions (m utation strengths) can b e either �xed to some

small constan t or adapted as the searc h progresses.

Ideally , the m utation strength should b e prop ortional

to the distance to the optim um. A �xed m utation

strength results in slo w er con v ergence at either the

b eginning or the end of the run. Adaptiv e m utation

dynamically up dates the m utation strengths to max-

imize the impro v emen t in the curren t stage of the al-

gorithm. The 1 = 5-success rule (Rec hen b erg, 1973), � -

self-adaptiv e ES (Sc h w efel, 1977), and adaptiv e linear

rule (Rec hen b erg, 1994) are examples of the adaptiv e

m utation strategies.

In � -self-adaptiv e ES, a v ector of standard deviations

corresp onding to eac h v ariable is attac hed to eac h so-

lution. Before m utating the solution, its m utation pa-

rameters are mo di�ed b y using the follo wing rule:

�

0

i

= �

i

e

� N (0 ; 1)

; (1)

where �

i

is the standard deviation corresp onding to

the m utation of i th v ariable, �

0

i

is its up dated v alue,

N (0 ; 1) is a zero-mean Gaussian random v ariable with

v ariance 1, and � is the learning parameter. The ab o v e

up date rule assures that the m utation strength is al-

w a ys p ositiv e, the exp ected outcome of the mo di�-

cation without an y selection pressure is neutral, and

smaller mo di�cations o ccur more often than the large

ones (Sc h w efel, 1977). Go o d m utations are �ltered b y

a standard selection mec hanism based on the �tness

of the resulting solutions b ecause individuals that lead

to the b est impro v emen ts are going to participate in

the repro duction in the subsequen t iteration. Sc h w efel

suggests that � should b e in v ersely prop ortional to the

square ro ot of the total n um b er of v ariables:

� _

1

p

n

� (2)

In the ab o v e metho d, m utations for di�eren t v ariables

are indep enden t. This resem bles the uniform crosso v er

in genetic algorithms where eac h bit in the t w o paren t

strings is exc hanged with a certain probabilit y inde-

p enden tly of the remaining bits. T o reduce the dis-

ruptiv e e�ects of recom bination, metho ds that w ere

able to learn the structure of the problem and adapt

the recom bination accordingly w ere designed.

A similar approac h can b e used for adapting m utations

where b y extracting some information from the history

of the run one can learn not only ho w strong the m uta-

tion for eac h v ariable should b e, but also ho w the m u-

tations for di�eren t v ariables should in teract. Sc h w e-

fel (1981) prop osed to extend solutions b y including

rotation angles in addition to the original deviations

(or v ariances) and adapt b oth the v ariances as w ell

as the rotation angles. The generating set adaptation

(GSA) metho d of Hansen, Ostermeier, and Ga w elczyk

(1995) is an example of a more adv anced metho d for

adapting the direction of the m utation together with

its strength b y adapting the co v ariance matrix of the

m utation distribution.

Although recom bination has b een used in ev olution

strategies since the early w orks in this area, it has

b een seen as only a minor op erator (Bey er, 1995). F or

recom bination in ES, a v arian t of uniform crosso v er is

usually used. F or eac h new individual, a subset of par-

en ts is c hosen. The size of the selected subset can range

from t w o individuals to the en tire paren t p opulation.

F or the v alue of eac h v ariable in the new individual, a

random individual is pic k ed from the subset and the

v alue is copied from that individual.

When using recom bination together with adaptiv e m u-

tation, one m ust cop y not only the v alue of eac h v ari-

able but also corresp onding m utation strengths or the

histories of the past m utations of this v ariable. Since

this information is asso ciated with eac h v ariable, no

ma jor mo di�cations are required.

ES with adaptiv e m utation are p o w erful for lo cal

searc h. Ho w ev er, without p o w erful recom bination ES

are capable of only lo cal searc h. So wh y not com bine

recom bination-based metho ds capable of learning ho w

to recom bine the solutions prop erly in a discrete do-

main and m utation-based metho ds capable of adapt-

ing the m utation in a con tin uous domain? Section 3

prop oses a metho d that com bines the t w o approac hes

using discretization to transform con tin uous solutions

in to a discrete domain and vice v ersa. But �rst, the

next section discusses the use of discretization in ge-

netic and ev olutionary algorithms.

2.3 DISCRETIZA TION

Discretization is widely used in man y �elds of science

to reduce the complexit y of a problem and mak e in-
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Figure 1: Fixed-width histogram.

tractable problems tractable. In genetic and ev olution-

ary computation, discretization has often b een used to

�rst transform con tin uous solutions in to binary strings

and then apply the algorithm w orking in a discrete do-

main on the resulting problem. The discrete solution

can then b e transformed bac k in to the con tin uous do-

main and either tak en as is or further optimized b y a

lo cal searc her suc h as the conjugate gradien t.

There are sev eral adv an tages and disadv an tages of dis-

cretizing the solutions and solving the corresp onding

discrete problem (Goldb erg, 1991). Discrete solutions

impro v e the implicit parallelism of genetic algorithms

and allo w them to pro cess more partial solutions at

the same time. Moreo v er, the discrete space is �nite

and th us it is easier to guaran tee that the optimal solu-

tion in this space is found and that w e supply enough

information for the optimization to succeed. On the

other hand, the lo calit y of the solution decreases and

some phenot ypically close solutions (similar solutions

in a con tin uous domain) ma y b ecome distan t in the

discrete domain. This a�ects esp ecially m utation that

attempts to mak e small c hanges in the phenot yp e b y

making small c hanges in the genot yp e. Additionally ,

one m ust kno w the range of eac h v ariable to discretize

it and the resulting binary strings ma y b e extremely

long for large problems.

A t ypical w a y of discretizing con tin uous solutions in

genetic algorithms is to divide the range of eac h v ari-

able in to (2

k

� 1) in terv als of equal width (Goldb erg,

1989). Boundary p oin ts of the in terv als can then b e

enco ded b y k -bit binary strings. A string enco ding n

suc h con tin uous v ariables con tains nk bits. Increasing

k re�nes the discretization b y factors of 2. F or man y

problems only a couple of bits (sa y , k = 3 or 4) are

su�cien t to get a solution v ery close to the optim um.

Lo cal optimization metho ds can then b e used to re�ne

the �nal solutions to get a more accurate result.

A di�eren t w a y of using histograms in ev olutionary al-

x

f

Figure 2: Fixed-heigh t histogram.

gorithms for con tin uous domains is to use histograms

as a to ol to estimate the distribution of promising

p oin ts. The created mo del can then b e used to gener-

ate new p oin ts. The p oin ts are allo w ed to lie within

the in terv als and not only on their b oundaries. That

can lead to further impro v emen ts of the �nal solutions.

Algorithms that use histograms in this fashion in or-

der to estimate a univ ariate distribution where all

v ariables are pro cessed indep enden tly ha v e b een pro-

p osed (Bosman & Thierens, 2000; Tsutsui, P elik an, &

Goldb erg, 2001; Can t � u-P az, 2001). Using equal-width

histograms w as in v estigated in Bosman and Thierens

(2000), Tsutsui et al. (2001), and Can t � u-P az (2001).

Equal-heigh t histograms w ere in v estigated in Tsutsui

et al. (2001), and Can t � u-P az (2001). Decision trees

and other sup ervised discretization metho ds w ere in-

v estigated in Can t � u-P az (2001).

V arious discretization metho ds w ere prop osed and

frequen tly used in mac hine learning, statistics, and

other �elds. Equal-heigh t histograms, decision trees,

and clustering algorithms are examples of suc h meth-

o ds. All these metho ds ha v e the same imp ortan t

c haracteristic|they map a single con tin uous v ariable

or a group of v ariables in to a �nite set of sym b ols. W e

discuss some of these metho ds in the follo wing.

2.3.1 Histograms

Histograms divide the in terv al for eac h v ariable in to k

subin terv als (bins). There are man y w a ys of dividing

the in terv al in to k bins. In practice, t w o basic t yp es

of histograms are used: (1) �xed-width histogram and

(2) �xed-heigh t histogram.

A �xed-width histogram divides the in terv al in to k

bins of equal width. An example of a �xed-width his-

togram is sho wn in Figure 1. The disadv an tage of

�xing the width of eac h bin is that if p oin ts are con-

cen trated in a couple of small regions, only a couple

of bins will b e nonempt y and man y bins will simply



b e w asted on regions with none or only a few p oin ts.

Fixed-width histograms are also v ery sensitiv e to out-

liers and one or a few p oin ts far a w a y from the rest

can signi�can tly decrease the accuracy .

A �xed-heigh t histogram divides the in terv al for the

v ariable in k bins of equal frequencies (eac h bin con-

tains the same n um b er of p oin ts). An example of a

�xed-heigh t histogram is sho wn in Figure 2. The ad-

v an tage of using �xed-heigh t histograms is that the

densit y of bins is increased in regions with man y

p oin ts. The regions that seem in teresting (those that

con tain man y p oin ts) are mo deled with high accuracy ,

while the bins with only few p oin ts are merged to-

gether to decrease the accuracy where it is not needed.

A �xed-heigh t histogram can therefore preserv e more

information con tained in the original set of p oin ts.

2.3.2 k -means Clustering

In k -means clustering, eac h cluster (category) is sp eci-

�ed b y its c enter . Initially , k cen ters (where k is giv en)

are generated at random. Eac h p oin t is assigned to its

nearest cen ter. Subsequen tly , eac h cen ter is recalcu-

lated to b e the mean of the p oin ts assigned to this

cen ter. The p oin ts are then reassigned to the near-

est cen ter and the pro cess of recalculating the cen ters

and reassigning the p oin ts is rep eated un til no p oin ts

c hange their lo cation after up dating the cen ters.

The next section describ es ho w to use a particular dis-

cretization or clustering metho d to com bine BO A (or

other discrete optimizer) with ES (or other con tin uous

optimizer).

3 COMBINING LINKA GE

LEARNING AND AD APTIVE

MUT A TION

This section describ es an algorithm that com bines a

discrete recom bination-based algorithm (suc h as BO A)

with adaptiv e m utation tec hniques of ES.

The algorithm ev olv es a p opulation of con tin uous so-

lutions. The �rst p opulation is generated at random.

F rom the curren t p opulation the b etter strings are se-

lected. The pro cessing of the promising solutions has

three ma jor phases:

1. Discretize the selected promising solutions.

2. Recom bine the discrete solutions.

3. Map the new discrete solutions bac k in the con-

tin uous domain, up date the m utation parameters,

and m utate the new con tin uous solutions.

In the �rst phase, the promising solutions are dis-

cretized. Eac h v ariable is indep enden tly mapp ed in to

a �nite n um b er of categories (bins, clusters). An y dis-

cretization, clustering, or classi�cation metho d can b e

used to discretize the con tin uous v ariables. Let us de-

note the resulting n um b er of categories for the i th

v ariable b y c

i

. There are t w o ma jor approac hes to

represen t the resulting discrete p opulation. The �rst

approac h is to use binary strings and d log

2

c

i

e bits for

eac h v ariable. The second approac h is to use an al-

phab et of a higher cardinalit y so that only one sym-

b ol is used to represen t eac h v ariable. The i th letter

in the discrete string could then obtain c

i

v alues. Of

course, there are man y w a ys b et w een the t w o extremes.

Binary represen tation results in more p ossibilities to

com bine the strings. On the other hand, alphab ets of

higher cardinalit y result in shorter represen tation.

In the second phase, a discrete link age learning algo-

rithm (suc h as BO A) is applied to generate the new

solutions based on the set of discrete promising solu-

tions. The o�spring discrete solutions are constructed

b y com bining the promising solutions.

In the third phase, the resulting set of discrete so-

lutions is mapp ed bac k in to the con tin uous domain.

Ho w ev er, unlik e in all previously prop osed approac hes,

the new p oin ts are not generated uniformly within the

b oundaries of the categories for eac h v ariable. Instead,

original p oin ts within eac h category are used. Eac h

discrete string determines a category for eac h v ariable.

T o \undiscretize" eac h v ariable in a particular string,

a random individual in the original set of promising

solutions that is consisten t with the enco ded category

for the v ariable is c hosen. The v alue of the v ariable is

obtained b y m utating the v alue of the v ariable in the

c hosen individual.

As a simple example, let us assume w e use an equal-

width histogram with only t w o categories for eac h v ari-

able. Eac h candidate solution is represen ted in the dis-

crete domain b y a binary string with one bit p er v ari-

able determining whether the v ariable is in the upp er

or lo w er half of its range. T o deco de a binary string,

w e lo ok at the v alue of eac h of its bits. If the v alue is

0 (1), w e randomly c ho ose a solution from the original

set of promising con tin uous solutions whose v alue of

the considered v ariable is in the lo w er (upp er) half of

the domain. The corresp onding v ariable in the c hosen

solution is copied to the newly created con tin uous solu-

tion. This is done for eac h v ariable separately . Finally ,

the created con tin uous solution is m utated.

Using adaptiv e m utation requires considering addi-

tional parameters in the con tin uous solutions. F or � -

self-adaptiv e m utation, w e m ust attac h the m utation
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strength to eac h v ariable in eac h string. When w e cop y

a v alue of a particular v ariable w e m ust also cop y the

corresp onding m utation strength. As w e cop y the v al-

ues of the v ariables and the attac hed parameters in to

the new con tin uous string, the m utation strengths are

up dated b y using the rule discussed earlier in the pa-

p er (see Equation 1). The new m utation strengths are

used to m utate the created solution. GSA and its suc-

cessors require cop ying and up dating a history of the

m utations or other parameters as w ell.

The newly generated solutions then replace the origi-

nal p opulation or its part.

V arious algorithms can b e used for discretization, link-

age learning, and adapting the m utation. Due to our

recen t successful applications of BO A to man y discrete

problems, w e decided to use this algorithm for link age

learning and recom bination in our exp erimen ts. T o

adapt m utation, w e used a simple � -self-adaptiv e m u-

tation where only a m utation strength of eac h parame-

ters is adapted. Application of other m utation sc hemes

suc h as GSA is straigh tforw ard. T o discretize the so-

lutions, w e used equal-heigh t histograms, equal-width

histograms, and k -means clustering, but an y other

p opular discretization, classi�cation, and clustering

tec hniques can b e used. Using more adv anced tec h-

niques should further impro v e the p erformance. F or a

discussion of some in teresting alternativ es, see Can t � u-

P az (2001).

4 EXPERIMENTS

This section describ es our exp erimen ts and presen ts

the exp erimen tal results.

4.1 PR OBLEMS

W e ha v e tested the algorithm on t w o test functions:

(1) t w o-p eak function and (2) deceptiv e function.

Both test functions are created b y concatenating basis
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Figure 4: Tw o-dimensional deceptiv e function.

functions of a small order. The con tributions of all the

functions are added together to determine the o v erall

�tness and the goal is to maximize the functions. All

v ariables in our test functions are from [0 ; 1].

The t w o-p eaks function is giv en b y

tw oP eak s ( x

0

; : : : ; x

n � 1

) =

n � 1

X

i =0

f

tw o � peak s

( x

i

) :

Ev ery v ariable of the t w o-p eaks function con tributes

to the �tness b y

f

tw o � peak s

( x ) =

(

f

peak

( x= 0 : 1 ; 1) if x < 0 : 2 ;

f

peak

(( x � 0 : 2) = 0 : 8 ; 0 : 9) otherwise ;

where f

peak

is a simple function for one p eak, de�ned

as

f

peak

( x; h ) = h cos ( 2 � ( x � 0 : 5)) :

Figure 3 sho ws the t w o-p eak function. The function

has one lo cal and one global optim um for eac h v ari-

able. This yields 2

n

optima for a problem of size n out

of whic h only one optim um is global. Lo cal optima are

m uc h wider and almost as high as the global one. That

mak es the problem more di�cult. Using m utation only

do es not yield go o d results on this problem. Recom-

bination mak es uses decomp osabilit y of the problem

and is capable of solving the problem v ery e�cien tly

and reliably . Simple uniform crosso v er is su�cien t and

th us an y ES with recom bination should w ork w ell.

The deceptiv e function is comp osed of t w o-dimen-

sional deceptiv e functions:

deceptiv e ( x

0

; : : : ; x

n � 1

) =

n

2

X

i =0

f

tw o � peak s

( x

2 i

; x

2 i +1

) :
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Figure 5: Results of BO A with k -means (8 clusters p er v ariable).

Non-o v erlapping pairs of v ariables of the deceptiv e

function con tribute to the o v erall �tness b y

f

deceptiv e

( x; y ) = f

dec

�

p

( x

2

+ y

2

) = 2

�

where f

dec

is a one-dimensional deceptiv e function de-

�ned on [0 ; 1] as

f

dec

( x ) =

(

0 : 8 � x if x � 0 : 8,

1 � x

0 : 2

otherwise.

Figure 4 sho ws the t w o-dimensional deceptiv e func-

tion. The t w o-dimensional deceptiv e function requires

that w e learn the link age of the con tributing pairs of

v ariables. Eac h v ariable alone is biased to the lo cal

optim um in 0 and only when b oth v ariables are close

to 1 their com bination leads to an impro v emen t. In

early stages of the run there are more p oin ts on the lo-

cal attractor than the global one. If b oth v ariables are

treated indep enden tly , com binations with b oth v ari-

ables near the global attractor v anish and the searc h

progresses to w ard the lo cal optim um. Moreo v er, the

global optim um is almost isolated and the attractor is

small. This mak es it quite di�cult to hit the global

attractor.

4.2 RESUL TS

This section presen ts and discusses empirical results

that primarily fo cus on the scalabilit y . BO A with � -

self-adaptiv e m utation strength with a learning param-

eter � = 4 =

p

n is used. Due to the limited size of the

pap er, w e only presen t the results of using k -means

clustering for discretization. Ho w ev er, the results of

other discretization metho ds are comparable. In all

exp erimen ts, a binary tournamen t selection with re-

placemen t is used where to select eac h new individual,

a tournamen t among t w o randomly selected individ-

uals is p erformed and the winner of the tournamen t

is added to the mating p o ol. An elitist replacemen t

sc heme is used that replaces the w orst half of the p op-

ulation b y the o�spring.

F or eac h problem size, w e p erformed 30 indep enden t

runs with the optimal p opulation size that w as deter-

mined empirically for eac h algorithm and problem size

so that the optim um is found in all 30 runs. The a v-

erage n um b er of �tness ev aluations to reac h solutions

whose Euclidean distance from the optim um is at most

0 : 01 is pro vided.

The t w o-p eaks problem is v ery simple and could b e

used b y using recom bination with no link age learning

(i.e. traditional ES recom bination based on uniform

crosso v er). Ho w ev er, w e presen t the results to sho w

that the algorithm is capable to solv e b oth simple

and di�cult problems. Without recom bination, the

ES with � -self-adaptiv e m utation can not solv e an y of

the discussed problems e�cien tly . The deceptiv e prob-

lem w ould require exp onen tial p opulation sizes b oth if

no recom bination w as used as w ell as if a traditional

recom bination based on uniform crosso v er w as used.

Other �xed recom bination metho ds w ould also fail if

the v ariables w ere not ordered according to their de-

p endencies.

Figure 5 sho ws the results of the prop osed algorithm

with k -means clustering on the t w o-p eaks and decep-

tiv e functions. F or the t w o-p eaks function, the p opula-

tion sizes ranged from N = 700 for n = 10 to N = 2100



for n = 50, and the required n um b er of ev aluations

is appro ximately O ( n

1 : 32

). F or the deceptiv e func-

tion, the p opulation sizes ranged from N = 900 for

n = 10 to N = 8750 for n = 40 and the required n um-

b er of ev aluations gro ws appro ximately with O ( n

2 : 28

).

Therefore, the p erformance in b oth cases can b e esti-

mated b y a lo w-order p olynomial.

5 CONCLUSIONS

The results of the pap er suggest that recom bination-

based metho ds for discrete domains and m utation-

based metho ds for con tin uous domain can b e com bined

to utilize the strengths of b oth metho dologies. The de-

gree to whic h the metho ds are com bined can b e con-

trolled b y c ho osing the resolution of discretization and

recom bination parameters. F or coarse discretization,

the algorithm p erforms v ery similar to the ES with re-

com bination based on uniform crosso v er. Re�nemen t

of discretization yields to more p ossibilities for learn-

ing the link age b et w een di�eren t v ariables in the prob-

lem. Ho w ev er, learning link age comes at a price of

increased requiremen ts on the p opulation size. While

ES usually require only small p opulations, statistical

metho ds of BO A require quite big p opulations. But

for most m ultimo dal problems it is necessary to com-

bine parts of promising solutions to a v oid exp onen tial

time requiremen ts.

There are man y other alternativ e uses of the presen ted

sc heme. Using sup ervised discretization metho ds can

yield signi�can t impro v emen ts. Additionally , man y

real-w orld problems do not require sophisticated link-

age learning pro cedures and simple one, t w o-p oin t, or

uniform crosso v er ma y su�ce.
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Abstract

Elitism and sharing are two mechanisms that are
believed to improve the performance of a multi-
objective evolutionary algorithm (MOEA). Using
a new empirical inquiry framework, this paper
studies the effect of elitism and sharing design
choices using a benchmark suite of two-criterion
problems. Performance is assessed, via known
metrics, in terms of both closeness to the true
Pareto-optimal front and diversity across the
front. Randomisation methods are employed to
determine significant differences in performance.
Informative visualisation of results is achieved
using the attainment surface concept. Elitism is
found to offer a consistent improvement in terms
of both closeness and diversity, thus confirming
results from other studies. Sharing can be
beneficial, but can also prove surprisingly
ineffective. Evidence presented herein suggests
that parameter-less schemes are more robust than
their parameter-based equivalents (including
those with automatic tuning). A multi-objective
genetic algorithm (MOGA) combining both
elitism and parameter-less sharing is shown to
offer high performance across the test suite.

1 INTRODUCTION
Evolutionary multi-criterion optimisation (EMO)
practitioners are faced with a number of design choices
beyond those encountered in a standard evolutionary
algorithm (EA). Suitable strategies for elitism and sharing
can significantly improve optimiser performance. This
paper presents new evidence and understanding
concerning elitism and sharing that will help practitioners
to make informed choices. Through the application of
tractable algorithm modifications and a rigorous
experimental framework, the effect of MOEA component-
level choices can be more clearly exposed.

An EMO empirical inquiry frameworkis introduced in
Section 2. The dual performance metrics of closeness and
diversity are measured using the generational distance and
spread metrics respectively. Statistical comparisons are
then made using randomisation testing. Information-rich
visualisations of the identified trade-off surfaces are
obtained using attainment surfaces. The analysis is based
on the two-criterion set of test problems proposed by
Zitzler et al [2000].

The performance of a baseline MOGA optimiser is
established in Section 3. The effects of elitism and sharing
are then considered with reference to this baseline. An
elitist strategy, based on Zitzler’s [1999]universal elitism,
is developed in Section 4. Sharing methodologies for the
promotion of diversity are discussed in Section 5. A new
parameter-less technique, formulated as an
accompaniment to Pareto-based ranking, is compared to
the standard parameter-based approach. In Section 6, a
high-performance MOGA incorporating both elitism and
parameter-less sharing is investigated.

2 EMO INQUIRY FRAMEWORK

2.1 TEST SUITE

The established set of test problems developed by Zitzler
et al [2000] (ZDT) is used in this study. The suite consists
of six, tractable, two-criterion functions, with varying
characteristics as summarised in Table 1.

Table 1: Test function characteristics

NAME ATTRIBUTES

ZDT-1 Convex front

ZDT-2 Non-convex front

ZDT-3 Non-contiguous convex front

ZDT-4 Many local fronts, single global convex front

ZDT-5 Deceptive problem, convex front

ZDT-6 Non-uniform distribution, non-convex front

2.2 MEASURING PERFORMANCE

Performance of a MOEA can be decomposed into two
criteria:

�� Closeness – the nearness of the obtained non-
dominated solutions to the true front.

�� Diversity – the coverage of the trade-off surface by
the obtained solutions.

The ideal outcome, in test cases of this type, is a final
population with a uniform distribution of globally non-
dominated solutions spread across the entire trade-off
surface. Various performance metrics have been proposed
to measure closeness, diversity, and in some cases both
together. Some metrics require that the global trade-off
surface is known and can be sampled (straightforward in
the ZDT cases), whilst others involve a purely relative



comparison of two results sets. This study utilises three
known performance metrics:generational distanceto
measure accuracy,spread to measure diversity, and
attainment surfacesto provide visualisation.

�� Generational distance– an average of the Euclidean
distances between each obtained solution and the
nearest point on the true front [Veldhuizen, 1999].

�� Spread – the sum of the differences between nearest
neighbour distances and the mean of all such
distances, coupled with a term to account for the
extent of the obtained front [Debet al, 2000].

�� Attainment surface – the boundary in criterion-
space that separates the region that is dominated by
the obtained solutions from that which is non-
dominated [Fonseca and Fleming, 1996].

The superposition of multiple attainment surfaces can be
treated statistically and also provides a rich qualitative
indication of performance. A typical plot is shown later in
Figure 1. The heavy line indicates the 50%-attainment
surface (akin to the median), the thinner lines show the
25% and 75% surfaces (quartiles), and the dotted lines
describe the 0% and 100% surfaces. Thus location,
dispersion, and skewness information can be obtained in a
similar manner to the box plot [Cleveland, 1993].

2.3 ANALYSING PERFORMANCE

Upon completion of a single run of a specific MOEA
configuration on a particular problem, three sets of non-
dominated criterion vectors (and associated solutions) are
obtained, namely:

�� final population – the non-dominated vectors in the
final population of the algorithm,

�� on-line archive – the final elite set of vectors, and

�� off-line archive – the complete set of non-dominated
vectors identified by the algorithm.

The first of these sets is used for analysis and comparison
purposes in this study since it provides the most
appropriate measure of the on-line trade-off surface
maintenancecapabilities of an algorithm.

An evolutionary algorithm is a stochastic process and,
thus, multiple runs (samples) are required in order to infer
reliable conclusions as to its performance. Hence, 35 runs
have been conducted for each MOEA configuration when
applied to a particular test problem. The performance of
the algorithm is expressed in the resulting distributions of
generational distance and spread. A statistical comparison
of two configurations is then possible through the use of a
test statistic.

In this study, the mean difference between two
generational distance (or, alternatively, spread)
distributions is taken as the test statistic. The significance
of this observed result is then assessed using
randomisation testing. This is a simple, yet effective,
technique that does not rely on any assumptions
concerning the attributes of the underlying processes,
unlike conventional statistical methods [Manly, 1991].

The central premise of the method is that, if the observed
result has arisen by chance, then this value will not appear
unusual in a distribution of results obtained through many
random relabellings of the samples. The randomisation
method proceeds as follows:

1. Compute the difference between the means of the
samples for each algorithm: this is the observed
difference.

2. Randomly reallocate half of all samples to one
algorithm and half to the other. Compute the
difference between the means as before.

3. Repeat Step 2 until 5000 randomised differences have
been generated, and construct a distribution of these
values.

4. If the observed value is within the central 99% of the
distribution, then accept the null hypothesis.
Otherwise consider the alternative hypotheses. This is
a two-tailed test at the 1%-level.

The null hypothesis is that the observed value has arisen
through chance and so there is no performance difference
between the two configurations. The alternative
hypotheses are that the difference is unlikely to have
arisen through chance and that one configuration has
outperformed the other (depending on which side of the
distribution the observed difference falls, and the direction
in which the difference has been calculated).

Note that the observed value is included as one of the
random relabellings since, if the null hypothesis is true,
then this value is one of the possible randomisation
results. 5000 randomisations is regarded as an acceptable
quantity for a test at the 1%-level [Manly, 1991].

The results of randomisation testing are simple to
visualise, as shown by the example in Figure 3. The
randomised results are described by the grey histogram,
whilst the observed result is depicted as a filled black
circle. Each row shows the performance on a particular
test function (from ZDT-1 at the top, to ZDT-6 at the
bottom). The left-hand column indicates the relative
performance regarding closeness, and the right-hand
column shows the corresponding difference in diversity.

3 BASELINE MOGA

3.1 DESCRIPTION

The baseline optimiser used in this study has been
developed according to the holistic design principles
championed by Michalewicz and Fogel [2000] and has
previously been shown to be effective at solving the ZDT
test problems [Purshouse and Fleming, 2001]. A summary
of the algorithm is provided in Table 2.

The multi-criterion performance of a solution is scalarised
using Fonseca and Fleming’s [1993] Pareto-based ranking
procedure. A solution is ranked according to the number
of solutions in the population that arepreferredto it. If the
entire Pareto-optimal front is to be identified, the
preference relation collapses to a test for Pareto
dominance.



Table 2: Baseline configuration

EMO COMPONENT STRATEGY

GENERAL
Population size
Total generations

100
250

ELITISM None
EVALUATION [1] Fonseca and Fleming [1993]

Pareto-based ranking.
[2] Linear fitness assignment with
rank-wise averaging.
[3] No modification of fitness to
account for population density.

SELECTION Stochastic universal sampling
REPRESENTATION
Real parameter
functions

Binary function

Concatenation of real number
decision variables. Accuracy
bounded by machine precision.
Binary string, 80 bits in length.

OPERATORS
For real representations

For binary
representations

[1] Naïve crossover
Probability = 0.8.
[2] Gaussian mutation (initial
search power of 40% of variable
range; sigmoidal scaling set to 15;
feasibility requirement of one
standard deviation).
Probability = Expected value of 1
phenotype per chromosome.
[1] Single-point binary crossover.
Probability = 0.8.
[2] Simple bit-flipping mutation.
Probability = 1/80.

When ranking is complete, initial fitness values can be
prescribed. The population is sorted according to rank and
fitnesses are assigned by interpolating between the highest
fitness value for the best rank and the lowest fitness value
for the worst rank. In the baseline algorithm, linear
interpolation is used and fitness is varied between the
population size (highest) and unity (lowest). The ratio of
these two fitnesses is a definition of theselective pressure
of the assignment mechanism. Solutions of the same rank
then have their fitnesses adjusted to the average of the
original assignments for that rank.

Part of this study is concerned with the effect of diversity-
preserving mechanisms. Therefore no manipulation of the
above fitnesses through sharing is undertaken.

Stochastic universal samplinghas been chosen as the
selection mechanism [Baker, 1987]. This method achieves
maximum spread with minimal bias, but is non-
parallelisable. In total, 100 selections are required since
the chosen reinsertion strategy is that all offspring replace
all parents (no generational gap) and since for the chosen
genetic operators two parents are required to produce two
offspring.

Since five of the test problems feature real number
decision variables, it is logical to use a real number
representation for these problems. Hence, a candidate
solution is described by a concatenation of phenotypic

decision variables. The other test problem, ZDT-5,
explicitly uses binary variables, thus a binary
representation is natural for this problem.

Different representations require different search
operators. For the binary chromosome case, the familiar
single-point two-parent crossover and bit-flipping
mutation operators are employed. Good results are known
to be achievable using this simple approach [Zitzleret al,
2000]. For real representations, the so-callednaïve
crossoveris used in conjunction with aGaussian mutation
operator. The former of these search tools is a very simple
two-parent single-point crossover operator, where the
crossover sites are limited to points between decision
variables. This offers quite a low-power search, since it
cannot generate any values for decision variables that
were not present in the original population. However,
when coupled with a complementary high-power search
tool, the resulting search capabilities are considerable1.
Gaussian mutation is one such operator. Its main benefit is
that it provides tuneable search power in the form of the
standard deviation. This can be exploited to provide on-
line adaptation that avoids the generation of infeasible
solutions and controls convergence speed by varying the
search from near global early on to very local towards the
end.Sigmoidalvariation, as a function of the percentage
of generations completed, of the standard deviation is
useful because it allows concentrated periods of high- and
low-power search [Purshouse and Fleming, 2001].

3.2 PERFORMANCE

Attainment surfaces illustrating the performance of the
baseline algorithm are shown in Figure 1. Particularly
good results were achieved for ZDT-1, ZDT-2, and ZDT-
3 (Figures 1a, 1b, and 1c respectively) in terms of both
closeness to the global Pareto front and diversity across
the front. The tight envelopes of attainment indicate the
high level of consistency achieved in these cases. The
MOGA struggled to achieve good coverage of the surface
as f1 approaches zero on ZDT-2. Note that this is a region
where there is little trade-off between the objectives.

As shown in Figure 1d, the wider envelopes of attainment
produced for the multi-fronted ZDT-4 signify entrapment
in a locally non-dominated front. On no occasions did the
MOGA converge to the global trade-off surface although
coverage across the identified fronts was good.

The baseline MOGA achieved reasonable closeness to the
global front on ZDT-5. Performance on this deceptive test
function is depicted in Figure 1e. Note that on no
occasions was the algorithm able to identify the extreme
right-hand section of the discrete trade-off surface.

Rather poor performance was observed on the non-
uniform ZDT-6, as shown in Figure 1f. Coverage was
especially poor on the less dense area of the front. This,
together with the missing section of the ZDT-5 front, is

1 Coincidentally, the incorporation of naïve crossover largely
prevents the convergence failures encountered by Ikedaet al
[2001], thus showing that MOEA failure cannot be solely
blamed on the use of Pareto ranking in these cases.
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Figure 1: Attainment surfaces – baseline MOGA solving the ZDT problems

the strongest indication that density-based sharing would
be beneficial. Closeness to the true Pareto front is also not
good. Only the 0%-attainment surface lies on the global
front, where coverage is particularly poor. Furthermore,
the position of this front with respect to the median and
quartiles suggests that this result is something of an
outlier.

4 ELITIST STRATEGY
Elitism is the process of preserving previous high-
performance solutions from one generation to the next.
This is conventionally achieved by simply copying the
solutions directly into the new generation. Elitism has

long been considered an effective method for improving
the efficiency of an EA [De Jong, 1975]. Various recent
studies in the EMO community have indicated that the
inclusion of an elitist element can considerably improve
the performance of an MOEA [Zitzleret al, 2000; Debet
al, 2000]. The two main issues are (1) how to manage the
size of the elite sub-population, and (2) how to use elitism
to drive the search effectively.

The elitist strategy adopted in this study is a variant on the
approach developed by Zitzler [1999] and is illustrated by
the schematic in Figure 2. The key difference is that the
archive size is allowed to vary within pre-defined limits,
whilst the number of newly generated candidate solutions



is varied such that the total population size (elites plus
new solutions) is held constant.
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Figure 2: Elitist strategy

The on-line archive is initialised to the empty set, whilst
the initial population is initialised to a random set of
candidate solutions (possibly seeded with information
provided by the decision-maker). The populations at
subsequent iterations of the algorithm are the combination
of new solutions and current elite solutions. The currently
non-dominated solutions in the population are identified
and are stored as the new, potentially over-sized, archive.
Over-represented solutions are then eliminated from the
archive, if necessary, using theSPEA-2 truncation
procedure [Zitzler et al, 2001]. This is an effective
reduction technique for two-criterion problems.

