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How Random Generator Qualit y Impacts Genetic Algorithm
Performance

Mark M. Meysen burg, Dan Ho elting,
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Abstract

It hasbeenshown that pseudo-randomnum-
ber generator (PRNG) choice cana ect sim-
ple genetic algorithm (GA) performance.
However, theseperformanceimpacts are non-
intuitiv e; PRNGs of poor quality can drive
GAs to superior performance, for certain
problems. The same PRNGs cause worse
performancefor other problems. In this pa-
per we present a plausible explanation for
this phenomenon: PRNGs of poor quality
causehigher Vosediscrepancyvaluesthan do
higher quality PRNGs. Higher Vosediscrep-
ancy values could then be manifest as GA
performance di erences, as GA populations
move toward xed points of the Voseheuris-
tic far away from the expectation.

1 INTR ODUCTION

examined the im-
number genera-
genetic  algorithm
Meyserburg and Foster

Meyserburg and Foster, 1997

examined sewral PRNGs, using the Knuth

[Knuth, 1997 and Marsaglia's Diehard

[Marsaglia, 1993 empirical test suites. They usedthe

PRNGs to drive a simple GA, applied to a collection

of seweral well-known GA test functions. Using a

relatively coarse-grained statistical measure, they

found no statistical evidence that PRNG quality

a ected GA performance.

Sewral researters have
pact of pseudo-random
tor (PRNG) choice on
(GA) performance.
[Meyserburg, 1997,

In a second study Meyserburg and Foster
[Meyserburg and Foster, 19994 deweloped a set
of specic, empirical PRNG quality tests tailored
to the way a simple GA uses randomness. They

Duane McElv ain

James A. Foster
Computer ScienceDepartment
University of Idaho
Moscow, ID USA 83844

used a similar set of PRNGs and the same set of
GA test functions as in the previous work. They
found, however, that there was no correlation between
good performance on the PRNG tests and good
performanceby the GA. In the secondstudy, however,
a ner statistical measurewas usedthat did reveal an
interesting phenomenon.

One of the PRNGs used was a version of the Java
language Random generator, limited to a period of
1000numbers. With sud alimited period, this PRNG
(rand1k) failed the PRNG tests miserably. However,
there was evidencethat randlk a ected GA perfor-
mance. It would be reasonableto assumethat worse
PRNG quality would causeworse GA performance,
but this was not the case.

On sewral of the GA test functions, rand1k caused
the GA to perform better than other, much better,
PRNGs. On other functions, rand1lk causedthe GA
to perform worse than the other PRNGs. In sum-
mary, Meyserburg and Foster's second study found
that there was evidencethat PRNG choice could im-
pact GA performance,although in non-intuitiv e ways.
Similar results have been noted for genetic program-
ming (GP) systems [Meyserburg and Foster, 19993
Daida et al., 1997 Daida et al., 1999.

In summary, the researt to date on this subject showvs
that PRNG choice can impact GA (or GP) perfor-
mance. However, the researd shows no direct corre-
lation betweenimproved PRNG quality and improved
GA performance;in fact, better PRNGs can in some
casescauseworse GA performance. No one has yet
beenable to explain why PRNG choice can alter GA
performancein this manner.

2 GA THEOR'Y

Vose[Vose, 1999 has deweloped a generalmathemati-
cal theory describingthe behavior of simple GAs. Vose



calls the seard spaceexplored by the GA . If the
sizeof isn, then GA populations canbe represerted
asvectorsin n-space. Thesepopulation vectorsare el-
emerts of a set that Voseterms the simplex:

= MXo;iinXn 1 :1Tx=1x; 0 : (1)

Elemens of the simplex are column vectors of sizen,

where eah componert of the vector is non-negative,

and all componerts of the vector sumto one. A vector

p2 represeints a population as follows: componert

p; is the percertage of the whole of the j ! elemert of
in the GA population.

A GA isde ned in terms of atransition rule : I
describing how a GA population ewlves over time.
Given an initial population vector p, the next gener-
ation would be (p); the following generation would
be ( (p) = 2(p); and so on. Unfortunately, we
are unable to say with certainty what (p) would be,
becauseGAs are stochastic algorithms.

To deal with the stochastic nature of GAs, Voseintro-
ducesanother function G: | | calledthe heuristic
function. For a population vector p, the result of G(p)
is another vector g2 . (¢ is then usedasa sampling
distribution to produce the next generation. The j*
componert of q is the probability that the j " elemen
of isselectedto be a member of the next generation.
The various operators of the GA (selection, crosswer,
and mutation, for example) are implemented in the
particular heuristic G chosen. The GA population is
moved forward by applying G to the initial popula-
tion p, and using the resulting sampling distribution
to create the next population. The processrepeats
until termination criteria are met.

Given an initial population vector p, repeated appli-
cations of the heuristic G produce a path through n-
space. This is the expected path the GA population
should follow during a run. Fixed points of G cor-
respond to situations where the GA corverges. The
actual path followed by a GA, of course, will vary
to a certain degreefrom the expectation, due to the
stochastic nature of the process.

Vosehas developed a formula for determining how far
away from the expected path a particular GA popula-
tion vector is.

For population vector p, the probability that the next
population vector is g is shown in Figure 1. In the for-
mula, the summationsare only done for indexeswhere
g > 0, and r is the number of individuals in the GA
population.

In Figure 1, the term
X G
lo 2
9109 515y ()

is called the discrepancy of q with respect to the ex-
pectation G(p). The discrepancyis a measureof how
far the actual next population vector, g, is from the ex-
pected next population vector, G(p). It is a measure
of the distance betweenexpectation and reality.

Our current researd has shovn that Vose's the-
ory can be used to explain the non-intuitive
GA behavior obsened in previous studies
[Meyserburg, 1997, Meyserburg and Foster, 1997,
Meyserburg and Foster, 19994. Our hypothesis is
that a PRNG of quality poor enough to drive the
GA population far from the path predicted by Vose
theory, would causethe GA to perform dierently
than a GA driven by a PRNG of higher quality.
We hypothesized that a PRNG like randlk would
cause higher Vose discrepancy values for successie
GA populations than a high quality PRNG like the
Mersenne Twister [Matsumoto and Nishimura, 1999
would. Then rand1lk might drive the GA populations
into the basinsof attraction of di erent Voseheuristic
xed points than the Mersenne Twister would; this
would accourt for GA performancedi erences.

3 EXPERIMENT DESIGN

In order to test our hypothesis,we rst collected42 GA
test problems suitable for Vose discrepancy statistic
calculation. Since the complexity of the discrepancy
measureis O(3'), for chromosomelength |, the statistic
can only be e cien tly computed for chromosomesof
approximate length 20 or less. Our test functions were
created as part of an undergraduate researt project.
The functions are basedon seweral di erent classesof
problems drawn from the literature, adapted to our
chromosomelength restrictions. The functions have
chromosomelengths ranging from eight to 20. Our GA
test problemsare briey summarizedin Table 1. More
detailed descriptions of ead of the problems may be
found on the World Wide Web at the following URL.:
http://ist.doane .ed u/ megysenburg/c ooper st uff
/index.html This page describes eat test prob-
lem, aswell asthe parameters(crossover and mutation
rates, population size, etc.) usedfor ead run.

Next, we ran a simple GA (of the type described by
Vose [Vose,1999) on eat of the 42 GA test prob-
lems. We repeated the runs for ead of 14 dier-
ent PRNGs, ranging in quality from randlk to the
Mersenne Twister. Finally, to reduce the likelihood
of anomaliescausedby poor seedvalue selection, we



repeated eadh of our runs for 32 di erent PRNG seed
values. For ead problem / seedvalue combination,

we initialized the GA population identically, and then

usedthe PRNG under test for the rest of the GA run.

In this way, ead of the runs for a problem / seed
value pair started at the samepoint in . The seed
values and initial populations were constructed using
the truly random sourceat www.random.org .

We then usedthe Mann-Whitney non-parametric sta-
tistical test to determine if PRNG choice causedper-
formancedi erencesin our GA runs. We comparedav-
eragepopulation tness on a generationby generation
basisin a manner similar to Meyserburg and Foster's
secondstudy [Meyserburg and Foster, 19994.

Finally, we calculated the Vose discrepancy statistic
betweenead generationof eadh GA run. Thesecalcu-
lations are complete for every GA test function where
| < 20, and are still under way for the problemswhere
| = 20. We usedthe Wilcoxson non-parametric statis-
tical test to determine if discrepancyvaluescausedby
the randlk PRNG were greater than those causedby
the other PRNGs.

4 RESULTS

In our experimerts, we again found that PRNG choice
impacts GA performance. Our statistical measures
heredid not indicate if a PRNG causedbetter or worse
GA performancethan the other PRNGs; the measures
only detectedthat a di erence (in either direction) ex-
isted. Of all our GA runs, we found that the rand1k

PRNG causedperformance di erences in 68% of the

cases. None of our other PRNGs caused consisten

performance di erences acrossthe 42 GA test func-

tions.

Having con rmed that randlk causesunexpected GA
performance, we next tried to determine if the poor
quality of rand1k causedhigher Vosediscrepancyval-
uesthan our other PRNGs. For the GA test functions
we have had time to calculate Vosediscrepancystatis-
tics for, this is indeed the case. Represetativ e results
for three of our shorter-length GA test functions are
shown in Tables2, 3, and 4.

The DC_19 GA test function has chromosomelength
| = 12. The function is an instance of CNF-SAT, for
12 variables, 300 clauses,and v e variables per clause.
The bits of the chromosomedetermine the values of
ead variable.

The DC_37 and DC_41 GA test functions have
chromosome length | = 8. These functions are
a modied version of the emergency-unit place-

ment problem described by Haupt and Haupt
[Haupt and Haupt, 1998. In this case,an emergency
responsebuilding must be placed on a city map, rep-
reseried asa 16 by 16 grid, with ariver cutting across
the map at row sewen. A bridge is placedover the river
to allow vehiclesto crossthe river. For the DC _37 func-
tion, the bridge is in column one of row sewen, while
in the DC_41 function, the bridge is in column sewen
of row sewen.

In the gures, the letter 'W' represens a casewhere
the row-label PRNG causedstatistically higher Vose
discrepancy values compared to the column-label
PRNG. The gures showv that, for these GA test
functions, randlk causes higher discrepancy values
than any of our other PRNGs. Other PRNGs cause
sporadic Vose discrepancy di erences, but randlk
causeshigher Vosediscrepanciescomparedto all other
PRNGs, in all of the GA test functions we have com-
puted the statistics on so far. We speculate that the
sporadic Vosediscrepancydi erences of other PRNGs
are causedby the small population size of our GA
runs; Vosetheory says that higher discrepancyvalues
are likely in small population GAs.

It is interesting that the infamous RANDU PRNG
[Knuth, 1997, which scoresas badly asrandlk in the
Diehard suite of PRNG quality tests, doesnot impact
the GA in the same way randlk does. In particu-
lar, RANDU never causedGA performancedi erences
in our runs (while rand1k did 68% of the time), and
neither did RANDU causeconsisterily higher discrep-
ancy valuesthan the other PRNGs (while rand1k did).
Therefore, it seemsthat the Diehard suite is not pre-
dictive for GA use. We have dewveloped a GA-speci ¢
empirical test of PRNG quality (described in a poster
preseried at this conferencdMeyserburg et al., 2003)
which eliminates this false positive problem. Our new
test, tailored to the specic GA parameters of our
test functions, givespoor scoresto rand1k but normal
scoresfor RANDU.

In summary, for the GA functions we have been able
to examine to date, rand1lk does cause higher Vose
discrepancyvaluesthan other, higher quality PRNGs.

5 CONCLUSIONS AND FURTHER
W ORK

We have shown that poor PRNG quality doescorrelate
with abnormally high Vose discrepancy values. We
feel that this correlation explains why a poor quality
PRNG, such as randlk, can causeimproved or de-
graded GA performance, comparedto other PRNGs.
High enough discrepancy values could causethe GA



to enter the basins of attraction of unexpected xed
points of the Voseheuristic; this would be manifest as
GA performancedi erences.

In order to further bolster our con dence in our hy-
pothesis, we are cortinuing Vosediscrepancy calcula-
tions on our larger GA test functions. As the results
becomeavailable, we will determine if the correlation
between poor PRNG quality and high Vose discrep-
ancy values cortinues. In addition, we would like to
determinethe xed points of the Voseheuristic for our
GA test functions, in order to conrm that randlk
drives GA populations to xed points dierent than
other PRNGs do.
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Function Name Length | Function Name Length
DC_01 Rastrigin's Function 20 DC_22 Ackley's Trap Function 20
DC_02 Michalewicz's Function 16 DC_23 Ackley's 1-Max Function 20
DC_03 | Whitley's Function 20 DC_24 | Ackley's Mix Function 20
DC_04 Rana's Function 20 DC_25 Ackley's Plateaus Function 20
DC_05 Schwefel's Function 20 DC_26 Hoelting's Projectile 16
DC_06 Griewangk's Function 20 DC_27 Koza's Cart-Pole 20
DC_07 Sdha er's Function 20 DC_28 New Light's Bug Bomb 16
DC_08 McElvain's Fibonacci 16 DC_29 Haupt's 4-letter Word Guesser 20
DC_09 Sha er's Function 20 DC_30 Koza's Cart-Polell 20
DC_10 Keane'sBump Function 20 DC.31 Koza's Cart-Pole |l 20
DC_11 Shopping Cart Padking 18 DC_32 Koza's Cart-Pole IV 20
DC_12 Function F9 20 DC_33 6-city TSP 18
DC_13 Schubert's Function 20 DC_34 Max Clique 16
DC_14 16-200-4CNF-SAT 16 DC_35 6-city TSP Il 18
DC_15 16-50-3CNF-SAT 16 DC_36 6-city TSP Il 18
DC_16 20-80-3CNF-SAT 20 DC_37 Haupt's ERU Location 8
DC_17 15-5-5CNF-SAT 15 DC_38 Haupt's ERU Location | 8
DC_18 20-80-3CNF-SAT 11 20 DC_39 Real Topology Hill-Clim ber 9
DC_19 20-300-5CNF-SAT 20 DC_40 Binary-to-Gray Circuit 17
DC_20 Ackley's 2-Max Function 20 DC_41 Haupt's ERU Location |11 8
DC_21 Ackley's Porcupine 20 DC_42 Meyserburg's DFA 18

Table 1: Doane College GA Test Suite functions
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Abstract

Competitve tness is the assessmendf an in-

dividual's tness in the context of competition
with other individuals in the evolutionary sys-
tem. This commonlytakes one of two forms:

one-populatiorcompetitve tness, wherecom-

petition is solely betweenindividuals in the

samepopulation;and N-populationcompetitive

tness, often termed competitve coevolution.

In this paperwe discusscommon topologies
for one-populatiortompetitve tness functions,
thentestthe performancef two suchtopologies,
Single-EliminationTournamentand K-Random
Opponents,on four problem domains. We

shawv that neitherof the extremesof K-Random
Opponent§RoundRobin and Random-Riring)

gives the bestresultswhen using limited com-

putationalresources. We also shav that while

Single-EliminationTournamentusually outper

forms variations of K-Random Opponentsin

noise-fregroblemsjt cansuffer from premature
corvergencean noisydomains.

1 INTRODUCTION

Traditionalevolutionarycomputatiorassessete tness of
anindividualindependentiypf otherindividualsin thesys-
tem. But therealso exist evolutionary proceduresvhere
this is not the case: anindividual's tness is dependent
on cooperatioror competitionwith peersin the evolution-
ary run, andthusmay changedependingpn the makeupof
thosepeers.

Suchprocedurebiave severalattractve featuresFirst, they
permitevolution to searchfor solutionsto problemsin the
absenceof ary obvious way to gaugean objective (peer
independent)tness. Consider: how doesone determine
the quality of a soccerplayerprograma priori? Second,

SeanLuke
GeogeMasonUniversity
http://www.cs.gmu.edu/ sean/

they can graduallyramp up problemdif culty as evolu-
tion nds bettersolutions.This promisego smoothout the
searchgradient.Third, they seema naturalmatchfor nd-
ing solutionsto problemsthat naturally requireteamvork
or thataremosteasilydiscoseredthroughcompetition.

We are temptedto bring all theseproceduresunderthe
agyis of coevolution, but thereare nomenclaturalif cul-
tieswith theuseof thisterm. In biology, coevolutionis best
resenedfor situationswherethereis morethanonepopu-
lation, andanindividual's tness is assesseih the contet
of individualsin otherpopulations.Suchmulti-population
coevolution is usually usedas a self-adaptie mechanism
to increaseproblemdif culty as membersof the popula-
tion becomamoreadaptat solvingthe givenproblem.The
classicexample of multi-populationcompetitive coevolu-
tionis [Hillis 1991],which coerolveda populationof sort-
ing networksanda populationof problemsets.The tness
of sorting networks was basedon the numberof problem
setsthey properlysolved,andthe tness of theproblemsets
washasednthenumberof sortingnetworksthey stumped.
[Rosinand Belew 1995] alsouseda two-populationcom-
petitive systemto evolve playersfor the gamesof Nim,
Tic-Tac-Toe, and Go with a 7x7 board. Multi-population
coevolutionis alsousefulascoopentive coerolution. Here
individualsfrom differentpopulationseachlearnsubparts
of a commonsolution, and their tness is basedon the
combinationof thosesubparts. Examplesof cooperatie
coevolutioninclude[ErikssonandOlsson1997;Potterand
De Jong2000;Wiegandetal. 2001].

One-populatioricoevolution” rarelyif evertakescoopera-
tive form. Insteadthistechniquds nearlyuniversallyused
to evolve gameplayersby competingamongsthemseles.
For lack of a standardizederm for one-populatiortech-
niques, we call theseone-populationcompetitive thess
functions for therestof this paperwhenaerwe say“com-
petitive tness functions” we imply the one-population
sort. [Luke 1998] usedsuchcompetitive tness to evolve
soccefplaying softbot teams,and [Fogel 2001] usedthe
techniqueto evolve a highly human-competitie check-



ers program,Blondie24. One-populatiorcompetitive t-
nesshasalso beenusedto nd solutionsto the Iterated
Prisoners Dilemma[Axelrod 1987], Tic-Tac-Toe [Ange-
line andPollack1993],BackgammorjPollacketal. 1997;
PollackandBlair 1998], Othello [Smith and Gray 1993],
pursuit-ezasion[Cliff andMiller 1995], Go [Lubbertsand
Miikkulainen 2001]andTag[Reynolds1994].

Oneimportantpartof a competitive systems successs its
topolagy: how the tness-evaluationcontext is established
for a givenindividual. Do all individuals play againstall
otherindividualsin the population?Are they simply paired
up for asinglegameeach?Sometopologiesequirealarge
numberof gamesto evaluatean individual, but may be
moreaccuratghanthoserequiringfewer games.

This paper comparestwo topological families in one-
populationcompetitve- thess games. We begin by dis-
cussingcommontopologiesin the literatureandtheir ad-
vantagesanddisadwantagesThenwe introducefour prob-
lem domains,and shov how various topologiesfare in
thesedomainsandunderdifferentamountsof noisein the
tness-assessmemptrocess.

2 COMPETITION TOPOLOGIES

Not all competitve tness topologiesare appropriatefor
all problems;the primary issuebreaksdown along lines
of tness-assessmemhethodology Imagineif onewere
trying to evolve chessplayers. How doesone establish
that player A is betterthan player B? The duel method-
ology stateghatA is betterthanB if andonly if A usually
beatsB in amatch.Thisis themethodologybehindsingle-
and double-eliminationtournaments. The rennaisance-
man methodolgy saysthat A is betterthanB if A beats
morecompetitorgshanB doeson averagg(or scoresagainst
competitorshy a wider mamgin on average),even if A
wouldloseto B in amatch.Thisis themethodologypehind
chessrankings,for example. It is interestingto note that
mary sportsuseacombinatiorof thesewo methodologies,
usuallyby usingaveragesuccessigainsiopponentsluring
the seasorto determinethe entrantsto a single elimina-
tion tournamentwhichthendetermineshe nal champion.
Whetherthereis someinnatesuperiorityto this combina-
tion is questionablemorelikely it is dueto the excitement
of duels:afterall, “in theendtherecanbeonly one”.

Thereare otherinterestingissuesin designingtopologies
which we will not delve into save to mentionthem here.
Oneissueis whetheror notindividualsshouldplay against
themselesaspartof their evaluation. Anotheris whether
or not to permit statisticaldependencies tness assess-
ment:whenindividual A playsagainsindividual B, should
theoutcomeaffectindividual A's tness alone,or shouldit
alsoaffectindividual B's tness?

2.1 ROUND ROBIN

One simple topology is RoundRobin where eachindi-
vidual plays every otherindividual in the population. An
individual's tness is the averageof its scoresagainstev-
ery otherindividualin thepopulation[Ax elrod1987;Koza
1992]. The primary dravbackto this methodis the rela-
tively large numberof gamesecessaryo evaluatea pop-
ulation of sizeN. The numberof gamesis (N> aN)=b,
wherea = 0 if individuals may play againstthemseles,
elsea= 1, andb = 2 if a gamecontributesto the tness
of both individuals, elseb = 1. At rst glanceit would
appearthat Round Robin topologieswould promotethe
rennaisance-mamethodologyAt thebeginningof anevo-
lutionary run, this is plausible. But asthe run progresses,
thetrajectoryof the run might shift to the “better” players,
soto speak,sothatnearthe endof therunit is searching
notfor individualswhowin themostpointson average put
oddly for individualswho win the mostpointson average
againsibthersud individuals

2.2 RANDOM-PAIRING

The other extremein the numberof gamesis to pair all
individuals up and play one gamefor eachpair. This is
theapproactusedin [Luke 1998]for evolving socceiteam
stratgies. The justi cation for this low numberof games
wastheextremecomputationatostof agame:to beevalu-
ated thetwo teamswerepluggedn asimulator anda stan-
dardgamecouldlastfor upto 10 minutes.Random-Riring
requiresonly N=2 gamesfor a populationof sizeN. The
costsavings is dramatic: for a populationof 100 andten
minutespergame Axelrod'sRoundRobinapproactwould
require833hourspergenerationwhereaskandom-Riring
would requireabout8 hours. Smithand Gray [1993] also
usedthis techniqueto evolve Othello players. The danger
of Random-Riring is that noisy evaluationmight malke it
all but impossibleto determinethe real quality of an in-
dividual basedon a singletrial. Note too thatlike Round
Robin,Random-Riring hasa similartenuousclaimto pro-
motingtherennaisance-mamethodology

2.3 SINGLE-ELIMIN ATION TOURNAMENT

[Angeline and Pollack 1993] proposed using single-
eliminationtournament$“SET") ratherthanRoundRobin
or Random-Riring. Here, individuals are paired at ran-
dom,andplay onegameper pair. Thelosersof the games
areeliminatedfrom thetournamenttiesarebrokenby ran-
domdecision.Thewinnersareagainpairedoff atrandom,
and play one gameper pair, with the losersagainelimi-

nated. This continuesuntil the tournamenthasonly one
“champion”left. The tness of anindividualis thenumber
of gamest played.Single-EliminationTournaments sim-



plestto implementwhenthe populationis a pawer of two.
AngelineandPollackreportedgoodinitial resultswhenus-
ing SETto evolve playersfor the gameof Tic-Tac-Toe.

SEThasinterestingproperties First, it would seemto pro-
mote the duel methodologyratherthan the rennaisance-
man methodology However, it only truly promotesthe
duelmethodologyunderthestrongtransitivityassumption:
thatif playerA beatsplayerB, andplayerB beatsplayer
C, thenplayerA mustbeatplayerC. Withoutthis assump-
tion, Single-EliminationTournamens real dynamicscan
be murky. The otherinterestingpropertyof SET is that
it seemdo allocategamesto thoseplayersthatmostneed
them.A populationof sizeN neednly N 1 gamesBut
“tter” playerswill be evaluatedin more of thesegames
thanthe“less t” players— theworstindividualsplay only
one gameeach,while the championplays In(N) games.
Since selectionwill tendto pick the tter players,SET
would seemto proportionmore gameshencemoreaccu-
ragy, amongthoseplayersmorelikely to be selected.

2.4 K-RANDOM OPPONENTS

In K-RandomOpponentseachindividual playsagainstK

individuals picked at randomfrom the population. If a
given gamebetweentwo individuals affectsthe tness of

justthe rst individual,thenatotalof K(N 1) gamesnust
beplayed.Thisis theapproacttakenin evolving tag play-
ers[Reynolds 1994]. K-RandomOpponentsanalso be
usedto affectthe tness of bothindividualsin agame.For
example,to evolve the Blondie24checlers player, Fogel
[2001] hadevery individual play asred against ve oppo-
nentschoserat randomwith replacementrom the popula-
tion. An individual's tness wasbasednot only onits ve
gamesasred, but also asits additionalgamesas a black
opponent.

This approachdoes not distribute gamesvery evenly
throughoutthe population, however. With some fore-
thought,t' spossibleo adapK-RandomOpponentsothat
agivengameaffectsbothindividuals,with eachindividual
usingthe samenumberof gameer evaluation.Thetech-
nigue, which we will usein experimentsbelow, works as
follows. Eachindividual maintainsa count of the hum-
ber of gamest hasplayed,andwho it hasplayedagainst.
Whenanindividuall is to beevaluatedanopponents cho-
senatrandomfrom thepopulationto play against with the
constrainthat no individual may play against morethan
once.At the endof the game the numberof-gamesoun-
tersfor | andfor the opponentareincremented.If either
counterreache«, thenthatindividual is “removed” from
the populationin the sensethatit may no longerbe con-
sideredasa future opponent A new opponenfor | is cho-
sen,andthis processcontinuesuntil individual I hasbeen
removed. Thena new playerJ is picked, and evaluation

continuessimilarly. At somepoint, for someindividual K,

theremay exist no individualsin the populationwhich can
play K. Whenthis occurs,opponentdor K are picked at
randomwithoutreplacemenfrom amongtheremovedin-

dividualsin the population. This approactyields between
d(KN)=2e andd(KN)=2e+ bK?=2c games.

RoundRobin and Random-Riring may be viewed as ex-
tremesof K for this secondkind of K-RandomOpponents.
WhenK = N 1, K-RandomOpponentss identical to
RoundRobin.WhenK = 1, K-RandomOpponentss iden-
tical to Random-Riring. Laterin the paperwe will exam-
ine K-RandomOpponentgo determinewhat value of K
seemdo give the bestresults:asit will turnout, it is nei-
therof theseextremes.

2.5 HALL OF FAME

Onelast approachin the literatureis a family of “hall of
fame”techniqueswhereindividualsin the populationare
evaluatedagainsthe goodindividualsdiscoseredsofarin
the evolutionaryrun. Karl Simsuseda simplehall of fame
whenevolving creatureavhich competedo snatcha cube
[Sims 1994]. Individualswereevaluatedagainstthe ttest
individual discoveredin the previousgeneration.

3 PROBLEM DOMAINS

The problem domainswe will testagainstfall into two
catgyories. First, we usetwo true competitve tness do-
mains, namely versionsof the Nim game. Second,we
have adaptedtwo standardevolutionary algorithm prob-
lemsand casttheminto a competitve tness form. They
are the well-studied Rosenbrockand Rastrigin problem
sets.Thesealgorithmsarecastinto competitve form using
a techniqueproposedby Ken De Jong: eachindividual's
Rosenbrockor Rastrigin)valueis assessedand an indi-
vidual's scorein a gameagainstan opponentis basedon
differencen theirvalues.

3.1 THE INTERNAL ROSENBROCK DOMAIN

The Rosenbrockfunction is a well-known minimization
problemwidely usedto studypropertief differentevolu-
tionaryalgorithms[De Jong1975]. The RosenbrocKunc-
tion for genome®f n variabless:

100x% x+1)°+ (1 x2)
i=1



Rosenbrockis corverted to the “Internal Rosenbrock”
competitve tness function as follows. When a player
A plays an opponentB, the score for A, known as
Ravard(A: B), is givenby the following normalizingfor-
mula:

RogB) RogA)

Revard(A: B) = maxRo3 min(Ro3

...wheremaxRog and min(Rog are the maximumand

minimum values of the Rosenbrockfunction over the

entire domain, which we had precomputed. Thus

Reavard(A: B) rangesfrom -1 to 1, where O represents
a drav. Note that this is a zero-sum,transitve game,
hence Ravard(B: A) = Reawvard(A:B). Keepin mind

that Rosenbrocks a minimizationfunction: thereforethe

smallerRogA) is comparedo RogB), the higherthe re-

wardfor A.

Parameters Internal Rosenbrockexperiments used a
genomeof 100realvalueseachbetween5.12and5.12,a
populationsizeof 32,a0.5 probabilityof mutation,1-point
crosswer with a probability of 1.0, 5-individual elitism,
binary tournamentselection,and a maximal run limit of
50,000games.

3.2 THE INTERNAL RASTRIGIN DOMAIN

The Rastriginfunctionis anothemwell-known testin func-
tion optimization;it is consideredlif cult to minimize be-
causédt hasasingleglobaloptimawith numerougocal op-
tima in its vicinity [Cervone et al. 2000]. The Rastrigin
functionis de ned as

Rasrigin(x:ix,) = %2+ a(l cog2px))
i=1

...wherea is a constant(setto 10.0in our experiments).
Like Rosenbrock,Rastrigin is a minimization problem.
Rastriginis corvertedto the “Internal Rastrigin” compet-
itive functionin exactly the sameway asRosenbrockvas
cornverted(thoughmax Rag wasestimated).

Parameters Internal Rastrigin experiments used a
genomeof 100 real valueseachbetween-5.12 and 5.12,
a populationsize of 32, a 0.5 probability of mutation,
1-point cross@er with a probability of 1.0, 5-individual
elitism, binary tournamentselection,and a maximal run
limit of 100,000games.

3.3 THE NIM VERSION 1 DOMAIN

Thereare mary variationson the gameof Nim, and we

have chosentwo differentversionsas competitive tness

functiondomains.The Nim Versionl domainfollows the
Nim gameasdescribedn [RosinandBelewv 1995,1996].
This versionuses4 heapscontaining3, 4, 5, and4 stones
respectiely. Playergake turnsremoving stonedrom these
heaps. A playermay remove as mary stonesas he likes
from ary single heap. Whicherer player takes the last
stonewinsthegame.Giventheserules,thereexistsawell-

understoodptimal playerstratey for the rst player

A genomicrepresentatiorfor a player behaior in this

gameis a vector of 599 bits, onefor eachpossiblesitua-

tion(4 5 6 5 1,because¢hehs;4;5;4i positiondoes
not ever needto be considered).A playermakesits deci-

sion asfollows: for eachpile p from 1 to 4, andfor each
numberx of stonesfor the given pile in decreasingrder
down to 1, the individual considerswhetheror not to re-

move x stonesfrom pile p. Remwing thesestonesyields

anew gamestatewhich correspondso oneof the 599 bits

in thegenomevector If this bit valueis 1, thenthe player
commitsto makingthat move, andno otherconsideration
is made.If all suchvalid stateshave 0 bit values the player
malkesthe rst valid moveit hadconsidered.

As the existenceof a perfectstratgy depend®nwho goes
rst, a competitionbetweentwo individuals consistsof 2
gamesgachplayerstartingoneof them. Revard(A: B) is
thesumof scoredor playerAin thesetwo gamesFor each
gamea0.5is rewardedfor awin anda-0.5for aloss.The
sumof therewardsfor thetwo gamess therefore-1, 0, or
1.

Parameters Experimentsn this domainuseda genomeof
599 bits, a populationsize of 128, a 0.003probability of
mutation, 1-point cross@er with a probability of 1.0, 10-
individual elitism, binary tournamentelection,anda run
limit of no morethan100,000games.

3.4 THE NIM VERSION 2 DOMAIN

The secondversionof Nim usedin this papercontainsa
singleheap,but the numberof stonesa playercanremove
is boundedy aminimumanda maximumvalue.For these
experimentsthe heapstartsat 200 stonesandeachplayer
is allowedto pick 1, 2 or 3 stonesat a time. In this con-
guration, the secondplayerhasanoptimal stratgy which
will forceawin.

Justasin Nim Versionl, in this gamethe individualsare
representedsvectorswith asimilar mappingof bitsto the
199 possiblestates(exceptingthe initial state). Decision-
makingis alsosimilar. Theplayer rst considergemoving
3 stoneqlassuminghat 3 stonesareleft in the heap).If 1
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is in the bit positioncorrespondingo theresultingstateaf-

terremoving those3 stonesthenthe playerwill make that
move. Otherwise the playerconsidergemoving 2 stones.
Barringthat, it will consideremaving 1 stone.If all three
resultantstateshave 0 in their bit positions thenthe player
will remove the most stonespermissible. A competition
betweertwo individualsis doneidenticallyto theNim Ver-

sion1 problem.

Parameters Experimentsn this domainuseda genomeof
199 booleanvalues,a populationsizeof 128,a 0.03prob-
ability of mutation,1-pointcross@erwith a probability of
1.0,10-indwidualelitism, binarytournamenselectionand
arunlimit of nomorethan100,000games.

4 EXPERIMENTS

The experimentgresentedhereprobethe following ques-
tion. You have 3 monthsuntil the deadlineto submit
an evolved gameplayer to a computergaming competi-
tion. Evaluationis expensve andyou'll only getoneshot.
With a x ed maximumnumberof gamesplayable until

competition-time,what topologiesare likely to get good
results?

We will compareSET and various K-randomopponents
topologiesover the four problemdomains,usinga single-
population, generationalgenetic algorithm, with binary
tournamenselectionmutation,crosseer, andelitism. Ex-
perimentalruns are done by evaluatingindividuals up to
somemaximalnumberof gamesthe maximalnumbermnwas
previously speci ed in the parameterdor eachdomain.
Keepin mind thatanevaluationis notthe samething asa
game Sometopologiesequireagreatmary gamesplayed
before an individual's tness is determined. Thus each
graphcomparedifferenttopologies' performancegiven
the samenumberof resources.

Ultimately we are trying to determinewhat topology is

likely to give the “best results”. To comparetopologies,
we needa nal external tness usedfor comparingbest-
of-run resultsbetweentopologies,as opposedo the sub-
jectiveinternal tnessusedto selectindividualsduringthe
runsthemseles. For the InternalRosenbrockandInternal
Rastriginproblems the external tness of anindividual is

clearly objective andclearly computableit's just the indi-

vidual's performancen the Rosenbroclor Rastriginfunc-
tions.

For the Nim gameshowever, we arefacedwith the classic
external- thessconundrum:the only obvious external t-
nessmeasuresvailableare subjectve, thatis, they're de-
terminedin the context of otherindividuals.In theabsence
of ary clearobjective measureywe mustresortto a subjec-
tive way to scorethe nal performanceof the best-of-run
individuals for arny given Nim topology To do this, our
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approachs to determinethe bettertopologiesby literally

playingtheir “best” individualsagainsteachother For ary

given applicationof a topology, we perform50 indepen-
dentruns. For eachrun, we determinea “bestof run” by

takingthe best-of-generatiomdividualsfrom eachgener

ation,andplacingthemin a singleeliminationtournament.
Thusfor eachapplicationof a giventopology we have 50

best-of-runindividuals. To compareseveral topologiesfor

a particularproblemdomain,we thentake the 50 best-of-
run individualsof eachtopologyandplay all of themin a

RoundRobin tournament. The “quality” of a best-of-run
individual in the nal tournamentis equalto its average
scoreagainstothersin the tournament. Thus the “qual-

ity” of a particulartopology is the meanof the qualities
of its best-of-runindividuals. This may not necessarilyoe

anidealcomparisommetric(we don't know if anidealeven

exists),but we feel it is areasonablene.



4.1 RESULTS

We ran all experimentson the ECJ7 evolutionarycompu-
tation systemLuke 2001]. Figuresl through8 show box-
plotst comparingSETwith K-RandomOpponentsFigures
1 through6 usevaluesof K rangingfrom 1 to 31; Figures?
and8 useK valuesof 1 to 25,30, 35,40,45,50,60, 70,80,
90,100,127. Theverticalacces®lotsexternal tness val-
uesof thebest-of-rurindividualsfor varioustopologies.In
the RosenbroclandRastrigindomains the externalscores
weretheactualRosenbroclor Rastriginfunctionvaluesfor
the best-of-runindividuals. In the Nim domains the nal
RoundRobincompetitionto determinesxternalscoreson-
sistedof every best-of-runindividual plottedin the com-
binedgraph.

Figures2 and 3 show the effects of addingnoiseto the
Rosenbrocldomain,andFigures5 and6 shav similar ef-
fectsfor the Rastrigindomain. Noisewas addedby ip-
ping a coin with the given noiseprobability thatthe play-
ers' scoresvereto be swapped.Noisewasnot usedin the
displayof external thess results.

K-Random OpponentsResults We foundthatthe over-
all layout of the graphsis very similar acrossall four do-
mains: asthe value of K increasedexternal tness rose,
thendropped.The dome-like resultsfor K-RandomOppo-
nentssuggestshatneitherRandom-Riring (whereK = 1)
nor Round Robin (whereK is large) is likely to yield a
goodresult. Indeed,we imaginethat Round Robin will

often comein deadlast! In the Internal Rosenbroclkand
InternalRastrigindomainswith no noise,Random-Riring
performedreasonablyvell, but with morenoise,it did in-
creasinglypoorly.

Why is this happeningur hypothesids thatin noisy or
intransitve domainspnly afew gamegerevaluationis not
sufcient to cut throughthe noise,andevolution proceeds
slowly. Thenasthe numberof gamesper evaluationin-
creaseat somepointit becomesverkill: moregamesare
simply cuttingthetotal availableevolutiontime.

This result is similar to the one obtained for non-
coevolutionary EAs [Grefenstetteand Fitzpatrick 1985]
whendeterminingthe optimal numberof evaluationsof an
individual in a noisy ervironment,wherethe tness was
calculatedas the averageof the resultsof several evalua-
tions. Grefenstetteand Fitzpatrick too reportedthat one
samplemight not provide enoughinformation, while too
mary samplesnightnotleave enoughgenerationor good
resultswhen the total numberof evaluationsis bounded.
They reportedthattensamplegperevaluationgave thebest

1in aboxplot,therectangularegion coversall valuesbetween
the rst andthird quartiles the stemsmarkthefurthestindividual
within 1.5 of the quartile ranges,and the centerhorizontalline
indicateshe median.Dotsshaw outliers,and marksthe mean.
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resultsin animageregistrationproblem. While we typi-
cally found fewer samplesverenecessaryn our coevolu-
tionaryapproachtengavereasonableesultsn mostcases.

Single-Elimination Tournament Results The SET re-
sultswere surprising. Whenthe amountof noiseis small,
SET performsasgoodasor betterthanall othermethods
presentedeventhoughit hasrelatively few gamegereval-
uation. As noiseis increasedo 40% in the Rosenbrock
domain,though,SET's performancdosesits luster Why?

Figures9, 10 and11 comparethe external tness best-so-
far curvesof SET andthe bestperformingK-RandomOp-
ponentstopology with 0%, 30% and 40% noiserespec-
tively. These gures suggestthat SET is corverging too
rapidly: asthe eld improves,thisbecomes hindranceln
Figure11, ultimately 7-RandomOpponentss statistically
signi cantly better(usingat-testat 95%).

It seemsthat K-Random Opponentsmight be a better
choicethan SET, particularly if noiseis high. The trick,
though,is determiningwhatvalue of K to use. In the ab-
senceof ary prescienceSET mightbethe bestoption.

5 CONCLUSIONS AND FUTURE WORK

Our experimentsshaved that the extremes of the K-
RandomOpponentsmethod usually lead to worse nal
resultsthanintermediate(preferablysmall) valuesfor K.
Even if gamesare very expensve, the concernthat led
to Random-Riring in [Luke 1998], we still think 5 to 10
gamesper evaluationis likely to yield a betterresult. A
full Round-Robintournamentappeardo be alwaysa bad
choice.Ourdatasuggestshatthe Single-EliminationTour-
namentmaybetoo aggresaie in noisy competitions)ead-
ing to prematurecorvergencerelative to 5- to 10-Random
OpponentsOtherwiseit seemso beagoodchoice.

Thoughmary graphsare similar, honethelessnteresting
featuresstandout. Onesurpriseis the very strongperfor

manceof Single-EliminationTournamenin the Nim Ver-

sion1 game.Thissuggestslynamicsspeciako thisdomain
which, on closerinvestigation,may shedlight on SET's
performancen general.DoesNim Versionl promotethe
duelmethodologyn away notfoundin Nim Version2, for

example?Exceptfor noise thelnternalRastriginandinter-

nal Rosenbroclkdomainsarefully transitive: mightthis ex-

plain the deterioratiorof SET undernoise?In future work
we hopeto examinethe dynamicsof suchtopologiesin

theseandotherdomainsmoreclosely
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Why use Elitism and Sharing in a Multi-Objective Genetic Algorithm?

Robin C. Purshouse and Peter J. Fleming
Department of Automatic Control and Systems Engineering
University of Sheffield, UK.

Abstract The performance of a baseline MOGA optimiser is
established in Section 3. The effects of elitism and sharing
are then considered with reference to this baseline. An

Elitism and sharing are two mechanisms that are  elitist strategy, based on Zitzler's [199@hiversal elitism

believed to improve the performance of a multi- is developed in Section 4. Sharing methodologies for the
objective evolutionary algorithm (MOEA). Using promotion of diversity are discussed in Section 5. A new
a new empirical inquiry framework, this paper parameter-less technique, formulated as an

studies the effect of elitism and sharing design accompaniment to Pareto-based ranking, is compared to
choices using a benchmark suite of two-criterion the standard parameter-based approach. In Section 6, a
problems. Performance is assessed, via known high-performance MOGA incorporating both elitism and
metrics, in terms of both closeness to the true  parameter-less sharing is investigated.

Pareto-optimal front and diversity across the

front. Randomisation methods are employed to 2 EMO INQUIRY FRAMEWORK

determine significant differences in performance.

Informative visualisation of results is achieved 21 TESTSUITE

using the attainment surface concept. Elitism is
found to offer a consistent improvement in terms
of both closeness and diversity, thus confirming
results from other studies. Sharing can be
beneficial, but can also prove surprisingly

The established set of test problems developed by Zitzler
et al [2000] (ZDT) is used in this study. The suite consists
of six, tractable, two-criterion functions, with varying
characteristics as summarised in Table 1.

ineffective. Evidence presented herein suggests Table 1: Test function characteristics

that parameter-less schemes are more robust than

their parameter-based equivalents (including NAME ATTRIBUTES

those with automatic tuning). A multi-objective ZDT-1 Convex front

genetic algorithm (MOGA) combining both

elitism and parameter-less sharing is shown to ZDT-2 Non-convex front

offer high performance across the test suite. ZDT-3 Non-contiguous convex front
1 INTRODUCTION ZDT-4 Many local fronts, single global convex front]
Evolutionary — multi-criterion  optimisation ~ (EMO) | £PT-2 Deceptive problem, convex front
practitioners are faced with a number of design choices zpT-6 Non-uniform distribution, non-convex front
beyond those encountered in a standard evolutionariy

algorithm (EA). Suitable strategies for elitism and sharing

can significantly improve optimiser performance. This2.2 ~MEASURING PERFORMANCE

paper presents new evidence and understandingerformance of a MOEA can be decomposed into two
concerning elitism and sharing that will help practitionerscyiteria:

to make informed choices. Through the application of )

tractable algorithm modifications and a rigorous  Closeness— the nearness of the obtained non-

experimental framework, the effect of MOEA component- ~ dominated solutions to the true front.
level choices can be more clearly exposed. Diversity — the coverage of the trade-off surface by
An EMO empirical inquiry frameworks introduced in the obtained solutions.

Section 2. The dual performance metrics of closeness angihe igeal outcome, in test cases of this type, is a final
diversity are measured using the generational distance a pulation with a uniform distribution of globally non-
spread metrics respectively. Statistical comparisons argominated solutions spread across the entire trade-off
then made using randomisation testing. Information-richy, face. Various performance metrics have been proposed
visualisations of the identified trade-off surfaces arety measure closeness, diversity, and in some cases both
obtained using at_tainment surfaces. The analysis is basqggether. Some metrics require that the global trade-off
on the two-criterion set of test problems proposed bygface is known and can be sampled (straightforward in
Zitzler et al[2000]. the ZDT cases), whilst others involve a purely relative



known performance metricsgenerational distanceto

attainment surfacet® provide visualisation.

Generational distance— an average of the Euclidean
distances between each obtained solution and thé.
nearest point on the true front [Veldhuizen, 1999].

Spread — the sum of the differences between nearest
neighbour distances and the mean of all such2.
distances, coupled with a term to account for the
extent of the obtained front [Dedt al, 2000].

Attainment surface — the boundary in criterion- 3
space that separates the region that is dominated by
the obtained solutions from that which is non-

dominated [Fonseca and Fleming, 1996]. 4.

comparison of two results sets. This study utilises three€lhe central premise of the method is that, if the observed
result has arisen by chance, then this value will not appear
measure accuracyspread to measure diversity, and unusual in a distribution of results obtained through many
random relabellings of the samples. The randomisation
method proceeds as follows:

Compute the difference between the means of the
samples for each algorithm: this is the observed
difference.