When the new elite set has been finalised, the size of this
set is known, and thus the number of new candidate
solutions required to fill the population can be calculated.
These solutions are created through the selection and
genetic manipulation of members of the current
population. The new solutions are then combined with the
elite set to form the total population, which completely
replaces the old population.

This elitist strategy has been integrated within the baseline
MOGA and has been applied to the test problems.
Randomisation test results between the elitist model and
the baseline are shown in Figure 3. Observed differences
to the left of the randomisation distribution offer evidence
in favour of the elitist version outperforming the baseline
case.

There is considerable evidence, clearly shown by the
results in Figure 3, that the elitist algorithm produces
results closer to the true front than the baseline for ZDT-1,
2, 3, 4, and 6. Superior performance in terms of diversity
is strongly suggested for ZDT-1, 2, 4, 5, and 6.

Elitism increases the convergence speed of the algorithm.
The danger of sub-optimal convergence is somewhat
reconciled by the distributed nature of the elite set. High-
power search operators, such as the Gaussian mutation
operator used in this work, can also reduce the risk of

premature convergence. Hence, the increased convergence
exhibited in this study is expected.
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Figure 3: Elite versus baseline

The elitist scheme also maintains the characteristics of the
currently identified trade-off surface within the on-line
population. Thus, diversity of non-dominated solutions in
the population is maintained and encouraged (through the
thinning of similar criterion vectors) by the truncation
mechanism. This helps to explain the improvement in
diversity seen in the results. However, the truncation
process only represents the current distribution: it does
not, directly (though fitness), drive the search towards a
superior distribution. Despite this fact, the inclusion of
elitism did lead to improved diversity on the non-
uniformly distributed ZDT-6. Modifications to the fitness,
such as those arising through sharing, may assist further in
improving diversity across the trade-off surface.

5 SHARING STRATEGY

5.1 INTRODUCTION

One of the aims of a multi-objective evolutionary
algorithm is to obtain a suitabledistribution of candidate
solutions in regions of interest to the decision-maker. In
an evolutionary algorithm, this can be achieved through
the formation of sub-population clusters – known as
niches– within the global population.Fitness sharingis
the most popular method for fostering this niching process
[Goldberg and Richardson, 1987]. In this approach, the
raw fitness value of a candidate solution is reduced by a
factor dependent on the local population density. This
measure should be made in the domain over which a good
distribution is of interest: usually criterion-space.

5.2 PARAMETER-BASED METHODS

Fitness sharing has been shown to combat the problem of
genetic drift(population convergence to a single point due
to stochastic selection errors), thus helping to attenuate the
possibility of sub-optimal convergence and to enhance
coverage of trade-off surfaces. However, the power law
equation on which the technique is based requires a
definition of closenessin order to calculate the population
densities. This can be difficult to estimate in practice.
Furthermore, the method is sensitive to choice of this



niche size parameter. Several methods have been
proposed in order to estimate the niche size, for example
Deb and Goldberg [1989] and Fonseca and Fleming
[1993], of which the dynamic approach of Fonseca and
Fleming [1995] is particularly interesting.

Fonseca and Fleming [1995] noted the similarity between
the power law sharing function and theEpanechnikov
kernel density estimator used by statisticians. The kernel
smoothing parameter used in the estimator was found to
be directly analogous to the fitness sharing niche size
parameter. The key benefit of this is that statisticians have
developed successful techniques for estimating the value
of this parameter [Silverman, 1986]. Furthermore, the
approach is amenable to update at each generation of the
EA population. This approach can be regarded as
parameter-based sharing with automatic tuning.

Epanechnikov sharing has been added to the baseline
MOGA and has been applied to the benchmark problems.
Sharing is performed using the Euclidean distance metric
in the criterion domain. Results of a randomisation
comparison with the baseline algorithm are shown in
Figure 4. Observed values that favour the sharing scheme
will lie to the left of the randomisation distribution.
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Figure 4: Epanechnikov versus baseline

The inclusion of Epanechnikov sharing has improved both
aspects of performance on the non-uniform ZDT-6. Note
in particular that a method designed to improve diversity
has also helped to improve convergence, thus suggesting
the strong interaction between the two performance
criteria. However, no improvements in either diversity or
closeness have been achieved for any other test function.
Indeed there is some evidence to suggest deterioration in
diversity on ZDT-1. The lack of improvement to diversity
is of particular concern, since the elitist results in Section
4 have indicated that diversitycanbe greatly improved on
these problems. A possible explanation for the lack of
success is that the automatic parameter selection is
providing poor estimates.

5.3 PARAMETER-LESS METHODS

The difficulty and inconvenience involved in determining
the niche size value has led many researchers to
investigate parameter-less methods for achieving niching.
A new approach is presented here that increases the

resolution of the Fonseca and Fleming [1993] Pareto-
based ranking procedure through the inclusion of
population density information. Anintra-ranking is
performed on candidate solutions of identical Pareto-
based rank, discriminating on the basis of population
density at that rank. Solutions in less dense areas receive a
superior intra-ranking to their counterparts in denser
regions. This approach requires a definition ofdistance
(Euclidean nearest neighbour is used herein) but does not
require a definition of closeness. In practice, the distance
metric is likely to be problem dependent and could
conceivably include decision-maker preference
information. Following the new fine-grained ranking
process, the fitness assignment procedure remains
unchanged.

Using this scheme, if one candidate solution is preferred
to (dominates) another, then the former is guaranteed to
have a superior fitness value. Also, when all solutions are
non-dominated, discrimination is based purely on density.
If, in addition, the density is globally uniform then all
fitnesses are identical.

With any type of ranking scheme, information content is
lost. Ranking indicates that one solution lies in a more
densely packed region than another solution but the actual
difference in density between the two is lost. This limits
the amount of information available to the search
procedure but protects against premature convergence to
locally superfitsolutions and removes the requirement for
a niche size setting.

The results for this new sharing scheme, compared to the
non-sharing baseline model, are shown in Figure 5. The
central aim of sharing is to improve the distribution of
solutions in criterion-space and this should be primarily
evident in the spread results. There is strong evidence to
suggest that the new method improved spread on ZDT-3
and ZDT-4. The use of the Epanechnikov kernel, by
contrast, did not improve results on these problems. In no
case was the absence of a sharing mechanism shown to be
preferable. However, there is little evidence to suggest
that the use of sharing made any difference to the results
for ZDT-6. This is particularly disappointing since this
problem has a non-uniform distribution across its trade-off
surface: a situation in which sharing is considered a highly
appropriate strategy.
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Figure 5: New sharing versus baseline
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Figure 6: Attainment surfaces – elitist, parameter-less sharing MOGA solving the ZDT problems

6 HIGH-PERFORMANCE MOGA
The use of an elitist strategy or a parameter-less sharing
strategy in isolation has been shown to offer improved
performance. It is instructive to also consider the effect of
these schemes in combination. Attainment surfaces for
such an algorithm are shown in Figure 6. The envelopes
of attainment are generally very tight, indicating good
consistency. As evident from Figure 6d, closeness has
been greatly improved on ZDT-4: indeed the 25%-
attainment surface lies very close to the global front of
this difficult test problem. Complete coverage of the right-
hand portion of the trade-off surface has been achieved for

ZDT-5, as shown in Figure 6e. Finally, closeness and
diversity have been much improved on ZDT-6 (Figure 6f).

Comparisons with the baseline MOGA are made using
randomisation testing in Figure 7. Observed differences
that lie to the left of the randomisation distribution favour
the new algorithm. Compelling evidence points to the
algorithm substantially outperforming the baseline in
terms of diversity across all six benchmark problems. The
combinationof elitism and new sharing was required in
order to achieve this notable result: neither elitism nor
sharing alone was shown to be sufficient. Improved
closeness was observed for ZDT-1, 2, 4, and 6 (the result
for ZDT-5 is not significant at the 1%-level).
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Figure 7: Elitist, sharing MOGA versus baseline

7 CONCLUSION
Using a progressive and tractable experimental approach,
supported by appropriate statistical and visual analyses,
this paper has shown that elitist and sharing strategies can
significantly improve the performance of an evolutionary
multi-criterion optimiser. Existing elitist heuristics are
again shown to be beneficial, this time using a new
analysis technique and in the context of MOGA.
However, the shortcomings of a popular parameter-based
sharing technique have been exposed, as have the dangers
of relying too heavily on an automatic parameter-setting
method. A new parameter-less method of sharing has been
introduced and has been shown to be more reliable than
the standard method. Impressive results were achieved
when both elitism and sharing were used together. As a
final word of caution, these results have been obtained for
two-criterion problems: further research is required to
ascertain the effectiveness of these methods as the
dimension of the problem increases.

The results described in this paper, together with an
extended research report, are available for download from
the following site:
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Abstract

This study investigates the decision making
between �tness function with di�ering vari-
ance and computational-cost values. The ob-
jective of this decision making is to provide
evaluation relaxation and thus enhance the
e�ciency of the genetic search. A decision-
making strategy has been developed to maxi-
mize speed-up using facetwise models for the
convergence time and population sizing. Re-
sults indicate that using this decision making,
signi�cant speed-up can be obtained.

1 Introduction

Signi�cant progress has been made both in analysis
and design of genetic algorithms (GAs) over the last
decade. Design procedures for the development of
competentGAs have been proposed and much progress
has been made along these lines (Goldberg, 1999). A
GA is called competent if it can solve hard problems
quickly, accurately, and reliably. In essence, compe-
tent GAs take problems that were intractable with the
�rst generation GAs and render them tractable. Com-
petent GAs successfully solve problems withbounded
di�culty oftentimes requiring only a subquadratic
(polynomial) number of function evaluations.

However, for large-scale problems, the task of com-
puting even a subquadratic number of function evalu-
ations can be daunting. This is especially the case if
the �tness evaluation is a complex simulation, model,
or computation. This places a premium on a variety
of e�ciency-enhancement techniques. Therefore GA
practitioners resort to approximate �tness functions
that are less expensive to compute. Such approxima-
tions introduce error in assessing the solution quality.

Usually, one has to choose among a set of �tness func-

tions with varying degrees of error. The choice of a
�tness function has a large impact on the computa-
tional resources and the solution quality. Oftentimes,
practitioners choose a �tness function on an ad hoc ba-
sis which might not necessarily be the correct choice.
Therefore, there is a need to investigate which �tness
function should be used and under what scenarios.

However, error comes in two 
avors: bias and vari-
ance. Variance and bias a�ect the search process in
di�erent ways and therefore have to be handled in dif-
ferent manner (Keijzer & Babovic, 2000). This paper
considers the decision making under the presence of
variance alone and decision making in the presence of
bias is presented elsewhere (Sastry, 2001). This sepa-
ration will not only ease the analytical burden, but also
highlight the di�erence in the decision-making proce-
dure.

This paper investigates the decision-making process
between two �tness functions with di�ering variance
values and computational costs. Although the �tness
function with low variance requires a smaller popu-
lation size and converges faster, the overall computa-
tional cost can be higher due to its higher cost. On
the other hand, the low-cost �tness function is cheaper
to compute, but both the population size and the con-
vergence time increase, which in turn increases the to-
tal computational cost. Therefore, one has to choose
one of the two �tness functions. The objective of this
study is to develop a decision-making strategy that
yields maximum speed-up. Facetwise models for con-
vergence time and population sizing are used to predict
speed-up and these models are veri�ed with empirical
results along the way.

This paper is organized as follows. Section 2 brie
y
discusses the past work on handling error in �tness
functions. The problem addressed in this paper is de-
�ned in section 3. Then, facetwise models for con-
vergence time, population size and total number of



function evaluations are developed in the subsequent
section. The strategy that yields maximum speed-up
is discussed in section 5. Finally, a summary and key
conclusions of this study is presented.

2 Literature Review

E�ciency-enhancement techniques are essential for
solving large-scale, complex search problems. One
such technique isevaluation relaxation. Evaluation-
relaxation schemes try to reduce the computation bur-
den by utilizing inexpensive, but error-prone �tness
assignment procedures instead of an expensive, but
accurate �tness function.

Grefenstette and Fitzpatrick (1985) studied the util-
ity of approximate evaluations in an image registra-
tion problem and obtained signi�cant speed-up by
random pixel sampling instead of complete sampling.
Follow-up studies (Fitzpatrick & Grefenstette, 1988;
Mandava, Fitzpatrick, & Pickens, 1989) have pro-
vided further evidence of e�ciency-enhancement by
using approximate �tness evaluations. Early studies
of approximate function evaluations were largely em-
pirical, and a design methodology for predicting the
behavior of GAs was lacking. Miller and Goldberg
(1995) provided a theoretical framework for handling
noisy function evaluations. Speci�cally they developed
convergence-time models in the presence of external
noise. Miller and Goldberg (1996) extended the con-
vergence time model for di�erent selection methods.
Miller (1997) proposed a detailed design methodology
including development of population-sizing model and
optimal sampling prediction for noisy environments.

Other studies exist on utilizing approximate �tness
functions to speed-up the genetic search (Ratle, 1998;
El-Beltagy, Nair, & Keane, 1999; Jin, Olhofer, & Send-
ho�, 2000; Albert, 2001). However, an exhaustive sur-
vey is beyond the scope of this study.

3 Problem De�nition

Consider two noisy �tness functions f 1 and f 2 for a
search problem. Functionsf 1 and f 2 consist of zero-
mean Gaussian noise of variance� 2

N 1
and � 2

N 2
respec-

tively. The cost of a single evaluation of f 1 is c1 and
that of f 2 is c2. Also, � 2

N 1
< � 2

N 2
, and c1 > c 2. That

is, f 1 is a high-cost, low-variance function, andf 2 is a
low-cost, high-variance �tness function. The objective
is to correctly decide which �tness function to employ
so as to obtain highest speed-up. As will be seen later,
this decision has to be made spatially. To achieve this
goal, we �rst have to develop appropriate models for
the convergence time and the population size required.

4 Facetwise Models

In this section, we will develop a facetwise model for
convergence time of GAs in presence of external noise.
Then an existing model for population sizing is pre-
sented and these models are used to compute an ex-
pression for the total number of function evaluations.
Finally, these facetwise models are veri�ed with em-
pirical results.

4.1 Convergence Time

Understanding run duration is one of the critical fac-
tors for analyzing GAs. Elsewhere, a motivation and
the utility of understanding time has been discussed
Goldberg (in press). Three main approaches have
been used in understanding time: (1) Modeling of
takeover time, where the dynamics of the best individ-
ual is modeled (Goldberg & Deb, 1991), (2) Selection-
intensity model, where the dynamics of the average
�tness of the population is modeled (M•uhlenbein &
Schlierkamp-Voosen, 1993; B•ack, 1995; Miller & Gold-
berg, 1995; Miller & Goldberg, 1996), and (3) Higher-
order cumulant model, where the dynamics of aver-
age and higher-order cumulants are modeled (Blickle
& Thiele, 1995; Pr•ugel-Bennet & Shapiro, 1994).

Even though higher-order cumulant models are more
accurate than selection-intensity models, they do not
provide a closed-form solution for either the propor-
tion of correct building blocks or the convergence
time. Therefore, in this study we develop a selection-
intensity based convergence-time model for the One-
Max domain. The OneMax problem has two key
properties: (1) Uniform building-block salience, and
(2) Gaussian �tness distribution. Uniform building-
block salience implies that the contribution of build-
ing blocks in di�erent partition to the �tness is equal.
The assumption of Gaussian �tness distribution is ap-
proximately true as recombination and other genetic
operators have a normalizing e�ect.

Therefore the �tness distribution F = N (� t ; � 2
t ), and

N = N (0; � 2
N ). Here, � t is the mean true �tness at

time t. Furthermore, the noisy �tness distribution, F 0

can be written as F 0 = F + N; where, F is the actual
�tness distribution, and N is the external noise (in
this case, zero-mean Gaussian noise). Since both the
actual �tness and the noise are normally distributed,
the noisy �tness function is also normally distributed:

F 0 � N (� t ; � 2
t + � 2

N ): (1)

Under these assumptions, the expected average �tness
of the population after selection, given the current av-
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Figure 1: Empirical veri�cation of the convergence-time-ratio model (equation 8).

erage �tness is given by (Miller & Goldberg, 1995):

� t +1 � � t =
I� 2

tp
� 2

t + � 2
N

: (2)

where, I is the selection intensity (Bulmer, 1985) and
is de�ned as the expected increase in the average �t-
ness of a population after selection is performed upon
a population whose �tness is distributed according to
a unit normal distribution. The selection intensity for
tournament selection depends on the tournament size,
s, and can be approximated by the relation (Blickle &
Thiele, 1995):

I =

r

2
�

ln(s) � ln
� p

4:14 ln(s)
��

: (3)

Equation 2 can be rewritten as

� t +1 � � t =
I
� e

� t (4)

where, � e =
p

1 + ( � 2
N =� 2

t ), is the duration-elongation
factor (Goldberg, in press). Note that for a non-zero
noise,� e > 1, and the increment in the average �tness
after selection would be less than that when the noise is
absent. In other words, the presence of external noise,

elongates the convergence time, and this elongation is
quanti�ed by � e.

Assume that � e is a constant, and is equal tor

1 +
�

� 2
N =� 2

f

�
, where � 2

f is the initial �tness vari-

ance. Note that for OneMax problem, � t = `pt , and
� 2

t = `pt (1 � pt ), where pt is the proportion of correct
BBs at time t. Using these expressions, equation 4 can
be written as

pt +1 � pt =
I

� e
p

`

p
pt (1 � pt ): (5)

Approximating the above di�erence equation by a dif-
ferential equation, and integrating it with the initial
condition, p0 = 0 :5 (randomly initialized population),
gives us

pt =
1
2

�
1 + sin

�
It

� e
p

`

��
: (6)

Equating pt = 1, in the above equation we can solve
for the convergence time:

tconv =
�

p
`

2I

s

1 +
� 2

N

� 2
0

: (7)
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Figure 2: Empirical veri�cation of population-size-ratio model (equation 10).

It must be noted that in deriving the above
convergence-time model we assumed� e to be a con-
stant. However, � e changes over time and more accu-
rate solutions for equation 4 exist (Sastry, 2001).

In this study, we are interested in the relative value
of convergence times, rather than the absolute val-
ues. Speci�cally, we are interested in the ratio of con-
vergence time when �tness function f 1 is employed
to that when �tness function f 2 is employed. This
convergence-time ratio is given by

tc;r =
tconv (� N 1 )
tconv (� N 2 )

=

 
� 2

f + � 2
N 1

� 2
f + � 2

N 2

! 1
2

: (8)

It should be noted that using more accurate solutions
for equation 4 does not improve the accuracy of theo-
retical model signi�cantly

4.2 Population Size

The previous section presented a convergence-time
model for tournament and other I -constant selection
schemes. The other factor required to determine com-
plexity is the population-sizing model which is pre-
sented in this section. Population size is an important

factor in determining the solution quality through a
GA run. Adequate population size is required not only
to ensure a good number of initial BB supply, but also
a good decision-making between competing BBs.

Goldberg, Deb, and Clark (1992) proposed a practi-
cal population-sizing bounds for selectorecombinative
GAs. Their model was based on deciding correctly be-
tween the best and the next best BB in a partition
in the presence of noise arising from other partitions.
More recently, Harik, Cant�u-Paz, Goldberg, and Miller
(1997) re�ned the population-sizing model of Goldberg
et al. (1992) to compute a tighter bound on the pop-
ulation size. They incorporated both the initial BB
supply model and the decision-making model in the
population-sizing relation. Miller (1997) extended the
population-sizing model of Harik et al. (1997) for noisy
environments.

The following population-sizing model for noisy envi-
ronments developed by Miller (1997) is used in the
current study:

n = �
p

�
2d

� k log(� )
q

� 2
f + � 2

N ; (9)

where, d is the signal di�erence and is given by the
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Figure 3: Comparison of empirical and theoretical results for the ratio of total number of function evaluations.

�tness di�erence of the best and the second best BB,
� is the alphabet cardinality, k is the BB size, and �
is the failure rate.

The ratio of population size required to yield a solution
of the same quality when �tness function f 1 is used to
that when �tness function f 2 is used is then given by

nr =
n(� N 1 )
n(� N 2 )

=

 
� 2

f + � 2
N 1

� 2
f + � 2

N 2

! 1
2

: (10)

4.3 Number of Function Evaluations

Using equations 8 and 10, we can obtain the ratio of
total number of function evaluations taken if �tness
function f 1 is used to those taken if �tness function f 2

is used to obtain solution of the same quality.

nfe;r =
nfe (� N 1 )
nfe (� N 2 )

= nr tc;r =
� 2

f + � 2
N 1

� 2
f + � 2

N 2

; (11)

4.4 Model Validation

This section empirically veri�es the models presented
in the previous sections. The empirical results are ob-
tained for the OneMax problem with string lengths `

= 50, 100, 200, 300, and 400. Tournament selection
without replacement with tournament sizes of s = 2,
3, 4, and 5 is used. Uniform crossover with crossover
probability of 1.0 is employed to ensure e�ective mix-
ing of BBs. The noise variance of �tness function f 2

is taken to be 10� 2
f and the noise variance of function

f 1 is varied from 0 to 10� 2
f .

The convergence-time ratio predicted by equation 8
is veri�ed with empirical results and is shown in �g-
ure 1. For computing the convergence time, a GA run
is terminated if the proportion of correct BBs reaches a
value greater than or equal to (̀ � 1)=`. The population
size is determined by the following relation (Goldberg,
Deb, & Clark, 1992): n = 8( � 2

f + � 2
N ). This is a conser-

vative estimate, and is used to reduce the population-
sizing e�ects. The empirical results are averaged over
50 independent runs. Figure 1 clearly validates the
convergence-time model of equation 8. Furthermore,
as the model predicts, the empirical results show that
the convergence-time ratio is independent of̀ and s
values if the ratio of noise variance to the initial �tness
variance is constant.

For computing nr and nfe;r , a GA run was terminated
when all the individuals in the population converged
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Figure 4: Veri�cation of the optimal decision making between �tness functions with di�ering variance values.

to the same �tness value. The average number of cor-
rectly converged BBs are computed over 50 indepen-
dent runs. The minimum population size or the total
number of function evaluations required for the GA to
correctly converge on an average to at leastm � 1 BBs
(� = 1=m), is determined by the bisection method.
The results are averaged over 25 bisection runs.

The population-size ratio predicted by equation 10 is
veri�ed with empirical results in �gure 2. The pre-
diction of the ratio of total number of function evalua-
tions (equation 11) is compared to the empirical results
in �gure 3. The results show that the models agrees
with empirical results over a broad range of parameter
values (speci�cally, noise variance, problem-size, and
tournament-size values).

5 Optimal Decision

As mentioned earlier, we have to decide between two
�tness functions, one with low variance, but high cost,
and the other with high noise but low cost. The ratio
of total cost of employing �tness function f 1 to that of
employing �tness function f 2 to obtain solution of the

same quality is given by

ctot ;1

ctot ;2
=

c1nfe; 1

c2nfe; 2
=

c1

c2

 
� 2

f + � 2
N 1

� 2
f + � 2

N 2

!

; (12)

where,ctot ;1 is the total cost of employing �tness func-
tion f 1, and ctot ;2 is the total cost of employing �tness
function f 2. From the above relation, we can summa-
rize the optimal decision as follows:

� If c2=c1 > (� 2
f + � 2

N 1
)=(� 2

f + � 2
N 2

), then use f 1.

� If c2=c1 < (� 2
f + � 2

N 1
)=(� 2

f + � 2
N 2

), then use f 2.

� If c2=c1 = ( � 2
f + � 2

N 1
)=(� 2

f + � 2
N 2

), then either f 1

or f 2 can be used.

This decision making process is shown pictorially in
�gure 4, where the theory is veri�ed with empirical
results. The �gure plots the cost ratio of �tness func-
tions for di�erent values of �tness variance ratios. The
empirical results shown are obtained for the OneMax
problem with string lengths, ` = 50; 100; 200; 300, and
400. A selectorecombinative GA with tournament se-
lection without replacement and uniform crossover is
used for this purpose.
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Figure 5: Empirical veri�cation of speed-up predicted by equation 13.

Speed-up is de�ned as the ratio of the total cost of us-
ing a high-cost, low-variance �tness function to the to-
tal cost of using a low-cost, high-variance �tness func-
tion. Therefore, speed-up obtained by using the afore-
mentioned optimal decision is given by

� s =

(
ctot ; 1

ctot ; 2

c1
c2

>
� 2

f + � 2
N 2

� 2
f + � 2

N 1

1:0 elsewhere
(13)

This de�nition of speed-up assumes that one always
chooses the more accurate �tness function. The above
speed-up measures the improvement in e�ciency when
a correct decision is made instead of a naive decision.
When a decision-making procedure, such as the one
developed in this section is not available, the naive
choice is the use the more accurate �tness function.
Justi�cation for using this de�nition of speed-up is
given elsewhere (Sastry, 2001)

The speed-up predicted by equation 13 is veri�ed with
empirical relations in �gure 5 for di�erent cost-ratio,
problem-size, and tournament-size values. The results
clearly indicate the a high speed-up can be obtained if
the cost-ratio of the �tness functions (c2=c1) is much
lower than their �tness variance ratios ( � 2

f 1
=� 2

f 2
).

The key thing is that even though we started with
simpli�ed assumptions, the decision-making is some-
what general in nature. The only control parameters
in the decision making process are the relative cost and
�tness variance values. Using dimensional argument,
one can extrapolate the results obtained here to other
problem domains. In such cases, the decision will be
correct in an order-of-magnitude sense. Therefore, the
core message of this section is as follows: If an opti-
mization problem has many di�erent �tness function
with di�ering values of variance, and computational
costs, then a �tness function with least product of cost
and �tness variance should be employed.

6 Conclusions

This paper addressed the issue of deciding between
�tness functions with di�ering variance and cost val-
ues. An approximate, but practical convergence-
time model was developed and used along with a
population-sizing model to develop a decision-making
strategy and to predict speed-up. Although in this
paper only two �tness functions were considered, the
decision making can be easily extended for more than
two �tness functions.



The decision-making suggests that the e�ect of vari-
ance can be handled spatially and the choice of the
�tness function depends only on the relative cost and
variance ratios of the �tness functions. Signi�cant
speed-up can be obtained by employing the decision-
making strategy developed in this paper. Based on
dimensional arguments, the decision-making strategy
presented here, though developed for the OneMax
problem, should be applicable to other �tness domains.
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Abstract

This study develops a decision-making strat-
egy for deciding between �tness functions
with di�ering bias values. Simple, yet prac-
tical facetwise models are derived to aid the
decision-making process. The decision mak-
ing strategy is designed to provide maximum
speed-up and thereby enhance the e�ciency
of GA search processes. Results indicate that
bias can be handled temporally and that sig-
ni�cant speed-up values can be obtained.

1 Introduction

Since the inception of genetic algorithms (GAs) (Hol-
land, 1975), signi�cant progress has been made in de-
signing and analyzing them. A design decomposition
has been proposed for the development ofcompetent
GAs and much progress has been made along these
lines (Goldberg, 1999). Competent GAs take prob-
lems that were intractable with �rst generation GAs
and render them tractable, oftentimes requiring only
a subquadratic number of function evaluations.

However, for large-scale problems, the task of com-
puting even a subquadratic number of function evalu-
ations can be daunting. This is especially the case if
the �tness evaluation is a complex simulation, model,
or computation. Therefore, one usually resorts to ap-
proximate �tness functions that are less expensive to
compute. However, approximations introduce error in
assessing the solution quality. Also, we may have to
choose from many �tness functions with di�ering error
and cost values, and that choice has a large impact on
the computational resources and the solution quality.

At present, practitioners make the choice among �t-
ness function alternatives on an ad hoc basis. There-
fore, we need to investigate which �tness function

should be used under what scenarios. Furthermore,
one has to recognize that error introduced through
approximations comes in two 
avors: Bias, and vari-
ance (Keijzer & Babovic, 2000). The decision-making
strategy depends on whether variance or bias domi-
nates the error. We have considered the presence of
bias and variance in isolation to demonstrate this dif-
ference and to ease the analytical burden.

This paper investigates decision making under the
presence of bias, while the decision making under the
presence of variance is developed elsewhere (Sastry,
2001). Speci�cally, we investigate the decision mak-
ing between two �tness functions with di�ering bias
values. A �tness function with higher bias value will
yield a more inaccurate solution when compared to
the function with a lower bias value. This inaccuracy
can be eliminated temporally (not spatially). That
is, using the spatial approach|sampling the high-bias
�tness function|does not eliminate the e�ect of bias
and yields an inaccurate solution.

On the other hand, a high-bias, low-cost function can
be used during the initial few generations of the evo-
lutionary process to obtain a crude solution. The low-
bias, high-cost �tness function can then be used (later
part of genetic search) to re�ne the genetic search and
to obtain a more accurate solution. The generation
at which the �tness functions are switched, called the
switching time is an important factor in determining
the speed-up. The objective of this study is to utilize
facetwise models to predict the optimal switching time
that yields greatest speed-up and to develop a decision-
making strategy to handle bias in �tness functions.

This paper is organized as follows. Section 2 brie
y
discusses some previous work on handling error in �t-
ness functions. The speci�c problem that we solve is
de�ned in section 3. Section 4 de�nes the test problem
used for developing models. A convergence-time model
that incorporates bias in �tness functions is derived in



section 5. Section 6 develops models for predicting
the optimal switching time and the speed-up. Finally,
section 7 presents key conclusions of the study.

2 Related Work

E�ciency enhancement is essential for solving large-
scale, complex search problems. One such technique
is evaluation relaxation, in which the computation
burden is reduced by utilizing inexpensive, but error-
prone �tness assignment procedures instead of an ex-
pensive, but accurate �tness function.

Grefenstette and Fitzpatrick (1985) studied the use
of approximate evaluations for an image registration
problem. Follow-up studies (Fitzpatrick & Grefen-
stette, 1988; Mandava, Fitzpatrick, & Pickens, 1989)
have further analyzed the utility of approximate �tness
evaluations. However, these studies were largely em-
pirical, and a design methodology for handling exter-
nal noise was developed only recently (Miller & Gold-
berg, 1995; Miller, 1997). These studies consider only
the e�ects of variance alone, and e�ects of bias, albeit
to a limited extent has also been investigated (Jin, Ol-
hofer, & Sendho�, 2000; Albert, 2001). For further
details on these and other studies on approximate �t-
ness functions in GAs, the interested reader should
consult the review presented elsewhere (Sastry, 2001).

3 Problem De�nition

Consider two �tness function, f 1 and f 2 for a search
problem with bias values of b1 and b2 respectively.
That is, the optimal solution when f 1 is used isx � + b1

and that when f 2 is used isx � + b2. Herex � is the true
optimal solution. The computational costs of f 1 and
f 2 are c1 and c2 respectively. Furthermore, b1 < b2

and c1 > c 2. An illustration of the �tness functions
with di�erent bias values is shown in �gure 1. The �g-
ure shows a single variable unimodal �tness functions
with and without bias. Note that the optimal value of
the �tness functions need not be the same.

Implicitly, we assume that some building blocks (BBs)
of f 1 and f 2 are di�erent and others are the same. We
recognize that this assumption might not hold true if
the biased �tness function introduces multiple false op-
tima. However, this study is the �rst step toward de-
veloping a decision making strategy for handling bias
in �tness functions and it serves as a starting point for
the analysis of more complex cases. It is important to
note that the proposed models can be extended and
applied to real-world problems (Albert, 2001).

Since f 1 and f 2 share some BBs,f 2 can be used for
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Figure 1: Fitness functions with di�erent bias values.

the �rst few generations to obtain good convergence
on the BBs shared by both the �tness functions. Fit-
ness function f 1 can then be used to obtain a solu-
tion of better accuracy (lower bias). The time, ts, at
which we change fromf 2 to f 1 is called the switch-
ing time. The objective of this study is to optimize
the switching time to maximize speed-up and thus de-
velop a decision-making strategy for choosing the cor-
rect �tness function. To develop models for solving
the problem de�ned above, we need to �rst construct
a test function. One such test function used in this
study is described in the following section.

4 Test Function

The test function used in this study is the weighted
OneMax de�ned as:

f =
X̀

i =1

wi x i ; (1)

where, x i is the value of the i th allele and wi is the
weight associated with it. Similar to the OneMax
function, the weighted OneMax is a linear unimodal
function and the BBs are independent of each other.
Therefore, the weighted OneMax function reduces the
analytical burden for developing models considerably.
Furthermore, �tness functions with di�ering bias val-
ues can be considered as weighted OneMax functions
with di�erent weights.

The BBs are uniformly scaled|that is, contribution of
every BB to the �tness is equal in magnitude|-if the
weights, wi , are restricted to be either � 1. Then, the
�tness variance of a randomly generated population is
equal to that for an OneMax problem. This further
eases the analytical burden and the required popu-



lation size does not change with di�ering bias values.
Therefore, we only need to develop a convergence-time
model, which is presented in the next section.

5 Convergence-Time Model

Understanding time in GAs is one of the critical factors
for a successful design of GAs (Goldberg, in press).
Convergence-time model helps us in predicting the
scale-up behavior of GAs. Existing studies on under-
standing time in GAs can be broadly classi�ed into
three approaches: (1)Takeover-time models, where the
growth of the best individual in the population is ana-
lyzed (Goldberg & Deb, 1991), (2)Selection-Intensity
models, where the dynamics of average �tness of the
population is analyzed (M•uhlenbein & Schlierkamp-
Voosen, 1993; B•ack, 1995; Miller & Goldberg, 1995),
and (3) Higher-Order-Cumulant models, where the dy-
namics of the average and higher order cumulants
of �tness of the population are analyzed (Blickle &
Thiele, 1995; Pr•ugel-Bennet & Shapiro, 1994).

In contrast to selection-intensity models, higher-order-
cumulant models do not yield closed-form solutions.
Therefore, a selection-intensity-based convergence-
time model is developed in this paper. For this purpose
consider two weighted OneMax functionsf 1 and f 2:

f 1 =
X̀

i =1

wi x i ; (2)

f 2 =
X̀

i =1

w0
i x i : (3)

Without loss of generality assume that the �tness func-
tion f 1 has zero bias and that the weightswi and w0

i
are assigned as follows:

wi =
�

1 1 � i � `1

� 1 `1 + 1 � i � `
; (4)

w0
i =

�
1 1 � i � `1 + b

� 1 `1 + b+ 1 � i � `
; (5)

where, b is the bias. That is, f 1 and f 2 share ` � b
BBs and di�er only in b alleles (in this case BBs). For
example, the correct BB in any one of theb alleles for
f 1 is 1 and for f 2 it is 0.

Note that initially, �tness function f 2 is used in the ini-
tial phase (t < t s) of the genetic search. Assuming a
uniform BB convergence, and a Gaussian �tness distri-
bution, the expected average �tness of the population
after selection is given by (M•uhlenbein & Schlierkamp-
Voosen, 1993):

� t +1 = � t + I� t ; (6)

where, I is the selection intensity and is de�ned as the
expected increase in the average �tness of a population
after selection is performed upon a population whose
�tness is distributed according to a unit normal distri-
bution. Selection intensity is constant for tournament
selection and is approximately given as a function of
tournament size s by the following relation (Blickle &
Thiele, 1995):

I =

r

2
�

log(s) � log
� p

4:14 log(s)
��

: (7)

Since �tness function f 2 is used in the �rst phase (t �
ts) of the run, the mean (� f 2 ;t ) and variance (� 2

f 2 ;t ) of
�tness are given by

� f 2 ;t = `pt � (` � `1 � b) ; (8)

� 2
f 2 ;t = `pt (1 � pt ) ; (9)

where, pt is the proportion of ones at time t. Using
the mean and variance values in equation 6, we obtain

pt +1 � pt =
I

p
`

p
pt (1 � pt ): (10)

Approximating the above di�erence equation by a dif-
ferential equation and integrating it yields

pt =
1
2

�
1 � cos

�
It
p

`
+ 2 sin � 1 p

p0

��
: (11)

Assuming that the initial population is randomly gen-
erated, we havep0 = 0 :5, and we get the following
expression for the proportion of correct BBs as a func-
tion of time:

pt =
1
2

�
1 + sin

�
It
p

`

��
: (12)

The proportion of correct BBs at switching time ts is
therefore given by

pt s =
1
2

�
1 + sin

�
It sp

`

��
: (13)

At the switching time ts, the low bias �tness function
f 1 is used instead of the high bias �tness functionf 2.
Hence, the proportion of correct BBs changes. Since
both f 1 and f 2 share` � b BBs, the proportion of cor-
rect BBs for those BBs remains the same. That is the
proportion of correct BBs for the ` � b is pt s . However,
since f 1 and f 2 do not shareb BBs, the proportion of
correct BBs, for the b alleles is 1� pt s . This implies
that there are two proportions of correct BBs one for
(` � b) alleles and the other forb alleles. The adjusted
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Figure 2: Empirical veri�cation of the proportion of correct building blocks predicted by equations 12, 14, and
16 for di�erent values of b, `, ts, and s.

proportion of correct BBs for the overall string, p0
t s

is
given by

p0
t s

=
1
`

[(` � b)pt s + b(1 � pt s )] ;

=
�

1 � 2
b
`

�
pt s +

b
`
: (14)

From the selection-intensity model assumption, we
know that the number of correct BBs in both ` � b and
b portion are distributed normally. Since these two
portions are statistically independent of each other,
the number of correct BBs for the overall string , and
similarly the �tness is also normally distributed. The
mean and variance of �tness at timet (t � ts) is given
by `p0

t � (` � `1), and `p0
t (1 � p0

t ) respectively. Proceed-
ing in the same way as we did fort < t s, results in the
following di�erence equation

p0
t +1 � p0

t =
I

p
`

p
p0

t (1 � p0
t ): (15)

Solving the above equation with the initial condition
that at t = ts, p0

t = p0
t s

, we get

p0
t =

1
2

�
1 � cos

�
I (t � ts)

p
`

+ 2 sin � 1(
q

p0
t s

)
��

: (16)

From the above relation for the proportion of correct
BBs, we can derive an expression for the convergence
time, by equating p0

t = 1:

tconv = ts +

p
`

I

h
� � 2 sin� 1

� q
p0

t s

�i
: (17)

The models developed above are veri�ed with empir-
ical results. A selectorecombinative GA with tour-
nament selection without replacement, and uniform
crossover scheme is employed for this purpose. The
probability of crossover is taken to be 1.0 and muta-
tion is not used. The value of `1 is kept constant at
25 for all the runs. The population size is determined
by the relation 8� 2

f (Goldberg, Deb, & Clark, 1992).
This population-sizing model overestimates the popu-
lation size and is used to remove any population-sizing
e�ects. Unless otherwise mentioned the following pa-
rameters are used:̀ = 100, s = 2, b = `

10 , and ts = 10.
The empirical results are averaged over 100 indepen-
dent runs.

The proportion of correct BBs predicted by equa-
tion 12, 14, and 16 is validated by empirical results.
The �gures plot the proportion of correct BBs as a
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Figure 3: Empirical veri�cation of convergence-time models (equation 17) for di�erent bias values.

function of time. Di�erent values of b, `, ts, and s
are used to validate the model and are shown in �g-
ure 2. The results show that the model capture the
dynamics accurately over a considerable range of pa-
rameter values. The discrepancy between the model
and empirical results are due to hitch-hiking and can
be further decreased by using multiple crossovers or
using a population-wise crossover (Thierens & Gold-
berg, 1994).

The convergence-time model (equation 17) is com-
pared to empirical results for di�erent bias and
problem-size values are shown in �gure 3. The �gure
plots the convergence time as a function of switching
time. The empirical results for the case where recom-
bination is applied twice every generation is also shown
in the �gures. As expected the agreement between the
theoretical and experimental results increases when
multiple crossover is applied. Note that the com-
pressed convergence-time scale in �gure 3 exaggerates
the error and the model accuracy is comparable to ex-
isting models for other problem domains.

With the convergence-time model at hand, we will now

proceed to derive an expression for the optimal switch-
ing time. The speed-up that can be obtained by using
the optimal switching time is also estimated in the
next section.

6 Optimal Switching Time

From the problem de�nition and the convergence-time
model (equation 17), total cost of function evaluation
is then given by

nfe = n (c2ts + c1(tconv � ts)) ;

= nc2 (ts + cr (tconv � ts)) ; (18)

where, cr = c1=c2 is the ratio of cost of the high-cost
�tness function to the cost of the low-cost �tness func-
tion. Employing model 2 (equation 17) for the conver-
gence time, the above equation can be written as

nfe = nc2

 

ts + cr
2
p

`
I

h�
2

� sin� 1
� q

p0
t s

�i
!

: (19)

We can de�ne the total number of function evaluations
in terms of time units by dividing the above equation
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Figure 4: Veri�cation of optimal switching-time model (equation 23).

by nc2:

n0
fe = ts + cr

2
p

`
I

h�
2

� sin� 1
� q

p0
t s

�i
: (20)

Our objective is to determine ts that minimizes n0
fe

(note that this is same as minimizing nfe ), which is
given by solving

@n0fe
@ts

= 0 ;

1 � cr

p
`

I
1

p
p0

t s
(1 � p0

t s
)

@p0t s

@ts
= 0 :

The optimal switching generation, t �
s , that minimizes

nfe when cr � `=(` � 2b), comes out to be

t �
s =

p
`

I
cos� 1

2

4
2
q

b
`

�
1 � b

`

�

�
1 � 2b

`

� p
c2

r � 1

3

5 : (21)

When cr < `= (` � 2b), t �
s = 0.

Recognizing that the convergence-time when a low-
bias, high-cost �tness function is used is given by

(B•ack, 1995)

tconv ;1 =
�

p
`

2I
;

and dividing equation 21 with the above quantity, we
obtain the a dimension-less expression for the optimal
switching time when cr � 1=(1 � 2� ):

t �
s

tconv ;1
=

2
�

cos� 1

"
2
p

� (1 � � )

(1 � 2� )
p

c2
r � 1

#

; (22)

where, � = b=` is the bias proportion. When cr <
1=(1� 2� ), t �

s = 0. Equation 22 can be further reduced
using the approximation cos� 1(x) � �

2 � x:

t �
s

tconv ;1
=

"

1 �
4
�

p
� (1 � � )

(1 � 2� )
p

c2
r � 1

#

: (23)

Equation 23 indicates that the strategy of employing
the low cost �tness function for the �rst few genera-
tions yields speed-up only if the product of cost ra-
tio, cr , is above a critical limit which is inversely pro-
portional to the bias proportion. If this is the case,
then the optimal switching time is proportional to the
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Figure 5: Empirical veri�cation of speed-up prediction (equation 24).

square root of the string length, inversely proportional
to the square root of the bias proportion, and inversely
proportional to the cost ratio cr . As expected, if the
number of biased bits increases, the switching time de-
creases, and if the cost ratio increases, the switching
time increases. Equation 23 is veri�ed with empirical
results in �gure 4. The �gure plots t �

s=tconv ;1 as a func-
tion of bias proportion � for di�erent cost-ratio values.
A binary tournament selection without replacement,
uniform crossover with crossover probability of 1.0 is
used. Mutation was not used in obtaining the empiri-
cal results. The results are averaged over 50 indepen-
dent runs.

Using the optimal switching-time given by equation 23,
we can compute the speed-up obtained by making the
correct decision. Here the speed-up,� s, is de�ned as
the ratio of the total computational cost incurred if the
low-bias �tness function is used to that if the high-bias
�tness function is used for t �

s generations and then the
low-bias function is used till the end of the GA run.
That is,

� s =
nfe; 1

nfe; 2
=

nc1tconv ;1

n [c2t �
s + c1 (tconv ;2 � t �

s )]
;

=
crh�

t conv ; 2

t conv ; 1

�
� (cr � 1) � �

s

i : (24)

Where, � �
s = t �

s=tconv ;1. Note that the above equation
is valid when cr � 1=(1 � 2� ). When cr < 1=(1 � 2� ),
� s = 1. The speed-up predicted by equation 24 is veri-
�ed with empirical results in �gure 5. The �gure plots
� s as a function of bias proportion � for di�erent cost-
ratio values. Tournament selection without replace-
ment with tournament size s = 2 is used. Uniform
crossover with crossover probability of 1.0 is employed
and mutation is not used. The results are averaged
over 50 independent runs.

Figure 5 clearly indicates the improvement in e�ciency
using the decision-making strategy developed to han-
dle bias in �tness functions. It also validates our hy-
pothesis that bias has to be handled temporally. Fur-
thermore, even though we made some simplifying as-
sumptions the �nal result for the optimal switching
time and the speed-up are in dimensionless quantities
and should be easily applicable to other problem do-
mains as well.



7 Conclusions

This paper develops a decision-making strategy for
choosing between �tness function with di�ering bias
values. We proposed that bias has to be handled tem-
porally by switching from a high-bias �tness function
to a low-bias �tness function. We also hypothesized
that an optimal switching time exists and when the
�tness functions are switched at this optimal time, the
total computation cost will be the minimum. We de-
veloped approximate, but practical convergence-time
model, and used it to determine the optimal switching
time. Based on the computational cost and the total
number of function evaluations taken by each �tness
function, a decision-making strategy was presented.

The paper shows that bias has to be handled tem-
porally. That is, a high-bias �tness function should
be used for coarse-grain optimization and then a low-
bias �tness function should be used for �ne-grain op-
timization. Although, we considered only two �tness
functions, the decision making can be easily extended
for more than two �tness functions. Furthermore, the
models developed in this study should provide guid-
ance to GA practitioners in choosing key GA parame-
ters and to provide maximum e�ciency enhancement.
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Abstract

It is kno wn that the p erformance of a ge-

netic algorithm dep ends on the surviv al en vi-

ronmen t and the repro ducibilit y of building

blo c ks. In this pap er, w e prop ose a new en-

co ding/crosso v er sc heme that uses genic dis-

tance whic h explicitly de�nes the distance b e-

t w een eac h pair of genes in the c hromosome.

It pursues b oth relativ ely high surviv al prob-

abilities of more epistatic gene groups and di-

v erse crosso v er op erators for the high creativ-

it y of new sc hemata. The exp erimen tal re-

sults on b enc hmark tra v eling salesman prob-

lems sho w ed remark able impro v emen t in tour

cost and running time o v er state-of-the-art

genetic algorithms for the problem.

1 Intr oduction

In the con text of genetic algorithms (GAs), a sp e-

ci�c gene pattern is called sc hema. Holland sho w ed,

b y Sc hema Theorem, that highly �t sc hemata of

short de�ning lengths and lo w orders ha v e high sur-

viv al probabilities in the traditional genetic framew ork

[1]. These short, lo w-order, high-qualit y sc hemata are

called building blo cks . Bui and Mo on [2 , 3] claimed

that, in case of m ulti-p oin t crosso v er op erators, lo w-

order, high-qualit y sc hemata with clustered sp eci�c-

sym b ol distributions should serv e as building blo c ks.

According to the building blo c k h yp othesis, a genetic

algorithm seeks near optimal p erformance through the

juxtap osition of building blo c ks [4]. The p erformance

of a genetic algorithm th us highly dep ends on its

surviv al en vironmen t and repro ducibilit y of building

blo c ks.

In the ligh t of the in terrelationship b et w een genes,

building blo c ks are gene groups that ha v e strong in-

ter actions (or epistases ) among participating genes in

the c hromosome. Genes' in teraction here means that

the con tribution of a gene to the c hromosomal �tness

dep ends on the v alues of other genes in the c hromo-

some. The stronger the in teractions of genes are, the

higher the nonlinearit y of the problem is; this mak es

the problems more di�cult [5].

F or a giv en problem represen tation, the surviv al prob-

abilit y of a gene group through the crosso v er is de-

termined b y the distribution of genes in the c hromo-

some, while the strength of the epistasis of the gene

group is an inheren t prop ert y of the problem. There-

fore, the strategy of lo cating eac h gene in the c hro-

mosome signi�can tly a�ects the p erformance of ge-

netic algorithms. In other w ords, the p ositions (or

lo ci) of genes in the c hromosome ma y b e placed so

as to ensure higher surviv al probabilities for more

epistatic sc hemata. In v ersion is a genetic op erator de-

vised for c hanging the lo ci of genes dynamically dur-

ing the genetic pro cess [6 , 1]. The e�orts to exploit

gene p ositions dynamically are called linkage le arning

[7]. Messy genetic algorithm and fast messy genetic al-

gorithm are examples that implicitly pursue dynamic

gene rep ositioning [8 , 9]. The c hromosomal enco ding

with �xed gene p ositions is called lo cus-based enco d-

ing. A n um b er of studies on static r eindexing (or r e-

or dering ) of gene p ositions in lo cus-based enco dings

sho w ed p erformance impro v emen t [10 , 11 , 12 , 13 , 14 ].

The represen tation p o w er

1

of a genetic algorithm is

highly dep enden t on the chr omosome top olo gy . That

is, the higher the dimension of the c hromosome top ol-

ogy is, the higher the represen tation p o w er it has. A

t ypical c hromosome top ology is a one-dimensional ar-

ra y . Though one-dimensional arra y is easy to han-

dle and analyze, it has a p o or represen tation p o w er

1

Here, high represen tation p o w er means lo w degree of

distortion. Generally , in represen ting a graph geometri-

cally , the higher the dimension of represen tation space is,

the lo w er the degree of distortion it sho ws [15 ].



whic h causes great loss of information con tained in the

problems. T o o v ercome this, the enco ding/crosso v er

sc hemes with m ulti-dimensional arra ys w ere suggested

and remark able impro v emen ts w ere rep orted [16 , 17 ,

18 , 19 ]. Recen tly , Jung and Mo on [20 , 21 ] obtained

successful results b y applying a crosso v er based on

2D Euclidean enco ding to the 2D Euclidean tra v el-

ing salesman problem (TSP). They used phenot yp es

themselv es for c hromosomal cutting.

In a p oin t of view, the studies of c hanging the lo ci of

genes are to exploit the in teractions among genes im-

plicitly . Increasing the represen tation p o w er of c hro-

mosome top ologies also can b e understo o d in this con-

text. Jung and Mo on's study ma y b e though t to b e an

extreme case of suc h approac hes to the 2D Euclidean

TSP . W e k eep the philosoph y . In this pap er, w e sug-

gest a new enco ding/crosso v er sc heme whic h explicitly

exploits the in teractions among genes. In the sc heme,

the genic distanc e b et w een a pair of genes is de�ned.

W e apply this sc heme to TSP and compare its p erfor-

mance with state-of-the-art metho ds.

The rest of this pap er is organized as follo ws. W e sum-

marize previous approac hes to TSP in Section 2 and

explain the prop osed genetic op erators in Section 3.

In Section 4, w e pro vide exp erimen tal results. Finally ,

the conclusion is giv en in Section 5.

2 Tra veling Salesman Pr oblem

Giv en n cities, the tr aveling salesman pr oblem (TSP) is

the problem of �nding the shortest Hamiltonian cycle

visiting the cities. More formally , giv en a set of cities

f c

1

; c

2

; : : : ; c

n

g and the distance d ( c

i

; c

j

) for ev ery pair

( c

i

; c

j

), it is the problem of �nding an ordering � that

minimizes the follo wing:

C ( � ) =

n � 1

X

i =1

d ( c

� ( i )

; c

� ( i +1)

) + d ( c

� ( n )

; c

� (1)

) :

It is a w ell kno wn NP-hard problem [22 ]. Th us one

should rely on appro ximation algorithms that do not

guaran tee optimal solutions.

F or decades, TSP has serv ed as an initial pro ving

ground for new problem solving tec hniques b ecause of

its di�cult y , applicabilit y , and the simplicit y of def-

inition. V arious lo cal optimization algorithms suc h

as 2-opt, 3-opt, Lin-Kernighan (LK) algorithm, and

their v arian ts w ere dev elop ed and problem indep en-

den t tec hniques suc h as tabu searc h, sim ulated an-

nealing, neural net w orks, genetic algorithms and an t

colonies w ere applied [23 , 24 ].

Recen tly , h ybrid genetic algorithms whic h com bine lo-

Figure 1: An example of 2D V oronoi regions

V QX ( n; k ; d

g

; p

1

; p

2

)

f

I  f 1 ; 2 ; : : : ; n g ; K  f 1 ; 2 ; : : : ; k g ;

Select a subset R = f s

1

; s

2

; : : : ; s

k

g � I

at random;

for eac h i 2 I f

r [ i ]  arg min

j 2 K

f d

g

( s

j

; i ) g ; s

j

2 R ;

g

for eac h j 2 K f

u [ j ]  0 or 1 at random;

g

for eac h i 2 I f

if ( u [ r [ i ]] = 0 ) then o [ i ]  p

1

[ i ];

else o [ i ]  p

2

[ i ];

g

return o ;

g

Figure 2: V oronoi quan tized crosso v er

cal optimization algorithms with the genetic frame-

w ork ha v e b een successfully applied to the problem

[25 , 26 , 20 ]. LK algorithm [27 ] is the most p opular and

p o w erful lo cal optimization algorithm for TSP . V arious

crosso v er op erators suc h as order crosso v er [28 ], cycle

crosso v er [29 ], partially matc hed crosso v er [4], edge-

recom bination crosso v er [30], and matrix crosso v er

[31 ] w ere used for TSP . Distance preserving crosso v er

[32 , 26 ], edge assem bly crosso v er [33 , 34 , 35 ], and natu-

ral crosso v er [20 , 21 ] are represen tativ e state-of-the-art

crosso v er op erators prop osed recen tly .

3 New Opera tors

3.1 V oronoi Quan tized Crosso v er

In V oronoi quan tized crosso v er (V QX), w e adapt a

c hromosome top ology in whic h ev ery gene has a rela-



tiv e lo cus determined b y the distances b et w een genes,

con trary to the others in whic h ev ery gene has an ab-

solute lo cus. The distance is called genic distanc e . In

a p oin t of view, the c hromosome ma y b e though t to

b e a \complete graph" where eac h v ertex stands for a

gene and the edge w eigh t is determined b y the epista-

sis b et w een the t w o corresp onding genes. The graph

is directed if the genic distance is asymmetric. By

adapting suc h t yp e of c hromosome top ology , w e aim

to represen t a c hromosome with a minimal degree of

distortion.

The name of V oronoi quan tized crosso v er came from

V oronoi quan tization whic h is a represen tativ e v ector

quan tization metho d [36 ]. V ector quan tization is a

metho d of appro ximating arbitrary m ulti-dimensional

v ectors b y k co de v ectors eac h of whic h represen ts a

subspace of the whole v ector space. It is used mostly in

data compression. The v ector quan tization that uses

V oronoi regions [37 ] as the subspaces is called V oronoi

quan tization. The V oronoi region of a v ector is de�ned

to b e the nearest neigh b orho o d of the v ector. Figure 1

sho ws an example of V oronoi regions asso ciated with

a set of p oin ts in 2D Euclidean space.

V QX has a simple structure. Figure 2 sho ws the

pseudo co de of V QX where n is the n um b er of genes

and k is the crosso v er degree ranged from 2 to n . The

function d

g

: I

2

! R represen ts the genic distance.

The t w o paren ts and the o�spring are denoted b y p

1

,

p

2

and o , resp ectiv ely . F ollo wing the con v en tion, the

notation \arg min " tak es the argumen t that minimizes

the v alue. In V QX, the genic space de�ned b y the

genic distance d

g

is divided in to k V oronoi regions de-

termined b y the k randomly selected genes, then a sort

of blo c k-uniform crosso v er [17 ] is p erformed on the re-

gions.

V QX has t w o main prop erties:

� Convexity | V oronoi regions are con v ex

2

[36 ].

Therefore, the gene groups of relativ ely short

genic distance ha v e higher surviv al probabilities

than others.

� Diversity | It has

�

n

k

�

2

k

crosso v er op erators

3

.

The �rst prop ert y means that the surviv al probabili-

ties of gene groups can b e con trolled b y genic distance

assignmen ts. W e can allo w high surviv al probabili-

ties for building blo c ks b y assigning genic distance in-

2

A set S 2 R

k

is c onvex if a , b 2 S implies that �a +

(1 � � ) b 2 S for all 0 < � < 1.

3

In fact, w e cannot guaran tee that the consequen t o�-

spring are all distinct. Di�eren t quan tizations ma y gener-

ate the same o�spring, although b eliev ed rare.

v ersely prop ortional to the strength of epistasis. The

other means that V QX has a lot of crosso v er op era-

tors. The n um b er of crosso v er op erators a�ects the

creativit y of new sc hemata. The n um b er of crosso v er

op erators of a t ypical k -p oin t crosso v er is

�

n � 1

k

�

. F or

n = 100, k = 6 and n = 1000, k = 8, for example,

k -p oin t crosso v er has ab out 10

10

and 10

20

crosso v er

op erators, resp ectiv ely , while V QX has ab out 10

11

and

10

22

. Ho w ev er, w e should men tion that w e do not pur-

sue the maximal n um b er of crosso v er op erators.

The time complexit y of V QX is �( k n ).

3.2 Surviv al Probabilities

The surviv al probabilit y of a gene group

4

(or unsp eci�c

sc hema) in V QX is deriv ed in this section. Giv en a

genic distance measure d

g

, a function h : 2

I

� I ! Z

+

is de�ned as

h ( S; i ) = jf l 2 I : 8 v 2 S; d

g

( l ; v )

> d

g

( i; v ) gj ; S � I ; i 2 I

(1)

where I = f 1 ; 2 ; : : : ; n g and n is the problem size.

Giv en a subset R = f s

1

; s

2

; : : : ; s

k

g � I , the V oronoi

region assignmen t function r : 2

I

� I ! I is de�ned as

r ( R ; i ) = arg min

j 2 K

f d

g

( s

j

; i ) g ; i 2 I ; s

j

2 R

(2)

where K = f 1 ; 2 ; : : : ; k g . No w, giv en S and i , the

n um b er of R 's of k elemen ts that mak e all v 's in S

ha v e the same function v alue r ( R ; v ) = i is

�

h ( S; i )

k � 1

�

.

Assuming that the set R is selected at random, the

probabilit y that all genes in a gene group S b elong to

the same region, i.e., the probabilit y that r ( R ; j )'s are

the same for all j 's in S , is deriv ed as

P

eq

( S ) =

n

X

i =1

�

h ( S; i )

k � 1

�

�

n

k

�

:

(3)

In the case of j S j = 2, the surviv al probabilit y P

sur

( S )

of a gene group S is deriv ed as

P

sur

( S ) = P

eq

( S ) +

1

2

(1 � P

eq

( S ))

=

1

2

+

n

X

i =1

�

h ( S; i )

k � 1

�

2

�

n

k

�

:

(4)

This is used in Section 3.4 to examine the relationship

b et w een genic distances and surviv al probabilities.

4

Generally , a sc hema is de�ned b y alleles of sp eci�c

genes. In this pap er, w e use the term gene gr oup rather

than sc hema, b ecause w e refer only the set of genes here.



(a) cities

(d) V oronoi regions

(b) tour A

(e) inherited tour segmen ts

(c) tour B

(f ) repaired tour segmen ts

Figure 4: An example V QX for TSP (kroA200)
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r [ i ]  arg min
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( s
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g

for eac h j 2 K f

u [ j ]  0 or 1 at random;

g

for eac h i 2 I f

if ( u [ r [ i ]] = 0 and u [ r [ p

1

[ i ]]] = 0 )

then o [ i ]  p

1

[ i ];

else if ( u [ r [ i ]] = 1 and u [ r [ p

2

[ i ]]] = 1 )

then o [ i ]  p

2

[ i ];

else o [ i ]  nil ;

g

o  GreedyRepair( o );

return o ;

g

Figure 3: Mo di�ed V QX for TSP

3.3 Applying V QX to TSP

In this pap er, the lo cus-based enco ding of [11 ] is used;

one gene is allo cated for ev ery cit y and the gene v alue

represen ts the index of its next cit y in the tour. Th us,

a solution ma y b e though t to b e a mapping s from the

set of cities I to I . In TSP , a solution that do es not

construct a Hamiltonian cycle is infeasible. A solution

s is feasible if and only if (i) s is one-to-one and (ii) it

has no sub cycle. Directly applying the V QX of Figure

2 to TSP ma y pro duce infeasible solutions. T o a v oid

this, w e need some mo di�cation to the crosso v er.

Figure 3 sho ws the pseudo co de of the mo di�ed V QX.

The w ord nil is used for the genes whose v alues are

not determined. The consequen t solutions ha v e no

sub cycle but ma y ha v e genes of nil v alue. In other

w ords, tour segmen ts without an y sub cycle are cre-

ated. W e use a greedy approac h to repair them.

In \GreedyRepair ()", a segmen t is selected and con-

nected to its nearest segmen t to gro w in to a complete

tour. Note that the p erformance of repairing is not

critical here, as a p o w erful lo cal optimization heuristic

follo ws the crosso v er and m utation. Figure 4 sho ws

an example of the crosso v er pro cess. It is obtained

b y applying V QX

0

(in Figure 3) with the genic dis-

tance assignmen t GD1 (describ ed in Section 3.4) to

kroA200, a b enc hmark problem tak en from TSPLIB

[38 ]. W e use a random tie-breaking in applying the

equation (2) in the crosso v er.

3.4 Genic Distance Assignmen ts

T o apply V QX to TSP , the distances among genes

(genic distances) are needed. The genic distances ma y

b e assigned statically or dynamically in the genetic

pro cess. In this pap er, the static assignmen t is used.

In tuitiv ely , an ideal v alue of a genic distance is a v alue

in v ersely prop ortional to the epistasis. This leads to

the high surviv al probabilities of relativ ely more in ter-

activ e gene groups b ecause the surviv al probabilit y of

a gene group is in v ersely prop ortional to their genic

distances in V QX. Ho w ev er, no practical metho d is

kno wn y et for exactly computing epistases; t w o heuris-

tics are used in this pap er. Let I b e a set of cit y indices
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Figure 5: Surviv al probabilit y v ersus genic distance (lin105)

and d ( i; j ) is the distance from cit y i 2 I to cit y j 2 I .

The genic distance d

g

( i; j ) from gene i to gene j is

de�ned in t w o manners as

� GD1: d

g

( i; j ) = d ( i; j )

� GD2: d

g

( i; j ) = jf l : d ( i; l ) < d ( i; j ) ; l 2 I gj .

In GD1, the Euclidean distance itself is used; in GD2,

the n um b er of cities closer to cit y i than cit y j is used.

Usually , d

g

is asymmetric in GD2, while it is symmet-

ric as far as d is symmetric in GD1.

Figure 5 sho ws the results of a simple test to observ e

the relationship b et w een the genic distance and the

surviv al probabilit y of a gene pair. The horizon tal and

v ertical axes of co ordinates represen t the genic dis-

tance and the surviv al probabilit y , resp ectiv ely . The

equation (4) w as used to acquire the surviv al proba-

bilities from the genic distances obtained b y applying

GD1 and GD2 to lin105, an instance from TSPLIB.

It sho ws that the surviv al probabilities of a close gene

pairs in the genic space are high in b oth cases.

3.5 Heterogeneous Mating

In a preliminary examination, V QX sho w ed faster con-

v ergence than the other crosso v ers in comparison; this

ma y cause the premature con v ergence of the genetic

algorithm. T o a v oid this, w e use a metho d of mating

m utually dissimilar individuals in parallel with V QX.

Hollstien called this t yp e of breeding a negativ e as-

sortiv e mating [39 ]. There are v arious metho ds, some-

times called nic hing metho ds, for main taining p opula-

tion div ersit y [40 , 41 ].

Figure 6 sho ws the pseudo co de of the mating used

in this pap er. First, m individuals are selected from

the p opulation P b y roulette-wheel selection. Then

the most di�eren t one from p

1

among them is selected

MateSelection ( P ; m; p

1

)

f

C  ; ;

for i  1 to m f

c  Selection ( P n ( f p

1

g [ C ));

C  C [ f c g ;

g

p

2

 arg max

c 2 C

f distance ( p

1

; c ) g ;

return p

2

;

g

Figure 6: Heterogeneous mate selection

as p

2

. Hamming distance

5

is used for the distance

function \distance ()".

4 Experiment al Resul ts

The genetic algorithm used in this pap er is a steady-

state h ybrid genetic algorithm. Figure 7 sho ws the

template. In the template, n is the problem size, m

is the group size in mating, k is the crosso v er degree,

and d

g

is the genic distance measure. The t w o se-

lected paren ts and the o�spring are denoted b y p

1

, p

2

and o , resp ectiv ely . The genetic op erators and their

parameters used in this pap er are summarized in the

follo wing:

� P opulation Initialization | Initial solutions are

generated at random.

� P opulation Size | j P j = 100.

� Selection | Roulette-wheel selection. The �tness

5

the n um b er of di�eren t edges b et w een t w o tours.



T able 1: Exp erimen tal results of V GA1 and V GA2

Graph Xo v er OB Best (%) Avg (%) � =

p

t Gen Time

(opt) # (s)

att532 V GA1 97 27686 (0) 27686.37 (0.001) 0.22 3006 103

(27686) V GA2 95 27686 (0) 27686.69 (0.002) 0.30 3024 109

dsj1000 V GA1 24 18659688 (0) 18659952 (0.001) 24 2803 1026

(18659688) V GA2 52 18659688 (0) 18659809 (0.001) 13 3470 1251

d2103 V GA1 72 80450 (0) 80470.05 (0.025) 3.22 3874 1084

(80450) V GA2 76 80450 (0) 80467.07 (0.021) 3.04 4271 1157

p cb3038 V GA1 11 137694 (0) 137707.22 (0.010) 1.40 12234 835

(137694) V GA2 8 137694 (0) 137706.78 (0.009) 1.22 13021 906

fnl4461 V GA1 0 182573 (0.004) 182607.22 (0.023) 1.97 28518 2011

(182566) V GA2 0 182571 (0.003) 182605.88 (0.022) 2.21 28992 2057

T able 2: Comparison of V GA with DGA, EGA, and NGA

Graph Xo v er Best (%) Avg (%) � =

p

t Gen Time

(opt) (s)

DGA 27686 (0) 27692.86 (0.025) 0.75 3971 89

att532 EGA 27686 (0) 27700.51 (0.052) 0.84 13934 271

(27686) NGA 27686 (0) 27692.13 (0.022) 0.77 3563 167

V GA2 27686 (0) 27686.69 (0.002) 0.30 3024 109

DGA 18659688 (0) 18660087 (0.002) 78 11267 1038

dsj1000 EGA 18659688 (0) 18679325 (0.105) 1494 41938 1867

(18659688) NGA 18659688 (0) 18659942 (0.001) 18 3266 1114

V GA2 18659688 (0) 18659809 (0.001) 13 3470 1251

DGA 80450 (0) 80500.09 (0.062) 5.86 4021 630

d2103 EGA 80450 (0) 80469.82 (0.025) 2.29 82072 8466

(80450) NGA 80450 (0) 80472.05 (0.027) 4.89 1970 456

V GA2 80450 (0) 80467.07 (0.021) 3.04 4271 1157

DGA 137699 (0.004) 137751.44 (0.042) 4.24 20261 1408

p cb3038 EGA 137694 (0) 137831.77 (0.100) 7.26 199015 28213

(137694) NGA 137698 (0.003) 137733.10 (0.028) 3.71 20582 1734

V GA2 137694 (0) 137706.78 (0.009) 1.22 13021 906

DGA 182593 (0.015) 182822.39 (0.140) 31.80 76331 13728

fnl4461 EGA 182598 (0.018) 182864.60 (0.164) 31.11 338860 160845

(182566) NGA 182572 (0.003) 182631.82 (0.036) 3.19 84247 8832

V GA2 182571 (0.003) 182605.88 (0.022) 2.21 28992 2057

v alue f

i

of the solution i is calculated as

f

i

= ( C

w

� C

i

) + ( C

w

� C

b

) = 4 (5)

where C

i

, C

w

, and C

b

are the costs of the solution

i , the w orst solution, and the b est solution in the

p opulation, resp ectiv ely . The �tness v alue of the

b est solution is �v e times as great as that of the

w orst solution in the p opulation.

� Group Size for Mating | m = 5.

� Crosso v er Degree | An empirical v alue k =

b ln n +

1

2

c + 2 is used where n is the problem size

and \ln" is the natural logarithm.

� Mutation | Double-bridge kic k mo v e [27 ] w as ap-

plied once p er ten o�springs. Figure 8 sho ws a

sym b olic dra wing of double-bridge kic k mo v e.