Randomly reallocate half of all samples to one
algorithm and half to the other. Compute the
difference between the means as before.

Repeat Step 2 until 5000 randomised differences have
been generated, and construct a distribution of these
values.

If the observed value is within the central 99% of the

The superposition of multiple attainment surfaces can be  distribution, then accept the null hypothesis.
treated statistically and also provides a rich qualitative ~ Otherwise consider the alternative hypotheses. This is

indication of performance. A typical plot is shown laterin @ two-tailed test at the 1%-level.

Figure 1. The heavy line indicates the 50%-attainmentrhe ny|| hypothesis is that the observed value has arisen
surface (akin to the median), the thinner lines show th&nrough chance and so there is no performance difference
25% and 75% surfaces (quartiles), and the dotted linegetyeen the two configurations. The alternative
describe the 0% and 100% surfaces. Thus locationgynotheses are that the difference is unlikely to have
dispersion, and skewness information can be obtained in gisen through chance and that one configuration has
similar manner to the box plot [Cleveland, 1993]. outperformed the other (depending on which side of the
distribution the observed difference falls, and the direction
in which the difference has been calculated).

Upon completion of a single run of a specific MOEA Note that the observed value is included as one of the

configuration on a particular problem, three sets of Non+anqom relabellings since, if the null hypothesis is true,

dominated criterion vectors (and associated solutions) arg,an this value is one of the possible randomisation

obtained, namely: results. 5000 randomisations is regarded as an acceptable
final population — the non-dominated vectors in the quantity for a test at the 1%-level [Manly, 1991].

final population of the algorithm, The results of randomisation testing are simple to
visualise, as shown by the example in Figure 3. The
randomised results are described by the grey histogram,
off-line archive — the complete set of non-dominated whilst the observed result is depicted as a filled black
vectors identified by the algorithm. circle. Each row shows the performance on a particular

The first of these sets is used for analysis and comparisof¢st function (from ZDT-1 at the top, to ZDT-6 at the
purposes in this study since it provides the mostPottom). The left-hand column indicates the relative

appropriate measure of the on-line trade-off surfaceP€rformance regarding closeness, and the right-hand
maintenanceapabilities of an algorithm. column shows the corresponding difference in diversity.

2.3 ANALYSING PERFORMANCE

on-line archive — the final elite set of vectors, and

An evolutionary algorithm is a stochastic process andgz BASELINE MOGA
thus, multiple runs (samples) are required in order to infer
reliable conclusions as to its performance. Hence, 35 run§ 1 DESCRIPTION
have been conducted for each MOEA configuration when

applied to a particular test problem. The performance offhe baseline optimiser used in this study has been
the algorithm is expressed in the resulting distributions ofdeveloped according to the holistic design principles
generational distance and spread. A statistical comparisoghampioned by Michalewicz and Fogel [2000] and has

of two configurations is then possible through the use of @reviously been shown to be effective at solving the ZDT
test statistic. test problems [Purshouse and Fleming, 2001]. A summary

of the algorithm is provided in Table 2.
In this study, the mean difference between two 9 P

generational distance (or, alternatively, spread)The multi-criterion performance of a solution is scalarised
distributions is taken as the test statistic. The significancéising Fonseca and Fleming’s [1993] Pareto-based ranking
of this observed result is then assessed usingrocedure. A solution is ranked according to the number
randomisation testing This is a simple, yet effective, Of solutions in the population that apeeferredto it. If the
technique that does not re|y on any assumption@ﬂtire Pareto-optimal front is to be identified, the
concerning the attributes of the underlying processespreference relation collapses to a test for Pareto
unlike conventional statistical methods [Manly, 1991]. dominance.



Table 2: Baseline configuration decision variables. The other test problem, ZDT-5,
explicitly uses binary variables, thus a binary
representation is natural for this problem.

EMO COMPONENT STRATEGY

GENERAL Different representations require different search
?ggljlggr?gr:tizc?ns %gg operators. For the binary chromosome case, the familiar
single-point  two-parent crossover and bit-flipping
ELITISM None : mutation operators are employed. Good results are known
EVALUATION [1] Fonseca and Fleming [1993] | 4 pe achievable using this simple approach [Zitzeel,
E?rﬁt:;;?;te:ersz”:;g?'nmem il 20001 For real representations, the so-calladive
rank-wise averaging. 9 crossovets used in conjunction with aussian mutation
[3] No modification of fitness to operator. Thg former pf these search tools is a very simple
account for population density. two-parent §|ngle-p0|nt _crossover operator, where. t.he
SELECTION Stochastic universal sampling crossover sites are limited to points between decision

REPRESENTATION variables. This offers quite a Iow-povyer search, since it
cannot generate any values for decision variables that

Real parameter Concatenation of real number ! > '

functions decision variables. Accuracy were not present in the original popu!atlon. However,
bounded by machine precision. when coupled yvnh a complemer)t.a_ry hlgh-powgr search

Binary function Binary string, 80 bits in length. tool, the resultl_ng _search capabilities are coq5|de?ab!e_

OPERATORS Gaussian mutation is one such operator. Its main benefit is

For real representations [1] Naive crossover that it providgs .tuneabl_e search power in the form of the
Probability = 0.8. standard deviation. This can be exploited to provide on-
[2] Gaussian mutation (initial line adaptation that avoids the generation of infeasible

search power of 40% of variable solutions and controls convergence speed by varying the
range; sigmoidal scaling set to 1 search from near global early on to very local towards the

feasibility requirement of one end. Sigmoidalvariation, as a function of the percentage
standard deviation). of generations completed, of the standard deviation is
Probability = Expected value of 1 useful because it allows concentrated periods of high- and
phenotype per chromosome. low-power search [Purshouse and Fleming, 2001].

For binary [1] Single-point binary crossover

representations Probability = 0.8. 3.2 PERFORMANCE
[2] Simple bit-flipping mutation. . . .
Probability = 1/80. Attainment surfaces illustrating the performance of the

baseline algorithm are shown in Figure 1. Particularly

good results were achieved for ZDT-1, ZDT-2, and ZDT-

When ranking is complete, initial fitness values can be3 (Figures la, 1b, and 1c respectively) in terms of both
prescribed. The population is sorted according to rank andloseness to the global Pareto front and diversity across
fitnesses are assigned by interpolating between the highettie front. The tight envelopes of attainment indicate the
fitness value for the best rank and the lowest fithess valudigh level of consistency achieved in these cases. The
for the worst rank. In the baseline algorithm, linear MOGA struggled to achieve good coverage of the surface
interpolation is used and fitness is varied between thes f, approaches zero on ZDT-2. Note that this is a region
population size (highest) and unity (lowest). The ratio ofwhere there is little trade-off between the objectives.

these two fitnesses is a definition of thelective pressure - . .
. . - As shown in Figure 1d, the wider envelopes of attainment
of the assignment mechanism. Solutions of the same rankroduced for the multi-fronted ZDT-4 signify entrapment

thgr} have f[helr fitnesses adjusted to the average of th!% a locally non-dominated front. On no occasions did the
original assignments for that rank.

MOGA converge to the global trade-off surface although
Part of this study is concerned with the effect of diversity-coverage across the identified fronts was good.

ggisveer\]filt?]ge gggﬁﬂ?&iﬁﬁ Sﬁgﬁaegf?;eugg erpt:mapnullatlon of thei’he baseline MOGA achieved reasonablg cIosene;s to the
global front on ZDT-5. Performance on this deceptive test
Stochastic universal samplingas been chosen as the function is depicted in Figure le. Note that on no
selection mechanism [Baker, 1987]. This method achievesccasions was the algorithm able to identify the extreme
maximum spread with minimal bias, but is non- right-hand section of the discrete trade-off surface.
arallelisable. In total, 100 selections are required sinc
fhe chosen reinsertion strategy is that all offquring replaczqa.ther poor performance was observed on the non-
all parents (no generational gap) and since for the choseﬁmform ZDT-6, as shown in Figure 1f. Coverage was

- B specially poor on the less dense area of the front. This,
gggg::ﬁgoperators two parents are required to produce tw ogether with the missing section of the ZDT-5 front, is

Since five of the test problems feature real number,

decision variables, it is logical to use a real number ;
. f h bl H did revents the convergence failures encountered by llietdal
representation for these problems. Hence, a candida 001], thus showing that MOEA failure cannot be solely

solution is described by a concatenation of phenotypig)jamed on the use of Pareto ranking in these cases.

Coincidentally, the incorporation of naive crossover largely
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Figure 1: Attainment surfaces — baseline MOGA solving the ZDT problems

the strongest indication that density-based sharing wouldbng been considered an effective method for improving
be beneficial. Closeness to the true Pareto front is also nahe efficiency of an EA [De Jong, 1975]. Various recent
good. Only the 0%-attainment surface lies on the globaktudies in the EMO community have indicated that the
front, where coverage is particularly poor. Furthermore,inclusion of an elitist element can considerably improve
the position of this front with respect to the median andthe performance of an MOEA [Zitzlest al, 2000; Debet
quartiles suggests that this result is something of aral, 2000]. The two main issues are (1) how to manage the
outlier. size of the elite sub-population, and (2) how to use elitism
to drive the search effectively.

4 ELITIST STRATEGY The elitist strategy adopted in this study is a variant on the
Elitism is the process of preserving previous high-approach developed by Zitzler [1999] and is illustrated by
performance solutions from one generation to the nextthe schematic in Figure 2. The key difference is that the
This is conventionally achieved by simply copying the archive size is allowed to vary within pre-defined limits,

solutions directly into the new generation. Elitism hasWwhilst the number of newly generated candidate solutions



is varied such that the total population size (elites pluspremature convergence. Hence, the increased convergence

new solutions) is held constant. exhibited in this study is expected.
Generational distance Spread
— | | | |
. Lo
T . L

Figure 3: Elite versus baseline

The elitist scheme also maintains the characteristics of the
currently identified trade-off surface within the on-line
population. Thus, diversity of non-dominated solutions in
the population is maintained and encouraged (through the
thinning of similar criterion vectors) by the truncation
mechanism. This helps to explain the improvement in

Figure 2: Elitist strategy

The on-line archive is initialised to the empty set, whilst
the initial population is initialised to a random set of

candidate solutions (possibly seeded with Inform"’mondiversity seen in the results. However, the truncation

pr%wded tf[y.t thet_ deC|sf|;)hn-m?ke?H The &Op“'at'g.”s t.atgrocess only represents the current distribution: it does
subsequent terations ot the algonithm are the combinatio ot, directly (though fitness), drive the search towards a

of ne(;/v sc_)luttlogs a?ci_curre_nttﬁllte solultlct)'ns. The.gurrfptlgsuperior distribution. Despite this fact, the inclusion of
non-gominated solutions In the population are 10entiliede iisy, gig lead to improved diversity on the non-

and are stored as the new, potentially over-sized, archive, e 1 gistributed ZDT-6. Modifications to the fitness,

Ovir_—reprisented solutlons_are :Egrlgél&mzln?ted f:_om th uch as those arising through sharing, may assist further in
archive, 1 necessary, using -¢ truncation improving diversity across the trade-off surface.

procedure [Zitzleret al, 2001]. This is an effective

reduction technique for two-criterion problems. 5  SHARING STRATEGY

When the new elite set has been finalised, the size of this

set is known, and thus the number of new candidat&s,1 INTRODUCTION
solutions required to fill the population can be calculated. . S .
These solutions are created through the selection anQne .Of t_he ams of a mult_l-ol_)jec_tlve evolufuonary
genetic manipulation of members of the currentalgor'thm is to obtain a suitabléistribution of candidate

population. The new solutions are then combined with theSOIUtiOnS _in regions qf intere_st to the decis_ion-maker. In
elite set to form the total population, which completely an evolutlo_nary algorithm, th's. can be achieved through
replaces the old population ' the formation of sub-population clusters — known as

niches— within the global populationFitness sharings
This elitist strategy has been integrated within the baselinghe most popular method for fostering this niching process
MOGA and has been applied to the test problems{Goldberg and Richardson, 1987]. In this approach, the
Randomisation test results between the elitist model angaw fitness value of a candidate solution is reduced by a
the baseline are shown in Figure 3. Observed differencefactor dependent on the local population density. This
to the left of the randomisation distribution offer evidence measure should be made in the domain over which a good
in favour of the elitist version outperforming the baseline distribution is of interest: usually criterion-space.

case.

There is considerable evidence, clearly shown by the-2  PARAMETER-BASED METHODS

results in Figure 3, that the elitist algorithm producesFitness sharing has been shown to combat the problem of
results closer to the true front than the baseline for ZDT-1genetic drift(population convergence to a single point due
2, 3, 4, and 6. Superior performance in terms of diversityto stochastic selection errors), thus helping to attenuate the
is strongly suggested for ZDT-1, 2, 4, 5, and 6. possibility of sub-optimal convergence and to enhance
ppoverage of trade-off surfaces. However, the power law
The danger of sub-optimal convergence is somewha'téqqa.“pn on which Fhe technique is based requi(es a
reconciled by the distributed nature of the elite set. High-def'n!t!on of cI.osenessm ordgr to calcula.te the populatlgn
power search operators, such as the Gaussian mutati(??ns't'es' This can be d|ff|cu|t to estimate In practice.
operator used in this work, can also reduce the risk o urthermore, the method is sensitive to choice of this

Elitism increases the convergence speed of the algorith



niche size parameter. Several methods have beemresolution of the Fonseca and Fleming [1993] Pareto-
proposed in order to estimate the niche size, for exampléased ranking procedure through the inclusion of
Deb and Goldberg [1989] and Fonseca and Flemingopulation density information. Anintra-ranking is

[1993], of which the dynamic approach of Fonseca andperformed on candidate solutions of identical Pareto-
Fleming [1995] is particularly interesting. based rank, discriminating on the basis of population

Fonseca and Fleming [1995] noted the similarity betweendenS'ty at that rank. Solutions in less dense areas receive a

the power law sharing function and trEpanechnikov superior intra-ranking to their counterparts in denser

kernel density estimator used by statisticians. The kemegeglons. This approach requires a definition ditance

smoothing parameter used in the estimator was found t Euclidean nearest neighbour is used herein) but does not

be directly analogous to the fitness sharing niche sizdeauire a definition of closeness. In practice, the distance

parameter. The key benefit of this is that statisticians havgger:(r:lgivsbl“kelyintglugg pr%belgimsiog_erﬁzﬂgrem a?gfefg:é‘i
developed successful techniques for estimating the valug e : . b _

) . Ihformation. Following the new fine-grained ranking
of this parameter [Silverman, 1986]. Furthermore, the rocess. the fitness assianment oprocedure remains
approach is amenable to update at each generation of ﬂpenchan ,ed 9 P
EA population. This approach can be regarded as’ ged.
parameter-based sharing with automatic tuning. Using this scheme, if one candidate solution is preferred

Epanechnikov sharing has been added to the baseli tg (dominates) another, then the former is guaranteed to
P 9 r}1ave a superior fitness value. Also, when all solutions are

MOGA and has been applied to the benchmark prObIemSr'1on-dominated, discrimination is based purely on density.

Sharing is performed using the Euclidean distance metric, . " I .
in the criterion domain. Results of a randomisation?.f’ n addltloq, thg density is globally uniform then all
fitnesses are identical.

comparison with the baseline algorithm are shown in
Figure 4. Observed values that favour the sharing schem@#ith any type of ranking scheme, information content is

will lie to the left of the randomisation distribution. lost. Ranking indicates that one solution lies in a more
densely packed region than another solution but the actual

Spras difference in density between the two is lost. This limits

[ J ) l the amount of information available to the search
procedure but protects against premature convergence to

wrz locally superfitsolutions and removes the requirement for

a niche size setting.

3| I ) l The results for this new sharing scheme, compared to the
non-sharing baseline model, are shown in Figure 5. The

ore central aim of sharing is to improve the distribution of

‘ solutions in criterion-space and this should be primarily
) l :I I evident in the spread results. There is strong evidence to
~ ~ . suggest that the new method improved spread on ZDT-3

w6 - and ZDT-4. The use of the Epanechnikov kernel, by
: : ; contrast, did not improve results on these problems. In no

difference between population means = observed difference

case was the absence of a sharing mechanism shown to be
preferable. However, there is little evidence to suggest
that the use of sharing made any difference to the results

The inclusion of Epanechnikov sharing has improved botHor ZDT-6. This is particularly disappointing since this
aspects of performance on the non-uniform ZDT-6. NotdProblem ha§ a n_on-_unlfor_m dlstrlt_)utlt_)n across its trad(_e-off
in particular that a method designed to improve diversitysurface:_a situation in which sharing is considered a highly
has also helped to improve convergence, thus suggestirf’Propriate strategy.

the strong interaction between the two performance

criteria. However, no improvements in either diversity or -

closeness have been achieved for any other test functio ' ' ) l
Indeed there is some evidence to suggest deterioration i
diversity on ZDT-1. The lack of improvement to diversity
is of particular concern, since the elitist results in Section

Figure 4: Epanechnikov versus baseline

012

4 have indicated that diversiganbe greatly improved on ) l L l
these problems. A possible explanation for the lack of

success is that the automatic parameter selection i : s

providing poor estimates.

5.3 PARAMETER-LESS METHODS I I [ : J
The difficulty and inconvenience involved in determining

the niche size value has led many researchers t B e o

investigate parameter-less methods for achieving niching
A new approach is presented here that increases the Figure 5: New sharing versus baseline
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Figure 6: Attainment surfaces — elitist, parameter-less sharing MOGA solving the ZDT problems

ZDT-5, as shown in Figure 6e. Finally, closeness and
6 HIGH-PERFORMANCE MOGA diversity have been much improved on ZDT-6 (Figure 6f).

The use of an elitist strategy or a parameter-less Sharin@omparisons with the baseline MOGA are made using

strategy in isolation has been shown to offer improved angomisation testing in Figure 7. Observed differences
performance. It is instructive to also consider the effect ofi4¢ |ie 1o the left of the randomisation distribution favour
these schemes in combination. Attainment surfaces fthe new algorithm. Compelling evidence points to the

such an algorithm are shown in Figure 6. The envelopeg gorithm substantially outperforming the baseline in
of attainment are generally very tight, indicating good tgrms of diversity across all six benchmark problems. The
consistency. As evident from Figure 6d, closeness hagompinationof elitism and new sharing was required in

been greatly improved on ZDT-4: indeed the 25%-qqer to achieve this notable result: neither elitism nor
attainment surface lies very close to the global front Ofsharing alone was shown to be sufficient. Improved

this difficult test problem. Complete coverage of the right- .|nseness was observed for ZDT-1, 2, 4, and 6 (the result
hand portion of the trade-off surface has been achieved fogy; 7pT.5 is not significant at the 1%-level).
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Abstract

This study investigates the decision making
between tness function with di ering vari-
ance and computational-cost values. The ob-
jective of this decision making is to provide
evaluation relaxation and thus enhance the
e ciency of the genetic search. A decision-
making strategy has been developed to maxi-
mize speed-up using facetwise models for the
convergence time and population sizing. Re-
sults indicate that using this decision making,
signi cant speed-up can be obtained.

1 Introduction

Signi cant progress has been made both in analysis
and design of genetic algorithms (GAs) over the last
decade. Design procedures for the development of
competentGAs have been proposed and much progress
has been made along these lines (Goldberg, 1999). A
GA is called competentif it can solve hard problems
quickly, accurately, and reliably. In essence, compe-
tent GAs take problems that were intractable with the
rst generation GAs and render them tractable. Com-
petent GAs successfully solve problems withbounded
diculty oftentimes requiring only a subquadratic
(polynomial) number of function evaluations.

However, for large-scale problems, the task of com-
puting even a subquadratic number of function evalu-
ations can be daunting. This is especially the case if
the tness evaluation is a complex simulation, model,
or computation. This places a premium on a variety
of e ciency-enhancement techniques Therefore GA
practitioners resort to approximate tness functions
that are less expensive to compute. Such approxima-
tions introduce error in assessing the solution quality.

Usually, one has to choose among a set of thess func-

tions with varying degrees of error. The choice of a
tness function has a large impact on the computa-

tional resources and the solution quality. Oftentimes,

practitioners choose a tness function on an ad hoc ba-
sis which might not necessarily be the correct choice.
Therefore, there is a need to investigate which tness
function should be used and under what scenarios.

However, error comes in two avors: bias and vari-
ance. Variance and bias a ect the search process in
di erent ways and therefore have to be handled in dif-
ferent manner (Keijzer & Babovic, 2000). This paper
considers the decision making under the presence of
variance alone and decision making in the presence of
bias is presented elsewhere (Sastry, 2001). This sepa-
ration will not only ease the analytical burden, but also
highlight the di erence in the decision-making proce-
dure.

This paper investigates the decision-making process
between two tness functions with di ering variance
values and computational costs. Although the tness
function with low variance requires a smaller popu-
lation size and converges faster, the overall computa-
tional cost can be higher due to its higher cost. On
the other hand, the low-cost tness function is cheaper
to compute, but both the population size and the con-
vergence time increase, which in turn increases the to-
tal computational cost. Therefore, one has to choose
one of the two tness functions. The objective of this
study is to develop a decision-making strategy that
yields maximum speed-up. Facetwise models for con-
vergence time and population sizing are used to predict
speed-up and these models are veri ed with empirical
results along the way.

This paper is organized as follows. Section 2 briey
discusses the past work on handling error in tness
functions. The problem addressed in this paper is de-
ned in section 3. Then, facetwise models for con-
vergence time, population size and total number of



function evaluations are developed in the subsequent
section. The strategy that yields maximum speed-up
is discussed in section 5. Finally, a summary and key
conclusions of this study is presented.

2 Literature Review

E ciency-enhancement techniques are essential for
solving large-scale, complex search problems. One
such technique isevaluation relaxation. Evaluation-
relaxation schemes try to reduce the computation bur-
den by utilizing inexpensive, but error-prone tness
assignment procedures instead of an expensive, but
accurate tness function.

Grefenstette and Fitzpatrick (1985) studied the util-
ity of approximate evaluations in an image registra-
tion problem and obtained signi cant speed-up by
random pixel sampling instead of complete sampling.
Follow-up studies (Fitzpatrick & Grefenstette, 1988;
Mandava, Fitzpatrick, & Pickens, 1989) have pro-
vided further evidence of e ciency-enhancement by
using approximate tness evaluations. Early studies
of approximate function evaluations were largely em-
pirical, and a design methodology for predicting the
behavior of GAs was lacking. Miller and Goldberg
(1995) provided a theoretical framework for handling
noisy function evaluations. Speci cally they developed
convergence-time models in the presence of external
noise. Miller and Goldberg (1996) extended the con-
vergence time model for di erent selection methods.
Miller (1997) proposed a detailed design methodology
including development of population-sizing model and
optimal sampling prediction for noisy environments.