� Lo cal Optimization | LK algorithm accelerated

b y don't-lo ok bit [42 ] and segmen t tree [43 ] w as

used.

� Replacemen t | A v arian t of preselection [44 ] w as

used as in [11]. Eac h o�spring is replaced with (i)

its more similar paren t if the o�spring is b etter,

(ii) the other paren t if the o�spring is b etter, (iii)

the w orst solution in the p opulation, otherwise.

� Stop Condition | Un til 70 p ercen t of the p op-

ulation con v erge with the same cost as the b est

solution in the p opulation. This tak es accoun t of

the cases that more than one b est solution of the

same qualit y comp etes with eac h other.

The algorithms w ere implemen ted in C on In tel P en-

tium I I I 866 MHz running Lin ux 2.2.14.



V GA ( n; m; k ; d

g

)

f

Initialize p opulation P ;

rep eat f

p

1

 Selection( P );

p

2

 MateSelection ( P ; m; p

1

);

o  V QX

0

( n; k ; d

g

; p

1

; p

2

);

o  Mutation( o );

o  Lo calOptimization ( o );

P  Replacemen t ( P ; p

1

; p

2

; o );

g un til (stop condition);

return the b est of P ;

g

Figure 7: Steady-state h ybrid genetic algorithm for

TSP

Figure 8: Double-bridge kic k mo v e

T able 1 compares t w o di�eren t v ersions of V QX. V GA1

and V GA2 represen t the genetic algorithms using

V oronoi quan tized crosso v er with the genic distance

assignmen ts GD1 and GD2 (describ ed in Section 3.4),

resp ectiv ely . In the table, the frequency of �nding the

optimal solutions (OB#), the b est tour cost (Best),

a v erage tour cost (Avg), group standard deviation

( � =

p

t ), a v erage generation (Gen), and a v erage run-

ning time (Time) o v er 100 (= t ) runs are presen ted on

att532, dsj1000, d2103, p cb3038, and fnl4461, problem

instances from TSPLIB [38 ]. The paren theses after

b est and a v erage tour costs represen t the p ercen tages

ab o v e optima. V GA2 p erformed b etter than or equal

to V GA1 for all instances except att532 in a v erage

cost. Distances b et w een cities w ere computed in dou-

ble precision mo de and rounded to in teger to remo v e

uncertain ties.

T able 2 compares the p erformance of V QX with other

state-of-the-art crosso v ers. DGA, EGA, and NGA rep-

resen t the genetic algorithms using distance preserving

crosso v er [32 , 26 ], edge assem bly crosso v er [33 ], and

natural crosso v er [20 , 21], resp ectiv ely . The results

of DGA, EGA, and NGA in the table are quoted from

[21 ] in whic h the same LK implemen tation as ours w as

T able 3: Comparison of V GA with F CGA

Graph Xo v er OB Avg Gen Time

(opt) # (s)

eil101 F CGA 50 629.0 15 2

(629) V GA2 50 629.0 6 1

lin318 F CGA 50 42029.0 49 60

(42029) V GA2 50 42029.0 221 29

p cb442 F CGA 50 50778.0 39 233

(50778) V GA2 50 50778.0 739 45

att532 F CGA 23 27691.3 66 304

(27686) V GA2 47 27686.9 3199 159

rat575 F CGA 43 6773.2 55 500

(6773) V GA2 19 6773.8 2720 53

u724 F CGA 41 41912.3 50 845

(41910) V GA2 50 41910.0 3089 154

used. V GA2 outp erformed the others for all instances

in a v erage cost. F or att532 and dsj1000, V GA2 con-

sumed comparable running time to NGA. But their

gro wth rates of time consumption with resp ect to the

problem size w ere m uc h lo w er than NGA. Th us, the

sp eed of V GA2 for large problems p cb3038 and fnl4461

w as m uc h faster than the others. The o v erall results

sho w that V oronoi quan tized crosso v er is the most at-

tractiv e among them. They also imply that GD1 and

GD2 for the genic distance assignmen t are reasonable.

T able 3 compares the p erformance of V GA with F CGA

[35 ]. F CGA stands for family comp etition genetic al-

gorithm whic h is a com bination of the family comp e-

tition, near 2-opt and edge assem bly crosso v er [33 ]. In

the table, results o v er 50 runs are presen ted on eil101,

lin318, p cb442, att532, rat575,and u724 from TSPLIB.

These six instances are all those a v ailable for compar-

ison in [35 ]. The results of F CGA in the table are

quoted from [35 ]. The running time is the normalized

v alue for In tel P en tium I I I 600 MHz. The a v erage tour

costs of V GA2 w ere b etter than or equal to F CGA for

all instances except rat575. It is notable that the sp eed

of V GA2 w as m uc h faster than F CGA. (In T able 2,

EGA, the ancestor of F CGA, to ok 80 times more than

V GA2 for the instance with 4461 cities.)

5 Conclusions

In this pap er, w e prop osed a new crosso v er op erator,

named V oronoi quan tized crosso v er (V QX), that uti-

lizes the explicit genic distances. This allo ws us to

exploit the in teractions among genes explicitly . V QX

has t w o main prop erties of con v exit y and div ersit y .

These prop erties are b eliev ed to help impro v e the p er-

formance of genetic algorithms b y encouraging the

surviv al probabilit y and the repro ducibilit y of high-

qualit y building blo c ks in the genetic pro cess. The



exp erimen tal results supp orted this.

V QX ma y b e applied to other com binatorial optimiza-

tion problems than the tra v eling salesman problem. Of

course, a measure for genic distances m ust b e devised

for eac h problem. F uture studies include extending

V QX to v arious problems.
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Abstract

This paper presents a new method that
improves robustness of Real-Coded Evolu-
tionary Algorithms (RCEAs), such as Real-
Coded Genetic Algorithms and Evolution
Strategies, for function optimization. It is
reported that most crossover (or recombina-
tion) operators for RCEAs has sampling bias
that prevents to Þnd the optimum near the
boundary of search space. They like to search
the center of search space much more than
the other. Therefore, they will not work on
functions that have their optima near the
boundary of the search space. Although sev-
eral methods have been proposed to reduce
this sampling bias, they could not cancel the
whole bias. In this paper, we propose a new
method, Toroidal Search Space Conversion
(TSC), to remove this sampling bias. TSC
converts bounded search space into toroidal
one with no parameters. Experimental re-
sults show that a RCEA with TSC has higher
performance to Þnd the optimum near the
boundary of search space and it has improved
robustness concerning the relative position of
the optimum.

1 INTRODUCTION

Function optimization is one of the most important
optimization problems. Several Real-Coded Evolu-
tionary Algorithms (RCEAs) such as Real-Coded Ge-
netic Algorithms and Evolution Strategies, which use
the real number vector representation, have been pro-
posed [3—6, 9, 10, 12, 15, 19] and they have shown
higher performance than EAs using binary or gray
representation [3, 5, 7]. In RCEAs, generally, ini-
tial individuals are placed in the search space uni-

(a) BLX- �
 (b) UNDX

Figure 1: The sampling biases of BLX-�
 and UNDX

formly. In this case, most crossover operators, such as
BLX- �
 [5], Unimodal Normal Distribution Crossover
(UNDX) [10], Center of Mass Crossover (CMX) [17],
Simplex Crossover (SPX) [19], like to search the center
of search space much more than the other [1, 4, 9, 18].
This bias is called “Sampling Bias” [4, 18]. Fig.1 ex-
plains the sampling biases of BLX-�
 and UNDX. The
horizontal axis is domain of deÞnition. The verti-
cal axis is theoretical probability density of generat-
ing children when a crossover produces them from a
pair of parents, chosen out of the population that is
distributed in 0 �� 1 uniformly. When a crossover oper-
ator has such bias, it will not work on functions whose
optima are near the boundary of the search space.

The sampling bias grows exponentially stronger as the
dimension of search space. Therefore, in case objective
function is high dimensional and its optima are in the
corner of the search space, RCEAs like to be trapped
at a local minimum located around the center of the
search space. Recently, RCEAs have been applied to
real-applications [11,13,16]. In real-applications, since
we cannot know where are the optima, robust RCEAs
considering the sampling bias are needed.

The purpose of this paper is to present a method
that cancel the sampling bias to improve robustness
of RCEAs. In the next section, we brießy review sev-
eral major methods that reduce the sampling bias and
discuss their features. We propose a new method,
Toroidal Search Space Conversion, in section three



and reßect on the computational complexity in sec-
tion four. Empirical veri Þcation is performed in sec-
tion Þve. In the last section, we conclude this paper.

2 RELATED WORKS

2.1 Existing Methods and Their Features

Several methods, such as Boundary mutation [7], (UX,
UNDX)+EMGG [9], boundary extension by mirror-
ing (BEM) and boundary extension with extended se-
lection (BES) [18], have been proposed. Boundary
mutation produces individuals on boundary of search
space. (UX, UNDX)+EMGG improves the sampling
bias of UNDX using Uniform Crossover (UX) [3]. This
method selects either UNDX or UX, they complement
their searching region each other, as the crossover op-
erator dynamically. BEM and BES extend the search
space in order to move the relative position of the opti-
mum toward the center of the search space. They allow
individuals to be located outside the search space. The
individuals are called “virtual individuals”. The de-
tails of BEM are introduced in section 2.2. In BES, the
number of the virtual individuals is limited by helper
individual rate and no functional value of the virtual
individuals is used. We can mention that these meth-
ods have the following three disadvantages.

(1) Dependence on Search Operator: In (UX,
UNDX)+EMGG, UX and UNDX complement their
searching region each other. However, when we use
another crossover operator as the one of the search
operators, we must invent or Þnd the other one that
has complementary characteristics to theÞrst one.

(2) Parameter Tuning: All methods introduced in
this section have at least one parameter, such as the
mutation rate of boundary mutation, the initial prob-
ability of applying UNDX of (UX, UNDX)+EMGG,
the extension rate of BEM and the helper individual
rate of BES, to control how much the sampling bias
is reduced. Although we cannot know the positions of
the optima and the landscape of the search space, we
must tune the parameters before search.

(3) Remaining the Sampling Bias: Although all
methods shown in this section succeed in reducing the
sampling bias, they cannot remove it. From the view-
point of robustness, no sampling bias is desirable.

Next, we show BEM in detail because we believe it
is the best method in the existing methods. It is in-
dependent on the search operator. The number of its
parameters is only one. The e�&ectiveness is relatively
high.

2.2 BEM [18]

BEM aims to shift the optimum located in the corner
toward the center. In BEM, individuals are allowed
to be located beyond the boundary of search space.
The functional value of individual i with real vector
~X (i ) = ( x( i )

1 , . . . , x( i )
n ) is calculated as follows:

f ( ~X (i ) ) = f (~Y (i ) ), (1)

~Y (i ) = ( y( i )
1 , . . . , y(i )

n ),

y( i )
j =

�T
�€�z

�€�Z

2 minj �� x( i )
j : if xj < minj

2 maxj �� x( i )
j : if xj > maxj

x( i )
j : otherwise,

where, minj and maxj are the lower and upper limits of
parameter range on thej -th dimension of the original
search space respectively. BEM has one parameter,
r e (0 < r e < 1), that controls how much search space is
extended. The parameter range of the extended search
space isl j (1 + r e) when that of the original one is l j .
The initial individuals are placed in the original search
space uniformly.

3 TOROIDAL SEARCH SPACE
CONVERSION (TSC)

TSC converts search space with boundary into toroidal
one. This conversion is performed as follows:

step1 Extend the search space to the extended search
space like BEM with r e=1 .0, (see section 2.2)

step2 Connect each e-maxj of the extended search
space to corresponding e-minj .

where, e-minj and e-maxj are the lower and upper
limits of parameter range on thej -th dimension of the
extended search space respectively. An example of the
converted search space is shown in Fig.2. The con-
verted search space becomes torus. In this converted
search space, the crossover operation is performed as
the following pseudo-codes (likeC++ ):

choose k required parents;
for (int i=1; i<k; i++){

make pow(2, n)-1 clones of parent_i;
// ---- n is the dimension
select the clone whose distance from

parent_0 is the shortest out of the
clones and parent_i;

}
do crossover using parent_0 and the

k-1 selected clones;

Fig.3 shows an example of a crossover in a con-
verted search space. First, threeclones (clone 1,



clone 1�	 , clone 1�	�	 ) at the corresponding points on
the virtual search space are copied fromparent 1.
Next, clone 1 is allowed to join the crossover oper-
ation because its distance fromparent 0 is shortest.
Thus, the crossover operation, using UNDX as the
crossover operator, searches in the gray region.

For implementation on a computer program, the pro-
cedures in the abovefor are described as follows:

clone_i = parent_i;
// ---- copy the parent_i vector to clone
for (int j=0; j<n; j++){

const double distance
= clone_i[j] - parent_0[j];

if (fabs(distance) > l){
// ---- l is the half width of the
// extended search space

if (distance >= 0){ clone_i[j] -= 2l; }
else { clone_i[j] += 2l; }

}
}

Although the volume of the search space grows expo-
nentially, the increase of the computational cost for
this crossover is only linear,O(k × n). Since the con-
verted search space is torus, a generated individuali ,
~X (i ) = ( x( i )

1 , . . . , x( i )
n ), is modiÞed as follows:

~X (i ) = ~Z (i ) , (2)

~Z (i ) = ( z( i )
1 , . . . , z( i )

n ),

z( i )
j =

�T
�€�z

�€�Z

x( i )
j + 2 l : if xj < e-minj

x( i )
j �� 2l : if xj > e-maxj

x( i )
j : otherwise.

For example, in Fig.2, when A and B are generated
by a crossover operation, they are modiÞed asA0 and
B 0 respectively. Using this modiÞcation, when the dis-
tance between parents is far, crossover does not gener-
ate children in the center of the search space, but does
them near the boundary close to the parents (in the
gray region in Fig.3). In TSC, initial individuals are
placed in the extended search space uniformly. Ac-
cordingly, by this proposed method, any position on
this search space become equivalent to any others.

TSC clears the three disadvantages of the existing
methods. Since TSC is a conversion method, it is inde-
pendent on any search operator. TSC has no parame-
ter. The converted search space has no sampling bias
when the initial individuals are placed in the extended
search space uniformly because it is torus.

TSC has one more signiÞcant feature. The converted
search space maintains global continuity of landscape.

Figure 2: An example of 1-dimensional converted
search space by TSC

Figure 3: An example of crossover procedure, using
UNDX as the crossover operator, on a 2-dimensional
converted search space by TSC.

The “global continuity of landscape” means that indi-
viduals around an individual have approximate equiva-
lent functional value. In [16], the authors use a method
that connects minj and maxj when the coded vector
represents an angle. In this method, children are pro-
duced only in the supplementary angle region because
-180 degrees correspond to 180 degrees. When we ap-
ply this method to a search space that does not have
such characteristic, the global continuity of landscape
should be lost becausef (x1, . . . , minj , . . . , xn ) will be
di�&erent from f (x1, . . . , maxj , . . . , xn ). Since EAs as-
sume that search space has the global continuity of
landscape [8], the global continuity of landscape should
be maintained. In TSC, it is satisÞed because e-minj
corresponds to e-maxj , even if the original search space
does not have the above characteristic.

4 COMPUTATIONAL COMPLEXITY

Let discuss the number of samplings required toÞnd
the optimum in a n-dimensional search space whose
volume is D , as shown in Fig.4. First, we discuss an
EA without any selection mechanism. Then, we con-
sider an EA equipped with a selection mechanism.



Table 1: The test functions
function equation (n speciÞes the dimension) mul. �	 1 disc.�	 2 domain di

Sphere
P n

i =1 x2
i no no [-5.12+di , 5.12+di ] 0.0, 1.5, 3.0, 4.5

Step
P n

i =1 bxi + 0 .5c2 no strong [-5.12+di , 5.12+di ] 0.0, 1.5, 3.0, 4.5
Schwefel 418.9828873n +

P n
i =1 xi sin

p
|xi | low no [-512, 512] -

Rastrigin 10n +
P n

i =1 [x2
i �� 10 cos(2�$xi )] high no [-5.12+di , 5.12+di ] 0.0, 1.5, 3.0, 4.5

Griewangk 1
4000

P n
i =1 x2

i ��
Q n

i =1 cos
³

x i�$
i

´
+ 1 high no [-512+di , 512+di ] 0, 150, 300, 450

�	1: multi-modality, �	2: discontinuity

Figure 4: n-dimensional objective function, in which
D is its volume and A is the volume of the region as
the optimum.

4.1 Without Selection

In case BLX-�
 is used as the search operator, the prob-
ability density curve of generating children, shown in
Fig.1 (a), is expressed as follows (the details of BLX-�

and g(x) are shown in Appendix A and B respectively):

g(x) =
2{ ln 3

2 + ( x �� 1) ln(1 �� x) �� x ln x}

2 ln 3
2 + 1

. (3)

Therefore, when n is 1, the number of samplings re-
quired to Þnd the optimum that is located at the cor-
ner of the search space is 1

g(0) = 1
g(1) ' 2.233 times as

many as in case Uniform Random Search (URS) [20],
which searches in the domain uniformly, is used. When
n is 10 or 20, 1

g(0) n is about 3,000 or 9,500,000, respec-
tively. In case another crossover operator whose sam-
pling bias is stronger than BLX-�
 , such as UNDX, is
used, more samplings are required. The probability to
Þnd the optimum, P, when URS is used as the search
operator is expressed as follows [20]:

P = 1 ��
µ

1 ��
A
D

¶ m

, (4)

where m is the number of samplings andA is the vol-
ume of the region as the optimum. When the search
space is converted by TSC, since there is no sampling
bias even if the search operator is BLX-�
 , the search

works like URS. In this case the probability to Þnd the
optimum is equivalent to URS as 2n A

2n D = A
D .

4.2 With Selection

When we consider selection mechanism, the complex-
ity of landscape is important. Unimodal function is of-
ten converted into multimodal one by TSC. Generally,
optimization of multimodal function is more di �^cult
than that of unimodal one. Moreover TSC converts
multimodal function into more complex multimodal
one in which the number of local minima is exponen-
tially larger. It has not been cleared that the relation
between complexity of landscape and the di�^culty of
optimization for EAs. However, it has been known
that big hill including local minima in ßuences the ef-
fectiveness of EAs.

5 EXPERIMENTS

In order to conÞrm the robustness of EAs in converted
search space by TSC, we perform experiments.

5.1 Test Functions

How test functions should be selected has been men-
tioned in [2]. The Þve functions in Table 1 are selected
under the recommendations. The optimum of Schwefel
function, f (�� 420.968746, . . . , �� 420.968746) = 0, and
those of the others,f (0, . . . , 0) = 0, are located in the
corner and at the center of the search space, respec-
tively. To achieve the purpose of these experiments,
the relative positions of the optima in their search
space are moved bydi except that of Schwefel func-
tion1, as shown in Fig.5.

5.2 Experimental Conditions

We select UNDX+MGG [10,14] as the performed EA.
It has been reported that UNDX has strong sampling

1In Schwefel function, when the domain is changed by
di , the optimum will be changed.



Table 2: The experimental results (#OPT)

NoExt BEM BEMe TSC
function n 00 15 30 45 00 15 30 45 00 15 30 45 00 15 30 45

50 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
Sphere 100 100 100 100 100 100 100 99 100 100 100 98 100 100 100 100 100

150 100 100 100 100 100 100 98 100 100 100 96 100 100 100 100 100
30 100 96 78 62 100 96 80 93 100 95 86 97 92 96 99 100

Step 40 99 56 27 11 95 57 35 56 96 64 28 54 62 52 80 99
50 81 17 7 10 75 19 8 12 88 17 7 12 6 16 35 83
5 87 100 99 100

Schwefel 10 8 57 56 100
15 0 1 1 98
4 100 99 94 26 100 100 99 86 100 97 98 87 100 100 100 100

Rastrigin 6 100 67 20 1 99 77 57 13 98 84 80 8 96 79 44 100
8 84 27 3 0 91 26 10 0 79 34 22 1 79 35 5 97
30 80 68 69 65 70 71 74 65 68 76 72 64 65 66 63 73

Griewangk 40 71 74 63 70 65 67 75 73 66 67 69 76 66 60 66 64
50 69 73 77 70 76 74 70 73 61 69 65 68 63 58 60 62

�	 00, 15, 30, 45 under the method names specifydi . For example, 15 meansdi = 1 .5 or di = 150.

di = 0 di = 1 .5 or 150 di = 3 .0 or 300 di = 4 .5 or 450

Figure 5: The relative positions, caused bydi , of the
optimum in a search space

bias as shown in Fig.1 (b) and UNDX+MGG does not
work well in a search space whose optimum is in the
corner, such as Schwefel function [9]. The details of
this EA are shown in Appendix A and C. No muta-
tion is used for focusing on the sampling bias caused
by crossover. The population size is set to be 30 for
unimodal functions but 100 for multimodal ones. Fifty
children are produced in each generation.

TSC is compared to “No Extension method (NoExt)”,
BEM and BEMe. NoExt means that the EA is per-
formed in the original search space. BEMe is intro-
duced to be fair in our comparison. BEM and BEMe
are the same except that BEMe places initial individ-
uals like TSC. TSC places initial individuals in the
extended search space, but BEM does them in the
original one. The re of BEM and BEMe are set to
be 0.25 because the value has been used in [19]. In all
experiments except TSC, when an individual is gen-
erated outside their search space, the crossover retries
to generate another inside. Each experiment is per-
formed 100 trials. Each run continues until the opti-
mum is found or the number of evaluation reaches a
constant that was set to be enough large number de-
termined in pilot study. The performance measure is

the numbers of runs in which the method succeeded
in Þnding the global optimum (#OPT). The robust-
ness of each method is evaluated through the lowest
performance in all cases ofdi .

5.3 Results and Discussion

The experimental results are shown in Table 2. Sev-
eral results that explain the features of the methods
obviously are shown in Fig. 6.

In Sphere function, the all #OPTs are approximately
100. We believe that the optimization in the converted
search space by TSC has not become more di�^cult,
because it has had no local minimum although it has
become multimodal. Fig.6 (a) and (c) show the ro-
bustness of the EA performed in the converted search
space by TSC. In the original search space (NoExt),
the performance whendi = 4 .5 is terrible. We believe
that this is caused by the sampling bias. You might
consider why the #OPTs are di�&erent among the di

despite no sampling bias when TSC is used. Note,
the landscapes are di�&erent among thedi although the
equations are the same. In Schwefel function, which
has the optimum in the corner of the search space,
we can conÞrm that the performance of the EA is ex-
tremely improved by TSC. In Griewangk function, all
methods show the robustness as shown in Fig.6 (d).
From Table 1, the characteristic of this function seems
to be the same as that of Rastrigin function. How-
ever, the landscape of this function is similar to that
of Sphere function on the broad level, as shown in
Fig.7. We believe that this robustness is caused by
this similarity. In 50-dimensional Step function and
8-dimensional Rastrigin function, the di�&erence of the
e�&ectiveness among the methods is little. Hence, we



(a) 40-dimensional Step function (b) 10-dimensional Schwefel function

(c) 6-dimensional Rastrigin function (d) 50-dimensional Griewangk function

Figure 6: The experimental results (#OPT) that explain the features of the methods obviously

Figure 7: Rastrigin function (left) and Griewangk
function (right)

studied the average, the worst and the variance of the
runs. The statistics have shown that TSC works better
than the others.

The stability of convergence speed when TSC is used
is the lowest than that when the others are used. The
EA performed in the converted search space by TSC
can Þnd the optimum located in the corner of the
search space rapidly. However, when the optimum is
located at the other positions, the convergence velocity
is slower. It is a disadvantageous feature of TSC.

5.4 Con Þrmation of No Sampling Bias

We perform experimental conÞrmation of no sampling
bias in the converted search space by TSC.f ( ~X ) = 1
whose dimension is two is used as the objective func-
tion. The domain of deÞnition is [ �� 5.0, 5.0]. The num-

NoExt TSC

Figure 8: The distribution of the overall generated
individuals in the function, f (X ) = 1

ber of evaluation is 5.0 × 104. The population size is
set to be 100. The other conditions are the same as
the previous experiments. Since MGG performs ran-
dom sampling when all individuals have the sameÞt-
ness value, the all region should be searched equally if
there is no sampling bias. We plot the distribution of
the overall individuals generated in a run. Fig.8 shows
the results of NoExt and TSC. Although near bound-
ary in the left Þgure is hardly searched, all region in
the right Þgure are searched equally. We can conÞrm
that there is no sampling bias.

6 CONCLUSIONS

This paper proposed a new method,Toroidal Search
Space Conversion(TSC), which converts search space



with boundary into toroidal one, to improve the ro-
bustness of RCEAs. Experimental results showed that
the e�&ectiveness of TSC is greater than those of the
other methods. TSC has following three advantages:
1. TSC can be applied widely because it is indepen-
dent on search operator., 2. It is easy to apply TSC
because it has no parameter., 3. There is no sam-
pling bias in the converted search space by TSC. On
the other hand, TSC has one disadvantage. The land-
scape of the converted search space by TSC is often
more complex than that of the original search space.
The variance of the convergence velocity is also caused
by this complexity. To cope with this disadvantageous
feature is future work.
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APPENDIX

A BLX- �
 [5] and UNDX [10]

BLX- �
 produces a child in the gray region in Fig.9
(left) randomly. The child vector, ~C, which is encoded
by real number vector, is determined as follows:

~C = { c1, . . . , cn } ,

ci = u(min( p1i , p2i ) �� �
 di , max(p1i , p2i ) + �
 di ) ,

where ~P1 = { p11, . . . , p1n } and ~P2 = { p21, . . . , p2n } are
parent vectors of Parent1 and Parent2 respectively.
di = |p1i �� p2i |. n is the dimension of the objective
function. u(x, y) is the uniform random number se-
lected from [x, y].



Figure 9: BLX- �
 (left) and UNDX (right)

UNDX generates two children around their parents us-
ing the normal distribution whose standard deviation
is determined by the third parent, Parent3, as shown
in Fig.9 (right). The children vectors, ~C1 and ~C2, are
determined as follows:

~C1 = ~m + z1~e1 +
nX

k=2

zk~ek ,

~C2 = ~m �� z1~e1 ��
nX

k=2

zk~ek ,

where ~m = ( ~P1 + ~P2)/ 2. ~e1 = ( ~P2 �� ~P1)/ | ~P2 �� ~P1|,
~ek (k = 2 , . . . , n) are the orthogonal unit vectors. z1 ��
N (0, �� 2

1) and zk �� N (0, �� 2
2)(k = 2 , . . . , n) are nor-

mally distributed random numbers, where ��1 = �
 d1

and ��2 = �#d2/
�$

n. d1 is the distance between Parent1
and Parent2. d2 is the distance of the Parent3 from
the line connecting Parent1 and Parent2. �
 and �#are
constants.

B EQUATION (3)

B.1 Variables

In this section, we use the following variables:

y, z the positions of parents (0< y < z < 1)
w the width in which BLX- �
 produces

children
c the center of parents

n(y, z) the probability of generating children
in one crossover operation

�
 is set to be 0.5, which is recommended value.

B.2 Equation g(x)

After the deÞnition of BLX- �
 , a child is produced in
the range ofx that satisÞes the following inequality.

c ��
w
2

< x < c +
w
2

.

Substitute w = ( z �� y)/ �
 = 2( z �� y) and c = ( z + y)/ 2
into the above inequality,

�� 1 <
2x �� (z + y)

2(z �� y)
< 1 .

Therefore,

3y < 2x + z ,

y < 3z �� 2x .

Since the domain ofx is [0.0, 1.0], g(x) = k{ gA (x) +
gB (x) + gC (x)} , as follows:

gA (x) =
Z 1

3 + 2
3 x

x

Z 1

3y �� 2x
n(y, z) dzdy ,

gB (x) =
Z x

0

Z 1

x
n(y, z) dzdy ,

gC (x) =
Z x

0

Z x

1
3 y+ 2

3 x
n(y, z) dzdy ,

where n(y, z) = 1
w = 1

2(z�� y ) . Integrate the above,

g(x) = k
½

(1 �� x)(ln 3 �� ln 2)
2

+
(x �� 1) ln(1 �� x) �� x ln x

2

+
x(ln 3 �� ln 2)

2

¾

=
k
2

{ ln 3 �� ln 2 + ( x �� 1) ln(1 �� x) �� x ln x} .

In order to satisfy
R1

0 g(x) dx = 1, k = 4
2(ln 3 �� ln 2)+1 .

Hence,

g(x) =
2{ ln 3

2 + ( x �� 1) ln(1 �� x) �� x ln x}

2 ln 3
2 + 1

.

C MGG [14]

MGG is a generation-alternation model. It is de-
scribed as follows:

step1 Generate an initial population randomly.
step2 Choose a pair of individuals as parents from the

population randomly.
step3 Generate a certain number of children by a

crossover.
step4 Select the best individual out of the family, the

parents and the children.
step5 Choose an individual except the best, selected

at step4, out of the family randomly according to
Þtness-based (or ranked-based) wheel selection.

step6 replace the two individuals, selected atstep4
and step5, to the parents.

step7 Iterate step2 �� step6until certain condition is
satisÞed.
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Abstract 
 

 

Genetic Algorithms (GA) and Genetic 
Programming were inspired by ideas from 
evolutionary biology. However modern 
Evolutionary Computation (EC) only in outline 
reminds the strategies of biological evolution. 
The application of other algorithms and 
biological ideas may substantially improve the 
performance of this area of computer science. 
Namely, the selfish (or parasitic) mobile genetic 
elements - transposons are good candidates for 
this breakthrough. These genomic parasites live 
on a substratum of genomes of whole biological 
communities. Many biologists assume that 
processes in the world of transposons are the 
main source of evolution creativity. They 
thought to act as wise higher-level mutators for 
their hosts. In this communication we propose a 
strategy of construction of a new approach 
exploiting the most essential aspects of co-
evolution of the hosts-chromosomes and their 
genetic parasites. We named this strategy as the 
Two-level Evolving Worlds. The key feature of 
the approach is usage of artificial transposons. 
We apply it to one of known benchmark 
problems - the John Muir ant's trail test. We 
found that our enhancement of GA technique by 
the artificial transposons obviously increase the 
efficacy of searching of the ant's navigation 
algorithm. We investigate in details the way of 
the transposons action as intelligent mutators of 
host-chromosomes. 

1 INTRODUCTION 

Many areas of evolutionary computation, especially 
genetic algorithms (GA), and genetic programming (GP), 
are inspired by achievements in genetics and evolutionary 
biology. However modern evolutionary biology has since 
advanced considerably, revealing that genes are not 
simply parameter settings, but components of a complex 
biochemical machine (Cf. Luke et al., 1999; Lee and 
Antonsson, 2001; Lones and Tyrrell, 2001).  

On the other hand, many branches of modern 
evolutionary computation research are aimed at evolution 
of mechanisms (neural networks, decision trees, cellular 
automata, L-systems, finite state automata). For these 
domains, recent genomic achievements seems more 
appropriate as an inspirational model then classic set of 
Darwinian algorithms. 

There is a feeling that the field of EC is getting more 
inspired with the latest achievements in biology, trying to 
make the evolutionary algorithms more effective. Such 
techniques as transposition, host-parasite interaction, 
gene-regulatory networks and some others have yet been 
applied to EC.  

 •Host-parasite methods: These methods are based on the 
co-evolution of two different populations, one of them 
acting as “parasite” , and the other acting as “host” . The 
parasites usually encode a version the problem domain, 
and the hosts the solution to the problem (Hillis, 1990; 
Potter and De Jong, 1994; 1995; De Jong and Potter, 
1995; Olsson, 1996; 2001).  

•Transposition operators (“bacterial”  algorithms): The 
basic idea of these approaches is to make intra-
chromosome crossovers, that is, crossover of a 



chromosome with another part of itself, or else 
asymmetric crossover, in which a donor chromosome 
transfers part of its genetic material to an acceptor 
chromosome (Harvey, 1996, Nawa et al., 1996; Simoes 
and Costa, 2001). In some cases, these operators seem to 
be better than classical genetic algorithms for 
combinatorial optimization problems. 

·Gene-regulatory networks approach: Luke et alls (1999) 
use a method similar to genetic regulatory networks to 
evolve finite state automata that represent a language 
grammar. It is appropriate also to mention here the Burke 
et alls (1998) project, as well as ªenzyme genetic 
programmingº (Lones and Tyrrell, 2001).  

·Evolution based on the selfish elements: Corno et alls 
(1998) implemented the Selfish Genetic Algorithm 
inspired by Dawkins concept of the selfish gene. The 
algorithm evolves a Virtual Population, in which alleles 
compete for appearance in their respective locus in the 
genotype.  

So far, it has not been found in the literature a technique 
that is general enough to be applied to a wide range of 
problems, and that, in some cases, is able to yield as good 
or better results than evolutionary algorithms 

This stimulates us to search for prospective mechanisms 
that simulate the creative, heuristic and self-organizing 
character of (biological) evolution (Spirov, 1996a; 1996b; 
Spirov and Samsonova, 1997; Spirov and Kadyrov, 1998; 
Spirov et al., 1998; Spirov and Kazansky, 1999). The 
mobile selfish genetic elements (synonymous or related 
terms are jumping genes, transposons, retroviruses) are 
good candidates for this breakthrough  (Makalowski, 
1995). Many biologists speculate that processes in the 
world of transposons, living on a substratum of genomes 
of the whole biological communities, are the main source 
of macroevolution creativity (Doolittle and Sapienza, 
1980; Orgel and Crick, 1980; Brosius, 1991). 

In this connection, special interest is attracted by well-
known examples of both competitive and cooperative 
strategies in populations of transposons.  

In this communication we propose a strategy of 
construction of a new approach exploiting the most 
essential aspects of co-evolution of the hosts-
chromosomes with their genetic parasites. We named this 
strategy as the Two-level Evolving Worlds. The key 
feature of the approach is usage of artificial transposons. 
We treat transposons as high-level and intelligent 
mutators. In the next part we give the definition of the 
strategy. To demonstrate the efficacy of a new approach 
we apply it to one of known benchmark problems - the 
John Muir ant©s trail test (Jefferson et al. 1992; Koza, 
1992). 

1.1 THE TWO-LEVEL EVOLVING 
WORLD 

Parasites and parasite ensembles always accompany 
biological evolution. Tom Ray simulated this process in 
his Tierra (Ray, 1991). 

A special kind of parasites is genomic parasites living in 
the host genome. Known biological proverb says that ªthe 
viruses in all of us - the viruses that make usº.  