Other studies exist on utilizing approximate tness
functions to speed-up the genetic search (Ratle, 1998;
El-Beltagy, Nair, & Keane, 1999; Jin, Olhofer, & Send-
ho, 2000; Albert, 2001). However, an exhaustive sur-
vey is beyond the scope of this study.

3 Problem De nition

Consider two noisy tness functions f; and f, for a
search problem. Functionsf; and f, consist of zero-
mean Gaussian noise of variance3  and 3, respec-
tively. The cost of a single evaluation off; is ¢; and
that of f; is c,. Also, §, < §,,andci >cy. That
is, f1 is a high-cost, low-variance function, andf, is a
low-cost, high-variance tness function. The objective
is to correctly decide which tness function to employ
so as to obtain highest speed-up. As will be seen later,
this decision has to be made spatially. To achieve this
goal, we rst have to develop appropriate models for
the convergence time and the population size required.

4 Facetwise Models

In this section, we will develop a facetwise model for
convergence time of GAs in presence of external noise.
Then an existing model for population sizing is pre-
sented and these models are used to compute an ex-
pression for the total number of function evaluations.
Finally, these facetwise models are veri ed with em-
pirical results.

4.1 Convergence Time

Understanding run duration is one of the critical fac-
tors for analyzing GAs. Elsewhere, a motivation and
the utility of understanding time has been discussed
Goldberg (in press). Three main approaches have
been used in understanding time: (1) Modeling of
takeover time, where the dynamics of the best individ-
ual is modeled (Goldberg & Deb, 1991), (2) Selection-
intensity model, where the dynamics of the average
tness of the population is modeled (Mdhlenbein &
Schlierkamp-Voosen, 1993; Back, 1995; Miller & Gold-
berg, 1995; Miller & Goldberg, 1996), and (3) Higher-
order cumulant model, where the dynamics of aver-
age and higher-order cumulants are modeled (Blickle
& Thiele, 1995; Pragel-Bennet & Shapiro, 1994).

Even though higher-order cumulant models are more
accurate than selection-intensity models, they do not
provide a closed-form solution for either the propor-
tion of correct building blocks or the convergence
time. Therefore, in this study we develop a selection-
intensity based convergence-time model for the One-
Max domain. The OneMax problem has two key
properties: (1) Uniform building-block salience, and
(2) Gaussian tness distribution. Uniform building-
block salience implies that the contribution of build-
ing blocks in di erent partition to the tness is equal.
The assumption of Gaussian tness distribution is ap-
proximately true as recombination and other genetic
operators have a normalizing e ect.

Therefore the tness distribution F = N( ¢; 2), and
N = N(O; ). Here, : is the mean true tness at
time t. Furthermore, the noisy tness distribution, F°
can be written asF%= F + N; where, F is the actual
tness distribution, and N is the external noise (in
this case, zero-mean Gaussian noise). Since both the
actual tness and the noise are normally distributed,
the noisy tness function is also normally distributed:
FON (¢ 2+ 3): 1)
Under these assumptions, the expected average tness
of the population after selection, given the current av-
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Figure 1: Empirical veri cation of the convergence-time-ratio model (equation 8).

erage tness is given by (Miller & Goldberg, 1995):
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t+1
where, | is the selection intensity (Bulmer, 1985) and
is de ned as the expected increase in the average t-
ness of a population after selection is performed upon
a population whose tness is distributed according to
a unit normal distribution. The selection intensity for
tournament selection depends on the tournament size,
s, and can be approximated by the relation (Blickle &
Thiele, 1995):
r

[
= 2 1In(s) In  414In(s) 3)
Equation 2 can be rewritten as
I
t+1 t= — ot (4)
e

where, ¢ = P 1+( %= ?),is the duration-elongation
factor (Goldberg, in press). Note that for a non-zero
noise, ¢ > 1, and the increment in the average tness
after selection would be less than that when the noise is
absent. In other words, the presence of external noise,

elongates the convergence time, and this elongation is
quantied by ..

Assume that . is a constant, and is equal to

1+ 2=2, where ? is the initial tness vari-

ance. Note that for OneMax problem, = "p, and

2="py(1 p), wherep is the proportion of correct
BBs at time t. Using these expressions, equation 4 can
be written as

[
P+1 P= —P= P po): (%)
e

Approximating the above di erence equation by a dif-
ferential equation, and integrating it with the initial

condition, pg = 0:5 (randomly initialized population),
gives us

po= 5 l+sin —po (6)

e

Equating p; = 1, in the above equation we can solve
for the convergence time:

p.S——
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Figure 2: Empirical veri cation of population-size-ratio model (equation 10).

It must be noted that in deriving the above
convergence-time model we assumed, to be a con-
stant. However, . changes over time and more accu-
rate solutions for equation 4 exist (Sastry, 2001).

In this study, we are interested in the relative value
of convergence times, rather than the absolute val-
ues. Speci cally, we are interested in the ratio of con-
vergence time when tness function f; is employed
to that when tness function f, is employed. This
convergence-time ratio is given by

®)

2 2
to. = tconv( N1) - f + N1
o tconv( Nz) f2+ [%1

It should be noted that using more accurate solutions
for equation 4 does not improve the accuracy of theo-
retical model signi cantly

4.2 Population Size

The previous section presented a convergence-time
model for tournament and other | -constant selection
schemes. The other factor required to determine com-
plexity is the population-sizing model which is pre-
sented in this section. Population size is an important

factor in determining the solution quality through a
GA run. Adequate population size is required not only
to ensure a good number of initial BB supply, but also
a good decision-making between competing BBs.

Goldberg, Deb, and Clark (1992) proposed a practi-
cal population-sizing bounds for selectorecombinative
GAs. Their model was based on deciding correctly be-
tween the best and the next best BB in a partition
in the presence of noise arising from other partitions.
More recently, Harik, Canti-Paz, Goldberg, and Miller
(1997) re ned the population-sizing model of Goldberg
et al. (1992) to compute a tighter bound on the pop-
ulation size. They incorporated both the initial BB
supply model and the decision-making model in the
population-sizing relation. Miller (1997) extended the
population-sizing model of Harik et al. (1997) for noisy
environments.

The following population-sizing model for noisy envi-
ronments developed by Miller (1997) is used in the
current study:

p_

2d

where, d is the signal di erence and is given by the

q__
n= “log( ) F+ i

©)
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Figure 3: Comparison of empirical and theoretical results for the ratio of total number of function evaluations.

tness di erence of the best and the second best BB,
is the alphabet cardinality, k is the BB size, and
is the failure rate.

The ratio of population size required to yield a solution
of the same quality when tness function f is used to
that when tness function f, is used is then given by

N

-

n, = n( n,)

2
f
N n( Nz) - f2 (10)

+
+

ZNZN
N

4.3 Number of Function Evaluations

Using equations 8 and 10, we can obtain the ratio of
total number of function evaluations taken if tness
function f, is used to those taken if tness functionf,
is used to obtain solution of the same quality.

_ Nie( Ny)

Nter =
& Nte ( N,)

i+ R

-_ - 1.

- nrtc;r - 2_'_72, (11)
f N

4.4 Model Validation

This section empirically veri es the models presented
in the previous sections. The empirical results are ob-
tained for the OneMax problem with string lengths °

= 50, 100, 200, 300, and 400. Tournament selection
without replacement with tournament sizes of s = 2,
3, 4, and 5 is used. Uniform crossover with crossover
probability of 1.0 is employed to ensure e ective mix-
ing of BBs. The noise variance of tness functionf,
is taken to be 10 ? and the noise variance of function
f1 is varied from 0 to 10 2.

The convergence-time ratio predicted by equation 8
is veri ed with empirical results and is shown in g-
ure 1. For computing the convergence time, a GA run
is terminated if the proportion of correct BBs reaches a
value greater than or equal to ( 1)=". The population
size is determined by the following relation (Goldberg,
Deb, & Clark, 1992): n =8( 2+ 2). Thisis a conser-
vative estimate, and is used to reduce the population-
sizing e ects. The empirical results are averaged over
50 independent runs. Figure 1 clearly validates the
convergence-time model of equation 8. Furthermore,
as the model predicts, the empirical results show that
the convergence-time ratio is independent of and s
values if the ratio of noise variance to the initial tness
variance is constant.

For computing n; and n¢er , @ GA run was terminated
when all the individuals in the population converged
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Figure 4: Veri cation of the optimal decision making between tness functions with di ering variance values.

to the same tness value. The average number of cor-
rectly converged BBs are computed over 50 indepen-
dent runs. The minimum population size or the total
number of function evaluations required for the GA to
correctly converge on an average to at leastn 1 BBs

( = 1=m), is determined by the bisection method.
The results are averaged over 25 bisection runs.

The population-size ratio predicted by equation 10 is
veri ed with empirical results in gure 2. The pre-
diction of the ratio of total number of function evalua-
tions (equation 11) is compared to the empirical results
in gure 3. The results show that the models agrees
with empirical results over a broad range of parameter
values (speci cally, noise variance, problem-size, and
tournament-size values).

5 Optimal Decision

As mentioned earlier, we have to decide between two
tness functions, one with low variance, but high cost,
and the other with high noise but low cost. The ratio
of total cost of employing tness function f; to that of
employing tness function f, to obtain solution of the

same quality is given by
+ 1
5t (1)

2
Cot;1 _ CiNfe;1 _ €1 f
- P 2

f 2

Ciot 2 Cznfe; 2 C2

ZNZN

where, G -1 IS the total cost of employing tness func-

tion f 1, and ¢y -2 is the total cost of employing tness

function f,. From the above relation, we can summa-
rize the optimal decision as follows:

If ;=ca> ( 7+ &)= 2+ 3,) thenusef;.
If =co< (#+ &)= 2+ Z,) thenusef,.
If ;=0 =( 2+ %)= #+ &,) then either f;

or f, can be used.

This decision making process is shown pictorially in
gure 4, where the theory is veri ed with empirical
results. The gure plots the cost ratio of tness func-
tions for di erent values of tness variance ratios. The
empirical results shown are obtained for the OneMax
problem with string lengths, * = 50; 100 200, 300, and
400. A selectorecombinative GA with tournament se-
lection without replacement and uniform crossover is
used for this purpose.
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Speed-up is de ned as the ratio of the total cost of us-
ing a high-cost, low-variance tness function to the to-
tal cost of using a low-cost, high-variance tness func-
tion. Therefore, speed-up obtained by using the afore-
mentioned optimal decision is given by

( 2+ 2
Crot ;1 ¢ 5 _f N2
= Crot ;2 C2 f2+ ﬁl (13)
1.0 elsewhere

This de nition of speed-up assumes that one always
chooses the more accurate tness function. The above
speed-up measures the improvement in e ciency when
a correct decision is made instead of a naive decision.
When a decision-making procedure, such as the one
developed in this section is not available, the naive
choice is the use the more accurate tness function.
Justi cation for using this de nition of speed-up is
given elsewhere (Sastry, 2001)

The speed-up predicted by equation 13 is veri ed with
empirical relations in gure 5 for di erent cost-ratio,
problem-size, and tournament-size values. The results
clearly indicate the a high speed-up can be obtained if
the cost-ratio of the tness functions (c,=¢) is much

lower than their tness variance ratios ( 7 = 2)).
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Empirical veri cation of speed-up predicted by equation 13.

The key thing is that even though we started with
simpli ed assumptions, the decision-making is some-
what general in nature. The only control parameters
in the decision making process are the relative cost and
tness variance values. Using dimensional argument,
one can extrapolate the results obtained here to other
problem domains. In such cases, the decision will be
correct in an order-of-magnitude sense. Therefore, the
core message of this section is as follows: If an opti-
mization problem has many di erent tness function
with di ering values of variance, and computational
costs, then a tness function with least product of cost
and tness variance should be employed.

6 Conclusions

This paper addressed the issue of deciding between
tness functions with di ering variance and cost val-
ues. An approximate, but practical convergence-
time model was developed and used along with a
population-sizing model to develop a decision-making
strategy and to predict speed-up. Although in this
paper only two tness functions were considered, the
decision making can be easily extended for more than
two tness functions.



The decision-making suggests that the e ect of vari-
ance can be handled spatially and the choice of the
tness function depends only on the relative cost and
variance ratios of the tness functions. Signicant
speed-up can be obtained by employing the decision-
making strategy developed in this paper. Based on
dimensional arguments, the decision-making strategy
presented here, though developed for the OneMax
problem, should be applicable to other tness domains.

Acknowledgments

This work was sponsored by the Air Force O ce of Scien-
ti c Research, Air Force Materiel Command, USAF, under
grant F49620-00-0163, and the National Science Founda-
tion under grant DMI-9908252. The U.S. Government is
authorized to reproduce and distribute reprints for gov-
ernment purposes notwithstanding any copyright notation
thereon.

The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily
representing the o cial policies or endorsements, either
expressed or implied, of the Air Force O ce of Scientic
Research, the National Science Foundation, or the U.S.
Government.

References

Albert, L. A. (2001). E cient genetic algorithms using
discretization scheduling. Master's thesis, University
of lllinois at Urbana-Champaign, General Engineer-
ing Department, Urbana, IL.

Back, T. (1995). Generalized convergence models for
tournamentland ( ; )|selection. Proceedings of
the Sixth International Conference on Genetic Al-
gorithms, 2{8.

Blickle, T., & Thiele, L. (1995). A mathematical analy-
sis of tournament selection. Proceedings of the Sixth
International Conference on Genetic Algorithms , 9{
16.

Bulmer, M. G. (1985). The mathematical theory of quan-
titative genetics. Oxford: Oxford University Press.

El-Beltagy, M., Nair, P., & Keane, A. (1999). Meta-
modeling techniques for evolutionary optimization of
computationally expensive problems: Promises and
limitations. Proceedings of the Genetic and Evolu-
tionary Computation Conference , 196{203.

Fitzpatrick, J. M., & Grefenstette, J. J. (1988). Genetic
algorithms in noisy environments. Machine Learn-
ing, 3, 101{120.

Goldberg, D. E. (1999). The race, the hurdle, and the
sweet spot: Lessons from genetic algorithms for the
automation of design innovation and creativity. In
Bentley, P. (Ed.), Evolutionary Design by Computers
(Chapter 4, pp. 105{118). San Mateo, CA: Morgan
Kaufmann.

Goldberg, D. E. (in press). Design of innovation:
Lessons from and for competent genetic algorithms
Boston, MA: Kluwer Acadamic Publishers.

Goldberg, D. E., & Deb, K. (1991). A comparitive anal-
ysis of selection schemes used in genetic algorithms.
Foundations of Genetic Algorithms , 69{93.

Goldberg, D. E., Deb, K., & Clark, J. H. (1992). Ge-
netic algorithms, noise, and the sizing of popula-
tions. Complex Systems 6, 333{362.

Grefenstette, J. J., & Fitzpatrick, J. M. (1985). Genetic
search with approximate function evaluations. Pro-
ceedings of the International Conference on Genetic
Algorithms and Their Applications , 112{120.

Harik, G., Canu-Paz, E., Goldberg, D. E., & Miller,
B. L. (1997). The gambler's ruin problem, genetic al-
gorithms, and the sizing of populations. Proceedings
of the IEEE International Conference on Evolution-
ary Computation , 7{12.

Jin, Y., Olhofer, M., & Sendho, B. (2000). On evolu-
tionary optimization with approximate tness func-
tions. Proceedings of the Genetic and Evolutionary
Computation Conference, 786{793.

Keijzer, M., & Babovic, V. (2000). Genetic program-
ming, ensemble methods and the bias/variance
tradeo - introductory investigations. Genetic Pro-
gramming: Third European Conference, 76{90.

Mandava, V. R., Fitzpatrick, J. M., & Pickens, lII,
D. R. (1989). Adaptive search space scaling in digi-
tal image registration. IEEE Transactions on Medi-
cal Imaging, 8(3), 251{262.

Miller, B. L. (1997). Noise, sampling, and e cient ge-
netic algorithms. Doctoral dissertation, University of
lllinois at Urbana-Champaign, General Engineering
Department, Urbana, IL. (Also IlIliGAL Report No.
97001).

Miller, B. L., & Goldberg, D. E. (1995). Genetic al-
gorithms, tournament selection, and the e ects of
noise. Complex Systems 9(3), 193{212.

Miller, B. L., & Goldberg, D. E. (1996). Genetic algo-
rithms, selection schemes, and the varying e ects of
noise. Evolutionary Computation , 4(2), 113{131.

Mshlenbein, H., & Schlierkamp-Voosen, D. (1993). Pre-
dictive models for the breeder genetic algorithm:
I. continous parameter optimization. Evolutionary
Computation, 1(1), 25{49.

Puagel-Bennet, A., & Shapiro, J. L. (1994). An analysis
of a genetic algorithm using statistical mechanics.
Physics Review Letters, 72(9), 1305{1309.

Ratle, A. (1998). Accelerating the convergence of evolu-
tionary algorithms by tness landscape approxima-
tion. Parallel Problem Solving from Nature , 5, 87{
96.

Sastry, K. (2001). Evaluation-relaxation schemes for ge-
netic and evolutionary algorithms. Master's thesis,
University of lllinois at Urbana-Champaign, General
Engineering Department, Urbana, IL. (Also IlliGAL
Report No. 2002004).



Genetic Algorithms, E ciency Enhancement, and Deciding Well
with Di ering Fitness Bias Values

Kumara Sastry

and David E. Goldberg

lllinois Genetic Algorithms Laboratory (llliGAL)
Department of General Engineering
University of lllinois at Urbana-Champaign
104 S. Mathews Ave, Urbana, IL 61801
f ksastry,deg g@uiuc.edu

Abstract

This study develops a decision-making strat-
egy for deciding between tness functions
with di ering bias values. Simple, yet prac-
tical facetwise models are derived to aid the
decision-making process. The decision mak-
ing strategy is designed to provide maximum
speed-up and thereby enhance the e ciency
of GA search processes. Results indicate that
bias can be handled temporally and that sig-
ni cant speed-up values can be obtained.

1 Introduction

Since the inception of genetic algorithms (GAs) (Hol-
land, 1975), signi cant progress has been made in de-
signing and analyzing them. A design decomposition
has been proposed for the development ofompetent
GAs and much progress has been made along these
lines (Goldberg, 1999). Competent GAs take prob-
lems that were intractable with rst generation GAs
and render them tractable, oftentimes requiring only

a subquadratic number of function evaluations.

However, for large-scale problems, the task of com-
puting even a subquadratic number of function evalu-
ations can be daunting. This is especially the case if
the tness evaluation is a complex simulation, model,
or computation. Therefore, one usually resorts to ap-
proximate tness functions that are less expensive to
compute. However, approximations introduce error in
assessing the solution quality. Also, we may have to
choose from many tness functions with di ering error
and cost values, and that choice has a large impact on
the computational resources and the solution quality.

At present, practitioners make the choice among t-
ness function alternatives on an ad hoc basis. There-
fore, we need to investigate which tness function

should be used under what scenarios. Furthermore,
one has to recognize that error introduced through
approximations comes in two avors: Bias, and vari-
ance (Keijzer & Babovic, 2000). The decision-making
strategy depends on whether variance or bias domi-
nates the error. We have considered the presence of
bias and variance in isolation to demonstrate this dif-
ference and to ease the analytical burden.

This paper investigates decision making under the
presence of bias, while the decision making under the
presence of variance is developed elsewhere (Sastry,
2001). Speci cally, we investigate the decision mak-
ing between two tness functions with di ering bias
values. A tness function with higher bias value will
yield a more inaccurate solution when compared to
the function with a lower bias value. This inaccuracy
can be eliminated temporally (not spatially). That
is, using the spatial approach|sampling the high-bias
tness function|does not eliminate the e ect of bias
and yields an inaccurate solution.

On the other hand, a high-bias, low-cost function can
be used during the initial few generations of the evo-
lutionary process to obtain a crude solution. The low-
bias, high-cost tness function can then be used (later
part of genetic search) to re ne the genetic search and
to obtain a more accurate solution. The generation
at which the tness functions are switched, called the
switching time is an important factor in determining
the speed-up. The objective of this study is to utilize
facetwise models to predict the optimal switching time
that yields greatest speed-up and to develop a decision-
making strategy to handle bias in tness functions.

This paper is organized as follows. Section 2 briey
discusses some previous work on handling error in t-
ness functions. The specic problem that we solve is
de ned in section 3. Section 4 de nes the test problem
used for developing models. A convergence-time model
that incorporates bias in tness functions is derived in



section 5. Section 6 develops models for predicting
the optimal switching time and the speed-up. Finally,
section 7 presents key conclusions of the study.

2 Related Work

E ciency enhancement is essential for solving large-
scale, complex search problems. One such technique
is evaluation relaxation, in which the computation
burden is reduced by utilizing inexpensive, but error-
prone tness assignment procedures instead of an ex-
pensive, but accurate tness function.

Grefenstette and Fitzpatrick (1985) studied the use
of approximate evaluations for an image registration
problem. Follow-up studies (Fitzpatrick & Grefen-
stette, 1988; Mandava, Fitzpatrick, & Pickens, 1989)
have further analyzed the utility of approximate tness
evaluations. However, these studies were largely em-
pirical, and a design methodology for handling exter-
nal noise was developed only recently (Miller & Gold-
berg, 1995; Miller, 1997). These studies consider only
the e ects of variance alone, and e ects of bias, albeit
to a limited extent has also been investigated (Jin, Ol-
hofer, & Sendho, 2000; Albert, 2001). For further
details on these and other studies on approximate t-
ness functions in GAs, the interested reader should
consult the review presented elsewhere (Sastry, 2001).

3 Problem De nition

Consider two tness function, f1; and f, for a search
problem with bias values of by and b, respectively.
That is, the optimal solution when f, is used isx + by
and that when f, is used isx + k». Herex is the true
optimal solution. The computational costs of f; and
f, are ¢, and c, respectively. Furthermore, by < b,
and ¢; > c,. An illustration of the tness functions
with di erent bias values is shown in gure 1. The g-
ure shows a single variable unimodal tness functions
with and without bias. Note that the optimal value of
the tness functions need not be the same.

Implicitly, we assume that some building blocks (BBs)
of f1 and f, are di erent and others are the same. We
recognize that this assumption might not hold true if
the biased tness function introduces multiple false op-
tima. However, this study is the rst step toward de-
veloping a decision making strategy for handling bias
in tness functions and it serves as a starting point for
the analysis of more complex cases. It is important to
note that the proposed models can be extended and
applied to real-world problems (Albert, 2001).