In the course of evolutionary time, parasites form 
ªcommunityº of their own. They populate the united 
genomic space of many hosts. We shall name these 
parasites as InfoParasites (IP), and the ªcommunity of the 
parasitesº as IP world.  

There are examples of evolvable virtual worlds such as 
Swarm, Creatures, Network Tierra (Daniels, 1999; Cliff 
and Grand, 1999; Ray, 2001). In the course of evolution 
the worlds of that type can split over IP and host co-
evolving worlds, i.e. they can become the two-leveled. It 
is the question of time and such worlds’  complexity. In 
less complex virtual worlds similar splitting could be 
realized ªby handº, as in the case of developing world of 
computer viruses. 

1.1.1 Strategy of Development of The Two-
level Wor lds 

We assume that the simplest realization of the two-layer 
evolving worlds would be as follows: 

the hosts-world is GA-like system (standard GA 
in the simplest case). The manifold of hosts’  
chromosomes-strings is the environment for IPs. In the 
simplest case these GAs don’ t have any mutation 
operators of their own; 

the InfoParasites are the LISP-like programs, 
manipulating with the hosts’  strings. (For our applications 
these programs must include the SEARCH function 
performing the search of patterns in the host strings). IPs 
live in hosts, they are transmitted vertically (when host 
reproduces) and horizontally (from one host to another, as 
infection or computer virus); 

genotypes of parasite and host are encoded by 
the same text, i.e. the same string of symbols is 
interpreted in two different languages, the host’s and the 
parasite’s one; 

ªbadº (too harmful) parasites are eliminated 
together with their hosts, ªgoodº parasites minimize their 
harmfulness (for example, by exploiting unessential parts 
of host’s chromosomes).  

1.1.2 Intelligent Mutators 

IPs acts as intelligent and sophisticated mutators. They 
can generate arbitrary procedures of manipulations with 



hosts'  chromosomes. In general, these operators can be 
the unitary, binary or plural ones. Each host has got the 
mutators of its own. In the simplest case IPs are the only 
source of the host' s mutations. 

If IP founds hopeful mutation strategy, then both host and 
parasite will get chance for reproduction, the parasite 
rides on a new turn of evolution on the transformed host. 
Virtually we have co-evolution of hosts and their 
intelligent mutators-parasites.  

1.2 THE ARTIFICIAL ANT PROBLEM 

The artificial ant problem is the simulation of an ant 
navigation aimed at passing through the labeled trail placed 
in a grid world (Jefferson et al. 1992; Koza, 1992). The 
trail was nicknamed as ªThe John Muir Trailº in the UCLA 
experiment (Jefferson et al., 1991). Each labeled cell is 
numbered sequentially, from the 1st which is settled 
directly next to the starting cell, through to the last cell. 
The ant' s task is to pass through the labeled cells one by 
one (the more the better) for the limited time period. The 
ants are simple finite-state automata or an artificial neural 
network, which can move along the grid world and test their 
immediate surroundings. The trail starts off quite easy to 
follow, and gradually gets more difficult, as the turns 
become more unpredictable and gaps appear (See Fig.2). 
Therefore, the successful ant' s program must be quite 
sophisticated. The problem has been repeatedly used as a 
benchmark problem (For references See Langdon and 
Poli, 1998). 

2 METHODS AND APPROACH  

While the ant test was implemented at least in two 
different C++ libraries (Zongker and Punch, 1995), we 
gave preference to the Peter Brennan' s version (Brennan, 
1994). This ªANT programº was designed in such a way 
that to isolate, as far as possible, the components of the 
genetic algorithm from the trail-following experiment and 
the ant representation. Brennan' s ants are finite state 
automata.  

2.1 TECHNIQUE OF MOBILE 
GENETIC ELEMENTS - TRANSPOSONS 

Mobile Genetic Elements (MGEs) - transposons are akin 
to computer viruses. They are the autonomous programs, 
which are transmissible horizontally (viz., from one site to 
another one on the same or another chromosome) or 
vertically (from the ancestor to the descendants in the 
reproduction process). These autonomous parasitic 
programs cooperate with the host genetic programs, thus 
realizing process of self-replication - the only aim, which 
can be associated with that activity. We developed some 
new operators which are the computer program 
procedures, performing processes of replication, mutation 
and invasion of MGEs into specific sites on 

chromosomes, as well as interactions of MGE with the 
chromosome (interrelations of parasite - host type).  

It is appropriate here to make some notes, concerning the 
terminology. MGE technique comprises the procedures 
for initialization of mobile genetic elements and 
procedures for operating with these elements. Hereinafter 
in this section mobile elements will be referred to as 
ªvirusesº, whereas the procedures, operating with them 
will be termed as ªMGE operatorsº. There are only two 
types of operators. The one-place operator is an analogue 
of point mutation and the two-place (binary) operator 
realizing the procedure of transmission of virus from one 
chromosome (host) to another chromosome (another 
host).  

2.1.1 Viruses 

Let us recall that the ant binary string - chromosome is 
coding a state transition table of finite state automation. 
Altogether there are 32 finite states of automation, 
ranging from STATE#0 up to STATE#31. All operators 
start reading and interpreting the table beginning from the 
STATE#0. For example, STATE #0 determines one of the 
four actions or instructions (FWD - ªforwardº, RGT - ªto 
the rightº, LFT - ªto the leftº or NOP - ªdo-nothingº) and 
the number of the next state, depending on binary input 
value (0 or 1). This finite state automation can be 
represented as a state transition diagram and interpreted as 
a decision tree but, as far as references to already passed 
by states are permissible, that tree can have loops.  

Henceforward we will refer to these state number 
sequences, which ant can pass through moving along the 
branches of the tree and according sequences of 
instructions (routines), which it will perform, as 
ªpatternsº. In other words, pattern is concrete sequence of 
states, which an ant can come through and sequence of 
instructions, which an ant can perform, when it passes 
from state to state. Concrete example of patterns are given 
on the Fig. 1. Hereinafter, the abbreviations of 
instructions in the pattern will be referred to as elements 
of pattern.  

We use this concrete definition of our virus (mobile 
genetic element - transposon). Virus is the pattern, having 
the following properties: 

the pattern should include elements which number lie 
in the range between minimum and maximum values; 

the pattern should not contain NOP elements and 
internal circles; 

the pattern should be finished up with a reference to 
the initial state. The transitions cycle will be executed 
until only white squares remain ahead of the ant.  



2.1.2 MGE - operators  

MGE - operators scan the predetermined quota of 
chromosomes in population. Successively decoding 
chromosome record, this operator is seeking for procedure 
sequences, which are identified as virus. But, MGE 
operator perceives procedures and state transitions only 
with the proviso that there is no labeled square ahead of 
the ant, i.e. under condition input=0 (See fig. 1). 

State Input=0 

0 LFT/#17 

17 FWD/#13 

13 FWD/#21 

21 LFT/#9 

9 LFT/#0 

Figure 1. Here is an example of a virus. The virus is a 
closed five-element cycle of states transitions (0, 17, 13, 
21, 9, and again, 0). There are 32 states at all. Each state 
determines two alternate actions, depending on input 
signal. The input signal is what an ant sees before him. If 
the cell before him is black then the input is 1, in opposite 
case the input is 0. Each of alternative actions includes 
one of four possible movements (FWD, RGT, LFT or 
NOP) and transition to the next state. 

 

Two-place MGE operator provides the transmission of the 
virus from an ant to another one, thus realizing the 
reproduction procedure of this virus in gene pool of the 
host (ant) population. This procedure performs the 
following operations. 

First, a pair of ants is chosen at random. Then, the 
chromosome of any of them is scanned in search of the 
virus. If the virus is found, it is replicated in the partner 
chromosome, irrespectively of initial record character in 
that chromosome. The chromosome scanning starts from 
the zero line (state#0) and goes on as far as the first virus 
is met. If no virus is met, scanning finishes up only when 
the chromosome record ends. So, scanning ceases 
irrespectively of the remaining chromosome un-scanned 
part content.  

One-place MGE operator is a sort of point mutation, 
realized under particular conditions. This is what we call 
an intelligent mutator. In detail, the operator acts in such a 
way. If it finds a pattern in the predetermined length 
range, and the action NOP completes this pattern, then 
this instruction is substituted for the one of the three other 
actions (FWD, RGT or LFT). Specifically, this NOP is 
substituted for the action from the fifth element of the 
pattern, counted in order. But, if the found pattern is 
completed by the reference to the one of the elements 
inside pattern (internal cycle), then we have the following. 
The action of this element is substituted for the action of 
the fifth element, counted backward from the end, the 

reference being substituted for found at random reference 
to the element outside of the pattern. 

3 RESULTS 

The test trail, used in this work is illustrated in Fig. 2. It 
can be seen that up to the 64th element our trail coincide 
with the Los Altos one, but the next part of the trail 
includes chaotically scattered elements of high 
complexity. Being trained on much simpler preceding 
trail part, the ant is not prepared to surmount the 
subsequent, complicated sector (biologists would say that 
the ant is not pre-adapted to new conditions it faced with 
in this sector). More specifically, problems arise at 
attempts to get over gaps between the 64th and the 65th, or 
the 67th and the 68th cells.  

 

Figure 2. Ant trail used in our computer experiments. The 
trail itself is a series of squares on a 32x32 white toroidal 
grid. Each cell is numbered sequentially, from the 1st to 
the 89th. The first two gaps of the higher complexity are 
between 64th and 65th and 67th and 68th.  
 

3.1 MGES REALLY ACCELERATES THE 
EVOLUTIONARY SEARCH 

The preliminary computer experiments showed that the 
accelerating effect of MGE is especially noticeable for 
small populations, when the probability of the effective 
navigation algorithm finding by applying standard 
crossover and mutation operators is low. 

On this basis, the following experiments were carried out 
on populations of 100 ants. The choice of such a small 



population is also explained by our aim to carry out a 
comprehensive analysis of MGE dynamics. Such an 
analysis is not feasible for large populations of ants 
because of great number of viruses.  

With the aim of demonstrating of the MGE technique 
efficiency we performed 100 independent runs of the 
program, 5000 generations each. The results of test and 
control runs (population with MGE and without MGE 
correspondingly) were compared in several series with the 
different values of standard mutation parameters. 
Everywhere in this section we will accept that the 
effective navigation algorithm should overcome the level 
of maximum score in 64 for 330 time steps.  

The results of program runs with the MGE operator and 
without it are illustrated in Fig. 3. It can be seen, that 
MGE technique obviously increases the probability of 
finding of effective navigation algorithm for small 
populations and for a little number of generations.  

 

Figure 3. Numerical experiments, demonstrating 
statistically certain increasing of the GA efficiency due to 
the effect of MGE operators. A comparison of the mean 
and the best-of-generation score dynamics (MGE operator 
being activated) with the control (MGE operator is 
disabled). The score values are averaged over 100 runs in 
both cases. The size of population = 100; the number of 
generations = 5000; the pattern size varies from 5 to 11; 
crossover rate (P/bit)/generation = 0.0001; mutation rate 
(P/bit)/generation = 0.04; i are the best-of-generation 
scores and iii are the mean scores for the runs with MGE 
operators; ii are the best-of-generation scores and iiii are 
the mean scores for the control runs (without MGE 
operators). 
 

As it is evident from the graphs on Fig. 3, the mean and 
the best-of-generation score scores in experiment and in 
control are growing, to a first approximation, linear in 
time. But the increment of growth in experiment with 
MGE is substantially higher, than in control. 

It may be suggested that MGE operators raise ant 
variability mainly in nonspecific manner thus 

supplementing mutation effect of standard operators. But, 
this suggestion is not substantiated by the detailed 
analysis of mutation process. We carried out control runs 
with different values of standard mutations:  the high 
level of standard mutation does not raise the effectiveness 
of the navigation algorithm search, moreover, it decreases 
this effectiveness.  

3.2 HORIZONTAL TRANSMISSION OF MGES 
IS NECESSARY FOR THEIR EFFECTIVE 
ACTION 

As far MGEs are transmitted vertically (from ancestors to 
descendants), MGE of the host, that have superiority in 
reproduction success is rapidly spreading in the 
population and gives new forms. But this process per se is 
insufficient for the effective acceleration of ant learning. 
Two-place MGE operator, performing horizontal 
distribution of MGE from one ant to another is a 
necessary for rising of ant training ability. In Fig. 4 we 
illustrate the results of comparing of the test, presented in 
Fig.3, with the similar test, in which frequency of 
applying of two-place MGE operator was reduced by the 
factor of 10 and accounted 5%. This parameter 
determines the proportion of population, which is 
subjected to the action the two-place MGE operator in a 
generation. In previous experiments, this quota accounted 
50%. 

 

Figure 4. The influence of decreasing of frequency of 
applying of two-place MGE operator on the ant learning 
abilities. i are the best-of-generation scores and iii are the 
mean scores for the runs with high frequency of the two-
place MGE operator action (50%); ii are the best-of-
generation scores and iiii are the mean scores for the runs 
with low frequency of the two-place MGE operator action 
(5%). The other parameters are the same as in the 
previous experiments (see caption to Fig. 3). 
 
The obvious lowering of ant learning abilities with the 
decreasing of frequency of the two-placed operator 
application is seen from the diagram. Disabling of the 



operator lowers the efficacy further and makes it almost 
equal to the control (case without MGE). 

4 DISCUSSION 

The problem of programming an artificial ant to follow 
the Santa Fe trail has been repeatedly used as a 
benchmark problem in GP (For references See Langdon 
and Poli, 1998). Recently Langdon and Poli have shown 
that performance of several techniques is not much better 
than the best performance obtainable using uniform 
random search (Langdon and Poli, 1998). According to 
these authors, the search space is large and forms a Karst 
landscape containing many false peaks and many plateaus 
riven with deep valleys. The problem fitness landscape is 
difficult for hill climbers and the problem is also difficult 
for Genetic Algorithms as it contains multiple levels of 
deception.  

There are many techniques capable of finding solutions to 
the ant problem (GA, GP, simulated annealing, hill 
clmbing) and although these have different performance 
the best typically only do marginally better than the best 
performance that could be obtained with random search 
(Langdon and Poli, 1998). That is why the ant problem 
may be indicative of real optimization problem spaces.  

4.1 DOMINANT MGE ARE THE 
COMPONENTS OF THE EFFECTIVE 
NAVIGATION ALGORITHMS 

The results of careful analysis of organization of several 
tens of dominant viruses, taken from those ant 
populations, which coped with the navigation task, can be 
summarized as follows. 

1) By the definition, the virus program begins and ends 
with the zero state, i.e., it is a loop, executed over and 
over until the ant will meet the labeled cell.  

2) Four-fold execution of the virus-program produces in 
most cases the closed ant trajectories, i.e., the ant will 
return to the starting position. As a rule, the closed 
contour is located in domains the size of 4´ 4 or 5´ 5 cells.  

3) As a rule, the virus-program is beginning to work not 
from the zero state but from the Nth state, which is 
specific to every virus, not beginning with the initial, zero 
state. This transition into the Nth state takes place as soon 
as the ant (host of the virus) runs against the unlabeled 
cell. 

4) Start the virus-program from the Nth state provides the 
execution of the simplest navigation algorithm, necessary 
for overcoming the simplest gaps, arranged in the first 
half of the trail (ªlooking aroundº, then one step ahead, 
ªlooking aroundº again and so forth). This algorithm 
provides the successful passage of trail up to the 64th cell 
inclusive. 

5) The majority of program-viruses guarantee overcoming 
of the element of high complexity between the 64th and 
the 65th cells.  

6) Some viruses are not suitable for the navigation 
programs. In that case the chromosome elements, 
arranged in virus-free domain take control over 
navigation. 

The detailed analysis of the organization of dominant 
MGE forms in populations, which are succeeded in 
finding of the effective navigation programs, showed, that 
the MGE themselves become the components of these 
programs. Namely, the case in point is about the part of 
navigation program that is used for effective ªsnuffing 
aroundº in situation, when ant faces with a wide gap. 

4.2 WISE MUTATORS HAVE A 
SEARCH SPACE CONFINING EFFECT 

The Muir' s Trail search space has rugged geometry due to 
specific and discrete character of the problem. That is 
why, the gradient methods are not effective here. 
Moreover, this ant navigation problem is classified as a 
GA hard problem, especially if trail is not designed 
specially for ant population training. The efficiency of 
MGE in the role of intelligent mutators can be measured 
by their search space domain confining ability. Therefore, 
the selection criteria inserted into MGE operators had to 
increase the probability of the effective navigation 
algorithm finding on the element of high complexity.  

A comparison of mutation frequencies in experiment and 
control with the according learning rates confirms 
multiple reduction of evaluation numbers, needed for 
reaching of the same required learning in experiments 
with MGE. Mutation frequencies for basic experiments 
(Fig.3) in control accounts: crossover rate + mutation rate 
= 0.0001+0.04 P/bit/generation; MGE1 and MGE2 
operators add in average 0.0027 and 0.0075 
P/bit/generation accordingly. In other words, MGE in 
average adds to value 0.041 about 0.012 P/bit/generation. 
This addition brings to multiple acceleration of ant 
population learning! Hence, according to fig. 3, up to the 
end of the experiment (4622 time-step) the control set 
gives max score 6.47, whereas in the test set this value is 
attained already on the 451 time-step, i.e. 10 times sooner. 

5 CONCLUSIONS 

·  The enhancement of GA by jumping genes-mutators 
substantially increases the efficacy of GA 
performance in known benchmark test – ant problem. 

·  The jumping genes-mutators  (artificial transposons) 
act as intelligent mutators, that ªelaborateº code 
blocks with high evolvability value. 
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Abstract

Neuroevolutionis currentlythestrongestmethod
on the pole-balancingbenchmarkreinforcement
learning tasks. Although earlier studiessug-
gestedthat there was an advantagein evolv-
ing the network topology as well as connec-
tion weights, the leading neuroevolution sys-
tems evolve �x ed networks. Whether evolv-
ing structure can improve performanceis an
open question. In this article, we introduce
sucha system,NeuroEvolution of Augmenting
Topologies(NEAT). We show that when struc-
ture is evolved (1) with a principledmethodof
crossover, (2) by protectingstructural innova-
tion, and (3) through incrementalgrowth from
minimal structure,learningis signi�cantly faster
and strongerthan with the best �x ed-topology
methods. NEAT also shows that it is possi-
ble to evolve populationsof increasinglylarge
genomes,achieving highly complex solutions
thatwould otherwisebedif�cult to optimize.

1 INTRODUCTION

Many tasksin the real world involve learningwith sparse
reinforcement. Whethernavigating a mazeof rubble in
searchof survivors,controllingabankof elevators,or mak-
ing a tacticaldecisionin agame,thereis frequentlyno im-
mediatefeedbackavailableto evaluaterecentdecisions.It
is dif�cult to optimizesuchcomplex systemsbyhand;thus,
learningwith sparsereinforcementis a substantialgoalfor
AI.

Neuroevolution(NE), thearti�cial evolution of neuralnet-
worksusinggeneticalgorithms,hasshowngreatpromisein
reinforcementlearningtasks.For example,onthemostdif-
�cult versionsof thepolebalancingproblem,which is the
standardbenchmarkfor reinforcementlearning systems,

NE methodshave recentlyoutperformedother reinforce-
mentlearningtechniques(Gruauet al. 1996;Moriarty and
Miikkulainen1996).

Most NE systemsthathave beentestedon polebalancing
evolveconnectionweightson networkswith a �x edtopol-
ogy (GomezandMiikkulainen 1999;Moriarty andMiik-
kulainen1996;SaravananandFogel 1995;Whitley et al.
1993;Wieland1991).On theotherhand,NE systemsthat
evolve both network topologiesand connectionweights
simultaneouslyhave also beenproposed(Angeline et al.
1993;Gruauet al. 1996;Yao 1999). A major questionin
NE is whethersuchTopologyandWeightEvolving Arti�-
cial NeuralNetworks(TWEANNs)canenhancetheperfor-
manceof NE. On onehand,evolving topologyalongwith
weightsmightmakethesearchmoredif�cult. Ontheother,
evolving topologiescansave thetime of having to �nd the
right numberof hiddenneuronsfor a particularproblem
(Gruauet al. 1996).

In a recentstudy, a topology-evolving methodcalledCel-
lular Encoding(CE; Gruauet al., 1996)wascomparedto
a �x ed-network methodcalled EnforcedSubpopulations
(ESP)on the doublepole balancingtaskwithout velocity
inputs(GomezandMiikkulainen1999).SinceESPhadno
a priori knowledgeof thecorrectnumberof hiddennodes
for solving the task, eachtime it failed, it was restarted
with a new randomnumberof hiddennodes. However,
even then, ESP was � ve times fasterthan CE. In other
words,evolving structuredid not improve performancein
this study.

This article aims to demonstratethe oppositeconclusion:
if done right, evolving structurealong with connection
weightscansigni�cantly enhancetheperformanceof NE.
We presenta novel NE methodcalledNeuroEvolution of
AugmentingTopologies(NEAT) that is designedto take
advantageof structureasa way of minimizing thedimen-
sionality of the searchspaceof connectionweights. If
structureis evolvedsuchthattopologiesareminimizedand
grown incrementally, signi�cant performancegainsresult.
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Figure1: A Genotypeto PhenotypeMapping Example. A
genotypeis depictedthatproducestheshown phenotype.Notice
thatthesecondgeneis disabled,sotheconnectionthatit speci�es
(betweennodes2 and4) is notexpressedin thephenotype.

Evolving structureincrementallypresentsseveraltechnical
challenges:(1) Is thereageneticrepresentationthatallows
disparatetopologiesto crossover in a meaningfulway?(2)
How cantopologicalinnovation that needsa few genera-
tionsto optimizebeprotectedsothat it doesnot disappear
from thepopulationprematurely?(3) How cantopologies
beminimizedthroughoutevolutionwithout theneedfor a
speciallycontrived�tness functionthatmeasurescomplex-
ity?

The NEAT methodconsistsof solutionsto eachof these
problemsaswill be describedbelow. The methodis val-
idatedon pole balancingtasks,whereNEAT performs25
timesfasterthanCellularEncodingand5 timesfasterthan
ESP. Theresultsshow thatstructureis a powerful resource
in NE whenappropriatelyutilized.

2 NEUROEVOLUTION OF
AUGMENTING TOPOLOGIES (NEAT)

NEAT is designedto addressthe three problemswith
TWEANNs raisedin the Introduction. We begin by ex-
plainingthegeneticencodingusedin NEAT, andcontinue
bydescribingthecomponentsthatspeci�cally addresseach
issue.

2.1 GENETIC ENCODING

NEAT'sgeneticencodingschemeis designedto allow cor-
respondinggenesto beeasilylined up whentwo genomes
crossover during mating. Thus,genomesarelinear repre-
sentationsof network connectivity (�gure 1). Eachgenome
includesa list of connectiongenes, eachof which refersto
two nodegenesbeing connected.Eachconnectiongene
speci�esthe in-node,theout-node,theweightof thecon-
nection,whetheror not the connectiongeneis expressed
(an enablebit), andan innovation number, which allows
�nding correspondinggenes(aswill beexplainedbelow).

Mutationin NEAT canchangebothconnectionweightsand
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Figure 2: The two types of structural mutation in NEAT.
Bothtypes,addingaconnectionandaddinganode,areillustrated
with the genesabove their phenotypes.The top numberin each
genomeis the innovation numberof that gene. The innovation
numbersarehistoricalmarkersthatidentify theoriginalhistorical
ancestorof eachgene.New genesareassignednew increasingly
highernumbers.

network structures.Connectionweightsmutateas in any
NE system,with eachconnectioneitherperturbedor notat
eachgeneration.Structuralmutationsoccur in two ways
(�gure 2). Eachmutationexpandsthesizeof thegenome
by addinggene(s).In theaddconnectionmutation,a sin-
gle new connectiongeneis addedconnectingtwo previ-
ouslyunconnectednodes.In theaddnodemutationanex-
istingconnectionis split andthenew nodeplacedwherethe
old connectionusedto be. Theold connectionis disabled
andtwo new connectionsareaddedto the genome.This
methodof addingnodeswaschosenin order to integrate
new nodesimmediatelyinto thenetwork.

Throughmutation, the genomesin NEAT will gradually
get larger. Genomesof varying sizeswill result, some-
times with completelydifferent connectionsat the same
positions.How canNE crossthemover in a sensibleway?
Thenext sectionexplainshow NEAT addressesthis prob-
lem.

2.2 TRACKING GENESTHROUGH HISTORICAL
MARKINGS

It turnsout that thereis unexploited informationin evolu-
tion thattells usexactlywhich genesmatchup with which
genesbetweenany individuals in a topologically diverse
population.Thatinformationis thehistoricalorigin of each
genein thepopulation.Two geneswith thesamehistorical
origin mustrepresentthesamestructure(althoughpossibly
with differentweights),sincethey areboth derived from
thesameancestralgenefrom somepoint in thepast.Thus,
all a systemneedsto do to know which genesline up with
which is to keeptrackof thehistoricalorigin of everygene
in thesystem.
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Figure 3: Matching Up Genomes for Differ ent Network
TopologiesUsing Innovation Numbers. AlthoughParent1 and
Parent2 look different, their innovation numbers(shown at the
topof eachgene)tell uswhichgenesmatchup with which. Even
without any topologicalanalysis,a new structurethat combines
the overlappingpartsof the two parentsas well as their differ-
ent partscanbe created. In this casethe parentsareequally �t
andthegenesareinheritedfrom bothparents.Otherwise,theoff-
spring inherit only the disjoint andexcessgenesof the most �t
parent.

Trackingthe historicalorigins requiresvery little compu-
tation. Whenever a new geneappears(throughstructural
mutation),a global innovationnumberis incrementedand
assignedto thatgene.Theinnovationnumbersthusrepre-
senta chronologyof the appearanceof every genein the
system. As an example, let us say the two mutationsin
�gure 2 occurredoneafteranotherin thesystem.Thenew
connectiongenecreatedin the�rst mutationis assignedthe
number

�

, andthetwo new connectiongenesaddedduring
thenew nodemutationareassignedthenumbers� and� . In
thefuture,wheneverthesegenomesmate,theoffspringwill
inherit thesameinnovationnumbersoneachgene;innova-
tion numbersareneverchanged.Thus,thehistoricalorigin
of everygenein thesystemis known throughoutevolution.

Thehistoricalmarkingsgive NEAT a powerful new capa-
bility, effectively avoiding theproblemof competingcon-
ventions(MontanaandDavis 1989;Radcliffe 1993;Schaf-
fer et al. 1992). The systemnow knows exactly which
genesmatchupwith which(�gure 3). Whencrossingover,
thegenesin bothgenomeswith thesameinnovationnum-
bersarelined up. Thesegenesarecalledmatching genes.
Genesthat do not matchareeitherdisjoint ( � ) or excess

( � ), dependingonwhetherthey occurwithin or outsidethe
rangeof theotherparent's innovationnumbers.They rep-
resentstructurethat is not presentin theothergenome.In
composingtheoffspring,genesarerandomlychosenfrom
eitherparentat matchinggenes,whereasall excessor dis-
joint genesarealways includedfrom the more �t parent,
or if they areequally�t, from bothparents.This way, his-
torical markingsallow NEAT to performcrossover using
lineargenomeswithout theneedfor expensive topological
analysis.

By addingnew genesto thepopulationandsensiblymating
genomesrepresentingdifferentstructures,the systemcan
form a populationof diversetopologies.However, it turns
out thatsuchapopulationonits own cannotmaintaintopo-
logical innovations. Becausesmallerstructuresoptimize
fasterthanlargerstructures,andaddingnodesandconnec-
tionsusuallyinitially decreasesthe �tness of thenetwork,
recentlyaugmentedstructureshave little hopeof surviving
morethanonegenerationeventhoughtheinnovationsthey
representmight be crucial towardssolving the taskin the
long run. Thesolutionis to protectinnovationby speciat-
ing thepopulation,asexplainedin thenext section.

2.3 PROTECTING INNOVATION THROUGH
SPECIATION

Speciationis commonly applied to multimodal function
optimization and the coevolution of modular systems,
whereits main function is to preserve diversity (Mahfoud
1995;PotterandDe Jong1995).We borrow theideafrom
these�elds andbringit to TWEANNs,whereit protectsin-
novation. Speciationallows organismsto competeprimar-
ily within theirown nichesinsteadof with thepopulationat
large. This way, topologicalinnovationsareprotectedin a
new nichewherethey have time to optimizetheir structure
throughcompetitionwithin theniche.

The ideais to divide thepopulationinto speciessuchthat
similar topologiesare in the samespecies.This taskap-
pearstobeatopologymatchingproblem.However, it again
turnsout thathistoricalmarkingsoffer a moreef�cient so-
lution.

The numberof excessand disjoint genesbetweena pair
of genomesis a natural measureof their compatibility.
The moredisjoint two genomesare,the lessevolutionary
history they share,and thus the lesscompatiblethey are.
Therefore,we canmeasurethecompatibilitydistance� of
differentstructuresin NEAT asasimplelinearcombination
of thenumberof excess( � ) anddisjoint( � ) genes,aswell
astheaverageweightdifferencesof matchinggenes( � ):
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Thecoef�cients, 	�
 , 	�� , and 	
� , allow us to adjustthe im-



portanceof thethreefactors,andthefactor
�

, thenumber
of genesin thelargergenome,normalizesfor genomesize
(

�

canbesetto 1 if bothgenomesaresmall,i.e. consistof
fewer than20genes).

Thedistancemeasure� allows usto speciateusinga com-
patibility threshold ��� . Genomesare comparedto each
speciesone at a time; if a genomes'distanceto a ran-
domly chosenmemberof the speciesis lessthan ��� , it is
placedinto this species.Eachgenomeis placedinto the
�rst specieswhere this condition is satis�ed, so that no
genomeis in more than one species. Measuring � for a
pairof genomesis linearin thenumberof connectionseven
though � preciselyexpressescompatibilitybetweenmulti-
dimensionaltopologies.Thisef�ciency is possiblebecause
of thehistoricalmarkings.

As thereproductionmechanismfor NEAT, we useexplicit
�tnesssharing(Goldberg andRichardson1987),whereor-
ganismsin thesamespeciesmustsharethe�tness of their
niche. Thus, a speciescannotafford to becometoo big
evenif many of its organismsperformwell. Therefore,any
onespeciesis unlikely to take over the entirepopulation,
which is crucialfor speciatedevolutionto work. Theorigi-
nal �tnessesare�rst adjustedby dividing by thenumberof
individualsin thespecies.Speciesthengrow or shrinkde-
pendingon whethertheir averageadjusted�tness is above
or below thepopulationaverage:

���

�

�

�����

 "!


$#

 %�

# &

(2)

where
�

� and
�

�

� aretheold andthenew numberof indi-
vidualsin species' , #

 %� is theadjusted�tness of individual
(

in species' , and # is themeanadjusted�tness in theen-
tire population. The best-performing) % of eachspecies
is randomlymatedto generate

�

�

� offspring,replacingthe
entirepopulationof thespecies.1

Theneteffect of speciatingthepopulationis that topolog-
ical innovation is protected.The �nal goal of the system,
then, is to performthe searchfor a solutionasef�ciently
aspossible.This goal is achievedthroughminimizing the
dimensionalityof thesearchspace.

2.4 MINIMIZING DIMENSION ALITY THROUGH
INCREMENT AL GROWTH FROM MINIMAL
STRUCTURE

TWEANNstypically startwith aninitial populationof ran-
dom topologies(Angelineet al. 1993;DasguptaandMc-
Gregor 1992; Gruauet al. 1996; Zhangand Muhlenbein

1In rarecaseswhenthe�tnessof theentirepopulationdoesnot
improvefor morethan20generations,only thetoptwo speciesare
allowedto reproduce,refocusingthesearchinto themostpromis-
ing spaces.

1993). This way topologicaldiversity is introducedto the
populationfrom the outset. However, it is not clear that
suchdiversityis necessaryor useful. A populationof ran-
domtopologieshasagreatdealof unjusti�ed structurethat
hasnot withstooda single �tness evaluation. Therefore,
thereis no way to know if any of suchstructureis nec-
essary. It is costly thoughbecausethe moreconnections
a network contains,the higher the numberof dimensions
that needto be searchedto optimizethe network. There-
fore,with randomtopologiesthealgorithmmaywastealot
of effort by optimizingunnecessarilycomplex structures.

In contrast, NEAT biasesthe searchtowards minimal-
dimensionalspacesby startingout with a uniform popu-
lation of networks with zerohiddennodes(i.e. all inputs
connectdirectly to outputs). New structureis introduced
incrementallyasstructuralmutationsoccur, andonly those
structuressurvivethatarefoundto beusefulthrough�tness
evaluations.In otherwords,thestructuralelaborationsthat
occurin NEAT arealwaysjusti�ed. Sincethe population
startsminimally, thedimensionalityof thesearchspaceis
minimized,andNEAT is alwayssearchingthroughfewer
dimensionsthanotherTWEANNs and�x ed-topologyNE
systems.Minimizing dimensionalitygivesNEAT a perfor-
manceadvantagecomparedto otherapproaches,aswill be
discussednext.

3 POLE BALANCING EXPERIMENTS

3.1 POLE BALANCING AS A BENCHMARK
TASK

There are many reinforcementlearning taskswhere the
techniquesemployed in NEAT can make a difference.
Many of thesepotentialapplications,like robotnavigation
or gameplaying, are openproblemswhereevaluationis
dif�cult. In this paper, we focuson thepolebalancingdo-
main becauseit hasbeenusedas a reinforcementlearn-
ing benchmarkfor over 30 years(Anderson1989; Barto
et al. 1983; Gomezand Miikkulainen 1999; Gruauet al.
1996; Michie and Chambers1968; Moriarty and Miik-
kulainen1996; Saravananand Fogel 1995; Watkins and
Dayan1992; Whitley et al. 1993; Wieland 1991, 1990),
which makes it easyto compareto other methods. It is
also a good surrogatefor real problems,in part because
pole balancingin fact is a real task,andalsobecausethe
dif�culty canbeadjusted.

Earliercomparisonsweredonewith a singlepole,but this
versionof thetaskhasbecometoo easyfor modernmeth-
ods. Therefore,we demonstratethe advantageof evolv-
ing structurethroughdoublepole balancingexperiments.
Two polesareconnectedto a moving cart by a hingeand
the neuralnetwork must apply force to the cart to keep
the polesbalancedfor as long as possiblewithout going



beyond the boundariesof the track. The systemstateis
de�ned by the cart position( * ) andvelocity ( +* ), the �rst
pole's position( ,


 ) andangularvelocity ( +

,


 ), andthesec-
ondpole's position( ,

� ) andangularvelocity ( +

,

� ). Control
is possiblebecausethepoleshavedifferentlengthsandre-
sponddifferentlyto controlinputs.

Double-polebalancingis suf�ciently challengingevenfor
the bestcurrentmethods. Neuroevolution generallyper-
formsbetterin this taskthanstandardreinforcementlearn-
ing basedon valuefunctionsandpolicy iteration(suchas
Q-learningandVAPS;WatkinsandDayan1992,Meauleau
et al. 1999,GomezandMiikkulainen 2002).Thequestion
studiedin thispaperis thereforewhetherevolving structure
canleadto greaterNE performance.

3.2 COMPARISONS

Two versionsof the doublepole balancingtaskareused:
onewith velocity inputsincludedandanotherwithout ve-
locity information. The�rst taskis Markovian andallows
comparingto many differentsystems.Takingaway veloc-
ity informationmakesthe taskmoredif�cult becausethe
network mustestimatean internalstatein lieu of velocity,
which requiresrecurrentconnections.

On the doublepole balancingwith velocity (DPV) prob-
lem, NEAT is comparedto publishedresults from four
other NE systems. The �rst two representstandard
population-basedapproaches(SaravananandFogel 1995;
Wieland 1991). Saravananand Fogel usedEvolutionary
Programming,whichreliesentirelyonmutationof connec-
tion weights,while Wielandusedboth matingandmuta-
tion. Thesecondtwo systems,SANE (Moriarty andMiik-
kulainen1996)andESP(GomezandMiikkulainen 1999),
evolvepopulationsof neuronsandapopulationof network
blueprintsthat speci�es how to build networks from the
neuronsthat are assembledinto �x ed-topologynetworks
for evaluation.SANEmaintainsasinglepopulationof neu-
rons.ESPimprovesover SANE by maintaininga separate
populationfor eachhiddenneuronpositionin thecomplete
network. To ourknowledge,theresultsof ESParethebest
achievedsofar in this task.

On the double pole balancingwithout velocity problem
(DPNV), NEAT is comparedto theonly two systemsthat
havebeendemonstratedableto solvethetask:CellularEn-
coding(CE; Gruauet al., 1996),andESP. Thesuccessof
CE was �rst attributed to its ability to evolve structures.
However, ESP, a �x ed-topologyNE system,was able to
completethe task � ve times fastersimply by restarting
with a randomnumberof hiddennodeswhenever it got
stuck.Ourexperimentswill attemptto show thatevolution
of structurecanleadto betterperformanceif doneright.

3.3 PARAMETER SETTINGS

We set up our pole balancingexperimentsas described
by Wieland(1991)andGomez(1999). The Runge-Kutta
fourth-ordermethodwasusedto implementthedynamics
of the system,with a stepsize of 0.01s. All statevari-
ableswerescaledto -/.�01� 2

&

01� 243 beforebeingfedto thenet-
work. Networksoutputaforceevery0.02secondsbetween

-5.�0�2

&

0�243

�

. Thepoleswere0.1mand1.0mlong. Theini-
tial positionof thelongpolewas 076 andtheshortpolewas
upright;thetrackwas4.8meterslong.

TheDPV experimentuseda populationof 150NEAT net-
works while the DPNV experimentuseda populationof
1,000. The larger populationre�ects the dif�culty of the
task.ESPevaluated200networkspergenerationfor DPV
and1000for DPNV, while CE hada populationof 16,384
networks. The coef�cients for measuringcompatibility
were 	 


�804�%2 and 	 �

�804�%2 for both experiments. For
DPNV, 	��

�:9;� 2 and � � �:<;�%2 . For DPV, 	��

�:2;� < and
���=�>9?�%2 . The differencein the 	 � coef�cient re�ects the
sizeof thepopulations;a largerpopulationhasmoreroom
for distinguishingspeciesbasedon connectionweights,
whereasthesmallerpopulationreliesmoreon topology.

If themaximum�tness of a speciesdid not improve in 15
generations,thenetworks in thatspecieswerenot allowed
to reproduce. Otherwise,the top <@2@A (i.e. the elite) of
eachspeciesreproducedby randommateselectionwithin
the elite. In addition, the championof eachspecieswith
morethan� ve networks wascopiedinto the next genera-
tion unchangedandeacheliteindividualhada0.1%chance
to matewith anelite individual from anotherspecies.The
offspring inheritedmatchinggenesrandomlyfrom either
parent,anddisjointandexcessgenesfrom thebetterparent,
asdescribedin section2.2. While othercrossoverschemes
arepossible,this methodwasfound effective anddid not
causeexcessivebloatingof thegenomes.

Therewasan80%chancethattheconnectionweightsof an
offspringgenomeweremutated,in whichcaseeachweight
hada90%chanceof beinguniformly perturbedanda10%
chanceof being assigneda new randomvalue. The sys-
tem toleratesfrequentmutationsbecausespeciationpro-
tectsradicallydifferentweightcon�gurationsin their own
species.In thesmallerpopulation,theprobabilityof adding
a new nodewas0.03andtheprobabilityof a new link was
0.05. In the largerpopulation,theprobability of addinga
new link was0.3,becausea largerpopulationhasroomfor
a largernumberof speciesandmoretopologicaldiversity.

We useda modi�ed sigmoidaltransferfunction, B�CD*FEG�





IH$JLK4MON PRQ , at all nodes.Thesteepenedsigmoidallowsmore
�ne tuning at extremeactivations. It is optimized to be
closeto linear during its steepestascentbetweenactiva-
tions .S2;�%T and 2;�%T .



Method Evaluations Generations No. Nets
Ev. Programming 307,200 150 2048
ConventionalNE 80,000 800 100
SANE 12,600 63 200
ESP 3,800 19 200
NEAT 3,578 24 150

Table 1: Double Pole Balancing with Velocity Inf orma-
tion. Evolutionaryprogrammingresultswereobtainedby Sara-
vanan(1995).Conventionalneuroevolution datawasreportedby
Wieland(1991).SANEandESPresultswerereportedby Gomez
(1999). NEAT resultsare averagedover 120 experiments. All
otherresultsareaveragesover50runs.Thestandarddeviationfor
theNEAT evaluationsis 2704evaluations.Althoughstandardde-
viationsfor othermethodswerenotreported,if weassumesimilar
variances,all differencesarestatisticallysigni�cant (UWVYX4Z X�X1[ ),
exceptthatbetweenNEAT andESP.

3.4 DOUBLE POLE BALANCING WITH
VELOCITIES

Thecriteriafor successonthis taskwaskeepingbothpoles
balancedfor 100,000time steps(30 minutesof simulated
time). A polewasconsideredbalancedbetween-36and36
degreesfrom vertical.

Table1 shows that NEAT takes the fewestevaluationsto
completethis task,althoughthedifferencebetweenNEAT
andESPis not statisticallysigni�cant. The�x ed-topology
NE systemsevolvednetworkswith 10hiddennodes,while
NEAT's solutionsalways usedbetween0 and 4 hidden
nodes. Thus, it is clear that NEAT's minimizationof di-
mensionalityis working on this problem.Theresultis im-
portantbecauseit shows that NEAT performsas well as
ESPwhile �nding moreminimal solutions.

3.5 DOUBLE POLE BALANCING WITHOUT
VELOCITIES

Gruauet al. introduceda special�tness function for this
problemto prevent the systemfrom solving the tasksim-
ply by moving thecart backandforth quickly to keepthe
poleswiggling in the air. (Sucha solution doesnot re-
quirecomputingthemissingvelocities.)BecausebothCE
andESPwereevaluatedusingthis special�tness function,
NEAT usesit on this taskaswell. The�tness penalizesos-
cillations.It is thesumof two �tness componentfunctions,
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wheret is the numberof time stepsthe pole remainsbal-
ancedduring the 1000total time steps.The denominator

Method Evaluations Generalization No. Nets
CE 840,000 300 16,384
ESP 169,466 289 1,000
NEAT 33,184 286 1,000

Table2: DoublePoleBalancingwithout Velocity Inf ormation
(DPNV). CE is CellularEncodingof Gruau(1996). ESPis En-
forcedSubpopulationsof Gomez(1999).All resultsareaverages
over 20 simulations.Thestandarddeviation for NEAT is 21,790
evaluations.Assumingsimilar variancesfor CE andESP, all dif-
ferencesin numberof evaluationsare signi�cant (U�VwX1Z X�X1[ ).
Thegeneralizationresultsareoutof 625casesin eachsimulation,
andarenot signi�cantly different.

in (4) representsthesumof offsetsfrom centerrestof the
cartandthelong pole. It is computedby summingtheab-
solutevalueof thestatevariablesrepresentingthecartand
long pole positionsand velocities. Thus, by minimizing
theseoffsets(dampingoscillations),thesystemcanmaxi-
mize�tness. Becauseof this �tness function,swingingthe
poleswildly is penalized,forcing the systemto internally
computethehiddenstatevariables.

UnderGruauet al.'s criteria for a solution, the champion
of eachgenerationis testedongeneralizationto make sure
it is robust. This testtakesa lot moretime thanthe�tness
test,which is why it is appliedonly to the champion. In
additionto balancingbothpolesfor 100,000timesteps,the
winning controllermustbalanceboth polesfrom 625 dif-
ferentinitial states,eachfor 1000timessteps.Thenumber
of successesis calledthegeneralizationperformanceof the
solution. In orderto countasa solution,a network needs
to generalizeto at least200of the625 initial states.Each
startstateis chosenby giving eachstatevalue(i.e. * , +* , ,


 ,
and +

,


 ) eachof thevalues0.05,0.25,0.5,0.75,0.95scaled
to the respective rangeof the input variable( T1xy�{z@|1T ).
At eachgeneration,NEAT performsthegeneralizationtest
onthechampionof thehighest-performingspeciesthatim-
provedsincethelastgeneration.

Table 2 shows that NEAT is the fastestsystemon this
challengingtask. NEAT takes25 timesfewer evaluations
thanGruau's original benchmark,showing that theway in
which structureis evolved hassigni�cant impacton per-
formance.NEAT is also5 timesfasterthanESP, showing
that structurecanindeedperformbetterthanevolution of
�x edtopologies.Therewasnosigni�cant differencein the
ability of any of the3 methodsto generalize.

4 DISCUSSIONAND FUTURE WORK

4.1 EXPLAINING PERFORMANCE

Why is NEAT so much fasterthanESPon the moredif-
�cult taskwhentherewasnot muchdifferencein theeas-
ier task? The reasonis that in the taskwithout velocities,



Figure4: A NEAT Solution to the DPNV Problem. Node2
is theangleof the long poleandnode3 is theangleof theshort
pole. This clever solutionworks by taking the derivative of the
differencein poleangles.Usingtherecurrentconnectionto itself,
the singlehiddennodedetermineswhetherthe polesare falling
away or towardseachother. This solutionallows controlling the
systemwithout computingthevelocitiesof eachpoleseparately.
Without evolving structure,it would bedif�cult to discover such
subtleandcompactsolutions.

ESPneededto restartan averageof 4.06 timesper solu-
tion while NEAT never neededto restart. If restartsare
factoredout, the systemsperformat similar rates. NEAT
evolvesmany differentstructuressimultaneouslyin differ-
ent species,eachrepresentinga spaceof differentdimen-
sionality. Thus, NEAT is always trying many different
ways to solve the problemat once,so it is lesslikely to
getstuck.

Figure4 shows a samplesolutionnetwork thatNEAT de-
velopedfor the problemwithout velocities. The solution
clearly illustratestheadvantageof incrementallyevolving
structure.Thenetwork is acompactandelegantsolutionto
this problem,in sharpcontrastto thefully-connectedlarge
networksevolvedby the�x ed-topologymethods.It shows
that minimal necessarystructuresare indeedfound, even
whenit would bedif�cult to discover themotherwise.

A parallel can be drawn between structure evolution
in NEAT and incrementalevolution in �x ed structures
(Gomezand Miikkulainen 1997; Wieland 1991). NE is
likely to getstuckon a local optimumwhenattemptingto
solve a dif�cult task directly. However, after solving an
easierversionof the task �rst, the populationis likely to
bein a partof �tness spacecloserto a solutionto a harder
task,allowing it to avoid localoptima.Thisway, adif�cult
taskcanbe solved by evolving networks in incrementally
morechallengingtasks. Adding structureto a solution is
analogousto thisprocess.Thenetwork structurebeforethe

Figure5: Visualizing speciation. The �x ed-sizepopulationis
divided into species,shown horizontallywith newer speciesap-
pearingat right. Time, i.e. evolution generations,areshown ver-
tically. The color codingindicates�tness of the species(lighter
colors arebetter). Two speciesbegan to closein on a solution
soonafter the 20th generation.Around the sametime, someof
theoldestspeciesbecameextinct.

additionis optimizedin a lower-dimensionalspace.When
structureis added,thenetwork is placedinto a morecom-
plex spacewhereit is alreadycloseto asolution.Thispro-
cessis differentfrom incrementalevolution in thatadding
structureis automaticin NEAT whereasthe sequenceof
progressively hardertasksmustbedesignedby theexperi-
menter, andcanbea challengingproblemin itself.

4.2 VISUALIZING SPECIATION

To understandhow innovation takesplacein NEAT, it is
importantto understandthedynamicsof speciation.How
many speciesform over thecourseof a run?How oftendo
new speciesarise?How oftendo speciesdie? How large
dothespeciesget?Weanswerthesequestionsby depicting
speciationvisuallyover time.

Figure5 depictsa typical run of thedoublepolebalancing
with velocitiestask. In this run, the tasktook 29 genera-
tions to complete,which is slightly above average.In the
visualization,successivegenerationsareshown from topto
bottom.Speciesaredepictedhorizontallyfor eachgenera-
tion, with thewidth of eachspeciesproportionalto its size
during the correspondinggeneration.Speciesaredivided



from eachotherby white lines,andnew speciesalwaysar-
rive on the right handside. Gray-scaleshadingis usedto
indicatethe �tness of eachspecies.A speciesis colored
darkgrey if it hasindividualsthataremorethanonestan-
darddeviationabovethemean�tness for therun,andlight
grey if they aretwo standarddeviationsabove. Thesetwo
tiersidentify themostpromisingspeciesandthosethatare
very closeto a solution. Thus,it is possibleto follow any
speciesfrom its inceptionto theendof therun.

Figure5 shows that only onespeciesexistedin thepopu-
lation until the 5th generation,that is, all organismswere
suf�ciently compatibleto begroupedinto a singlespecies.
In successivegenerations,theinitial speciesshrankdramat-
ically in orderto makeroomfor thenew species,andeven-
tually becameextinct in the21stgeneration.Extinction is
shown by awhitetrianglebetweenthegenerationit expired
andthe next generation.The initial specieswith minimal
structurewasunableto competewith newer, moreinnova-
tivespecies.Thesecondspeciesto appearin thepopulation
meta similar fatein the19thgeneration.

In the 21st generationa structuralmutationin the fourth
speciesconnectedthe long pole anglesensorto a hidden
nodethat hadpreviously only beenconnectedto the cart
positionsensor. This innovation allowed the networks to
combinetheseobservations,leadingto a signi�cant boost
in �tness (andbrighteningof thespeciesin �gure 5). This
innovativespeciessubsequentlyexpanded,but did not take
over the population. Nearly simultaneously, in the 22nd
generation,ayoungerspeciesalsomadeitsownusefulcon-
nection,this time betweenthe short pole velocity sensor
andlong pole anglesensor, leadingto its own subsequent
expansion.In the28thgeneration,this samespeciesmade
a pivotal connectionbetweenthe cart positionand its al-
readyestablishedmethodfor comparingshortpolevelocity
to longpoleangle.Thisinnovationwasenoughto solvethe
problemwithin onegenerationof additionalweightmuta-
tions. In the �nal generation,the winning specieswas11
generationsold andincluded38neuralnetworksoutof the
populationof 150.

Most of the speciesthat did not comecloseto a solution
survivedtherun eventhoughthey fell signi�cantly behind
aroundthe21stgeneration.This observationis important,
becauseit visually demonstratesthat innovation is indeed
beingprotected.The winning speciesdoesnot take over
theentirepopulation.

4.3 FUTURE WORK

NEAT strengthensthe analogybetweenGAs andnatural
evolution by not only performingthe optimizing function
of evolution, but also a complexifying function, allowing
solutionsto becomeincrementallymore complex at the

sametimeasthey becomemoreoptimal.Thisis potentially
a very powerful extension,andwill be furtherexploredin
futurework.

Onepotentialapplicationof complexi�cation is continual
coevolution. In acompanionpaper(Stanley andMiikkulai-
nen2002)we demonstratehow NEAT canaddnew struc-
turetoanexistingsolution,achievingmorecomplex behav-
ior while maintainingpreviouscapabilities.Thus,anarms
raceof increasinglymoresophisticatedsolutionscantake
place. Strategiesevolved with NEAT not only reacheda
higherlevelof sophisticationthanthoseevolvedwith �x ed-
topologies,but alsocontinuedto improve for signi�cantly
moregenerations.

Anotherdirectionof futurework is to extendNEAT to tasks
with a high numberof inputsandoutputs. For suchnet-
works,theminimal initial structuremayhaveto bede�ned
differently thanfor networkswith few inputsandoutputs.
For example,a fully connectedtwo-layernetwork with 30
inputsand30 outputswould require900connections.On
the otherhand,the samenetwork with a � ve-unit hidden
layerwould requireonly 300connections.Thus,thethree-
layer network is actuallysimpler, implying that the mini-
malstartingtopologyfor suchdomainsshouldincludehid-
dennodes.

Finally, the NEAT methodcanpotentiallybe extendedto
solutionrepresentationsotherthanneuralnetworks. In any
domainwheresolutionscanbe representedwith different
levelsof complexity, thesearchfor solutionscanbeginwith
a minimal representationthat is progressively augmented
as evolution proceeds. For example, the NEAT method
maybe appliedto theevolution of hardware(Miller et al.
200a,b),cellular automata(Mitchell et al. 1996), or ge-
neticprograms(Koza1992). NEAT providesa principled
methodologyfor implementinga complexifying search
from a minimalstartingpoint in any suchstructures.

5 CONCLUSION

Themainconclusionis thatevolving structureandconnec-
tion weightsin thestyleof NEAT leadsto signi�cant per-
formancegainsin reinforcementlearning. NEAT exploits
propertiesof bothstructureandhistory thathave not been
utilized before.Historicalmarkings,protectionof innova-
tion throughspeciation,andincrementalgrowth from min-
imal structureresult in a systemthat is capableof evolv-
ing solutionsof minimal complexity. NEAT is a unique
TWEANN methodin that its genomescangrow in com-
plexity asnecessary, yet no expensive topologicalanalysis
is necessaryeitherto crossover or speciatethepopulation.
It forms a promising foundationon which to build rein-
forcementlearningsystemsfor complex realworld tasks.
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Abstract

We consider the dynamics of variable-length Genetic
Algorithms (GAs) with strings of lengthN � N

m

using a recently developed exact, coarse-grained for-
mulation where the relevant coarse-grained degrees of
freedom are “building block” schemata. We derive an
exact formal solution of the equations showing how
a hierarchical structure in time and degree of coarse-
graining emerges, the effect of recombination being
to successively form more �ne-grained objects from
their more coarse-grained building blocks, where in
this case the building blocks can come from strings of
different lengths. We examine the limit distributions
of the dynamics in the case of a �at �tness landscape,
one-point homologous crossover and no mutation. By
taking advantage of the existence of a set of conserved
quantities in the dynamics we provide exact solutions
for the casesN

m

= 2 ; 3 and use these to investigate
the phenomenon of inter-length-class allele diffusion.
We also study the general case showing what exact re-
sults may be easily derived using our particular coarse-
grained formulation.

1 Introduction

The dynamics engendered by a “canonical” GA and, in-
deed, genetic dynamics in general, is exceedingly com-
plicated. This is true even in the case of what one might
think of as “toy” �tness landscapes such as counting ones
or needle-in-a-haystack. In fact, up until quite recently [1],
to our knowledge, no solutions have been found for the dy-
namics in the presence of recombination for arbitrary string
lengths even in the case of a �at �tness landscape, though
there has been recent noteworthy progress in the special
case of “genepool” recombination [2, 3], where for a given
recombination event allele mixing is over the entire popu-
lation not just between two parents. For binary strings of
�xed length, N , the probability distribution that describes
the dynamics is obtained by solving2

N coupled, non-linear
difference equations. Important results have been derived
about this system of equations by viewing them as a dy-
namical system [4]. However, these coupled equations, in

terms of the underlying string variables, are far removed
from traditional elements of GA theory such as the Schema
theorem and Building Block Hypothesis (BBH) [5, 6].

The underlying microscopic equations, however, can be
rewritten naturally in a basis other than the string basis
[7, 8, 9] yielding evolution equations that offer the bene�t
of a very intuitive interpretation, that illuminate the content
of the Schema theorem and the BBH, that naturally coarse
grain from string equations to schema equations, that yield
an interpolation between the microscopic and the macro-
scopic and that offer new exact results or simpler proofs of
known results. These equations lead to many insights into
the dynamics of GAs offering an exact Schema theorem
that naturally incorporates a form of the BBH, although it
is important to emphasize here that the “building blocks”
that naturally emerge in this formulation are dynamic and
not necessarily short or even �t! However, creation events
due to recombination can be precisely understood in terms
of these BBs. Originally applied to a canonical GA (pro-
portional selection,1 -point crossover and mutation) the ba-
sic elements have been extended to GAs with arbitrary se-
lection schemes and any homologous crossover [1] and,
importantly, have been extended to Genetic Programming
(GP) by Poli and coworkers [10, 11].

There has been increasing interest in variable-length repre-
sentations from different points of view [12, 13, 14] . In
this paper we will use a coarse-grained BB formulation to
investigate the dynamics of variable length GAs up to a
maximum sizeN

m

. We present formal solutions for an
homologous crossover operator and arbitrary �tness land-
scape and mutation showing how the solution naturally ad-
mits an interpretation in terms of a hierarchy of BBs. We
then consider the asymptotic behaviour of the dynamics for
a �at �tness landscape, both at the formal level, discussing
generalizations of Geiringer’s theorem, and at the explicit
level, deriving exact solutions forN

m

= 2 and3 and vari-
ous exact results for arbitraryN

m

.

This work is, of course, susceptible to the standard criti-
cisms - what is the relevance of considering a small num-
ber of loci and �at �tness landscapes? There are several



ways of rebutting such criticism. Firstly, simple models
can lead to intuitive insights that would be less transparent
in a more complex model. An important example of that is
the minimal two-bit deceptive problem [15]. Another ex-
ample, is the work of Spears [16] where limit distributions
for recombination and mutation for �xed length GAs in a
�at �tness landscape were investigated in simple two and
three-bit problems. Interestingly, even in this case he had to
resort to numerical rather than analytical calculations. Ad-
ditionally, understanding the structure of the dynamics in
simple problems can lead to insight about how to construct
results or proofs in more general problems and potentially
lead to insights which may be of bene�t for practitioners.

2 Coarse-Grained Evolution Equations

In this section we introduce the notion of coarse-grained
evolution equations in a BB basis, discussing their inter-
pretation and advantages at a formal level. We will not
derive the coarse-grained exact evolution equations here
but refer the reader to the original literature [7, 9, 10, 11].
Our interest here is variable-length GAs with homologous
crossover. As homologous crossover operators conserve
length classes [18] we will consider the corresponding
evolution equation for strings or schemata within a given
length classN , composed of strings of a �xed length, and
consider arbitrary string lengthN � N

m

, whereN

m

2

[1 ; 1 ] . In this case, if one considers the evolution of length
N strings then one of the parents in the crossover operation
must be a lengthN string as well while the other parent
may be of arbitrary size. The action of the homologous
crossover we will use can be simply understood by align-
ing the two parents at the �rst loci then implementing a
mask de�ned on the common region of the two strings. For
example, with1111 and000000 the common region is as-
sociated with the �rst four loci. A one-point crossover be-
tween the second and third loci would yield110000 and
0011 while a crossover between the �fth and sixth loci (of
the second string) is not allowed. Hence, the total number
of possible masks on the common region is2

4 .

Our primary object of interest will be the proportion of
strings of a given type,C
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class. However, it is important to note that all proportions
will be relative to the total population size summed over all
length classes. In the in�nite population limit, which we
will generally assume throughout,P ( C
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; t ) is the probability for selecting the string
C

N
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. p

c

( m ) is the probability of implementing the maskm

on the common region between the two strings and we sum
over only even masks as this ensures that the tail comes
from the second parent which, without loss of generality
we assume to be of lengthN , and therefore that length is
preserved.�m is the mask conjugate tom . The total num-
ber of possible masks on the common region is2

min ( j;N ) .
C

j

i

( m ) for a given maskm represents the part of the string
C

N

i

inherited from the �rst parent, which we assume to be
of lengthj , andC

N

i

( � m ) is that part inherited from the sec-
ond. BothC

j

i

( m ) andC

N

i

( � m ) are schemata. (2) has a form
similar to that for the �xed length case and can be inter-
preted similarly, i.e. strings are created by BBs, the differ-
ence in this case being that one of the BBs can come from
a parent of other than lengthN . Once again we emphasize
that these BBs are dynamical not static schema averages
and are neither necessarily small or even �t!

The microscopic equation (1) can be coarse-grained to an
arbitrary schema of orderN

2

� N and de�ning length( l �

1) contained within strings of sizeN to �nd

P ( �

N

; t + 1) = P ( �

N

) P

c

( �

N

; t )

+

X

�=

N

i

P ( �=

N

i

! �

N

) P

c

( �=

N

i

; t ) (3)

where the sum is over all schemata,�=

N

i

, that differ by at
least one bit from�

N in one of theN

2

de�ning bits of �

N .
In other words any schema competing with�

N and belong-
ing to the same partition.P ( �

N

) = (1 � p

m

)

N

2 is the
probability that�

N remains unmutated andP ( �=

N

i

! �

N

) =

p

d

H

( �

N

;� =

N

i

)

m

(1 � p

m

)

N

2

� d

H

( �

N

;� =

N

i

) is the probability that
the schema�=

N

i

mutate to the schema�

N with d

H

( �

N

; � =

N

i

)

being the Hamming distance between the schemata�

N and
�=

N

i

. P

c

( �

N

; t ) =

P

C

N

i

2 �

N

P

c

( C

N

i

; t ) is the probability of

�nding a schema�

N of length classN after selection and
crossover and is given by

P

c

( �

N

; t ) = (1 � p

c

A ( � ; t )) P

0

( �

N

; t ) (4)

+

N

m

X

j =1

X

m 2M

r

( �

N

)

( p

c

( m ) + p

c

( � m )) P

0

( �

j

( m ) ; t ) P

0

( �

N

( � m ) ; t )



whereP

0

( �

N

; t ) is the probability for selecting a schema
�

N from strings of length classN . �

N

( m ) for a given mask
m represents the part of the schema�

N inherited from the
�rst parent and�

N

( � m ) is that part inherited from the sec-
ond. Now,�

N

( m ) and�

N

( � m ) are the BBs for the schema
�

N . Thus, we see that BBs at one level are composed of
more primitive (lower order) BBs which in their turn are
composed of lower order blocks etc. thus leading to a hi-
erarchical structure.M

r

is the set of crossover masks that
end in a0 that affect�

N , i.e. the number of “allele mixing”
masks,N

M

r

( � )

is their number.A ( �

N

; t ) determines the
survival probability of the schema and depends on the prop-
erties of the particular schema, such as order and de�ning
length, and, importantly, also depends on the length distri-
bution of the strings and their corresponding �tnesses [18].

As with all coarse grained evolution equations the interpre-
tation of (1) and (2) is very intuitive: (2) tells us how a
particular string is selected and survives crossover, or alter-
natively how it is built up from its BBs. The novel element
here compared to standard GAs is that the BBs come from
strings of potentially different sizes. (1) then tells us how
the string is preserved by mutation or formed by mutation
from some other string of the same partition.

We can put the basic equation (1) into a yet more ele-
gant form, the corresponding equation for schemata fol-
lows trivially, by introducing a2

N -dimensional population
vector for each length class,P

N

( t ) , whose elements are
P ( C

N

i

; t ) , i = 1 ; :::; 2

N . Equation (1) takes the form

P

N

( t + 1) = W

N

P

N

c

( t ) (5)

where theN � N -dimensional mutation matrixW

N

is real,
symmetric and time independent and has elementsW

N

ij

=

p

d

H

( i;j )

m

(1 � p

m

)

N � d

H

( i;j ) . For selection schemes linear in
P ( C

N

i

; t ) , P

N

c

( t ) can be written as

P

N

c

( t ) = F

N

( t ) P

N

( t ) (6)

+

N

m

X

j =1

2

min ( j;N )

� 1

X

m =0 ;ev en

( p

c

( m ) + p

c

( � m )) J

j

( m; t )

where the “cloning” matrix, F

N

( t ) , is diagonal
and describes both selection and survival under
crossover. Explicitly, for proportional selection
F

N

ii

( t ) = ( f ( C

i

) =

�

f ( t ))(1 � p

c

) . Finally, the
components of the “source” vector are given by
J

j

C

N

i

( m; t ) = P

0

( C

j

i

( m ) ; t ) P

0

( C

N

i

( � m ) ; t ) which cor-
responds to the BB sources, from strings of lengthj

and N respectively, for the stringC

N

i

. De�ning the

cloning-mutation matrixW

N

s

( t ) = W

N

F

N

( t ) we have

P

N

( t + 1) = W

N

s

( t ) P

N

( t )

+

N

m

X

j =1

2

min ( j;N )

� 1

X

m =0 ;ev en

( p

c

( m ) + p

c

( � m )) W

N

J

j

( m; t ) (7)

The interpretation of this equation is thatJ

j

C

N

i

( m; t ) is a

source which creates stringsC

N

i

by bringing BBs from
strings of lengthj and N together. The �rst term on the
right hand side tells us how the strings themselves are prop-
agated, or survive, into the next generation, the destructive
effect of crossover renormalizing the �tness of the strings.
Note that the equation is linear but for the presence of string
creation. It is this division into a linear term and a source
that allows for a natural formal solution which leads to fur-
ther insight into the nature of GA dynamics while at the
same time offering the possibility of exact, analytic calcu-
lations in certain circumstances.

Needless to say solutions of these dynamical equations
are hard to come by. They represent, for binary alleles,
2(2

N

m

� 1) coupled non-linear difference equations, or in
the continuous time limit - differential equations. Here, we
consider the formal solution for the case of homologous
crossover and mutation and for any selection scheme lin-
ear in P ( C

N

i

; t ) . The equation (7) is always of the same
form, i.e. a �rst order, linear, inhomogeneous difference
(differential) equation. Its iterated solution is

P

N

( t ) = D ( t; 0) P

N

(0) + (8)
N

m

X

j =1

2

min ( j;N ) � 1

X

m =0 ;ev en

( p

c

( m ) + p

c

( � m ))

t � 1

X

n =0

D ( t; n ) W

N

J

j

( m; n )

whereD ( t; 0) =

Q

t � 1

n =0

W

N

s

( n ) . The interpretation of (8)
follows naturally from that of (7). Considering �rst the
case without mutation, the �rst term on the right hand side
gives us the probability that a string survives fromt = 0

to t without being destroyed by crossover. In other words
D ( t; 0) is the Greens function or propagator forP

N [1].
In the case of a �at �tness landscape without mutation for
instanceD

ij

( t; 0) = (1 � p

c

)

t

�

ij

. In the second term,
each element,J

j

( m; n ) , is associated with the creation of a
string C

N

i

at timen via the juxtaposition of two BBs from
strings of lengthj andN respectively and associated with
a maskm . The component corresponding toC

N

i

of the
matrix D ( t; n ) =

Q

t � 1

i = n

W

s

( i ) is the probability that the
resultant string survives from its creation at timen to t . The
sum over masks, string lengths,j , andn is simply the sum
over all possible creation events in the dynamics. In a more
explicit notation we will denote the propagator for a string
h

1

� � � h

N

by D

h

1

��� h

N

( t; t

0

) .

This formal solution above has a very natural diagramatic
interpretation both at the level of �xed length strings which
can be extended to the present case.

3 Geiringer’s Theorem

For any dynamical system �xed points and their stabil-
ity are of particular interest. Hence, in this section we
will discuss the �xed point distributions for �xed and



variable-length GAs. For a �xed-length GA evolving on
a �at landscape in the absence of mutation the �xed point
P

�

( h

1

:::h

N

) of the dynamics for a stringC
i

= h

1

:::h

N

is

P

�

( h

1

:::h

N

) = lim

t !1

P ( C

i

; t ) =

N

Y

i =1

P ( �

i � 1

h

i

�

N � i

; 0) (9)

where�

i as a string argument means the symbol� repeated
i times. This result is the well known Geiringer’s theorem
[17] for a general crossover operator. Any population that
factorizes in this manner is said to be in linkage equilbrium
and the resulting allele frequencies are known as Robbins
proportions. This result emerges naturally from equation
(8), specialized to the case of a single length class,N ,
which yields for a �at landscape in the absence of muta-
tion

P

N

( t ) = (1 � p

c

)

t

P (0) +

2

N

� 1

X

m =0 ;ev en

( p

c

( m ) + p

c

( � m ))

t � 1

X

n =0

(1 � p

c

)

t � n � 1

J

N

( m; n ) (10)

As lim

t !1

(1 � p

c

)

t

= 0 , henceP

N

( t ) ! 0 as t ! 1

unless the summation over time leads to a cancellation
of this damping factor. Given that the BB constituents
of J

N

( m; n ) are associated with damping factors(1 �

p

c

N

M

r

( C

j

i

( m ))

N

M

)

t and(1 � p

c

N

M

r

( C

N

i

( � m ))

N

M

)

t , whereN

M

is
the total number of non-zero crossover masks, this can only
occur if there is no damping of the consituent BBs and this
only happens if they are1 -schemata as thenN

M

r

= 0 .
Thus, the only term that survives in the hierarchical solu-
tion of (8) is the product of1 -schemata [9].

The type of recombination employed controls how fast the
transient corrections to the limit distribution die out. The
damping is controlled byN

M

r

( � ) , hence the bigger it is
the faster the corresponding transient dies out [1]).