Sincef, and f, share some BBs,f, can be used for
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Figure 1: Fitness functions with di erent bias values.

the rst few generations to obtain good convergence
on the BBs shared by both the tness functions. Fit-
ness functionf, can then be used to obtain a solu-
tion of better accuracy (lower bias). The time, tg, at
which we change fromf, to f; is called the switch-
ing time. The objective of this study is to optimize
the switching time to maximize speed-up and thus de-
velop a decision-making strategy for choosing the cor-
rect tness function. To develop models for solving
the problem de ned above, we need to rst construct
a test function. One such test function used in this
study is described in the following section.

4 Test Function

The test function used in this study is the weighted
OneMax de ned as:

(1)

Wi Xi,
i=1

where, x; is the value of theith allele and w; is the
weight associated with it. Similar to the OneMax
function, the weighted OneMax is a linear unimodal
function and the BBs are independent of each other.
Therefore, the weighted OneMax function reduces the
analytical burden for developing models considerably.
Furthermore, tness functions with di ering bias val-
ues can be considered as weighted OneMax functions
with di erent weights.

The BBs are uniformly scaled|that is, contribution of
every BB to the tness is equal in magnitudel-if the
weights, w;, are restricted to be either 1. Then, the
tness variance of a randomly generated population is
equal to that for an OneMax problem. This further
eases the analytical burden and the required popu-



lation size does not change with di ering bias values.
Therefore, we only need to develop a convergence-time
model, which is presented in the next section.

5 Convergence-Time Model

Understanding time in GAs is one of the critical factors
for a successful design of GAs (Goldberg, in press).
Convergence-time model helps us in predicting the
scale-up behavior of GAs. Existing studies on under-
standing time in GAs can be broadly classied into
three approaches: (1)Takeover-time models where the
growth of the best individual in the population is ana-
lyzed (Goldberg & Deb, 1991), (2) Selection-Intensity
models where the dynamics of average tness of the
population is analyzed (Mshlenbein & Schlierkamp-
Voosen, 1993; Back, 1995; Miller & Goldberg, 1995),
and (3) Higher-Order-Cumulant models where the dy-
namics of the average and higher order cumulants
of tness of the population are analyzed (Blickle &
Thiele, 1995; Pnagel-Bennet & Shapiro, 1994).

In contrast to selection-intensity models, higher-order-
cumulant models do not yield closed-form solutions.
Therefore, a selection-intensity-based convergence-
time model is developed in this paper. For this purpose
consider two weighted OneMax functionsf; and f:

X

fi = Wi Xi;

@)

f, = w; (3)

Without loss of generality assume that the tness func-
tion f1 has zero bias and that the weightsw; and WiO
are assigned as follows:

o 1 1 i _

W = 1,41 0 (4)
0 _ 1 1 i “1+b i

Wi = 1 y+b+1 i o O

where, b is the bias. That is, f; and f,> share™ b
BBs and di er only in balleles (in this case BBs). For
example, the correct BB in any one of theb alleles for
f1is 1 and forf, itis O.

Note that initially, tness function f, is used in the ini-

tial phase (t <t ) of the genetic search. Assuming a
uniform BB convergence, and a Gaussian tness distri-
bution, the expected average tness of the population
after selection is given by (Mdhlenbein & Schlierkamp-

Voosen, 1993):

tt

(6)

t+1 =

where, | is the selection intensity and is de ned as the
expected increase in the average tness of a population
after selection is performed upon a population whose
tness is distributed according to a unit normal distri-
bution. Selection intensity is constant for tournament
selection and is approximately given as a function of
tournament size s by the following relation (Blickle &
Thiele, 1995):

r

| = 2 log(s) log P 4:14109(s) ©)

Since tness function f, is used in the rst phase (t
ts) of the run, the mean ( ¢,.t) and variance ( fzz;t) of
tness are given by

b); ®)

©)

where, p; is the proportion of ones at time t. Using
the mean and variance values in equation 6, we obtain

fr = Pt (1
z Pl )

fz;t

[
P+ Pt= P= Pl p): (10)

Approximating the above di erence equation by a dif-
ferential equation and integrating it yields

It .
1 cos p—+2sin 1P

1 _

== 11

Pt > Po (11)
Assuming that the initial population is randomly gen-
erated, we havepy, = 0:5, and we get the following

expression for the proportion of correct BBs as a func-

tion of time:

=

. It
ptzé l1+sin p= (12)
The proportion of correct BBs at switching time tg is
therefore given by

Its

P, = % l+sin p= (13)

At the switching time tg, the low bias tness function
f1 is used instead of the high bias tness functionf ,.
Hence, the proportion of correct BBs changes. Since
both f; and f, share® bBBs, the proportion of cor-
rect BBs for those BBs remains the same. That is the
proportion of correct BBs for the ©  bis p;,. However,
sincef, and f, do not shareb BBs, the proportion of
correct BBs, for the balleles is 1 p,. This implies
that there are two proportions of correct BBs one for
(" b) alleles and the other forb alleles. The adjusted
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Figure 2: Empirical veri cation of the proportion of correct building blocks predicted by equations 12, 14, and

16 for di erent values of b, °, ts, and s.

proportion of correct BBs for the overall string, pf. is
given by

0

o= I

Pp, + b1 p)ls

b

1 29 pr, + <:

(14)

From the selection-intensity model assumption, we
know that the number of correct BBs in both ©= band
b portion are distributed normally. Since these two
portions are statistically independent of each other,
the number of correct BBs for the overall string , and
similarly the tness is also normally distributed. The
mean and variance of tness attimet (t tg) is given
by 'p? (1), and pd1 pd) respectively. Proceed-
ing in the same way as we did fort <t ¢, results in the
following di erence equation

SO T e N T
Solving the above equation with the initial condition
that at t = ts, p) = p? , we get

q__
p?zE 1 cos (t ,t5)+25in Copd)

5 = . (16)

From the above relation for the proportion of correct
BBs, we can derive an expression for the convergence
time, by equating p? = 1:
P-h q i
P 17)

teony = ts + - 2sin !

The models developed above are veri ed with empir-
ical results. A selectorecombinative GA with tour-
nament selection without replacement, and uniform
crossover scheme is employed for this purpose. The
probability of crossover is taken to be 1.0 and muta-
tion is not used. The value of *; is kept constant at
25 for all the runs. The population size is determined
by the relation 8 ? (Goldberg, Deb, & Clark, 1992).
This population-sizing model overestimates the popu-
lation size and is used to remove any population-sizing
e ects. Unless otherwise mentioned the following pa-
rameters are used:” =100,s=2, b= ﬁ, andts = 10.
The empirical results are averaged over 100 indepen-
dent runs.

The proportion of correct BBs predicted by equa-
tion 12, 14, and 16 is validated by empirical results.
The gures plot the proportion of correct BBs as a
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Figure 3: Empirical veri cation of convergence-time models (equation 17) for di erent bias values.

function of time. Dierent values of b, °, tg, and s
are used to validate the model and are shown in g-
ure 2. The results show that the model capture the
dynamics accurately over a considerable range of pa-
rameter values. The discrepancy between the model
and empirical results are due to hitch-hiking and can
be further decreased by using multiple crossovers or
using a population-wise crossover (Thierens & Gold-
berg, 1994).

The convergence-time model (equation 17) is com-
pared to empirical results for dierent bias and

problem-size values are shown in gure 3. The gure
plots the convergence time as a function of switching
time. The empirical results for the case where recom-
bination is applied twice every generation is also shown
in the gures. As expected the agreement between the
theoretical and experimental results increases when
multiple crossover is applied. Note that the com-

pressed convergence-time scale in gure 3 exaggerates

the error and the model accuracy is comparable to ex-
isting models for other problem domains.

With the convergence-time model at hand, we will now

proceed to derive an expression for the optimal switch-
ing time. The speed-up that can be obtained by using
the optimal switching time is also estimated in the

next section.

6 Optimal Switching Time

From the problem de nition and the convergence-time
model (equation 17), total cost of function evaluation
is then given by

ts)) ;
ts)) ;

where, ¢, = ¢1=G is the ratio of cost of the high-cost
tness function to the cost of the low-cost tness func-
tion. Employing model 2 (equation 17) for the conver-
gence time, the above equation can be written as

o

ts + GG 3 sin p.

n (CZts + Cl(tconv
ncz (ts + ¢ (teon

Nte
(18)

Nfe = NCy : (19)

We can de ne the total number of function evaluations
in terms of time units by dividing the above equation
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by nc;:
P<h R
nd, = ts+ ¢ == 5 sin p (20)

Our objective is to determine ts that minimizes n{,
(note that this is same as minimizing n¢e ), which is
given by solving

@8
@4
P L @b

1 ¢—p =
“TPET o) @

= 0 ;

The optimal switching generation, tg, that minimizes

nie whenc, “=(C 2b), comes out to be
tS:I—cos 1 &pc? 77 (21)
Whenc <’=(C 2b), t; =0.

Recognizing that the convergence-time when a low-
bias, high-cost tness function is used is given by

(Back, 1995) o

2
and dividing equation 21 with the above quantity, we
obtain the a dimension-less expression for the optimal

teonvil =

switching time whenc, 151 2 ):
" D #
2 1
b = Zeost (pL : (22)
teonv ;1 @a 2) C,.2 1

where, = b="is the bias proportion. When ¢, <
1=1 2 ), tg = 0. Equation 22 can be further reduced
using the approximation cos (x) 5 X
" #
L oo, 4 A )
@ 2) ¢ 1

(23)

tconv 1

Equation 23 indicates that the strategy of employing
the low cost tness function for the rst few genera-
tions yields speed-up only if the product of cost ra-
tio, ¢, is above a critical limit which is inversely pro-
portional to the bias proportion. If this is the case,
then the optimal switching time is proportional to the
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Figure 5: Empirical veri cation of speed-up prediction (equation 24).

square root of the string length, inversely proportional
to the square root of the bias proportion, and inversely
proportional to the cost ratio ¢.. As expected, if the
number of biased bits increases, the switching time de-
creases, and if the cost ratio increases, the switching
time increases. Equation 23 is veri ed with empirical
results in gure 4. The gure plots tg=tcony:1 as a func-
tion of bias proportion  for di erent cost-ratio values.

A binary tournament selection without replacement,
uniform crossover with crossover probability of 1.0 is
used. Mutation was not used in obtaining the empiri-
cal results. The results are averaged over 50 indepen-
dent runs.

Using the optimal switching-time given by equation 23,
we can compute the speed-up obtained by making the
correct decision. Here the speed-up, s, is de ned as
the ratio of the total computational cost incurred if the
low-bias tness function is used to that if the high-bias
tness function is used for t, generations and then the
low-bias function is used till the end of the GA run.
That is,

nCltconv;l
n [Czts + C (tconv;2

nfe; 1 _
s = =
Nte; 2

Ol

0 0.1 0.2 0.3 0.4 0.5
Bias proportion, b
= h G i (24)
conv ;2
tCE)I'W i1 (Cr 1) S

Where, . = t.=tconv:1. Note that the above equation
is valid whenc, 1=(1 2 ). Whenc <11 2),
s = 1. The speed-up predicted by equation 24 is veri-
ed with empirical results in gure 5. The gure plots

s as a function of bias proportion for di erent cost-
ratio values. Tournament selection without replace-
ment with tournament size s = 2 is used. Uniform
crossover with crossover probability of 1.0 is employed
and mutation is not used. The results are averaged
over 50 independent runs.

Figure 5 clearly indicates the improvement in e ciency
using the decision-making strategy developed to han-
dle bias in tness functions. It also validates our hy-
pothesis that bias has to be handled temporally. Fur-
thermore, even though we made some simplifying as-
sumptions the nal result for the optimal switching
time and the speed-up are in dimensionless quantities
and should be easily applicable to other problem do-
mains as well.



7 Conclusions

This paper develops a decision-making strategy for
choosing between tness function with di ering bias
values. We proposed that bias has to be handled tem-
porally by switching from a high-bias tness function
to a low-bias tness function. We also hypothesized
that an optimal switching time exists and when the
tness functions are switched at this optimal time, the
total computation cost will be the minimum. We de-
veloped approximate, but practical convergence-time
model, and used it to determine the optimal switching
time. Based on the computational cost and the total
number of function evaluations taken by each tness
function, a decision-making strategy was presented.

The paper shows that bias has to be handled tem-
porally. That is, a high-bias tness function should
be used for coarse-grain optimization and then a low-
bias tness function should be used for ne-grain op-
timization. Although, we considered only two tness
functions, the decision making can be easily extended
for more than two tness functions. Furthermore, the
models developed in this study should provide guid-
ance to GA practitioners in choosing key GA parame-
ters and to provide maximum e ciency enhancement.
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Abstract

This paper presents a new method that
improves robustness of Real-Coded Evolu-
tionary Algorithms (RCEAS), such as Real-
Coded Genetic Algorithms and Evolution
Strategies, for function optimization. It is
reported that most crossover (or recombina-
tion) operators for RCEAs has sampling bias
that prevents to bnd the optimum near the
boundary of search space. They like to search
the center of search space much more than
the other. Therefore, they will not work on
functions that have their optima near the
boundary of the search space. Although sev-
eral methods have been proposed to reduce
this sampling bias, they could not cancel the
whole bias. In this paper, we propose a hew
method, Toroidal Search Space Conversion
(TSC), to remove this sampling bias. TSC
converts bounded search space into toroidal
one with no parameters. Experimental re-
sults show that a RCEA with TSC has higher
performance to bnd the optimum near the
boundary of search space and it has improved
robustness concerning the relative position of
the optimum.

1 INTRODUCTION

Function optimization is one of the most important

optimization problems. Several Real-Coded Evolu-
tionary Algorithms (RCEAS) such as Real-Coded Ge-
netic Algorithms and Evolution Strategies, which use
the real number vector representation, have been pro-

Masayuki Yamamura
Tokyo Institute of Technology,
4259 Nagatsuta Midori-ku
Yokohama 226-8502 Japan.
my@dis.titech.ac.jp

(a) BLX- (b) UNDX
Figure 1: The sampling biases of BLX- and UNDX

formly. In this case, most crossover operators, such as
BLX- [5], Unimodal Normal Distribution Crossover
(UNDX) [10], Center of Mass Crossover (CMX) [17],
Simplex Crossover (SPX) [19], like to search the center
of search space much more than the other [1,4,9, 18].
This bias is called “Sampling Bias” [4,18]. Fig.1 ex-
plains the sampling biases of BLX- and UNDX. The
horizontal axis is domain of décnition. The verti-
cal axis is theoretical probability density of generat-
ing children when a crossover produces them from a
pair of parents, chosen out of the population that is
distributed in 0 1 uniformly. When a crossover oper-
ator has such bias, it will not work on functions whose
optima are near the boundary of the search space.

The sampling bias grows exponentially stronger as the
dimension of search space. Therefore, in case objective
function is high dimensional and its optima are in the
corner of the search space, RCEAs like to be trapped
at a local minimum located around the center of the
search space. Recently, RCEAs have been applied to
real-applications [11,13,16]. In real-applications, since
we cannot know where are the optima, robust RCEAs
considering the sampling bias are needed.

The purpose of this paper is to present a method
that cancel the sampling bias to improve robustness

posed [3—6, 9, 10, 12, 15, 19] and they have shownof RCEAs. In the next section, we briddy review sev-

higher performance than EAs using binary or gray
representation [3,5,7]. In RCEAs, generally, ini-
tial individuals are placed in the search space uni-

eral major methods that reduce the sampling bias and
discuss their features. We propose a new method,
Toroidal Search Space Conversion in section three



and refdect on the computational complexity in sec-
tion four. Empirical veri bcation is performed in sec-
tion bve. In the last section, we conclude this paper.

2 RELATED WORKS

2.1 Existing Methods and Their Features

Several methods, such as Boundary mutation [7], (UX,
UNDX)+EMGG [9], boundary extension by mirror-
ing (BEM) and boundary extension with extended se-
lection (BES) [18], have been proposed. Boundary
mutation produces individuals on boundary of search
space. (UX, UNDX)+EMGG improves the sampling
bias of UNDX using Uniform Crossover (UX) [3]. This
method selects either UNDX or UX, they complement
their searching region each other, as the crossover op-
erator dynamically. BEM and BES extend the search
space in order to move the relative position of the opti-
mum toward the center of the search space. They allow
individuals to be located outside the search space. The
individuals are called “virtual individuals”. The de-
tails of BEM are introduced in section 2.2. In BES, the
number of the virtual individuals is limited by helper
individual rate and no functional value of the virtual
individuals is used. We can mention that these meth-
ods have the following three disadvantages.

(1) Dependence on Search Operator: In (UX,
UNDX)+EMGG, UX and UNDX complement their
searching region each other. However, when we use
another crossover operator as the one of the search
operators, we must invent or bnd the other one that
has complementary characteristics to thebrst one.

(2) Parameter Tuning: All methods introduced in
this section have at least one parameter, such as the
mutation rate of boundary mutation, the initial prob-
ability of applying UNDX of (UX, UNDX)+EMGG,

the extension rate of BEM and the helper individual
rate of BES, to control how much the sampling bias
is reduced. Although we cannot know the positions of
the optima and the landscape of the search space, we
must tune the parameters before search.

(3) Remaining the Sampling Bias: Although all
methods shown in this section succeed in reducing the
sampling bias, they cannot remove it. From the view-
point of robustness, no sampling bias is desirable.

Next, we show BEM in detail because we believe it
is the best method in the existing methods. It is in-
dependent on the search operator. The number of its
parameters is only one. The e&ctiveness is relatively
high.

2.2 BEM [18]

BEM aims to shift the optimum located in the corner
toward the center. In BEM, individuals are allowed
to be located beyond the boundary of search space.
The functional value of individual i with real vector

x® =(x{ ... xyis calculated as follows:
fx) = £(y0), 1)
YO = (),
‘ & 2 min; xj(i) if x; < min;
yj(l) = 2 max; xj(') if x; > max;
boi (i) .
X otherwise,

J

where, miry and max; are the lower and upper limits of
parameter range on thej -th dimension of the original
search space respectively. BEM has one parameter,
re (0 <re < 1), that controls how much search space is
extended. The parameter range of the extended search
space isl; (1 + re) when that of the original one is ;.
The initial individuals are placed in the original search
space uniformly.

3 TOROIDAL SEARCH SPACE
CONVERSION (TSC)

TSC converts search space with boundary into toroidal
one. This conversion is performed as follows:

stepl Extend the search space to the extended search
space like BEM with re=1.0, (see section 2.2)

step2 Connect each e-mayx of the extended search
space to corresponding e-min

where, e-min and e-max are the lower and upper
limits of parameter range on thej -th dimension of the
extended search space respectively. An example of the
converted search space is shown in Fig.2. The con-
verted search space becomes torus. In this converted
search space, the crossover operation is performed as
the following pseudo-codes (likeC++ ):

choose k required parents;
for (int i=1; i<k; i++){
make pow(2, n)-1 clones of parent_i;
/I ---- n is the dimension
select the clone whose distance from
parent_O is the shortest out of the
clones and parent _i;

do crossover using parent_ 0 and the
k-1 selected clones;

Fig.3 shows an example of a crossover in a con-
verted search space. First, threeclones (clone _1,



clone _1 , clone _1 ) at the corresponding points on
the virtual search space are copied fromparent _1.

Next, clone _1 is allowed to join the crossover oper-
ation because its distance fromparent _0 is shortest.

Thus, the crossover operation, using UNDX as the
crossover operator, searches in the gray region.

For implementation on a computer program, the pro-
cedures in the abovefor are described as follows:

clone_i = parent_i;
/Il ---- copy the parent_i vector to clone
for (int j=0; j<n; j++){
const double distance
= clone_i[j] - parent_OJj];
if (fabs(distance) > I){
Il ---- 1 is the half width of the
Il extended search space
if (distance >= 0){ clone_i[j] -= 2I; }
else { clone_i[j] += 2I; }
}
}

Although the volume of the search space grows expo-
nentially, the increase of the computational cost for
this crossover is only linear,O(k x n). Since the con-
verted search space is torus, a generated individual,

XM = (x(li), .., x'MY is modibed as follows:
x@) = Z(i), 2)
Z(l) = (Zg_l)a'--vzlgi))y
0 - -
" & x; +2l if x; < e-min;
A x(D 2 if x; > e-max
x{ otherwise.

J

For example, in Fig.2, when A and B are generated
by a crossover operation, they are modeed asA° and
Brespectively. Using this modication, when the dis-
tance between parents is far, crossover does not gener-
ate children in the center of the search space, but does
them near the boundary close to the parents (in the
gray region in Fig.3). In TSC, initial individuals are
placed in the extended search space uniformly. Ac-
cordingly, by this proposed method, any position on
this search space become equivalent to any others.

TSC clears the three disadvantages of the existing
methods. Since TSC is a conversion method, it is inde-
pendent on any search operator. TSC has no parame-
ter. The converted search space has no sampling bias
when the initial individuals are placed in the extended
search space uniformly because it is torus.

TSC has one more sigrficant feature. The converted
search space maintains global continuity of landscape.

Figure 2. An example of 1-dimensional converted
search space by TSC

Figure 3: An example of crossover procedure, using
UNDX as the crossover operator, on a 2-dimensional
converted search space by TSC.

The “global continuity of landscape” means that indi-
viduals around an individual have approximate equiva-
lent functional value. In [16], the authors use a method
that connects min; and max, when the coded vector
represents an angle. In this method, children are pro-
duced only in the supplementary angle region because
-180 degrees correspond to 180 degrees. When we ap-
ply this method to a search space that does not have
such characteristic, the global continuity of landscape
should be lost becausé (X1,...,min;j,...,Xy) will be
di &rent from f (xq,...,max;,...,x,). Since EAs as-
sume that search space has the global continuity of
landscape [8], the global continuity of landscape should
be maintained. In TSC, it is satisped because e-min
corresponds to e-may, even if the original search space
does not have the above characteristic.

4 COMPUTATIONAL COMPLEXITY

Let discuss the number of samplings required tdend
the optimum in a n-dimensional search space whose
volume is D, as shown in Fig.4. First, we discuss an
EA without any selection mechanism. Then, we con-
sider an EA equipped with a selection mechanism.