The general approach to equilibrium is characterized by
the exponential decay of linkage disequilibrium functions
�

h

1

��� h

N

= h ( h

1

� h h

1

i ) � � � ( h

N

� h h

N

i ) i where h O i

denotes the population average ofO . Thus, h h

i

i =

P ( �

i � 1

h

i

�

N � i

) . These linkage disequilbrium functions
will be seen to be natural variables in which to understand
the dynamics and approach to equilbrium. In GAs a set of
variables that have also been viewed as natural for consid-
ering the dynamics are “building blocks”.

The generalization of Geiringer’s theorem to the variable
length case has recently been derived [18]

P

�

( h

1

� � � h

N

) = P ( �

N

)

N

Y

i =1

P ( �

i � 1

h

i

# ; 0)

P ( �

i

# ; 0)

; (11)

where

P ( �

i � 1

h

i

# ; 0) =

X

N � 0

P ( �

i � 1

h

i

�

N

; 0)

and
P ( �

i

# ; 0) =

X

N � 0

P ( �

i + N

; 0) :

Here, we see a generalization of the concept of Robbins
proportions, the corresponding proportions in the variable

length case beingP ( �

i � 1

h

i

# ; 0)

P ( �

i

# ; 0)

. We will see in the next
section that there are natural analogs of the linkage dise-
quilibrium functions as well.

4 Explicit Solutions - N

m

= 2 ; 3

In [1] it was shown for �xed length strings in the contin-
uous time limit how an exact explicit solution correspond-
ing to (8) could be found for a �at �tness landscape. Even
in this case however, the result is highly non-trivial due to
the complicated combinatorics of the various BB creation
events. In the case of variable length strings one would ex-
pect the combinatorics to be even more complicated. Be-
fore considering the general case we will therefore look at
some relatively simple cases forN

m

= 2 ; 3 with no mu-
tation and using one-point crossover where we also include
crossover before the �rst bit and immediately after the last
bit of the shortest parent. ForN

m

= 2 we must solve:

P ( h

1

h

2

; t + 1) = (1 � p

c

) P ( h

1

h

2

; t ) +

2

X
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X

i =0

P ( h

1

:::h
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i

h

i +1
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2

; t ) (12)

for strings of length two and

P ( h

1

; t + 1) = (1 � p

c

) P ( h

1

; t ) +

p

c

2

2

X

j =1

1

X

i =0

P ( h

1

:::h

i

�

j � i

; t ) P ( �

i

h

i +1

:::h

1

; t ) (13)

for strings of length one. The corresponding “source” terms
are respectively

J

j

h

1

h

2

( i; t ) = P ( h

1

:::h

i

�

j � i

; t ) P ( �

i

h

i +1

:::h

2

; t ) (14)

J

j

h

1

( i; t ) = P ( h

1

:::h

i

�

j � i

; t ) P ( �

i

h

i +1

:::h

1

; t ) : (15)

The explicit forms of the equations of motion are

P ( h

1

h

2

; t + 1) = (1 � p

c

A ( h

1

h

2

)) P ( h

1

h

2

; t ) +
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P ( h

1

; t ) P ( � h
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; t ) +

p

c

3

P ( h
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� ; t ) P ( � h
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; t ) (16)

whereA ( h

1

h

2

) =

�

1

2

P ( �

1

) +

1

3

P ( �

2

)

�

and

P ( h

1

; t + 1) = (1 � p

c

A ( h

1

)) P ( h

1

; t ) +

p

c

2

P ( �

1

) P ( h

1

� ; t ) (17)

whereA ( h

1

) = P ( �

2

) = 2 . P ( �

1

) andP ( �

2

) are the prob-
abilities to get any string of length one and length two re-
spectively. Note that homologous crossover preserves the
length distribution [18].



With this simple N

m

= 2 problem equations (16) and
(17) have an intuitive interpretation that allows us imme-
diately to investigate the phenomenon of allele diffusion
between different length classes that is an important char-
acteristic of variable-length genetic dynamics. The factor
P

s

( h

1

� � � h

N

) = (1 � p

c

A ( h

1

� � � h

N

)) describes the sur-
vival probability per generation of a particular length-N

string. For length-one stringsP

s

( h

1

) = (1 � p

c

P ( �

2

) = 2) so
it is only in the presence of length-two strings that that there
is a non-zero decay probability. This probability grows as
a function ofP ( �

2

) due to the fact that there are more de-
cay channels open to the string. For length-one strings the
only creation source is via the2 -schemah

1

� which im-
plies a diffusion of alleles of typeh

1

from length-two to
length-one strings. For length-two strings the two corre-
sponding creation terms are associated with getting the �rst
bit of the string from a parent of length one and the second
bit from a 1 -schema associated with strings of length two
and the �rst and second bits from1 -schemata associated
with strings of length two. This second term is exactly the
same as would be found in a �xed-length GA. The novel
element is to be able to construct the desired length-two
string by interaction between a1 -schema associated with
length-two strings and a length-one string. Thus, in order
to solve for the dynamics for length-two strings one must
�rst solve for the dynamics of the size one strings. As from
(17) one can see that their dynamics depends on the dynam-
ics of the1 -schemata it would seem that the dynamics of
the length-one and two strings are inextricably interwined
and must be solved for simultaneously. However, this is
not so. The reason why not is that there exist constants
of the motion that can be exploited. To see this consider
P ( h

1

# ; t ) = P ( h

1

; t ) + P ( h

1

� ; t ) . The 1 -schema proba-
bility P ( h

1

� ; t ) may be determined from (16)

P ( h

1

� ; t + 1) = (1 � p

c

A ( h

1

h

2

)) P ( h

1

� ; t ) +

p

c

2

P ( h

1

; t ) P ( �

2

) +

p
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3

P ( h

1

� ; t ) P ( �
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; t ) (18)

thus adding this to (17) one �nds

P ( h

1

# ; t + 1) = P ( h

1

# ; t ) (19)

and henceP ( h

1

#) is an invariant of the motion. It
basically expresses the conservation of the alleleh

1

as-
sociated with the �rst bit position and in this sense is
analogous to the conservation lawP ( �

k � 1

h

k

�

N � k

; t ) =

P ( �

k � 1

h

k

�

N � k

; 0) for any k associated with �xed length
GAs. In the variable-length case however there is no con-
servation of alleles within a given length class due to the
phenomenon of inter-length-class allele diffusion. With
this conservation law in hand the equations (17) and (16)
can be decoupled. We write (17) as

P ( h
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; t + 1) = D

h

1

P ( h

1

; t ) +

p

c

2

P ( �

1

) P ( h

1

# ; t ) (20)

where we now revert to the propagator notation used in sec-
tion 2, D

h

1

= (1 � p

c

= 2) being the survival probability per

generation. This equation can be simply solved using equa-
tion (8) to yield
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) (21)

whereP
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( h

1

) = P ( �

1

) P ( h

1

#) =P ( � #) is the �xed point
of the dynamics in agreement with the general �xed point
of (11). We may expandP ( h
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#) = P ( h
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; 0) + P ( h
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� ; 0)

to �nd
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) P ( h
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Note that even ifP ( h

1

; t ) = 0 inter-length-class allele dif-
fusion will generate allelesh

1

in length-one strings at some
later time. Thus, unlike the �xed length case a particular
allele in a given length class may be regenerated without
the intervention of mutation. Note that at the �xed point
the contributions toh

1

are determined solely by thet = 0

proportions of this allele from all possible length classes.
Hence, recombination in the variable length case maxi-
mally mixes the alleles among all available length classes.

Having found the exact solution for strings of length one we
may proceed to strings of length two. As can be seen from
equation (16) we need to solve �rst for the dynamics of the
two 1 -schematah

1

� and� h

2

. From (16), one notices that
there are no source terms for� h

2

from length-one strings.
Hence, one �nds that

P ( � h

2

; t + 1) = P ( � h

2

; t ) (23)

and notes that the alleleh

2

is conserved in agreement with
(11). The1 -schemaP ( h

1

� ; t ) = P ( h

1

#) � P ( h

1

; t ) can
be simply solved for to yield
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where the survival probability per generation forh

1

� is
D

h

1

�

= (1 �
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) and the �xed pointP
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( h

1

� ) is given by
P

�

( h

1

� ) = P ( �

2

) P ( h

1

#) =P ( � #) once again in agree-
ment with equation (11). Note that the exponential ap-
proach to this �xed point is the same as forP ( h

1

; t ) .

Finally, using the explicit solutions (21), (23) and (24) we
may deduce the solution of (16).P ( h

1

� ; t ) and P ( h

1

; t )

are a time-dependent source of stringsP ( h

1

h

2

; t ) . Substi-
tuting in (16) the solutions (21), (23) and (24) one �nds
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In the limit t ! 1 D

C

N

i

! 0 ; thus, we see the �xed
point P

�

( h

1

h

2

) = P ( h

1

#) P ( � h

2

; 0) emerging in agree-
ment with equation (11).

The solutions can be put into a more elegant and trans-
parent form by introducing the notion of generalized
linkage disequilibrium functions. We de�ne�

h

1

( t ) =

( P ( h

1

; t ) � P ( �

1

) P ( h

1

#)) and�

h

1

h

2

( t ) = ( P ( h

1

h

2

; t ) �

P ( h

1

#) P ( � h

2

)) . Thus, both these functions characterize
deviations from the corresponding �xed points. Immedi-
ately we see an important distinction from the �xed length
case where a single bit cannot have BBs and linkage occurs
between different bits. Here the “building blocks” ofh

1

are any length-one string and any string of any length that
containsh

1

. Due to the phenomenon of inter-length-class
allele diffusion there is a concept of linkage disequilibrium
for a single bit. This is due to the fact that linkage dise-
quilibrium can be generalized to take into account correla-
tion between corresponding bits in different length classes.
Similarly, for h

1

h

2

the BBs are the length class two schema
� h

2

and any string of any length that containsh

1

. In both
cases we see that one of the BBs is associated with a coarse
graining over all possible length classes and hence is not a
schema associated with a �xed length class. Explicitly,
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We now consider the solution for strings of lengthN � 3 .
For N

m

= 3 we have
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whereA ( h

1

h

2

h

3

) = ( P ( �

1

) = 2 + 2 P ( �

2

) = 3 + P ( �

3

) = 2) .
Once again this is a linear equation inP ( h

1

h

2

h

3

; t ) but
with sources for which we have to solve equations for
length one and two strings and1 -schemata from two strings
and 1 - and 2 -schemata from length-three strings. Analo-
gously to the caseN

m

= 2 length-one strings satisfy an
equation that is coupled to1 -schemata of different length,
in this caseP ( h

1

� ; t ) andP ( h

1

� � ; t ) . However, as in the
length-two case using the conservation lawP ( h

1

# ; t ) =

P ( h
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# ; 0) allows
us to write the equation as
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The solution and associated �xed point are given by (26) as
in the caseN

m

= 2 above. Length-two strings satisfy
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Thus we see a coupling to length-one and length-three
sources. The1 -schemata equations forP ( h

1

� ; t ) and
P ( � h

2

; t ) however can be solved by eliminating length-
three sources using the conservation lawP ( � h
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are as above in theN
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case. To solve (28) we still requireP ( h
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is conserved as the �nal bit of the longest string cannot
mix with anything else and therefore is unaffected by inter-
length-class allele diffusion.P ( � h
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� ; t ) can be solved for
in terms of the solution ofP ( � h
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As we already have the solution forP ( h
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this can simply be solved for.P ( � h
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Once again, given that we have the solutions forP ( � h
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� ; t ) this can be simply solved. Finally,
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This is the only non-trivial equation left to solve as it is
coupled toP ( h

1

h

2

; t ) . Both equations are �rst order linear
inhomogeneous difference equations and can be decoupled



by going to a second order linear inhomogeneous differ-
ence equation which can be readily solved. Due to length
constraints we will present the results elsewhere. With
these solutions in handP ( h

1

h

2

h

3

; t ) may readily be solved
for.

It is worth taking stock of what we have done here. In the
caseN

m

= 2 , in terms of the underlying string variables,
there are six coupled equations to be solved. By going to a
coarse-grained schema, or BB basis, one is able to imple-
ment the conservation laws most naturally, thereby decou-
pling the equations and �nding an exact, explicit solution.
For N

m

= 3 there are fourteen coupled equations. The
only extra complication relative to theN

m

= 2 case how-
ever was the fact that after implementing the conservation
laws two equations remained non-trivially coupled and had
to be decoupled by going to a higher order difference equa-
tion.

5 Explicit Solutions - N

m

arbitrary

In this section we wish to make some observations about
the general case -N

m

arbitrary. An important element,
seen in the last section, is the existence of conservation
laws which may be used to facilitate the solution of the
dynamics. Generally, the conserved quantities are
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of which there areN

m

. Hence, from the dynamical equa-
tions one may eliminateN

m

variables. As in the above
cases ofN

m

= 2 ; 3 one may use this fact to obtain the ex-
act dynamics of certain schemata. These conservation laws
are more naturally expressed in terms of schemata rather
than strings. For instance, the conservation lawP (1# ; t ) =

constan t in terms of string variables isP (1 ; t ) + P (11 ; t ) +

P (10 ; t ) + P (100 ; t ) + P (101 ; t ) + P (110 ; t ) + P (111 ; t ) =

constan t . This is a dif�cult constraint to implement at the
level of the string equations themselves.

As we have emphasized, with the coarse-grained BB ap-
proach advocated here dynamical solutions are built up hi-
erarchically beginning with low order BBs and proceeding
to higher ones. As the lowest order ones are1 -schemata
it is of interest to investigate the general equation for a1 -
schema from length classN . One �nds that
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Note that 1 -schemata from other than length-classN

strings act as sources forh

i

, however, there are no more
“primitive”, i.e. lower order, sources. Hence, in the sense
of section 2 this equation is really homogeneous with no
BB sources and hence can be written as

P ( t + 1) = AP ( t ) (37)

where the elements of the matrixA can be read off from
(36) and the values of the coef�cientsA

1

, A

2

andA

3

. The
diagonalization of this matrix yields the decay rates of the
various1 -schemata. With the1 -schemata solution in hand
we may start to reconstruct the2 -schemata respecting the
hierarchical structure outlined in section 2. We will not
pursue this further in this paper restricting attention to some
more speci�c results.

From (35) one immediately sees that the quantity
P ( �
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; t ) is conserved. Additionally, for the
length-one strings all “sources”P ( h
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) for P ( h
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appear with the same coef�cient,p
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= 2 . Hence,P ( h
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satis�es (26) the only difference now being thatP ( h
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Using the conservation of the last bit of the longest string
one may also determine the evolution of the last bit of
the next longest string and the last bit of the string of
length N = N

m

� 1 by using the conservation law
P ( �
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m

� 2

h

N
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� 1

#) = constan t . For the next to last bit
of the longest string the solution is
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where D
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#) which is the
expected �xed point from (11).

6 Conclusions

We have investigated the dynamics of variable-length GAs
using a coarse-grained BB representation of the dynami-
cal equations. We showed that the formal solution of the
equations could be interpreted in an analogous manner to
that of the �xed length case, i.e. the hierarchical construc-
tion of more �ne-grained schemata from their more coarse-
grained BBs. The novel element here is that these BBs
could come from strings of different lengths. We discussed
brie�y the �xed point distribution of the equations for a �at
�tness landscape using a one-point homologous crossover
operator and no mutation showing how a generalization of



Robbins proportions emerged that involved a generalized
notion of a BB. We then turned to a more explicit construc-
tion of the entire dynamics and quanti�ed the approach to
the �xed point. ForN

m

= 2 ; 3 we were able to �nd ex-
plicit solutions utilizing the existence of conservation laws
for certain quantities. This in itself shows the utility of the
coarse grained BB representation, theN

m

= 3 problem at
the string level corresponding to 14 simultaneous �rst order
difference equations which need to be solved.

From the resultant solutions we were able to investigate the
phenomenon of inter-length-class allele diffusion. We saw
that the diffusion rates, or mixing times, for different al-
leles or combination of alleles depended strongly on the
length distribution of strings, which in the case of a �at �t-
ness landscape is time independent. For instance, the dif-
fusion rate for the alleleh

1

in length-class-three strings is
slower than that of the same allele in length-class-two or
one strings ifP ( �

1

) + (4 = 3) P ( �

2

) > 1 which is the case
if the proportion of length-three strings is small. We also
can see that the closer the string bit to the beginning of
the string then typically the faster it mixes, simply because
there are more things with which it can mix. In this sense in
the variable length case the degree of exploration versus ex-
politation carried out by recombination is inhomogeneous
depending on the bit’s position in the string and the distri-
bution of lengths, diversity being encouraged more at the
beginning of strings than at the end. Another interesting
aspect of inter-length-class allele diffusion is the fact that
for a given length class a lost allele from a particular bit
position can be recovered if the allele exists in the corre-
sponding bit of another length class string.
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Abstract

Self-adaptation has been widely used in
Evolution Strategies (ES) and Evolutionary
Programming (EP), where it has proved useful in
varying the mutation step size for continuous
objective variables. To date, relatively little
work has been performed on applying self-
adaptation to the canonical Genetic Algorithm
(GA). This research applies a simple discrete
model of self-adaptation to test functions with
differing characteristics. We show that the
discrete model is able to provide more reliable
problem solving than the classical lognormal
self-adaptation scheme on the test problems
examined. We find that although self-adaptation
parameter choices representing conventional
thinking perform best for unimodal functions,
very different parameter settings are required for
optimum performance on multimodal functions.
These results are discussed in terms of the
strategy parameter variety needed for self-
adaptation to work effectively and we outline a
self-adaptation mechanism designed to capitalize
on these findings.

1 INTRODUCTION

In a self-adaptive Evolutionary Algorithm (EA), the
representation for individuals in the population is
extended to include strategy parameter information. The
EA operates as normal, evolving the population according
to the fitness of its members, with the additional step of
stochastically varying the strategy parameters of
individuals selected for reproduction. Self-adaptation of
mutation rates is possibly the most common application of
self-adaptation, largely stemming from its widespread use
in ES (Schwefel, 1981) and EP (Fogel, Fogel & Atmar,

1991). For the purposes of self-adaptation, the main
difference between GAs and ES/EP is that GAs usually
employ a binary representation. With such a
representation, a per-bit mutation rate is used to control
the rate of bit-flipping mutations applied to an individual.
For a non-adaptive GA, this parameter is fixed across the
population and throughout the course of a run. However
it is natural extension to encode the mutation rate into
each individual, to allow it to vary across the population
and in time. Bäck (1992) used these ideas and performed
seminal work showing that self-adaptation in GAs is
possible. Following Bäck's work, several authors have
experimented with self-adaptation of mutation rates in
GAs (see for example, Bäck & Schütz, 1996; Smith &
Fogarty, 1996; Hinterding, 1997). Design decisions that
must be addressed with this approach are the choice of
representation for the strategy parameter and, related to
this, the means by which the strategy parameter is itself
varied to allow adaptation to occur. Bäck's early work
remained close to the traditional interpretation of a GA
and used a binary encoding of the strategy parameters
with corresponding bitwise mutation. Current thinking is
that a real-valued representation is preferable (Glickman
& Sycara, 1998). This then allows the use of lognormal
adaptation of strategy parameters as shown in (1) where
the � parameter controls the step size of� i, the
individual's mutation rate.

))1,0(exp(' Nii ��� ��� (1)

Recent empirical (Liang et al. 1998; Glickman & Sycara
2000) and theoretical (Rudolph 1999) work has shown
that self-adaptation schemes which adapt too quickly can
lead to premature convergence to low step sizes, with the
search getting 'stuck' at local optimum. This has lead to
an interest in alternative variation schemes.

Smith (2001) introduces a dynamical systems model of a
GA with self-adaptation of mutation rates. The model is
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Abstract
Within a genetic algorithm, all genes may not be
created equal.  This concept is the central idea
explored in this paper.  A second and equally
important idea is that this inequality in gene
importance or salience can be detected and
identified within a GA. To support these ideas, a
technique for directly measuring genetic
diversity within a GA population and thereby
indirectly measuring gene-specific importance is
provided.  Diversity graphs are offered as a
powerful technique for visualizing measurement
results. Our theories, metrics and tools are tested
on GAs for two problem classes and four
different selection methods.

1 INTRODUCTION

Within a genetic algorithm (GA), all genes may not be
created equal.  Anecdotal evidence of this can be obtained
from any student of genetic algorithms who has attempted
to solve a symbolic regression problem.  For example,
consider a GA which finds the coefficients for the
following equation:

y = ax6 + bx5 + cx4 + dx3 + ex2 + fx + g +  h cos(x)(1)

Intuitively, we expect genes representing the variables a
through h to have varying impacts on fitness evaluation
due to differences in the exponential order associated with
each term. We would further expect the a-gene and b-
gene to be the most important in determining fitness of an
individual.  The values for genes c through h would be
largely irrelevant in terms of raw fitness until these first
two genes converged to some local optimum.

The idea of a gene’s importance or temporal-salience has
already been described in (Thierens, Goldberg & Pereira,
1998).  A side effect of this property is the phenomenon
of “domino” convergence introduced in (Rudnick, 1992).
A GA with non-uniformly salient genes converges
serially over time starting with the more important genes

and moving to less salient genes similar to the way a row
dominos falls. Domino convergence and variations in
gene importance have been shown to occur in genetic
algorithms attempting to solve exponentially scaled
fitness problems.

In subsequent works, (Goldberg, 1999) and (Srivastava &
Goldberg 2001) explored how gene salience and domino
convergence can be used to develop GAs with a serial
mode of processing.  A serial GA consists of small
populations and short epochal runs.  During each epoch
different salient genes converge to their respective
optimal values.  Between each epoch, a continuation
operator is activated to rejuvenate the diversity of less
salient genes while leaving more important (and
previously converged) genes alone.

Without continuation operators, GAs for exponentially
scaled problems tend to converge around highly salient
genes. The GA may then drift and stall at a less than
optimal solution due to lack of diversity in less salient
genes.

The use of epochs and continuation operators was found
unproductive for problems with uniformly salient genes
(e.g., OneMax).  For these types of problems, the
traditional GA’s implicit parallelism, larger populations,
and single long epoch were found to still be the most
productive method of processing.

We believe that the idea of gene-specific temporal
salience provides a valuable insight into how a GA
functions.  In the case of exponentially scaled problems,
the concept opens up new opportunities for developing
continuation operators to fine tune GA performance.  But
in order to use this approach, we must first find an
effective method to determine if a problem includes genes
with non-uniform salience and if so, a method for
identifying those genes that are more important than
others.  This is particularly important in problems with
very large numbers of genes where a priori knowledge of
gene salience is less likely.  In this work, we present a
simple method for detecting domino convergence and
identifying genes with high levels of importance. We
show how tracking gene diversity within a GA population



can provide the information we need to obtain a
measurement of gene salience.

Our measurement technique focuses on two metrics.  The
first is the variation in unique alleles associated with each
gene in a population.  Unique allele counts plotted over
time (generations) constitutes a convergence profile for a
given problem and selection method.  This profile clearly
indicates the presence or absence of domino convergence.
Our second metric consists of a ratio of unique sub-
genotypes to alleles and assigns a numeric salience value
to each gene.   Graphically presented, this ratio gives us a
salience profile identifying genes of higher importance.

In this work we describe the general nature of the
experiments we performed to test the use of diversity as a
salience indicator. Experiments include GAs for different
problem classes and various selection methods.   This
range of problem classes and selection methods allow us
to validate our method against previous theoretical work
performed by other researchers.

2 MEASURING GENE SALIENCE
THROUGH GENETIC DIVERSITY

The concept of gene salience or importance is all around
us.  For example, normal human beings are born with two
eyes.  Yet there exist numerous variations in eye color
within the population.  On a simplistic level, we can
assume that the genes which affect the number of eyes in
one’s head are more important than those affecting eye
color.  We can also assume that a lack of diversity in the
number_of_eyes genes relative to eye_color genes
indicates that the first is more salient than the others.

The same concept applies to genetic algorithms with non-
uniform gene importance. Over time, diversity of salient
genes diminishes faster than that of non-salient genes.
Less salient genes are not subject to the same selection
pressures due to their low fitness impact.  The diversity of
alleles for each gene in a population relative to other
genes provides a good indication of gene salience.  The
less diverse, the more important.

Using this idea we began investigating various ways to
measure genetic diversity (or lack there of) within a GA.
Initial experiments looked at uniqueness of entire
chromosomes within a population.  It was assumed that
this method would provide a good showing of genetic
diversity and illustrate how a population converges
toward a small number of similar individuals over the
course of multiple generations.  This method was tested
but found to be unsatisfactory.  Looking at entire
chromosomes did not single out specific genes nor
indicate their specific importance.  Nor did this method
clearly show the presence or absence of domino
convergence.  We also investigated convergence to fitness
values as a way of tracking convergence and diversity.
This also proved to be less than satisfactory in identifying
salient genes.

Throughout these initial experiments, we notice that there
appeared to be a strong correlation between gene-salience
and diversity of alleles within a single gene and also
within partial chromosomes ("sub-genotypes").  The final
version of our measurement methods used this idea and
are described below.

2.1 UNIQUE ALLELES

The starting point for our method of determining genetic
diversity within a GA is to count the number of unique
alleles for each gene within a population at a given time.
An allele can be thought of as a single representation
instance of a gene. For example, using bit strings to
represent a 9-bit gene allows for 29 different alleles.

For notational purposes a single gene location within a
chromosome will be identified as Gi where 1 > i > n and n
equals the total number of genes which make up a single
chromosome.  Two additional subscripts t and j are added
to further specify a gene.  t indicates a specific time or
generation.  j identifies an individual chromosome where
1 > j > p and p equals the population size. For example,
G3, 100, 12 denotes the third gene located on individual 12’s
chromosome at generation 100.

U(Gi,t) will be used to denote the count of unique alleles
for Gi within the total population at the start of generation
t.:

U(Gi,t) = | { Gi,t, j | Gi,t, j J Gi,t,k where 1 > j,k > p} |

To illustrate, assume that at the start of generation 54
during a GA's run, the third gene on all chromosomes
contained bit representations (genotypes) for one of the
following numbers: 12, -47, 178 or 3 (phenotypes).  The
population has evolved to contain chromosomes with only
four unique alleles in the third position. In this example,
U(G3,54) = 4.  Note that we are not concerned with how
many genes contain a given allele, only the number of
unique alleles within the population. U(Gi,t) provides a
measure of the diversity of Gi within the population at the
start of generation t.

Interesting results were obtained by following the
behavior of a population using this measure. A low U(Gi,t)
for a given gene relative to other genes in a chromosome
indicates that the population is converging towards a few
select alleles thus towards some local optimum.
Unfortunately, the difference between U(Gi,t) for all genes
within a GA was sometimes very small.  This limited our
ability to draw any firm conclusions regarding a specific
gene's level of importance.  Nor did this single statistic
provide a total picture of what was occurring within the
GA as a whole. Additional information was required.

2.2 UNIQUE SUB-GENOTYPES

Counting unique alleles gave us a way to track
convergence of a given gene.  But what about the rest of
the genetic material within a chromosome?

To answer this question, we have developed the idea of a
partial chromosome or "sub-genotype".  A sub-genotype



is the entire chromosome excluding a single gene. For
notational purposes, Si,t will represent a chromosome’s
sub-genotype with respect to Gi at the start of generation t.
The sub-genotype for a specific gene consists of the
concatenation of all genetic material in the chromosome
excluding the gene itself.

The example below illustrates how allele representations
and sub-genotypes are derived from a hypothetical five-
gene chromosome associated with individual 9 at
generation 60:

Original Chromosome #9 at Start of Generation 60:

Gene:    #1    #2    #3    #4    #5
Value: 1010 1111 0011 0000 1101

Derived Gene Values and Sub-Genotypes:

G1,60,9 = 1010,  S1,60,9 = 1111 0011 0000 1101
G2,60,9 = 1111, S2,60,9 = 1010 0011 0000 1101
G3,60,9 = 0011, S3,60,9 = 1010 1111 0000 1101
G4,60,9 = 0000, S4,60,9 = 1010 1111 0011 1101
G5,60,9 = 1101, S5,60,9 = 1010 1111 0011 0000

U(Si,t) will be used to denote the count of unique sub-
genotypes within the total population at generation t:

U(Si,t) = | { Si,t, j | Si,t, j J Si,t,k where 1 > j,k > p} |

2.3 RATIO OF SUB-GENOTYPES TO ALLELES

As a final measure of diversity, we also looked at the ratio
of sub-genotype counts to the count of unique alleles.
This ratio (R) is equal to the sub-genotype count divided
by the unique allele count and can be shown as follows:

Ri,t = U(Si,t) / U(Gi,t)

Examples illustrating the importance of this relationship
will be given later.  For now, it is sufficient to say that
this ratio "amplifies" the measurement of gene-specific
salience and provides an better indicator of this important
characteristic.

3 EXPERIMENT DESIGN

Many experiments were performed to capture the metrics
described in Section 2.  The purpose of these experiments
was to test our ability to detect non-uniform salience and
identify the salient order of genes within a chromosome.
Experiments involved calculating and then graphing
U(Gi,t), U(Si,t)  and Ri,t for a variety of problem classes
and selection methods.  An analysis of the data obtained
from the experiments supports our proposal that genetic
diversity can reveal gene-specific salience in a GA.

Two different problem classes were tested and included in
this paper: Symbolic Regression and OneMax.  It was our
expectation that gene-specific salience would be found in

the symbolic regression problem.  Based on the work
researchers previously cited, we should find no important
genes in the OneMax problem.

Experiments were conducted as follows:

1. A GA was executed for 50 runs of 100 generations
each.  All runs were initialized with a different
random number seed.

2. All unique alleles and associated sub-genotypes were
counted for each gene during each generation.

3. The allele and sub-genotype counts from step 2 were
averaged across all 50 runs.

4. A ratio of the values from step 3 was calculated for
each generation.  Ratios were summed and divided
by 100 for an average ratio across all generations.

5. The results from 3 and 4 were plotted for each
problem as a set of six diversity graphs.

3.1 GA PARAMETERS AND SETTINGS

Our experiments used one of four selection methods:
Fitness Proportional, Tournament, Rank Proportional and
Random.  Features and parameters incorporated into our
GA for all experiments included the following:
Population Size = 200 Individuals, Representation
Method = Bit String, Number of Genes per Chromosome
= 8, Number of Bits per Gene = 9, Crossover Type = 2-
Point, and Crossover Rate = 100%.

With the exception of one experiment, mutation was not
employed in any of our experiments. Our diversity
metrics are based on counts of unique alleles and sub-
genotypes.  Mutation has the effect of increasing overall
diversity in a population and tended to obscure though not
hide our results.  Leaving out mutation allows us to
remove its effects from our measurements and focus on
the evolution of individuals using only genetic material
available from the initial population. One can think of the
results of our mutation-less experiments as providing a
baseline measure of gene salience and selection pressure
within a GA.

3.2 COUNTING UNIQUE ALLELES AND SUB-
GENOTYPES

The method proposed in this paper for identifying gene-
specific salience requires that the number of unique
alleles and sub-genotypes be determined for each gene in
each generation.  There are many different methods that
can be used for such a counting function, some more
efficient than others.  The method employed for our
experiments was simple though not necessarily the most
efficient computationally.

All genes consisted of 9-bit binary strings representing
integer values from –255 to +255. During fitness
evaluation, these genotypic strings were converted to their
phenotypic decimal equivalents. Genes were left in their
original string format for counting purposes.



At the beginning of each experiment an m x n array
(count) was constructed for storing unique allele counts
where m = 100 was the number of generations in a run
and n = 9 was the number of genes in each chromosome.
All array elements were initialized to 0.

A hash table was used to keep track of unique alleles. The
table was queried for the existence of each allele during
the counting process.  A gene value not found in the hash
table was considered to be a new unique allele – the first
of its kind.  The corresponding element in count was
incremented by 1 and the gene was added into the
hashtable. If an allele was found to already exist in the
hash table, no action was taken.  The uniqueness of the
allele had already been noted and added to the count for
that gene during that generation. The following pseudo-
code further illustrates this process:

  for (i=1; i<=number_of_genes; i++){
    clear hash table;
    for (j=1; j<=population_size; j++){

       extract gene G i  from chromosome;
       if (G i  not in hashtable){
          add 1 to count[generation][i];

          add G i  to hashtable;
       }
       else no action necessary;

    }
 }

A similar process was utilized to count unique sub-
genotypes associated with each gene.   It should be noted
that the counting method described here is based
primarily on the number of genes in a chromosome and is
therefore usable with both small scale GAs and  GAs with
larger gene sizes (number of bits) or populations.

3.3 VISUALIZATION OF DIVERSITY

Results were written from the count array to a comma-
delimited text file at the end of each experiment.  The file
contained the count of unique gene values and sub-
genotypes for all 100 generations.  Using data from this
file, two graphs were plotted for each term described
previously (U(Gi,t), U(Si,t)  and Ri,t.)   One graph shows
the change in the term over time (by generation) giving us
an online view. The second graph shows an offline
average value for each term for the entire GA run.  Thus
for each experiment, a suite of six graphs was prepared
which, when viewed as a set, provided an excellent
picture of the changing genetic diversity within a GA.
Examples of these diversity graphs are provided
throughout the remainder of this work along with our
analysis.

4 FINDING TEMPORAL SALIENCE

Given the introduction to this work, it is fitting that
symbolic regression be the first problem used to test our
diversity measurement technique. Predetermined x and y
values were provided as input to the GA's fitness function.
The GA's task was to find optimal values for coefficients
a through h. Positionally, these coefficients corresponded
to genes 1 through 8 on a chromosome.

Intuition and knowledge of the problem lets us know that
the first gene (G1) will be the most salient and have the
greatest impact on fitness evaluations due to its
association with the term ax6. The population should
converge around this one gene before all others. G2
representing the coefficient for bx5 would be next in
importance followed by G3, G4,G5 and so on.

Experiments were run per the design in Section 3 using
tournament selection.  Unique alleles and sub-genotypes
for all runs were counted, averaged and plotted on a set of
diversity graphs (see Figure 1).

Figure 1(a) shows the convergence profile for this
problem/selection method combination. Allele diversity
for the gene associated with the a coefficient - U(G1)  -
drops fastest followed by U(G2) and the other genes. By
generation 41, only one allele for G1 exists in the
population. The gene’s salience caused a single value to
quickly take over this gene in the entire population.  This
graph also shows a similar but delayed behavior for G2

though G8 over the course of 100 generations.  The result
is a staggered look to the graph clearly indicating the
domino convergence occurring in this experiment.

Figure 1(b) shows the diversity of sub-genotypes for this
problem.  Diversity for all sub-genotypes drops decreases
over time as the GA converges to a single result.