Table 1: The test functions

function equation (n sgecies the dimension) | mul. * ] disc. ? domain di
Sphere P Xt no no [-(5.12+d;, 5.12+d;] | 0.0, 1.5, 3.0, 4.5
Step o be+O.5c2 no strong | [-5.12+d;, 5.12+d;] | 0.0, 1.5, 3.0, 4.5

Schwefel 4189828873 + in=1 Xi sin m low no [-512, 512] -
Rastrigin 10nF;- A [xé 10 cos(2%i)] high no [-5.12+d;, 5.12+di] | 0.0, 1.5, 3.0, 4.5
Griewangk | 55 11 Xf -, cos % +1 | high no [-512+d;, 512+d;] | 0, 150, 300, 450

1: multi-modality,  2: discontinuity

Figure 4: n-dimensional objective function, in which
D is its volume and A is the volume of the region as
the optimum.

4.1 Without Selection

In case BLX- is used as the search operator, the prob-
ability density curve of generating children, shown in
Fig.1 (a), is expressed as follows (the details of BLX-
and g(x) are shown in Appendix A and B respectively):

2{in3+(x 1)In(1 x) xInx}
2in3+1 '

a(x) = ®3)

Therefore, whenn is 1, the number of samplings re-
quired to bPnd the optimum that is located at the cor-
ner of the search space i%(lT) = ﬁ ' 2.233 times as
many as in case Uniform Random Search (URS) [20],
which searches in the domain uniformly, is used. When
n is 10 or 20, 55+ is about 3,000 or 9,500,000, respec-
tively. In case another crossover operator whose sam-
pling bias is stronger than BLX- , such as UNDX, is
used, more samplings are required. The probability to
Pnd the optimum, P, when URS is used as the search
operator is expressed as follows [20]:
H m
P=1 1 A

— ) 4
5 (4)
wherem is the number of samplings andA is the vol-
ume of the region as the optimum. When the search
space is converted by TSC, since there is no sampling
bias even if the search operator is BLX-, the search

works like URS. In this case the probability to bnd the

optimum is equivalent to URS as £A = A,

4.2 With Selection

When we consider selection mechanism, the complex-
ity of landscape is important. Unimodal function is of-
ten converted into multimodal one by TSC. Generally,
optimization of multimodal function is more di ~cult
than that of unimodal one. Moreover TSC converts
multimodal function into more complex multimodal
one in which the number of local minima is exponen-
tially larger. It has not been cleared that the relation
between complexity of landscape and the dfi*culty of
optimization for EAs. However, it has been known
that big hill including local minima in Buences the ef-
fectiveness of EAs.

5 EXPERIMENTS

In order to conbrm the robustness of EAs in converted
search space by TSC, we perform experiments.

5.1 Test Functions

How test functions should be selected has been men-
tioned in [2]. The bve functions in Table 1 are selected
under the recommendations. The optimum of Schwefel
function, f( 420968746..., 420968746) = 0, and
those of the others,f (0,...,0) =0, are located in the
corner and at the center of the search space, respec-
tively. To achieve the purpose of these experiments,
the relative positions of the optima in their search
space are moved byd;, except that of Schwefel func-
tion!, as shown in Fig.5.

5.2 Experimental Conditions

We select UNDX+MGG [10, 14] as the performed EA.
It has been reported that UNDX has strong sampling

YIn Schwefel function, when the domain is changed by
di, the optimum will be changed.



Table 2:

The experimental results (#OPT)

NoExt BEM BEMe TSC
function [ n 00 15 30 451 00 15 30 451 00 15 30 451 00 15 30 45
50 100 100 100 100| 100 100 100 100f 100 100 100 100 100 100 100 100
Sphere 100 || 100 100 100 100| 100 100 99 100 | 100 100 98 100 | 100 100 100 100
150 || 100 100 100 100| 100 100 98 100 | 100 100 96 100 | 100 100 100 100
30 || 100 96 78 62 | 100 96 80 93 | 100 95 86 97 | 92 96 99 100
Step 40 99 56 27 11 95 57 35 56 96 64 28 54 62 52 80 99
50 81 17 7 10 | 75 19 8 12 | 88 17 7 12 6 16 35 83
5 87 100 99 100
Schwefel 10 8 57 56 100
15 0 1 1 98
4 100 99 94 26 [ 100 100 99 86 | 100 97 98 87 [ 100 100 100 100
Rastrigin 6 100 67 20 1 99 77 57 13 98 84 80 8 96 79 44 100
8 84 27 3 0 91 26 10 0 79 34 22 1 79 35 5 97
30 80 68 69 65 70 71 74 65 68 76 72 64 65 66 63 73
Griewangk | 40 71 74 63 70 | 65 67 75 73 | 66 67 69 76 | 66 60 66 64
50 69 73 77 70 76 74 70 73 61 69 65 68 63 58 60 62
00, 15, 30, 45 under the method names specifyd;. For example, 15 meansd; = 1.5 or di = 150.

di =0 di =1.50r150 di =3.00r 300 dj =4.5or 450

Figure 5: The relative positions, caused byd;, of the
optimum in a search space

bias as shown in Fig.1 (b) and UNDX+MGG does not
work well in a search space whose optimum is in the
corner, such as Schwefel function [9]. The details of
this EA are shown in Appendix A and C. No muta-
tion is used for focusing on the sampling bias caused
by crossover. The population size is set to be 30 for
unimodal functions but 100 for multimodal ones. Fifty
children are produced in each generation.

TSC is compared to “No Extension method (NoExt)”,
BEM and BEMe. NoExt means that the EA is per-
formed in the original search space. BEMe is intro-
duced to be fair in our comparison. BEM and BEMe
are the same except that BEMe places initial individ-
uals like TSC. TSC places initial individuals in the
extended search space, but BEM does them in the
original one. The r, of BEM and BEMe are set to
be 0.25 because the value has been used in [19]. In all
experiments except TSC, when an individual is gen-
erated outside their search space, the crossover retries
to generate another inside. Each experiment is per-
formed 100 trials. Each run continues until the opti-
mum is found or the number of evaluation reaches a
constant that was set to be enough large number de-
termined in pilot study. The performance measure is

the numbers of runs in which the method succeeded
in bnding the global optimum (#OPT). The robust-
ness of each method is evaluated through the lowest
performance in all cases ofj;.

5.3 Results and Discussion

The experimental results are shown in Table 2. Sev-
eral results that explain the features of the methods
obviously are shown in Fig. 6.

In Sphere function, the all #OPTs are approximately
100. We believe that the optimization in the converted
search space by TSC has not become more fitult,
because it has had no local minimum although it has
become multimodal. Fig.6 (a) and (c) show the ro-
bustness of the EA performed in the converted search
space by TSC. In the original search space (NOExt),
the performance whend;, = 4.5 is terrible. We believe
that this is caused by the sampling bias. You might
consider why the #OPTs are di &rent among the d
despite no sampling bias when TSC is used. Note,
the landscapes are d&erent among thed; although the
equations are the same. In Schwefel function, which
has the optimum in the corner of the search space,
we can corPrm that the performance of the EA is ex-
tremely improved by TSC. In Griewangk function, all
methods show the robustness as shown in Fig.6 (d).
From Table 1, the characteristic of this function seems
to be the same as that of Rastrigin function. How-
ever, the landscape of this function is similar to that
of Sphere function on the broad level, as shown in
Fig.7. We believe that this robustness is caused by
this similarity. In 50-dimensional Step function and
8-dimensional Rastrigin function, the di &rence of the
e &ctiveness among the methods is little. Hence, we



(a) 40-dimensional Step function

(c) 6-dimensional Rastrigin function

(b) 10-dimensional Schwefel function

(d) 50-dimensional Griewangk function

Figure 6: The experimental results (#OPT) that explain the features of the methods obviously

Figure 7: Rastrigin function (left) and Griewangk
function (right)

studied the average, the worst and the variance of the
runs. The statistics have shown that TSC works better
than the others.

The stability of convergence speed when TSC is used
is the lowest than that when the others are used. The
EA performed in the converted search space by TSC
can bnd the optimum located in the corner of the
search space rapidly. However, when the optimum is
located at the other positions, the convergence velocity
is slower. It is a disadvantageous feature of TSC.

5.4 Con brmation of No Sampling Bias

We perform experimental corbrmation of no sampling
bias in the converted search space by TSCL (X) =1
whose dimension is two is used as the objective func-
tion. The domain of depnitionis[ 5.0,5.0]. The num-

NoEXxt TSC

Figure 8. The distribution of the overall generated
individuals in the function, f (X) =1

ber of evaluation is 50 x 10*. The population size is
set to be 100. The other conditions are the same as
the previous experiments. Since MGG performs ran-
dom sampling when all individuals have the samebt-
ness value, the all region should be searched equally if
there is no sampling bias. We plot the distribution of
the overall individuals generated in a run. Fig.8 shows
the results of NoExt and TSC. Although near bound-
ary in the left bgure is hardly searched, all region in
the right bgure are searched equally. We can cdmm
that there is no sampling bias.

6 CONCLUSIONS

This paper proposed a new method,Toroidal Search
Space ConversionTSC), which converts search space



with boundary into toroidal one, to improve the ro-
bustness of RCEAs. Experimental results showed that
the e &ctiveness of TSC is greater than those of the
other methods. TSC has following three advantages:
1. TSC can be applied widely because it is indepen-
dent on search operator., 2. It is easy to apply TSC
because it has no parameter., 3. There is no sam-
pling bias in the converted search space by TSC. On
the other hand, TSC has one disadvantage. The land-
scape of the converted search space by TSC is often
more complex than that of the original search space.
The variance of the convergence velocity is also caused
by this complexity. To cope with this disadvantageous
feature is future work.

References

[1] P. J. Angeline. Using Selection to Improve Particle
Swarm Optimization. In Proc. of the ICEC'98 , pages
84—89, 1998.

[2] T. Back. Evolutionary Algorithms in Theory and
Practice. Oxford University Press, 1996.

[3] L. Davis. The Handbook of Genetic Algorithms. Van
Nostrand Reinhold, 1990.

L. J. Eshelman, K. E. Mathias, and J. D. Scha &r.
Crossover Operator Biases: Exploiting the Population
Distribution. In  Proc. of the 7th ICGA , pages 354—361,
1997.

[4]

L. J. Eshelman and J. D. Scha &r. Foundations of Ge-
netic Algorithms 2, chapter Real-Coded Genetic Algo-
rithms and Interval-Schemata, pages 187—202. Mor-
gan Kaufman, 1993.

H. Kita, I. Ono, and S. Kobayashi. Multi parental
Extension of the Unimodal Normal Distribution
Crossover for Real-Coded Genetic Algorithms. In
Proc. of the CEC'99, pages 1581—1587, July 1999.

(5]

(6]

[7] Z. Michalewicz. Genetic Algorithms + Data Struc-
tures = Evolution Program . Springer, third edition,

1996.

[8] M. Mitchell. An Introduction to Genetic Algorithms .
The MIT Press, 1996.

[9] I. Ono, H. Kita, and S. Kobayashi. A Robust Real-
coded Genetic Algorithm using Unimodal Normal Dis-
tribution Crossover Augmented by Uniform Crossover
: E &cts of self-Adaptation of Crossover Probabilities.

In Proc. of the GECCO-99, pages 496—503, July 1999.

[10] I. Ono and S. Kobayashi. A Real-coded Genetic Al-
gorithm for Function Optimization Using Unimodal
Normal Distribution Crossover. In Proc. of the 7th
ICGA, pages 246—253, 1997.

[11] I. Ono, Y. Tatsuzawa, S. Kobayashi, and K. Yoshida.
Designing Lens Systems Taking Account of Glass Se-
lection by Real-coded Genetic Algorithms. In Proceed-
ings of 1999 IEEE International Conference on Sys-
tems, Man and Cybernetics, pages 111—592—597, 1999.

[12] I. Ono, M. Yamamura, and S. Kobayashi. A Ge-
netic Algorithm with Characteristic Preservation for
Function Optimization. In Proceedings of IZUKA'96 ,
pages 511—514, 1996.

[13] S-J. Park and M. Yamamura. An Approach to Struc-

tural Alignment with Genetic Algorithm. In  Proceed-

ings of the Second International Conference on Bioin-
formatics of Genome Regulation and Structure, pages

201—203, 2000.

[14] H. Satoh, M. Yamamura, and S. Kobayashi. Min-
imal Generation Gap Model for GAs Considering
Both Exploration and Exploitation. In  Proceedings
of IZUKA'96 , pages 494—497, 1996.

[15] H. Someya and M. Yamamura. Where should Children
be Generated by Crossover Operator on Function Op-
timization ? In Proc. of the GECCO-2000, page 382,
July 2000.

[16] O. Tomobe, I. Ono, and S. Kobayashi. Experimental

Study on Determination of Protein three dimensional

Structure using Genetic Algorithm (in Japanese). In

Proceedings of 25th SICE Symposium on Intelligent

Systems pages 35—40. The Society of Instrument and

Control Engineers, 1998.

[17] S. Tsutsui. Multi-parent Recombination in Genetic

Algorithms with Search Space Boundary Extension by

Mirroring. In Proc. of the PPSN V, pages 428—437,

1998.

[18] S. Tsutsui and D. E. Goldberg. Search Space Bound-

ary Extension Method in Real-Coded Genetic Algo-

rithms. Information Sciences, 133(3-4):229—247, 2001.

[19] S. Tsutsui, M. Yamamura, and T. Higuchi. Multi-

parent Recombination with Simplex Crossover in Real

Coded Genetic Algorithms. In Proc. of the GECCO-

99, pages 657—664, July 1999.

[20] A. A. Zhigljavsky. Theory of Global Random Search,

volume 65 of Mathematics and Its Applications .

Kluwer Academic Publishers, 1991.

APPENDIX

A BLX- [5] and UNDX [10]

BLX- produces a child in the gray region in Fig.9
(left) randomly. The child vector, C, which is encoded
by real number vector, is determined as follows:

C
Ci

{cr,....a}
u(min(py;, P2i)

di, max(pyi,pzi)+ di),

whereP; = {p11,...,Pin} and P2 = {pz1,...,p2n} are
parent vectors of Parentl and Parent2 respectively.
di = |pii p2il- n is the dimension of the objective
function. u(x,y) is the uniform random number se-
lected from [x, y].



Figure 9: BLX- (left) and UNDX (right)

UNDX generates two children around their parents us-
ing the normal distribution whose standard deviation
is determined by the third parent, Parent3, as shown
in Fig.9 (right). The children vectors, C; and C,, are
determined as follows:

X
Ci = m+z1e + Zx € ,
k=2
X
C = m z1€ Zi €
k=2
wherem = (P1 + P)/2. e = (P, P)/|Py, Py,
ex(k =2,...,n) are the orthogonal unit vectors. z;
N@©, ) and zz N, 2)(k = 2,...,n) are nor-
mally distributesgl random numbers, where | = d;

and > = #,/ n. d; is the distance between Parentl
and Parent2. d, is the distance of the Parent3 from
the line connecting Parentl and Parent2. and #are
constants.

B EQUATION (3)

B.1 Variables

In this section, we use the following variables:

Y,z the positions of parents (O<y <z < 1)

w the width in which BLX-  produces
children
c the center of parents

the probability of generating children
in one crossover operation

n(y, z)

is set to be 0.5, which is recommended value.

B.2 Equation g(x)

After the debnition of BLX- , a child is produced in
the range ofx that satispes the following inequality.

c Yex<c+ 2
2 2

Substitute w=(z )/
into the above inequality,

=2(z y)andc=(z+y)/2

X (z+y)
1< ———=< 1.
2(z y)
Therefore,
y < 22x+z,
y < 3z 2.

Since the domain ofx is [0.0,1.0], g(x) = k{ga(X) +
e (X) + gc(X)}, as follows:

Z 1, ;X Z 1
3 3
da(x) = n(y, z) dzdy ,
X 3y 2x
z X z 1
% (x) = n(y,z) dzdy ,
2, 7,
g (x) = n(y,z) dzdy ,
0 ly+2x
— 1 _ 1
where n(y,z)l/; = Ty Integrate the above,
1 x)(In3 1In2
o) = k & X3 2
N x DIn(@ x) xlInx
2y,
X(In3 In2)
2

= g{ln3 In2+(x 1)In(1 x) xInx}.

R
In order to satisfy 01 g(x) dx =1, k = W'
Hence,
2{in3+(x 1)In(1 x) xInx}
2in3+1 '

a(x) =

C MGG [14]
MGG is a generation-alternation model. It is de-
scribed as follows:

stepl Generate an initial population randomly.

step2 Choose a pair of individuals as parents from the
population randomly.

step3 Generate a certain number of children by a
crossover.

step4 Select the best individual out of the family, the
parents and the children.

step5 Choose an individual except the best, selected
at step4 out of the family randomly according to
btness-based (or ranked-based) wheel selection.

step6 replace the two individuals, selected atstep4
and step§ to the parents.

step7 lterate step2 step6until certain condition is
satisped.
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Abstract
Genetic  Algorithms  (GA) and Genetic

Programming were inspired by ideas from
evolutionary  biology. However  modern
Evolutionary Computation (EC) only in outline
reminds the strategies of biological evolution.
The application of other algorithms and
biological ideas may substantially improve the
performance of this area of computer science.
Namely, the sdlfish (or parasitic) mobile genetic
elements - transposons are good candidates for
this breakthrough. These genomic parasites live
on a substratum of genomes of whole biological
communities. Many biologists assume that
processes in the world of transposons are the
main source of evolution creativity. They
thought to act as wise higher-level mutators for
their hosts. In this communication we propose a
strategy of construction of a new approach
exploiting the most essential aspects of co-
evolution of the hosts-chromosomes and their
genetic parasites. We named this strategy as the
Two-level Evolving Worlds. The key feature of
the approach is usage of artificial transposons.
We apply it to one of known benchmark
problems - the John Muir ant's trail test. We
found that our enhancement of GA technique by
the artificial transposons obviously increase the
efficacy of searching of the ant's navigation
algorithm. We investigate in details the way of
the trangposons action as intelligent mutators of
host-chromosomes.
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1 INTRODUCTION

Many areas of evolutionary computation, especialy
genetic algorithms (GA), and genetic programming (GP),
areinspired by achievements in genetics and evolutionary
biology. However modern evolutionary biology has since
advanced considerably, revealing that genes are not
simply parameter settings, but components of a complex
biochemical machine (Cf. Luke et al., 1999; Lee and
Antonsson, 2001; Lones and Tyrrell, 2001).

On the other hand, many branches of modern
evolutionary computation research are aimed at evolution
of mechanisms (neural networks, decision trees, cellular
automata, L-systems, finite state automata). For these
domains, recent genomic achievements seems more
appropriate as an inspirational modd then classic set of
Darwinian algorithms.

There is a feding that the field of EC is getting more
inspired with the latest achievementsin biology, trying to
make the evolutionary algorithms more effective. Such
techniques as transposition, host-parasite interaction,
gene-regulatory networks and some others have yet been
applied to EC.

*Host-parasite methods. These methods are based on the

co-evolution of two different populations, one of them
acting as “parasite’, and the other acting as “host”. The
parasites usually encode a version the problem domain,
and the hosts the solution to the problem (Hillis, 1990;
Potter and De Jong, 1994; 1995; De Jong and Potter,
1995; Olsson, 1996; 2001).

*Transposition operators (“bacterial” algorithms): The
basc idea of these approaches is to make intra-
chromosome crossovers, that is, crossover of a



chromosome with another part of itsdf, or ese
asymmetric crossover, in which a donor chromosome
transfers part of its genetic material to an acceptor
chromosome (Harvey, 1996, Nawa et a., 1996; Simoes
and Costa, 2001). In some cases, these operators seem to
be better than classical genetic agorithms for
combinatorial optimization problems.

-Gene-regul atory networks approach: Luke et alls (1999)
use a method similar to genetic regulatory networks to
evolve finite state automata that represent a language
grammar. It is appropriate also to mention here the Burke
et als (1998) project, as wdl as 2enzyme genetic
programming® (Lonesand Tyrrell, 2001).

-Evolution based on the selfish elements: Corno et alls
(1998) implemented the Selfish Genetic Algorithm
inspired by Dawkins concept of the selfish gene. The
algorithm evolves a Virtual Population, in which alleles
compete for appearance in their respective locus in the
genotype.

So far, it has not been found in the literature a technique
that is general enough to be applied to a wide range of
problems, and that, in some cases, is able to yield as good
or better results than evolutionary algorithms

This stimulates us to search for prospective mechanisms
that simulate the cregtive, heuristic and self-organizing
character of (biological) evolution (Spirov, 1996a; 1996b;
Spirov and Samsonova, 1997; Spirov and Kadyrov, 1998;
Spirov et a., 1998; Spirov and Kazansky, 1999). The
mobile selfish genetic elements (synonymous or related
terms are jumping genes, transposons, retroviruses) are
good candidates for this breakthrough (Makalowski,
1995). Many biologists speculate that processes in the
world of transposons, living on a substratum of genomes
of the whole biological communities, are the main source
of macroevolution creativity (Doolittle and Sapienza,
1980; Orgel and Crick, 1980; Brosius, 1991).

In this connection, special interest is attracted by well-
known examples of both competitive and cooperative
strategiesin populations of transposons.

In this communication we propose a strategy of
construction of a new approach exploiting the most
essential  aspects of co-evolution of the hosts
chromosomes with their genetic parasites. We named this
strategy as the Two-level Evolving Worlds. The key
feature of the approach is usage of artificial transposons.
We treat transposons as high-level and intelligent
mutators. In the next part we give the definition of the
strategy. To demonstrate the efficacy of a new approach
we apply it to one of known benchmark problems - the
John Muir ant® trail test (Jefferson et al. 1992; Koza,
1992).

11 THE TWO-LEVEL EVOLVING
WORLD

Parasites and parasite ensembles always accompany
biological evolution. Tom Ray simulated this process in
his Tierra (Ray, 1991).

A specia kind of parasitesis genomic parasites living in
the host genome. Known biological proverb says that 2the
virusesin all of us - the viruses that make us°.

In the course of evolutionary time, parasites form
acommunity® of their own. They populate the united
genomic space of many hosts. We shall name these
parasites as InfoParasites (1P), and the 2community of the
parasites® as |P world.

There are examples of evolvable virtual worlds such as
Swarm, Creatures, Network Tierra (Danids, 1999; Cliff
and Grand, 1999; Ray, 2001). In the course of evolution
the worlds of that type can split over IP and host co-
evolving worlds, i.e. they can become the two-leveled. It
is the question of time and such worlds complexity. In
less complex virtual worlds similar splitting could be
realized @by hand®, as in the case of developing world of
computer viruses.

111 Strategy of Development of The Two-
level Worlds

We assume that the simplest realization of the two-layer
evolving worlds would be as follows:

the hosts-world is GA-like system (standard GA
in the simplest case). The manifold of hosts
chromosomes-strings is the environment for IPs. In the
smplest case these GAs don't have any mutation
operators of their own;

the InfoParasites are the LISP-like programs,
manipulating with the hosts strings. (For our applications
these programs must include the SEARCH function
performing the search of patternsin the host strings). IPs
live in hosts, they are transmitted vertically (when host
reproduces) and horizontally (from one host to another, as
infection or computer virus);

genotypes of parasite and host are encoded by
the same text, i.e. the same string of symbols is
interpreted in two different languages, the host’s and the
parasite’ s one;

aphad® (too harmful) parasites are diminated
together with their hosts, @good°® parasites minimize their
harmfulness (for example, by exploiting unessential parts
of host’s chromosomes).

1.1.2 Intelligent Mutators

IPs acts as inteligent and sophisticated mutators. They
can generate arbitrary procedures of manipulations with



hosts chromosomes. In general, these operators can be
the unitary, binary or plural ones. Each host has got the
mutators of its own. In the simplest case IPs are the only
source of the host' s mutations.

If IP founds hopeful mutation strategy, then both host and
parasite will get chance for reproduction, the parasite
rides on a new turn of evolution on the transformed host.
Virtually we have co-evolution of hosts and their
intelligent mutators-parasites.

12 THE ARTIFICIAL ANT PROBLEM

The artificial ant problem is the simulation of an ant
navigation aimed at passing through thelabeed trail placed
in a grid world (Jefferson et al. 1992; Koza, 1992). The
trail was nicknamed as@The John Muir Trail® in the UCLA
experiment (Jefferson et a., 1991). Each labeed cdl is
numbered sequentially, from the 1% which is settled
directly next to the starting cell, through to the last cell.
The ant's task is to pass through the labeled cells one by
one (the more the better) for the limited time period. The
ants are ample finite-gate automata or an artificial neural
network, which can move along the grid world and test their
immediate surroundings. The trail dtarts off quite easy to
folow, and gradually gets more difficult, as the turns
become more unpredictable and gaps appear (See Fig.2).
Therefore, the successful ant's program must be quite
sophigticated. The problem has been repeatedly used as a
benchmark problem (For references See Langdon and
Poli, 1998).

2 METHODSAND APPROACH

While the ant test was implemented at least in two
different C++ libraries (Zongker and Punch, 1995), we
gave preference to the Peter Brennan's version (Brennan,
1994). This 2ANT program® was designed in such a way
that to isolate, as far as possible, the components of the
genetic algorithm from the trail-following experiment and
the ant representation. Brennan's ants are finite state
automata.

21 TECHNIQUE OF MOBILE
GENETIC ELEMENTS - TRANSPOSONS

Mobile Genetic Elements (MGES) - transposons are akin
to computer viruses. They are the autonomous programs,
which aretransmissible horizontally (viz., from onesiteto
another one on the same or another chromosome) or
vertically (from the ancestor to the descendants in the
reproduction process). These autonomous parasitic
programs cooperate with the host genetic programs, thus
realizing process of self-replication - the only aim, which
can be associated with that activity. We developed some
new operators which are the computer program
procedures, performing processes of replication, mutation
and invason of MGEs into gpecific dites on

chromosomes, as well as interactions of MGE with the
chromosome (interrelations of parasite - host type).

It is appropriate here to make some notes, concerning the
terminology. MGE technique comprises the procedures
for initialization of mobile genetic eements and
procedures for operating with these e ements. Hereinafter
in this section mobile elements will be referred to as
aviruses®, whereas the procedures, operating with them
will be termed as 2MGE operators®. There are only two
types of operators. The one-place operator is an analogue
of point mutation and the two-place (binary) operator
realizing the procedure of transmission of virus from one
chromosome (host) to another chromosome (another
host).
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Let us recall that the ant binary string - chromosome is
coding a state transition table of finite state automation.
Altogether there are 32 finite states of automation,
ranging from STATE#O up to STATE#31. All operators
start reading and interpreting the table beginning from the
STATE#O. For example, STATE #0 determines one of the
four actions or instructions (FWD - 2forward®, RGT - 2to
theright®, LFT - 2to the left® or NOP - 2do-nothing®) and
the number of the next state, depending on binary input
value (0 or 1). This finite state automation can be
represented as a state transition diagram and interpreted as
a decision tree but, as far as references to already passed
by states are permissible, that tree can have loops.

Henceforward we will refer to these state number
sequences, which ant can pass through moving along the
branches of the tree and according sequences of
instructions  (routines), which it will perform, as
apatterns®. In other words, pattern is concrete sequence of
states, which an ant can come through and sequence of
instructions, which an ant can perform, when it passes
from state to state. Concrete example of patternsare given
on the Fig. 1. Hereinafter, the abbreviations of
instructions in the pattern will be referred to as dements
of pattern.

Viruses

We use this concrete definition of our virus (mobile
genetic element - transposon). Virusisthe pattern, having
the following properties:

the pattern should include e ements which number lie
in the range between minimum and maximum values;

the pattern should not contain NOP elements and
internal circles,

the pattern should be finished up with a reference to
the initial state. The transitions cycle will be executed
until only white squares remain ahead of the ant.
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MGE - operators scan the predetermined quota of
chromosomes in population. Successively decoding
chromosome record, this operator is seeking for procedure
sequences, which are identified as virus. But, MGE
operator perceives procedures and state transitions only
with the proviso that there is no labeled square ahead of
the ant, i.e. under condition input=0 (Seefig. 1).

MGE - operators

State Input=0
0 LFT/#17
17 FWD/#13
13 FWD/#21
21 LFT/#9

9 LFT/#0

Figure 1. Here is an example of a virus. The virus is a
closed five-element cycle of states transitions (0, 17, 13,
21, 9, and again, 0). There are 32 states at all. Each state
determines two aternate actions, depending on input
signal. Theinput signal iswhat an ant sees before him. If
the cell before him isblack then theinput is 1, in opposite
case the input is 0. Each of alternative actions includes
one of four possible movements (FWD, RGT, LFT or
NOP) and transition to the next state.

Two-place MGE operator providesthe transmission of the
virus from an ant to another one, thus realizing the
reproduction procedure of this virus in gene pool of the
host (ant) population. This procedure performs the
following operations.

First, a pair of ants is chosen at random. Then, the
chromosome of any of them is scanned in search of the
virus. If the virus is found, it is replicated in the partner
chromosome, irrespectively of initial record character in
that chromosome. The chromosome scanning starts from
the zero line (state##0) and goes on as far asthefirst virus
is met. If no virus is met, scanning finishes up only when
the chromosome record ends. So, scanning ceases
irrespectively of the remaining chromosome un-scanned
part content.

One-place MGE operator is a sort of point mutation,
realized under particular conditions. Thisiswhat we call
an intelligent mutator. In detail, the operator actsin such a
way. If it finds a pattern in the predetermined length
range, and the action NOP completes this pattern, then
thisinstruction is substituted for the one of the three other
actions (FWD, RGT or LFT). Specificaly, this NOP is
subgtituted for the action from the fifth dement of the
pattern, counted in order. But, if the found pattern is
completed by the reference to the one of the eements
inside pattern (internal cycle), then we have the following.
The action of this element is substituted for the action of
the fifth dement, counted backward from the end, the

reference being substituted for found at random reference
to the element outside of the pattern.

3 RESULTS

The test trail, used in thiswork isillustrated in Fig. 2. It
can be seen that up to the 64™ element our trail coincide
with the Los Altos one, but the next part of the trail
includes chaotically scattered elements of high
complexity. Being trained on much simpler preceding
trail part, the ant is not prepared to surmount the
subsequent, complicated sector (biologists would say that
the ant is not pre-adapted to new conditions it faced with
in this sector). More specifically, problems arise at
attempts to get over gaps between the 64™ and the 65, or
the 67" and the 68" cells.

Figure 2. Ant trail used in our computer experiments. The
trail itself is a series of squares on a 32x32 white toroidal
grid. Each cell is numbered sequentially, from the 1% to
the 89™. The first two gaps of the higher complexity are
between 64" and 65™ and 67" and 68"

31 MGESREALLY ACCELERATESTHE
EVOLUTIONARY SEARCH

The preiminary computer experiments showed that the
accelerating effect of MGE is especially noticeable for
small populations, when the probability of the effective
navigation algorithm finding by applying standard
crossover and mutation operatorsis|ow.

On this basis, the following experiments were carried out
on populations of 100 ants. The choice of such a small



population is also explained by our aim to carry out a
comprehensive analysis of MGE dynamics. Such an
analysis is not feasible for large populations of ants
because of great number of viruses.

With the aim of demonstrating of the MGE technique
efficiency we performed 100 independent runs of the
program, 5000 generations each. The results of test and
contral runs (population with MGE and without MGE
correspondingly) were compared in several serieswith the
different values of standard mutation parameters.
Everywhere in this section we will accept that the
effective navigation algorithm should overcome the level
of maximum score in 64 for 330 time steps.

The results of program runs with the MGE operator and
without it are illustrated in Fig. 3. It can be seen, that
MGE technique obviously increases the probability of
finding of effective navigation agorithm for small
populations and for alittle number of generations.

Figure 3. Numerica experiments, demonstrating
statistically certain increasing of the GA efficiency due to
the effect of MGE operators. A comparison of the mean
and the best-of-generation score dynamics (M GE operator
being activated) with the control (MGE operator is
disabled). The score values are averaged over 100 runsin
both cases. The size of population = 100; the number of
generations = 5000; the pattern size varies from 5 to 11,
crossover rate (P/bit)/generation = 0.0001; mutation rate
(P/bit)/generation = 0.04; i are the best-of-generation
scores and iii are the mean scores for the runs with MGE
operators, ii are the best-of-generation scores and iiii are
the mean scores for the control runs (without MGE
operators).

Asiit is evident from the graphs on Fig. 3, the mean and
the best-of-generation score scores in experiment and in
control are growing, to a first approximation, linear in
time. But the increment of growth in experiment with
MGE is substantially higher, than in control.

It may be suggested that MGE operators raise ant
variability mainly in nonspecific manner thus

supplementing mutation effect of standard operators. But,
this suggestion is not substantiated by the detailed
analysis of mutation process. We carried out control runs
with different values of standard mutations: the high
level of standard mutation does not raise the effectiveness
of the navigation algorithm search, moreover, it decreases
this effectiveness.

3.2 HORIZONTAL TRANSMISSION OF MGES
ISNECESSARY FOR THEIR EFFECTIVE
ACTION

Asfar MGEs are transmitted vertically (from ancestors to
descendants), MGE of the hogt, that have superiority in
reproduction success is rapidly spreading in the
population and gives new forms. But this process per seis
insufficient for the effective acceleration of ant learning.
Two-place  MGE operator, performing horizontal
distribution of MGE from one ant to another is a
necessary for rising of ant training ability. In Fig. 4 we
illustrate the results of comparing of the test, presented in
Fig.3, with the similar test, in which frequency of
applying of two-place MGE operator was reduced by the
factor of 10 and accounted 5%. This parameter
determines the proportion of population, which is
subjected to the action the two-place MGE operator in a
generation. In previous experiments, this quota accounted
50%.

Figure 4. The influence of decreasing of frequency of
applying of two-place MGE operator on the ant learning
abilities. i are the best-of-generation scores and iii arethe
mean scores for the runs with high frequency of the two-
place MGE operator action (50%); ii are the best-of-
generation scores and iiii are the mean scores for the runs
with low freguency of the two-place MGE operator action
(5%). The other parameters are the same as in the
previous experiments (see caption to Fig. 3).

The obvious lowering of ant learning abilities with the
decreasing of frequency of the two-placed operator
application is seen from the diagram. Disabling of the



operator lowers the efficacy further and makes it almost
equal to the control (case without MGE).

4 DISCUSSION

The problem of programming an artificial ant to follow
the Santa Fe trail has been repeatedly used as a
benchmark problem in GP (For references See Langdon
and Poli, 1998). Recently Langdon and Poli have shown
that performance of several techniquesis not much better
than the best performance obtainable using uniform
random search (Langdon and Poli, 1998). According to
these authors, the search spaceislarge and forms a Karst
landscape containing many fal se peaks and many plateaus
riven with deep valleys. The problem fitness landscape is
difficult for hill climbers and the problem is also difficult
for Genetic Algorithms as it contains multiple levels of

deception.

There are many techniques capable of finding solutions to
the ant problem (GA, GP, smulated annealing, hill
clmbing) and although these have different performance
the best typically only do marginally better than the best
performance that could be obtained with random search
(Langdon and Poli, 1998). That is why the ant problem
may be indicative of real optimization problem spaces.

4.1 DOMINANT MGE ARE THE
COMPONENTSOF THE EFFECTIVE
NAVIGATION ALGORITHMS

The results of careful analysis of organization of several
tens of dominant viruses, taken from those ant
populations, which coped with the navigation task, can be
summarized as follows.

1) By the definition, the virus program begins and ends
with the zero state, i.e, it is a loop, executed over and
over until the ant will meet the labeled cdll.

2) Four-fold execution of the virus-program produces in
most cases the closed ant trgjectories, i.e., the ant will
return to the starting position. As a rule, the closed
contour islocated in domainsthesizeof 4 4or 5" 5 cdlls.

3) As arule, the virus-program is beginning to work not
from the zero state but from the Nth state, which is
specific to every virus, not beginning with theinitial, zero
state. This transition into the Nth state takes place as soon
as the ant (host of the virus) runs against the unlabeled
cdl.

4) Start the virus-program from the Nth state providesthe
execution of the smplest navigation algorithm, necessary
for overcoming the ssimplest gaps, arranged in the first
half of the trail (3looking around®, then one step ahead,
8looking around® again and so forth). This algorithm
provides the successful passage of trail up to the 64™ cell
inclusive.

5) The mgjority of program-viruses guarantee overcoming
of the element of high complexity between the 64" and
the 65" cells.

6) Some viruses are not suitable for the navigation
programs. In that case the chromosome eements,
arranged in virusfree domain take control over
navigation.

The detailed analysis of the organization of dominant
MGE forms in populations, which are succeeded in
finding of the effective navigation programs, showed, that
the MGE themsdves become the components of these
programs. Namely, the case in point is about the part of
navigation program that is used for effective 2snuffing
around® in situation, when ant faces with a wide gap.

4.2 WISE MUTATORSHAVE A
SEARCH SPACE CONFINING EFFECT

TheMuir' s Trail search space has rugged geometry dueto
specific and discrete character of the problem. That is
why, the gradient methods are not effective here.
Moreover, this ant navigation problem is classified as a
GA hard problem, especially if trail is not designed
specially for ant population training. The efficiency of
MGE in the role of intelligent mutators can be measured
by their search space domain confining ability. Therefore,
the selection criteria inserted into MGE operators had to
increase the probability of the effective navigation
algorithm finding on the e ement of high complexity.

A comparison of mutation frequencies in experiment and
control with the according learning rates confirms
multiple reduction of evaluation numbers, needed for
reaching of the same required learning in experiments
with MGE. Mutation frequencies for basic experiments
(Fig.3) in control accounts: crossover rate + mutation rate
= 0.0001+0.04 P/bit/generation; MGE1 and MGE2
operators add in average 0.0027 and 0.0075
P/bit/generation accordingly. In other words, MGE in
average adds to value 0.041 about 0.012 P/bit/generation.
This addition brings to multiple acceleration of ant
population learning! Hence, according to fig. 3, up to the
end of the experiment (4622 time-step) the control set
gives max score 6.47, whereas in the test set thisvalueis
attained already on the 451 time-step, i.e. 10 times sooner.

5 CONCLUSIONS

The enhancement of GA by jumping genes-mutators
substantially  increases the efficacy of GA
performancein known benchmark test —ant problem.

The jumping genes-mutators (artificial transposons)
act as inteligent mutators, that 2elaborate® code
blocks with high evolvability value.
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Abstract

Neuroevolutionis currentlythestrongestnethod
on the pole-balancingpenchmarkeinforcement
learning tasks. Although earlier studies sug-
gestedthat there was an adwantagein evolv-

ing the network topology as well as connec-
tion weights, the leading neuro&olution sys-
tems evolve x ed networks. Whether evolv-

ing structure can improve performanceis an

open question. In this article, we introduce
sucha system,NeuroEwlution of Augmenting
Topologies(NEAT). We showv that when struc-
ture is evolved (1) with a principled methodof

crosseer, (2) by protecting structuralinnova-

tion, and (3) throughincrementalgrownth from

minimal structureJearningis signi cantly faster
and strongerthan with the best x ed-topology
methods. NEAT also shows that it is possi-
ble to evolve populationsof increasinglylarge
genomes,achieving highly complec solutions
thatwould otherwisebedif cult to optimize.

1 INTRODUCTION

Many tasksin the realworld involve learningwith sparse
reinforcement. Whethernavigating a mazeof rubblein
searclof survivors,controllingabankof elevators,or mak-
ing atacticaldecisionin agame thereis frequentlynoim-
mediatefeedbackavailableto evaluaterecentdecisions.It
is dif cult tooptimizesuchcomplex systemsy hand;thus,
learningwith sparseeinforcements a substantiagjoalfor
Al.

Neuroeolution (NE), thearti cial evolution of neuralnet-
worksusinggeneticalgorithms hasshavn greatpromisein
reinforcementearningtasks.For example onthemostdif-
cult versionsof the pole balancingproblem,which is the
standardbenchmarkfor reinforcementlearning systems,

Risto Miikkulainen
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NE methodshave recently outperformedother reinforce-
mentlearningtechniquegGruauetal. 1996;Moriarty and
Miikkulainen 1996).

Most NE systemghat have beentestedon pole balancing
evolve connectionveightson networkswith a x edtopol-
ogy (Gomezand Miikkulainen 1999; Moriarty and Miik-
kulainen1996; Saraananand Fogel 1995; Whitley et al.
1993;Wieland1991). Onthe otherhand,NE systemghat
evolve both network topologiesand connectionweights
simultaneouslyhave also beenproposed(Angeline et al.
1993;Gruauet al. 1996;Ya01999). A major questionin
NE is whethersuchTopologyandWeight Evolving Arti -
cial NeuralNetworks(TWEANNS) canenhancéheperfor
manceof NE. On onehand,evolving topologyalongwith
weightsmightmake thesearchmoredif cult. Ontheother,
evolving topologiescansave thetime of havingto nd the
right numberof hiddenneuronsfor a particular problem
(Gruauetal. 1996).

In arecentstudy a topology-e&olving methodcalled Cel-
lular Encoding(CE; Gruauet al., 1996)wascomparedo
a x ed-netvork method called Enforced Subpopulations
(ESP)on the doublepole balancingtask without velocity
inputs(GomezandMiikkulainen 1999). SinceESPhadno
a priori knowledgeof the correctnumberof hiddennodes
for solving the task, eachtime it failed, it was restarted
with a new randomnumberof hiddennodes. However,
even then, ESPwas ve times fasterthan CE. In other
words, evolving structuredid not improve performancen
this study

This article aimsto demonstratehe oppositeconclusion:
if done right, evolving structurealong with connection
weightscansigni cantly enhancehe performanceof NE.
We presenta novel NE methodcalled NeuroEwlution of
AugmentingTopologies(NEAT) that is designedto take
adwantageof structureasa way of minimizing the dimen-
sionality of the searchspaceof connectionweights. If
structureis evolvedsuchthattopologiesareminimizedand
grown incrementallysigni cant performanceyainsresult.
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Evolving structureéncrementallypresentseveraltechnical
challenges(1) Is therea geneticrepresentatiothatallows
disparategopologiesto cross@erin ameaningfulway? (2)
How cantopologicalinnovation that needsa few genera-
tionsto optimizebe protectedsothatit doesnot disappear
from the populationprematurely?3) How cantopologies
be minimizedthroughoutevolution without the needfor a
speciallycontrived tness functionthatmeasuresomple-
ity?

The NEAT methodconsistsof solutionsto eachof these
problemsaswill be describedbelon. The methodis val-

idatedon pole balancingtasks,whereNEAT performs25

timesfasterthanCellularEncodingand5 timesfasterthan

ESP Theresultsshaw thatstructureis a powerful resource
in NE whenappropriatelyutilized.

2 NEUROEVOLUTION OF
AUGMENTING TOPOLOGIES (NEAT)

NEAT is designedto addressthe three problemswith
TWEANNS raisedin the Introduction. We begin by ex-
plainingthe geneticencodingusedin NEAT, andcontinue
by describinghecomponentshatspeci cally addresgach
issue.

2.1 GENETIC ENCODING

NEAT's geneticencodingschemas designedo allow cor
respondinggenedo be easilylined up whentwo genomes
crosswer during mating. Thus,genomesarelinear repre-
sentation®f network connectvity ( gure 1). Eachgenome
includesa list of connectiorgenes eachof which refersto
two node genesbeing connected. Eachconnectiongene
speci esthe in-node,the out-node the weight of the con-
nection,whetheror not the connectiongeneis expressed
(an enablebit), and an innovation number which allows
nding correspondingeneqaswill be explainedbelow).

Mutationin NEAT canchangeébothconnectiorweightsand
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Figure 2: The two types of structural mutation in NEAT.

Bothtypes,addingaconnectiorandaddinganode areillustrated
with the genesabove their phenotypes.The top numberin each
genomeis the innovation numberof that gene. The innovation
numbersarehistoricalmarkersthatidentify the original historical
ancestoof eachgene.New genesareassignediew increasingly
highernumbers.

network structures.Connectionweightsmutateasin ary

NE systemwith eachconnectioreitherperturbecr notat
eachgeneration. Structuralmutationsoccurin two ways
(gure 2). Eachmutationexpandsthe size of the genome
by addinggene(s).In the add connectionrmutation,a sin-

gle new connectiongeneis addedconnectingtwo previ-

ouslyunconnectediodes.In theadd nodemutationan ex-

istingconnections splitandthenew nodeplacedwherethe
old connectiorusedto be. The old connectioris disabled
andtwo new connectionsare addedto the genome. This

methodof addingnodeswas chosenin orderto integrate
new nodesmmediatelyinto the network.

Throughmutation, the genomesn NEAT will gradually
get larger  Genomesof varying sizeswill result, some-
times with completelydifferent connectionsat the same
positions.How canNE crossthemoverin a sensiblevay?
The next sectionexplainshow NEAT addressethis prob-
lem.

2.2 TRACKING GENESTHROUGH HISTORICAL
MARKINGS

It turnsout thatthereis unexploited informationin evolu-

tion thattells us exactly which genesmatchup with which

genesbetweenany individualsin a topologically diverse
population.Thatinformationis thehistoricalorigin of each
genein the population. Two geneswith the samehistorical
origin mustrepresenthesamestructure(althoughpossibly
with differentweights),sincethey are both derived from

thesameancestragjenefrom somepointin the past.Thus,
all asystemneedso do to know which genedine up with

whichis to keeptrackof the historicalorigin of everygene
in the system.
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Figure 3: Matching Up Genomesfor Different Network
TopologiesUsing Innovation Numbers. AlthoughParentl and
Parent2 look different, their innovation numbers(shavn at the
top of eachgene)tell uswhich genesmatchup with which. Even
without ary topologicalanalysis,a new structurethat combines
the overlappingpartsof the two parentsaswell astheir differ-
ent partscanbe created. In this casethe parentsare equally t
andthegenesareinheritedfrom bothparents Otherwise the off-
spring inherit only the disjoint and excessgenesof the most t
parent.