Figures 1(d) and 1(e) provide an offline view of allele and
sub-genotype counts.  Both of these graphs contain the
average number of unique alleles or sub-genotypes over
100 generations.  For our test problem, G1 and G2 have
the lowest average unique number of alleles. On average,
only 7.7 different values for G1 existed during each
generation due to this gene’s salience. Although hard to
tell from the graph, G1 has the greatest sub-genotype
diversity.  On average, any given individual in the
population will include one of 105 G2-through-G8 gene
combinations regardless of G1’s value. It was found that
generally the lower the unique allele count, the higher the
sub-genotype count within the GA.

From these first four graphs, we can see that G1 and G2 or
coefficients a and b respectively, are the more important
genes and exert a higher degree of selection pressure than
the other genes in this GA.  But these graphs alone may
not be enough to clearly indicate gene salience.  A more
reliable indicator has proven to be the ratio of sub-
genotypes to gene values (U(Si,t) / U(Gi,t)).  These ratios
are plotted for our same test problem in Figures 1(c) and
1(f).
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(a)  Unique Allele Counts U(Gi) over Time
(Convergence Profile)
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(b)  Unique Sub-Genotype Counts U(Si) over Time
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(c)  Ratio (Ri) of Sub-Genotypes to Alleles over Time
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(d)  Avg. Unique Alleles per Gene
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(e)  Avg. Unique Sub-Genotypes per Gene
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(f) Avg Ratio (Ri) of Sub-Genotypes to Alleles
(Salience Profile)

Figure 1:  Diversity Graphs for 8-Term Symbolic Regression Problem Using Tournament Selection

As mentioned earlier, this ratio R(Gi,t) tends to amplify
our ability to detect gene-specific importance and make it
easier to pick out the genes with greatest salience. Figure
1(f) is most important to us and we have called this type
of plot a “salience profile.”   From Figure 1(f) it is very
clear which genes in our GA are more salient than others.

A variation on the preceding symbolic regression problem
was developed to check the previous results.  In this
second problem, the positional order of terms was mixed.
The resulting equation is:

y = ax + bx4 + c cos(x) + dx5 + e + fx2 + gx6 + hx3



Assuming our proposal is correct, G7, G4, and  G2 should
exhibit behavior that typifies genes of higher importance.
Figure 2 shows the salience profile for this reordered
problem.  As expected, G7, G4 and G2 had the highest
average ratio of unique sub-genotypes to alleles R(Gi,t) of
the eight genes.
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Figure 2:  Saleince Profile for Symbolic Regression
Problem with Reordered Terms

This second experiment confirms that our measurement
technique can identify salient genes regardless of their
position within a chromosome.

As mentioned in Section 3, most of our experiments were
run without mutation.  For sake of completeness, we
incorporated bit mutation at a rate of 0.01 in a third
experiment using equation (1). Figure 3 shows the
salience profile for this GA. A comparison of Figure 3
with Figure 1(f) shows that mutation reduced but did not
eliminate the indication of gene-specific salience
calculated from R(Gi).  Using a magnified y-axis, the stair
step pattern indicating the presence of domino
convergence is still apparent.
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Figure 3:  Salience Profile for Symbolic Regression
Probliem with Mutation = .01

5 OTHER SELECTION METHODS

Graphs in Figures 1, 2 and 3 were associated with GAs
using tournament selection. How well does our
measurement technique work with other selection
methods?  To answer this  question we present
convergence and diversity profiles for GAs solving
equation (1) using random and fitness proportional
selection (Figures 4 and 5 respectively).  Space does not
allow a detailed description of the results.  However, a
few points should be noted.

The plots for random selection show that lack of directed
selection pressure leads only to drift in gene diversity.

Gene-specific salience also appears in GAs run with
fitness proportional selection.  The exponential effect of
the selection method causes the GA to converge very
rapidly around highly  salient genes.  As a result we do
not see the stair stepped or staggered type of convergence
profile found in Figure 1.  The salience profile is stronger
for genes of higher importance.

The important concept to be seen in these graphs is the
impact of selection method.  Rank or tournament
selection is best for detecting domino convergence and
identifying the gene order in terms of salience.  However,
fitness proportional selection provides a very clear
indication of the importance of the most salient genes in a
chromosome.  As a result, fitness proportional selection
may be most useful when results for other selection
methods are less clear.

Experiments testing our method on rank fitness were also
performed.  We do not include the diversity and salience
profiles for these experiments as they were very similar to
those of tournament selection.  When combined with a
OneMax problem, profiles for binary tournament and rank
selection were nearly identical as was expected based on
showings in (Blickle & Thiele, 1995).

6 OTHER PROBLEM CLASSES

It appears that we have found a simple method for
identifying domino convergence and gene-specific
salience in a GA.  But what about detecting a lack of gene
importance?  Random selection results in the elimination
of gene salience regardless of the problem type.  Can we
also show that a problem class in and of itself lacks
salient genes.  To further test our technique, we ran a GA
using a OneMax problem.  The fitness function merely
counts the number of ones in the entire chromosome. This
problem has been shown to have uniform salience across
all genes.  Figure 6(a) and (b) contain convergence and
salience profiles for this problem using tournament
selection. We can see from these plots that no gene is
more salient than another.
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Figure 4(a):  Convergence Profile for Symbolic
Regression Problem with Random Selection
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Figure 5(a):  Convergence Profile for Symbolic
Regression with Fitness Proportional Selection
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Figure 6(a):  Convergence Profile for One-Max Problem
with Tournament Selection
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Figure 4(b):  Salience Profile for Symbolic Regression
Problem with Random Selection
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Figure 5(b):  Salience Profile for Symbolic Regression
with Fitness Proportional Selection

0

2

4

6

8

10

12

14

16

18

20

G1 (a) G2 (b) G3 (c) G4 (d) G5 (e) G6 (f) G7 (g) G8 (h)

Gene ID

A
ve

ra
ge

 o
f U

ni
qu

e 
S

ub
-G

en
ot

yp
es

 o
ve

r 
U

ni
qu

e 
A

lle
le

s

Figure 6(b):  Salience Profile for OneMax Problem with
Tournament Selection

7 CONCLUSIONS

In this work we have presented a simple but useful
method for detecting domino convergence and gene-
specific salience within a given problem.  It is not
uncommon for certain regions of GA individuals to
consistently converge early.  Those regions are typically
expected to be regions that have high impact on the
fitness function.  The ability to detect high impact regions

would allow practitioners to potentially develop operators
that may improve GA performance on a particular
problem.  Our detection method is based on a count of the
unique gene alleles and unique sub-genotypes that occur
within a short run.  While both of these counts provide
some indication of gene salience, it is the ratio of the sub-
genotype count to the unique allele count that appears to
give the clearest picture as to which genes have the
strongest impact on the GA search process.



We tested our method for detecting salient genes on
problems in which genes are and are not expected to have
varying impact.  From results we are clearly able to detect
salient genes when they exist, regardless of their position
within a chromosome.

A comparison of salience profiles for varying selection
methods indicate that choice of selection method can
enhance or diminish gene-specific salience depending on
the desires of the GA researcher/developer. Our
experimental evidence shows that fitness proportional
selection magnifies a gene's selection pressure.
Tournament or rank fitness selection methods reduce that
pressure and allow the temporal salient nature of more
genes to shine through.

Choice of selection method is an example of how gene-
salience can be manipulated on a chromosomal- or
problem-wide scale.  But can we manipulate selection
pressure at the gene level?  The use of continuation
operators is a step in that direction.  We believe that the
ability to identify salient genes within a GA will help
researchers in those development efforts.

While the information presented here is of value we do
recognize that our methods have their limitations.
Specifically, our methods were designed for GAs with
fixed gene positions and would not be directly applicable
to locus-variable situations such as messy GAs or GAs
with variable length chromosomes.  We believe the
development of methods for detecting gene salience in
these other GA categories will be a productive area for
future research.

In addition, our research focused on gross numerical
counts of unique allele values and sub-genotypes  This
approach can suffer from scalability issues which may be
addressed by taking measurements on restricted GA runs
(e.g., short duration or small populations.)  These
restricted runs can reduce processing time while still
providing information about the problem. Such gross
numerical counts also make no attempt to evaluate genes
or sub-genotypes qualitatively.  Further research in these
areas are expected to provide a greater understanding of
genetic diversity within a GA.

Despite these limitations, we feel the knowledge gained
from our research has immediate value.  We can now
detect domino convergence within a GA and thus non-
uniform gene salience.  In addition, we can identify
important genes within these GAs and begin to use this
knowledge towards development of better control
mechanisms.

In terms of immediate applications, our method may be
helpful in a number of ways.  The programming effort
required to extract our measurements (V(Gi,t), S(Gi,t) and
R(Gi,t)) is relatively small.  A few lines of code added to
any fixed position GA would allow a quick view of any
gene-specific temporal salience that the GA might
encounter.

We feel our diversity graphs will be useful in
development and evaluation of new genetic operators and

selection methods.  We have already mentioned the
strikingly similar results found for rank and tournament
selection which concur with theoretical studies.  Diversity
graphs would show where new selection methods are
similar to existing methods and where they differ.
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Abstract

Interaction among decision variables is inherent
to a number of real-life engineering design
optimisation problems.  There are two types of
interaction that can exist among decision
variables: inseparable function interaction and
variable dependence. The aim of this paper is to
propose an Evolutionary Computing (EC)
technique for handling variable dependence in
multi-objective optimisation problems. In spite
of its immense potential for real-life problems,
lack of systematic research has plagued this field
for a long time. The paper attempts to fill this
gap by devising a definition of variable
dependence. It then uses this analysis as a
background for identifying the challenges that
variable dependence poses for optimisation
algorithms. The paper further presents a brief
review of techniques for handling variable
dependence in optimisation problems. Based on
this analysis, it devises a solution strategy and
proposes an algorithm that is capable of handling
variable dependence in multi-objective
optimisation problems. The working of the
proposed algorithm is demonstrated, and its
performance is compared to that of two high
performing evolutionary-based multi-objective
optimisation algorithms, NSGA-II and GRGA,
using two test problems extracted from literature.
The paper concludes by giving the current
limitations of the proposed algorithm and the
future research directions.

1 INTRODUCTION

Real-life engineering design optimisation problems, as
opposed to the theoretical problems (test cases), are those
that are encountered in industry. Some examples of these
problems are the design of aerospace structures for

minimum weight, the surface design of automobiles for
improved aesthetics and the design of civil engineering
structures for minimum cost (Rao, 1996). A survey of
industry and literature reveals that along with multiple
objectives, constraints, qualitative issues and lack of prior
knowledge, most real-life design optimisation problems
also involve interaction among decision variables (Roy et
al., 2000). However, lack of systematic research has
plagued the field of interaction for a long time. This can
mainly be attributed to the lack of sophisticated
techniques, and inadequate hardware and software
technologies. However, in the last two decades, with the
improvements in hardware and software technologies
some research has been carried out in this area especially
in the field of statistical data analysis (Draper and Smith,
1998). This has been further augmented in the recent past
with the growth of computational intelligence techniques
like Evolutionary Computing (EC), Neural Networks
(NNs) and Fuzzy Logic (FL) (Pedrycz, 1998). This paper
focuses on the development of an evolutionary-based
algorithm for handling variable interaction in multi-
objective optimisation problems.

2 TYPES OF VARIABLE
INTERACTION

In an ideal situation, desired results could be obtained by
varying the decision variables of a given problem in a
random fashion independent of each other. However, due
to interaction this is not possible in a number of cases,
implying that if the value of a given variable changes, the
values of others should be changed in a unique way to get
the required results. The two types of interaction that can
exist among decision variables are discussed below.

2.1 INSEPARABLE FUNCTION INTERACTION

The first type of interaction among decision variables,
known as inseparable function interaction, is discussed in
detail by Tiwari et al. (2001). This interaction occurs
when the effect that a variable has on the objective
function depends on the values of other variables in the



function (Taguchi, 1987). This concept of interaction can
be understood from Figure 1.

             (a)   (b)                   (c)

Figure 1: Examples of Interaction (a) No Interaction
(b) Synergistic Interaction (c) Anti-synergistic Interaction

(Phadke, 1989)

In GA literature, the inseparable function interaction, as
defined above, is termed as epistasis. The GA community
defines epistasis as the interaction between different
genes in a chromosome (Beasley et al., 1993). A review
of literature reveals that the evolutionary-based
techniques for handling inseparable function interaction
can be classified into two broad categories based on the
approach used for the prevention of building block
disruption. These categories involve managing the race
between linkage evolution and allele selction (Harik,
1997), and modelling the promising solutions
(Muhlenbein and Mahnig, 1999).

A number of real-life examples can be found in literature
that involve this type of interaction. For example, the
temperature (T) of an ideal gas varies with its pressure (P)
and volume (V) as T=kPV, where k is the constant of
proportionality. This equation has cross-product term PV
clearly demonstrating the interaction between P and V in
the definition of T.

2.2 VARIABLE DEPENDENCE

The second type of interaction among decision variables,
known as variable dependence, is the main focus of this
paper. This interaction occurs when the variables are
functions of each other, and hence cannot be varied
independently. Here, change in one variable has an impact
on the value of the other. A typical example of this type
of interaction is the case when the function y is A2+B2,
where A and B are as defined below.
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As can be seen, variable A is fully independent and can
take any random value between a and b. On the other
hand, variable B is not fully independent and has two
components. The first component, which is a function of
variable A, takes values depending on the values of A. The
second component is a random number lying between c
and d. It should be noted that in case of no dependence
among decision variables, a and b define the range of
variable A, and c and d define the range of variable B.

The above example reveals that the presence of
dependence among decision variables has the following
effects.

�  Both variables A and B cannot simultaneously take
random values in their respective ranges. If variable
A takes a value A1, variable B can take only those
random values that lie between [f(A1)+c] and
[f(A1)+d]. With the change in value of A, the range of
random values that B can take also changes. So, the
variables cannot be varied independently of each
other.

�  The above discussion implies that the presence of
dependence among decision variables modifies the
shape and location of variable search space. In case
of no dependence among decision variables, both
variables A and B can independently take random
values in their respective ranges making the A-B
search space rectangular in shape. However, the
presence of dependence makes the search space take
the shape and location based on the nature of function
f(A).
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Figure 2: Relationship between Stress(S) and
Temperature(T)

(FRIV: Feasible Region with Independent Variables and
FRDV: Feasible Region with Dependent Variables)

The dependence among decision variables is frequently
observed in real-life problems. As an example, the
resistance (R) of a wire is defined in terms of two
variables, namely Temperature (T) and Stress (S), where T
and S are as defined below.
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This real-life problem is analogous to the example
discussed earlier. As illustrated in Figure 2, the presence
of dependence among decision variables modifies the
variable search space. In case of no dependence among
decision variables, T-S search space is rectangular in
shape. It is shown as FRIV (Feasible Region with
Independent Variables) in Figure 2. In presence of
dependence among variables, the modified search space is
shown as FRDV (Feasible Region with Dependent
Variables) in Figure 2.
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3 CHALLENGES POSED BY VARIABLE
DEPENDENCE

Complex variable dependence poses a number of
challenges for multi-objective optimisation algorithms. In
the presence of variable dependence, the decision
variables cannot be varied independently of each other.
Also, the search space gets modified creating a new
feasible region based on the dependence among decision
variables. This is demonstrated in Figure 2. Depending
upon the nature of variable dependency, additional
features (such as bias (non-linearity), multi-modality,
deception and discontinuity) may also be introduced in
the problem. A generic Genetic Algorithm (GA)
independently varies the decision variables and works in
the feasible region that does not take variable dependence
into account. So, it creates solutions that have limited
practical significance since they do not lie in the actual
feasible region of the search space. Therefore, there is a
need to develop GAs that have mechanisms for handling
variable dependence in their search processes.

4 TECHNIQUES FOR HANDLING
VARIABLE DEPENDENCE

Most of the dependent-variable optimisation problems do
not have known dependency relationships. In these
problems, multiple sets of variable values are available
from which the dependency relationships need to be
inferred. An optimisation algorithm that is capable of
handling variable dependence should be able to infer
these relationships from the given data, identify the
independent variables and manage the search process
accordingly. Due to the lack of systematic research in this
area, the literature in the field of optimisation does not

report any dedicated technique that can deal with variable
dependence. However, as shown in Table 1, the survey of
literature in related areas of research reveals some
techniques that can be used for inferring dependency
relationships among decision variables and identifying
independent variables.

Table 1: Techniques for Identification of Dependency
Relationships and Independent Variables

Identification
of

Dependency
Relationships

�  Neural Networks (NNs) (Hertz et al.,
1991; Richards, 1998; Gershenfeld,
1999)

�  Probabilistic Modelling (PM) (Pelikan et
al., 1998; Larranaga et al., 1999; Evans
and Olson, 2000; Muhlenbein and
Mahnig, 1999)

�  Regression Analysis (RA) (Frees, 1996;
Draper and Smith, 1998; Evans and
Olson, 2000)

Identification
of

Independent
Variables

�  Tree Diagrams (TDs) (Banzhaf et al.,
1998; Richards, 1998; Larranaga et al.,
1999)

�  Direct Analysis (DA) (Gershenfeld, 1999)

4.1 IDENTIFICATION OF DEPENDENCY
RELATIONSHIPS

Table 2 presents an analysis of the techniques that can be
used for inferring dependency relationships from the
avaiable sets of variable values. This table highlights the
following.

�  NNs: As can be seen from Table 2, the NNs require a
priori knowledge regarding the classification of
variables as dependent and independent (Hertz et al.,
1991). Since this information is rarely available in
real-life problems, the choice of the NNs is ruled out
in spite of their other attractive features.

Table 2: Analysis of Techniques for Identification of Dependency Relationships

Techniques for Identification of Dependency Relationships

Comparative Analysis
Regression Analysis (RA) Neural Networks (NNs) Probabilistic Modelling

(PM)

Difficulty of
Implementation Medium High Very high (due to many open

issues)

Accuracy Dependent on degree of RA
equation

Dependent on number of
hidden units

Dependent on choice of
modelling method

Computational Expense Low High Medium

Nature of Dependency
Relationships Explicit Explicit (for given dependent

variables) Purely implicit

Identification of Multiple
Dependency

Relationships
Multiple RA equations

Built-in multiple relationships
(based on choice of NN
structure)

Built-in multiple relationships

Identification of
Independent Variables

Through multiple repetitions
of RA Not possible Not required

F
ea

tu
re

s

Difficulty of Data Addition Medium (repetition required) Medium (repetition required
by most NNs) Low (updating required)



�  PM: PM is also a very powerful technique, requiring
little information regarding the nature of variables.
As shown in Table 2, it also has a number of other
features that are required for dealing with real-life
problems. However, the application of PM to model
multiple interacting decision variables is a relatively
new area of research, and a number of research issues
need to be addressed before it could be chosen for
handling real-life problems having multiple real
variables (Evans and Olson, 2000).

�  RA: Table 2 reveals that the multiple explicit
equations that are identified by the RA give good
insight to the designer regarding the relationships
among decision variables. RA is also easy to
implement and maintain (Frees, 1996). Further, it
addresses most of the above-mentioned limitations of
NNs and PM. However, the accuracy of RA is
dependent on its degree.

4.2 IDENTIFICATION OF INDEPENDENT
VARIABLES

The main strengths and weaknesses of the techniques
used for the identification of independent variables are the
following.

�  TDs: The dependence among decision variables can
be graphically represented using TDs, in which each
node represents a variable in the problem. TDs are
easy to use and have good visualisation capabilities,
but they are difficult to be encoded in a computer
language.

�  DA: DA involves the analysis of dependency
equations to identify the independent variables. This
method is easy to be encoded in a computer language
but is difficult to visualise.

5 PROPOSED GA FOR VARIABLE
DEPENDENCE (GAVD)

This section proposes a novel algorithm ‘GA for Variable
Dependence (GAVD)’, described in Figure 3. Based on
the discussion in Section 4, the RA is chosen in GAVD to
identify variable dependency equations using the data
provided. Furthermore, GAVD uses TDs for visualisation
of dependency relationships, and DA to automate the
identification of independent variables. The steps
involved in GAVD are described below.

5.1 STEP 1: IDENTIFICATION OF
DEPENDENCY RELATIONSHIPS

This step is omitted in those cases in which the
dependency relationships are known. In the other cases,
this step analyses the given data for identifying multiple
dependency equations, while keeping the computational
expense as low as possible. GAVD uses RA in such a way
that it not only identifies all non-decomposable
relationships among decision variables but also removes

any cyclic dependency in those relationships. To attain
this, a strategy that ensures good ‘book keeping’ is
adopted. The salient features of this strategy are discussed
below.

�  The RA that is used in GAVD breaks down a
regression equation until it becomes non-
decomposable. In this way, all the underlying
relationships among the decision variables are
identified.

�  A Dependency Chart (DC), which is a tool for DA, is
maintained to keep track of the variables that are
identified as dependent (D) and independent (I) in the
regression process. In this way, unnecessary
repetitions of RA are avoided for the variables that
have already been identified as ‘D’ or ‘I’. This also
ensures that the regression equations do not involve
any cyclic dependency.

�  When determining the regression equation for a given
variable, only those variables that are marked as ‘I’
or are unmarked in DC are considered as
independent. This guarantees that the variables that
are identified as ‘D’ are not considered as
independent in subsequent stages of the RA, thereby
ensuring that the regression equations obtained are as
non-decomposable as possible. This also reduces the
number of variables that are considered at each stage
of the RA.

5.2 STEP 2: IDENTIFICATION OF
INDEPENDENT VARIABLES

TDs are used here for visual representation of
relationships among decision variables. A TD is
constructed here to give a visual representation of the
dependency relationships to the user. The end nodes of
this tree are the independent variables. The TD also aids
in the identification of cyclic dependencies that may be
present in the given dependency equations. Since TDs are
difficult to be encoded in a computer language, the DC is
used to automate the process of identification of
independent variables and remove any cyclic dependency.
Here, the DC is used to identify the independent variables
as those that are marked as ‘I’. The construction of this
chart also aids the identification and removal of cyclic
dependencies from the dependency equations.

5.3 STEP 3: OPTIMISATION

Being a high-performing latest algorithm, Generalised
Regression GA (GRGA) has been chosen as the
optimisation engine for GAVD. GRGA is a multi-
objective optimisation algorithm that uses RA for
handling complex inseparable function interaction (Tiwari
et al., 2001). Here, the independent variables, identified in
the previous step, define the GA chromosome. For each
alternative solution generated by the GA, the dependency
equations are used to calculate the values of the
dependent variables. It should be noted here that the
bounds on independent variables are treated as variable



limits and those on dependent variables are treated as
constraints.

Since GAVD uses GRGA as its optimisation engine, the
basic operations of GRGA also form part of GAVD. In
addition, it uses the RA to model the relationship among

decision variables. Therefore, the overall computational
complexity of GAVD is the complexity of GRGA
increased with the complexity of the RA, where in most
cases the latter is much smaller than the former.

Start

Given:
• Objective functions (F’s) and constraints
• Variable bounds
• Multiple sets of variable values

Mark F’s as peak nodes of Tree Diagram (TD)

Decompose first F

Decompose first child node of F 

Are all nodes at this 
level non-decomposable?

Are all immediate children
of F analysed?

Decompose next child node of F

Are all F’s analysed? Decompose next F

Decompose all dependent nodes

Use GRGA as optimisation engine:
• GA chromosome defined by independent 
variables (end nodes of TD or marked ‘I’ in DC)
• Dependent variables (marked ‘D’ in DC) 
calculated from dependency equations
• Bounds on independent variables treated as 
variable limits
• Bounds on dependent variables treated as
constraints

Stop

Perform Regression Analysis (RA), 
considering first variable as dependent

Set first regression coefficient to zero

Re-perform RA

Same correlation coefficient?
(within � 10%)

Set next regression coefficient to zero

Mark all RA variables in Dependency Chart (DC), 
as Dependent (D) or Independent (I)

All variables marked?
Re-perform RA, 

considering next unmarked variable as dependent 
and all unmarked or ‘I’ variables as independent

All regression coefficients analysed?

No

No

No

Yes

Yes

Yes

Yes

Yes

No
No

No

Set next regression coefficient to zero

All regression coefficients (in 
new equation) analysed?

Yes

Yes

No

Step 2

Step 1

Optimisation

Figure 3: GA for Variable Dependence (GAVD)

5.4 A WORKED EXAMPLE

This worked example demonstrates the application of
GAVD to a problem that has dependence among its
decision variables. This problem is given below.
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Suppose the underlying relationships among decision
variables that need to be identified are as follows.
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The flowchart of Figure 3 identifies the following steps
for solving this problem.

�  Determine the following equation for x1.

)5,4,3,2(11 xxxxvx �

�  No change is observed in correlation coefficient,
when the RA is performed with the regression
coefficient of x2 set to zero. The new equation is as
follows.
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�  Correlation coefficients reduce, when the RA is
performed with the regression coefficients of x3, x4

and x5 set to zero in steps.

�  Mark x1 as ‘D’ and x3, x4 and x5 as ‘I’ in the DC
(Table 3).

�  Determine the following equation for x2 in terms of
those variables that are so far identified as ‘I’ or are
so far unmarked in the DC.

)5,4,3(22 xxxvx �

�  Correlation coefficients reduce, when the RA is
performed with the regression coefficients of x3, x4

and x5 set to zero in steps.

�  Mark x2 as ‘D’ and x3, x4 and x5 as ‘I’ in the DC
(Table 3).

�  The variables marked ‘I’ in the DC are independent
whereas those marked ‘D’ are dependent.

�  Use the dependency equations determined above for
drawing the TD for the problem (Figure 4). The
nodes that are encircled in this figure represent the
independent variables. All other variables are treated
as dependent.

�  Use GRGA as the optimisation engine.

�  x3, x4 and x5 constitute the GA chromosome.

�  x1 and x2 are determined from the dependency
equations.

�  Bounds on x3, x4 and x5 are treated as variable
limits.

�  Bounds on x1 and x2 are treated as constraints.

Table 3: Dependency Chart (DC) for Worked Example

Dependency Variables

Chart (DC) X1 X2 X3 X4 X5

X1 D I I I
Regression X2 D I I I
Equations X3

X4

X5

F

x1 x2 x4 x5

x3 x4

x5

x3

x3 x4

x5

Figure 4: Tree Diagram (TD) for Worked Example

Table 4: Test Problems for Performance Analysis of GAVD

Problem Objective Functions (Minimisation) Dependency Equations

Problem-1
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Problem-2
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6 PERFORMANCE ANALYSIS

In this section, GAVD is tested using two multi-objective
optimisation test problems that have dependence among
their decision variables (Table 4). The features of these
test problems make them particularly difficult for multi-
objective optimisation algorithms. In the absence of any
dedicated technique for handling variable dependence,
this section compares the performance of GAVD with two

high-performing multi-objective optimisation algorithms:
NSGA-II and GRGA. However, unlike GAVD, both these
algorithms do not take variable dependency into account.

6.1 EXPERIMENTAL RESULTS

All the tests reported here correspond to 100 population
size, 500 generations, 0.8 crossover probability, 0.05
mutation probability, and simulated binary crossover with
10 crossover distribution index and 50 mutation



distribution index. The results obtained from these tests
are shown in Figure 6 for Problem-1 and Figure 7 for
Problem-2. The �  (convergence metric) and �  (diversity
metric) values corresponding to these results are shown in
Table 5 (Deb et al., 2000). These results form the typical
set obtained from 10 runs with different random number
seed values. No major variation was observed in the
results with the change in the seed values.
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Figure 5: Dependency Relationships (a) Problem-1
(b) Problem-2

Table 5: Performance Metrics in Problems 1 and 2

Problem-1 Problem-2Performance
Metrics ���� ���� � ��� ����

NSGA-II 1.209567 0.090002 0.986345 0.083956

GRGA 0.009143 0.080121 1.654703 0.045431
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GAVD 0.008221 0.081124 0.001373 0.014564

6.2 DISCUSSION OF RESULTS

The following observations can be made from the results
obtained from Problem-1 (Figure 6, Table 5).

�  Since the dependency equation covers the full range
of x2, it does not alter the Pareto front. Therefore, the
Pareto fronts for the original problem (with no
dependence) and the dependent-variable problem
coincide with each other.

�  GRGA and NSGA-II do not incorporate variable
dependence in their solution strategies. However,
since the original and the new Pareto fronts are
coincident in this case, the GRGA is able to locate
the Pareto front. However, NSGA-II gets trapped in
one of the local fronts.

�  The dependency equation is quadratic, making it
possible for the GAVD (that uses quadratic RA) to
exactly model the dependence. Hence, the Pareto
front that the GAVD sees coincides with the true
Pareto front. Furthermore, since GAVD uses GRGA
as its optimisation engine, it is able to converge to the
Pareto front and distribute the solutions uniformly
across the front.

The following observations can be made from the results
obtained from Problem-2 (Figure 7, Table 5).

�  In this problem, the original Pareto front occurs when
both x2 and x3 are equal to 0. Due to the given
dependency among these variables, this is no longer
possible. This causes modifications in the search
space and the Pareto front.

�  GRGA converges to the global Pareto front of the
original problem (with no dependence among its
decision variables). However, since the new Pareto
front does not coincide with the original one, the
results from GRGA are not feasible in this case.
Similar to the previous case, NSGA-II gets trapped
on a local front, which in this case coincidentally lies
in the new search space.

�  Also, since GAVD uses quadratic RA, it is able to
exactly determine the dependency equation in this
case. Hence, the Pareto front seen by GAVD is the
same as that of the actual dependent-variable
problem. Therefore, GAVD converges to the Pareto
front and distributes the solutions uniformly across
the front.

Figure 6: GAVD Performance in Problem-1
(PFIV: Pareto Front for Independent Variables,
PFDV: Pareto Front for Dependent Variables,

EPF: Estimated Pareto Front)

Figure 7: GAVD Performance in Problem-2
(PFIV: Pareto Front for Independent Variables,
PFDV: Pareto Front for Dependent Variables,

EPF: Estimated Pareto Front)



7 FUTURE RESEARCH ACTIVITIES

The current limitations of GAVD and the corresponding
future research activities are as follows.

�  The performance of this algorithm in identifying the
dependence among decision variables is limited by
the degree of RA that it uses. Hence, in dealing with
complex dependence, higher order RAs are required.
This implies that the use of more sophisticated non-
linear modelling tools, such as Neural Networks,
have the potential of improving its performance,
especially in modelling deceptive and complex non-
linear functions.

�  GAVD also needs to be fitted with a mechanism that
can learn the dependency relationships, and update it
each time a new data is added, without having to
repeat the whole process.

�  GAVD also needs enhancements to deal with noisy
data and qualitative issues in real-life problems.

8 CONCLUSIONS

There is currently a lack of systematic research in the
field of variable dependence. This paper proposes an
algorithm capable of handling variable dependence in
multi-objective optimisation problems. The performance
of proposed algorithm is compared to that of two state-of-
the-art optimisation algorithms (NSGA-II and GRGA)
using two dependent-variable test problems. It is observed
that the proposed algorithm GAVD enables its
optimisation engine (GRGA) to handle variable
dependence in optimisation problems.
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Abstract
In this paper theFamily Competition Genetic
Algorithm (FCGA) is applied to analyze DNA-
microarray data. DNA Microarray technology is
a significant impact on genomics study. The
proposed approach consists of global and local
strategies by integrating the family competition,
edge assembly crossover, and neighbor-join
mutation. Experiments are performed to compare
the FCGA with several methods in some real-
world biological data sets. Numerical results
indicate that FCGA performs very robustly and
is very competitive with other approaches. Using
FCGA, we are able to find a gene order to
display the microarray data in a meaningful way.

1 INTRODUCTION
DNA microarray technology can be applied to many

biological domains, such as drug discovery, molecular
diagnosis, and toxicological research. During the past few
years, the development of DNA-microarray technology
had provided the means to monitor the expression levels
of a large number of genes simultaneously.

In the microarray experiments, messenger RNAs
(mRNA) are extracted from the cell culture.
Complementary DNAs (cDNA) are generated from the
RNAs, amplified, labeled and then hybridized to a large
array of DNA probes immobilized on a solid surface. The
array is then scanned by a laser to obtain the signal for
each probe region. From the signal strengths of the probes
from a particular gene, one can infer the expression level
of the gene in the cell type under study. Fig. 1 is the
schematic procedures for monitoring gene expression
using DNA microarray. With many chips, the expression
data can be represented by a real-valued expression
matrix X where Xij is the measured expression level of
genei in experimentj.

However with thousands of genes and hundreds of
experiments, it is difficult to evaluate the immense
amount of gene expression profiles. A large number of
approaches have been developed for analyzing the huge
microarray data. For examples, clustering, classification,
and genetic network analysis are usually adapted for

analyzing these data. In any case, it is important to display
microarry data in a meaningful way to best illustrate
trends in gene expression.

An intuitive way to display microarray data is to find
an optimal order of genes such that genes with similar
expression profiles are blocked together. However, it is
NP-complete to find an optimal order of genes [1].
Several approaches have been proposed for solving this
problem. For example, the hierarchical clustering
approach, a widely used tool [2-6], has been used to
approximate the solution. Since the constructing process
of the hierarchical tree is greedy, this approach may get
stuck at local minima. Some approaches have been
proposed to improve the solution quality of hierarchical
clustering approach, such as flipping the internal nodes in
the tree [7] and neural networks [8]. In this paper, finding
an optimal order of genes is formulated as a travel
salesman problem (TSP). Evolutionary approaches (EAs)
are one of promising directions for solving TSPs.

Evolutionary approaches have been successfully
applied to optimization problems that are inherently
computationally complex [9-11]. EAs are an adaptable
concept for problem solving and especially well suited for
solving difficult optimization problems. They have been
used to solve problems involving large search spaces,
where traditional optimization methods are less efficient.

In this paper, we propose thefamily competition
genetic algorithm(FCGA) to find the optimal order of
genes with expression profiles. The FCGA combines a
family competition, the neighbor-join mutation (NJ), and
the edge assembly crossover (EAX) [12]. The family
competition, derived from (1+� )-ES and Lin-Kernigan
heuristic, had been successfully applied to several
continuous parameter optimization problems, such as
protein docking [13] and thin-film coatings [14]. In our
pervious studies [15], we had successfully integrated the
family competition and EAX for solving traveling
salesman problems (TSPs). In order to balance
exploration and exploitation, we also designed the
neighbor-join mutation [16] to cooperate with the EAX.
The main difference in methodology between the present
work and our previous studies is the integrations of these
mechanisms.