Trackingthe historical origins requiresvery little compu-
tation. Whene&er a new geneappeargthroughstructural
mutation),a global innovation numberis incrementedand
assignedo thatgene.Theinnovationnumberghusrepre-
senta chronologyof the appearancef every genein the
system. As an example, let us say the two mutationsin

gure 2 occurredoneafteranothelin the system.The new
connectiorgenecreatedn the rst mutationis assignedhe
number , andthetwo new connectiorgenesaddedduring
thenew nodemutationareassignedhenumbers and . In

thefuture,whenererthesegenomesnate theoffspringwill

inheritthe sameinnovationnumberson eachgene;innova-
tion numbersareneverchangedThus,thehistoricalorigin
of everygenein the systemis known throughoutevolution.

The historicalmarkingsgive NEAT a powerful new capa-
bility, effectively avoiding the problemof competingcon-
ventiong(MontanaandDavis 1989;Radclife 1993;Schaf-
fer et al. 1992). The systemnow knows exactly which
genesnatchup with which ( gure 3). Whencrossingover,
the genesn bothgenomeswith the sameinnovationnum-
bersarelined up. Thesegenesarecalledmatding genes.
Genesthat do not matchare eitherdisjoint () or excess

( ), dependingnwhetherthey occurwithin or outsidethe
rangeof the otherparentsinnovationnumbers.They rep-
resentstructurethatis not presenin the othergenome.ln

composinghe offspring,genesarerandomlychoserfrom

eitherparentat matchinggeneswhereasall excessor dis-
joint genesare alwaysincludedfrom the more t parent,
or if they areequally t, from bothparents.Thisway, his-
torical markingsallow NEAT to performcrosseer using
lineargenomesvithout the needfor expensvetopological
analysis.

By addingnew genego the populationandsensiblymating
genomegepresentinglifferentstructuresthe systemcan
form a populationof diversetopologies.However, it turns
outthatsuchapopulationonits own cannotmaintaintopo-
logical innovations. Becausesmaller structuresoptimize
fasterthanlargerstructuresandaddingnodesandconnec-
tionsusuallyinitially decreasethe tness of the network,

recentlyaugmentedtructuresave little hopeof surviving

morethanonegeneratioreventhoughtheinnovationsthey

represenmight be crucial towardssolving the taskin the
long run. The solutionis to protectinnovationby speciat-
ing the population asexplainedin the next section.

2.3 PROTECTING INNOVATION THROUGH
SPECIATION

Speciationis commonly applied to multimodal function

optimization and the coevolution of modular systems,
whereits main functionis to presere diversity (Mahfoud
1995;PotterandDe Jong1995). We borrow theideafrom

theseelds andbringit to TWEANNS, whereit protectan-

novation. Speciatiorallows organismgo competeprimar

ily within theirown nichesinsteadof with the populationat

large. This way, topologicalinnovationsare protectedn a

new nichewherethey have time to optimizetheir structure
throughcompetitionwithin theniche.

Theideais to divide the populationinto speciesuchthat
similar topologiesare in the samespecies. This task ap-
peargo beatopologymatchingproblem.However, it again
turnsoutthathistoricalmarkingsoffer amoreef cient so-
lution.

The numberof excessand disjoint geneshetweena pair
of genomesis a natural measureof their compatibility.

The moredisjoint two genomesare, the lessevolutionary
history they share,andthusthe lesscompatiblethey are.
Therefore we canmeasurghe compatibility distance of

differentstructuresn NEAT asasimplelinearcombination
of thenumberof excesq ) anddisjoint( ) genesaswell

asthe averageweightdifferencesf matchinggeney ):

— 1)

Thecoefcients, , ,and , allow usto adjusttheim-



portanceof thethreefactors,andthefactor ,thenumber
of genesn thelargergenomenormalizesor genomesize
( canbesetto 1if bothgenomesaresmall,i.e. consistof
fewerthan20 genes).

Thedistancemeasure allows usto speciataisinga com-
patibility threshold Genomesare comparedto each
speciesone at a time; if a genomes'distanceto a ran-
domly chosenmemberof the speciess lessthan | it is
placedinto this species. Eachgenomeis placedinto the
rst specieswherethis conditionis satis ed, so that no
genomeis in more than one species. Measuring for a
pairof genomess linearin thenumberof connectiongven
though preciselyexpressesompatibility betweermulti-
dimensionatopologies.Thisef ciency is possiblebecause
of thehistoricalmarkings.

As thereproductiormechanisnfor NEAT, we useexplicit
tnesssharing(Goldbeg andRichardsorl987),whereor-
ganismsn the samespeciesnustsharethe tness of their
niche. Thus, a speciescannotafford to becometoo big
evenif mary of its organismgerformwell. Thereforeary
one specieds unlikely to take over the entire population,
whichis crucialfor speciatedvolutionto work. Theorigi-
nal tnessesare rst adjustedy dividing by thenumberof
individualsin the species.Specieghengrow or shrinkde-
pendingon whethertheir averageadjustedtness is above

or below the populationaverage:

— @

where and aretheold andthe new numberof indi-
vidualsin species, istheadjustedtness of individual
in species , and is the meanadjustedtness in theen-
tire population. The best-performing % of eachspecies
is randomlymatedto generate  offspring, replacingthe

entirepopulationof the species?

The neteffect of speciatinghe populationis thattopolog-
ical innovationis protected.The nal goal of the system,
then, is to performthe searchfor a solutionas ef ciently
aspossible.This goalis achiezed throughminimizing the
dimensionalityof the searchspace.

2.4 MINIMIZING DIMENSIONALITY THROUGH
INCREMENT AL GROWTH FROM MINIMAL
STRUCTURE

TWEANNSstypically startwith aninitial populationof ran-
dom topologies(Angeline et al. 1993; Dasguptaand Mc-
Gregor 1992; Gruauet al. 1996; Zhangand Muhlenbein

In rarecasesvhenthe tness of theentirepopulationdoesnot
improve for morethan20generationspnly thetoptwo specieare
allowedto reproducerefocusinghe searchinto themostpromis-
ing spaces.

1993). This way topologicaldiversityis introducedto the
populationfrom the outset. However, it is not clearthat
suchdiversityis necessaryr useful. A populationof ran-
domtopologieshasagreatdealof unjusti ed structurethat
hasnot withstooda single tness evaluation. Therefore,
thereis no way to know if ary of suchstructureis nec-
essary It is costly thoughbecausehe more connections
a network contains,the higherthe numberof dimensions
that needto be searchedo optimizethe network. There-
fore, with randomtopologiesghealgorithmmaywastealot
of effort by optimizingunnecessarilgomple structures.

In contrast, NEAT biasesthe searchtowards minimal-
dimensionalspacesbhy startingout with a uniform popu-
lation of networks with zerohiddennodes(i.e. all inputs
connectdirectly to outputs). New structureis introduced
incrementallyasstructuralmutationsoccur, andonly those
structuresurvivethatarefoundto beusefulthrough tness
evaluations.In otherwords,the structuralelaborationghat
occurin NEAT arealwaysjusti ed. Sincethe population
startsminimally, the dimensionalityof the searchspaceis
minimized,and NEAT is always searchinghroughfewer
dimensionghanotherTWEANNSs and x ed-topologyNE
systemsMinimizing dimensionalitygivesNEAT a perfor
manceadvantagecomparedo otherapproachesaswill be
discussechext.

3 POLE BALANCING EXPERIMENTS

3.1 POLE BALANCING AS A BENCHMARK
TASK

There are mary reinforcementlearning tasks where the
techniquesemployed in NEAT can make a difference.
Many of thesepotentialapplicationslik e robot navigation
or gameplaying, are open problemswhere evaluationis
dif cult. In this paper we focuson the pole balancingdo-
main becausedt hasbeenusedas a reinforcementearn-
ing benchmarkfor over 30 years(Anderson1989; Barto
et al. 1983; Gomezand Miikkulainen 1999; Gruauet al.
1996; Michie and Chambers1968; Moriarty and Miik-
kulainen 1996; Sarvananand Fogel 1995; Watkins and
Dayan 1992; Whitley et al. 1993; Wieland 1991, 1990),
which makesit easyto compareto other methods. It is
also a good surrogatefor real problems,in part because
pole balancingin factis a realtask,and alsobecausehe
dif culty canbeadjusted.

Earliercomparisonsveredonewith a singlepole, but this

versionof thetaskhasbecomeoo easyfor modernmeth-
ods. Therefore,we demonstratehe advantageof evolv-

ing structurethroughdouble pole balancingexperiments.
Two polesareconnectedo a moving cartby a hingeand
the neuralnetwork must apply force to the cart to keep
the polesbalancedfor aslong as possiblewithout going



beyond the boundariesof the track. The systemstateis
de ned by the cart position( ) andvelocity ( ), the rst

pole's position( ) andangularvelocity (), andthe sec-
ondpole's position( ) andangularvelocity (). Control
is possiblebecause¢he poleshave differentlengthsandre-
sponddifferentlyto controlinputs.

Double-polebalancingis sufciently challengingevenfor

the bestcurrentmethods. Neuroeolution generallyper

formsbetterin this taskthanstandardeinforcementearn-
ing basedon valuefunctionsand policy iteration(suchas
Q-learningandVAPS; WatkinsandDayan1992 ,Meauleau
etal. 1999,GomezandMiikkulainen 2002). The question
studiedin this paperis thereforewvhetherevolving structure
canleadto greatemNE performance.

3.2 COMPARISONS

Two versionsof the doublepole balancingtask are used:
onewith velocity inputsincludedandanotherwithout ve-
locity information. The rst taskis Markovian andallows
comparingto mary differentsystems.Taking away veloc-
ity information makesthe task moredif cult becauseahe
network mustestimateaninternalstatein lieu of velocity,
whichrequiresrecurrentconnections.

On the double pole balancingwith velocity (DPV) prob-
lem, NEAT is comparedto publishedresultsfrom four
other NE systems. The rst two representstandard
population-basedpproacheg¢Saraananand Fogel 1995;
Wieland 1991). Saraananand Fogel usedEvolutionary
Programmingwhichreliesentirelyon mutationof connec-
tion weights, while Wieland usedboth mating and muta-
tion. The secondwo systemsSANE (Moriarty andMiik-
kulainen1996)andESP(GomezandMiikkulainen 1999),
evolve populationsof neuronsanda populationof network
blueprintsthat speci es how to build networks from the
neuronsthat are assemblednto x ed-topologynetworks
for evaluation.SANE maintainsa singlepopulationof neu-
rons. ESPimprovesover SANE by maintaininga separate
populationfor eachhiddenneuronpositionin thecomplete
network. To our knowledge theresultsof ESParethe best
achievedsofarin thistask.

On the double pole balancingwithout velocity problem
(DPNV), NEAT is comparedo the only two systemghat
have beendemonstratedbleto solve thetask: CellularEn-

coding (CE; Gruauet al., 1996),andESP The succes®f

CE was rst attributed to its ability to evolve structures.
However, ESR a x ed-topologyNE system,was able to

completethe task ve times fastersimply by restarting
with a randomnumberof hiddennodeswheneer it got

stuck.Our experimentswill attemptto shav thatevolution

of structurecanleadto betterperformanceéf doneright.

3.3 PARAMETER SETTINGS

We set up our pole balancingexperimentsas described
by Wieland (1991)and Gomez(1999). The Runge-Kutta
fourth-ordermethodwasusedto implementthe dynamics
of the system,with a stepsize of 0.01s. All statevari-
ableswerescaledo beforebeingfedto thenet-
work. Networksoutputaforceevery0.02secondbetween

. Thepoleswere0.1mand1.0mlong. Theini-
tial positionof thelongpolewas andtheshortpolewas
upright; thetrackwas4.8 meterdong.

The DPV experimentuseda populationof 150 NEAT net-
works while the DPNV experimentuseda populationof
1,000. The larger populationre ects the dif culty of the
task. ESPevaluated200 networks pergeneratiorfor DPV
and1000for DPNV, while CE hada populationof 16,384
networks. The coefcients for measuringcompatibility
were and for both experiments. For
DPNV, and . For DPV, and
. Thedifferencein the coefcient re ects the
sizeof the populationsa larger populationhasmoreroom
for distinguishingspeciesbasedon connectionweights,
whereaghe smallerpopulationreliesmoreon topology

If the maximum tness of a speciegdid notimprovein 15
generationsthe networksin thatspeciesverenot allowed
to reproduce. Otherwise,the top (i.e. the elite) of
eachspeciegeproducedy randommateselectionwithin
the elite. In addition, the championof eachspecieswith
morethan ve networkswas copiedinto the next genera-
tionunchange@ndeacheliteindividualhada0.1%chance
to matewith anelite individual from anotherspecies.The
offspring inherited matchinggenesrandomly from either
parentanddisjointandexcesggenedrom thebetterparent,
asdescribedn section2.2. While othercrosseer schemes
are possible this methodwas found effective anddid not
cause=xcessve bloatingof thegenomes.

Therewasan80%chancehatthe connectiorweightsof an
offspringgenomaveremutatedjn which caseeachweight
hada 90%chanceof beinguniformly perturbedanda 10%
chanceof being assigneda nev randomvalue. The sys-
tem toleratesfrequentmutationsbecausespeciationpro-
tectsradically differentweightcon gurationsin their own
speciesln thesmallerpopulationtheprobabilityof adding
anew nodewas0.03andthe probability of a new link was
0.05. In the larger population,the probability of addinga
new link was0.3,because largerpopulationhasroomfor
alargernumberof specieandmoretopologicaldiversity.

We useda modi ed sigmoidaltransferfunction,

, atall nodes.The steepenedigmoidallows more
ne tuning at extreme actiations. It is optimizedto be
closeto linear during its steepestiscentbetweenactiva-
tions and




[ Method | Evaluations | Generations| No. Nets|

Ev. Programming 307,200 150 2048
ConventionalNE 80,000 800 100
SANE 12,600 63 200
ESP 3,800 19 200
NEAT 3,578 24 150

Table 1: Double Pole Balancing with Velocity Informa-
tion. Evolutionaryprogrammingesultswereobtainedby Sara-
vanan(1995). Corventionalneuro&olution datawasreportedcby
Wieland(1991). SANE andESPresultswerereportecby Gomez
(1999). NEAT resultsare averagedover 120 experiments. All
otherresultsareaverageover50runs. Thestandardieviation for
the NEAT evaluationsis 2704evaluations Althoughstandardie-
viationsfor othermethodswverenotreportedjf we assumesimilar
variancesall differencesrestatisticallysigni cant ( ),
exceptthatbetweeNEAT andESP

3.4 DOUBLE POLE BALANCING WITH
VELOCITIES

Thecriteriafor succes®nthistaskwaskeepingbothpoles
balancedor 100,000time steps(30 minutesof simulated
time). A polewasconsideredalancedetween36 and36
degreesfrom vertical.

Table 1 shavs that NEAT takes the fewestevaluationsto

completethis task,althoughthe differencebetweerNEAT

andESPis not statisticallysigni cant. The x ed-topology
NE systemsvolvednetworkswith 10 hiddennodeswhile

NEAT's solutionsalways usedbetween0 and 4 hidden
nodes. Thus, it is clearthat NEAT's minimization of di-

mensionalityis working on this problem. Theresultis im-

portantbecauset shavs that NEAT performsaswell as
ESPwhile nding moreminimal solutions.

3.5 DOUBLE POLE BALANCING WITHOUT
VELOCITIES

Gruauet al. introduceda special tness function for this
problemto preventthe systemfrom solving the tasksim-
ply by moving the cartbackandforth quickly to keepthe
poleswiggling in the air. (Sucha solution doesnot re-
quire computingthe missingvelocities.) Becauséoth CE
andESPwereevaluatedusingthis special thess function,
NEAT usesdt onthistaskaswell. The thess penalizes-
cillations. It is thesumof two tness componenfunctions,

and , suchthat . Thetwo functions
arede ned over 1000time steps:

®3)

if ,
otherwise. (4)

wheret is the numberof time stepsthe pole remainsbal-
ancedduring the 1000total time steps. The denominator

[ Method | Evaluations | Generalization | No. Nets |

CE 840,000 300| 16,384
ESP 169,466 289 1,000
NEAT 33,184 286 1,000

Table2: Double Pole Balancing without Velocity Information
(DPNV). CEis Cellular Encodingof Gruau(1996). ESPis En-
forcedSubpopulationsf Gomez(1999).All resultsareaverages
over 20 simulations.The standarddeviation for NEAT is 21,790
evaluations.Assumingsimilar variancedor CE andESR all dif-
ferencesin numberof evaluationsare signi cant ( ).
Thegeneralizatiomesultsareout of 625casesn eachsimulation,
andarenotsigni cantly different.

in (4) representshe sumof offsetsfrom centerrestof the
cartandthelong pole. It is computedoy summingthe ab-
solutevalueof the statevariablesrepresentinghe cartand
long pole positionsand velocities. Thus, by minimizing
theseoffsets(dampingoscillations),the systemcanmaxi-
mize tness. Becausef this tness function,swingingthe
poleswildly is penalizedforcing the systemto internally
computethe hiddenstatevariables.

UnderGruauet al.'s criteria for a solution,the champion
of eachgeneratioris testedon generalizatiorio make sure
it is robust. This testtakesa lot moretime thanthe tness
test,which is why it is appliedonly to the champion. In
additionto balancingbothpolesfor 100,00Qtime stepsthe
winning controller mustbalanceboth polesfrom 625 dif-
ferentinitial statesgachfor 1000timessteps.Thenumber
of successeis calledthegenealizationperformancefthe
solution In orderto countasa solution,a network needs
to generalizeo at least200 of the 625 initial states.Each
startstateis choserby giving eachstatevalue(i.e. , , ,
and ) eachof thevalues0.05,0.25,0.5,0.75,0.95scaled
to the respectie rangeof the input variable ( ).
At eachgenerationNEAT performsthe generalizatioriest
onthechampiorof thehighest-performingpecieshatim-
provedsincethelastgeneration.

Table 2 shows that NEAT is the fastestsystemon this

challengingtask. NEAT takes 25 timesfewer evaluations
thanGruaus original benchmarkshawving thatthe way in

which structureis evolved hassigni cant impacton per

formance.NEAT is also5 timesfasterthan ESP shaving

that structurecanindeedperformbetterthan evolution of

x edtopologies.Therewasno signi cant differencein the
ability of ary of the3 methodgo generalize.

4 DISCUSSIONAND FUTURE WORK

4.1 EXPLAINING PERFORMANCE

Why is NEAT so much fasterthan ESP on the more dif-
cult taskwhentherewasnot muchdifferencein the eas-
ier task? The reasonis thatin the taskwithout velocities,



Figure4: A NEAT Solution to the DPNV Problem. Node2

is the angleof thelong pole andnode3 is the angleof the short
pole. This clever solutionworks by taking the deriative of the

differencen poleangles.Usingtherecurrentonnectiorto itself,

the single hiddennodedeterminesvhetherthe polesarefalling

away or towardseachother This solutionallows controllingthe

systemwithout computingthe velocitiesof eachpole separately
Without evolving structure jt would be dif cult to discover such
subtleandcompactolutions.

ESPneededo restartan averageof 4.06 times per solu-
tion while NEAT never neededto restart. If restartsare
factoredout, the systemserformat similar rates. NEAT
evolvesmary differentstructuresimultaneouslyn differ-
ent speciesgachrepresenting spaceof differentdimen-
sionality Thus, NEAT is always trying mary different
ways to solve the problemat once,soit is lesslikely to
getstuck.

Figure4 shavs a samplesolutionnetwork that NEAT de-
velopedfor the problemwithout velocities. The solution
clearly illustratesthe advantageof incrementallyevolving
structure.Thenetwork is acompactindelegantsolutionto
this problem,in sharpcontrasto the fully-connectedarge
networksevolvedby the x ed-topologymethods.t shavs
that minimal necessarytructuresare indeedfound, even
whenit would bedif cult to discoserthemotherwise.

A parallel can be dravn between structure evolution
in NEAT and incrementalevolution in x ed structures
(Gomezand Miikkulainen 1997; Wieland 1991). NE is
likely to getstuckon a local optimumwhenattemptingto
solve a dif cult taskdirectly. However, after solving an
easierversionof the task rst, the populationis likely to
bein apartof tness spacecloserto a solutionto a harder
task,allowing it to avoid local optima. Thisway, a dif cult
taskcanbe solved by evolving networks in incrementally
more challengingtasks. Adding structureto a solutionis
analogouso this processThenetwork structurebeforethe

Figure5: Visualizing speciation. The x ed-sizepopulationis
divided into speciesshavn horizontallywith newer speciesap-
pearingatright. Time, i.e. evolution generationsareshavn ver
tically. The color codingindicates tness of the specieqlighter
colors are better). Two speciesheganto closein on a solution
soonafter the 20th generation. Around the sametime, someof
theoldestspecieshecameextinct.

additionis optimizedin alower-dimensionakpace.When
structureis added the network is placedinto a morecom-
plex spacewhereit is alreadycloseto a solution. This pro-
cessis differentfrom incrementakevolution in thatadding
structureis automaticin NEAT whereasthe sequencef
progressiely hardertasksmustbe designedy the experi-
menter andcanbea challengingproblemin itself.

4.2 VISUALIZING SPECIATION

To understanchow innovation takes placein NEAT, it is
importantto understandhe dynamicsof speciation.How
mary specieform overthe courseof arun?How oftendo
new speciesarise? How often do speciedie? How large
dothespecieget?We answetthesequestiondy depicting
speciatiorvisually overtime.

Figure5 depictsatypical run of the doublepolebalancing
with velocitiestask. In this run, the tasktook 29 genera-
tionsto complete which is slightly above average.In the
visualization successie generationareshovn from topto
bottom. Speciesaredepictedhorizontallyfor eachgenera-
tion, with the width of eachspeciegproportionalto its size
during the correspondingyeneration.Speciesare divided



from eachotherby white lines,andnew speciealwaysar
rive on the right handside. Gray-scaleshadingis usedto
indicatethe tness of eachspecies.A speciess colored
darkgrey if it hasindividualsthataremorethanonestan-
darddeviation abose themean tness for therun, andlight
grey if they aretwo standarddeviationsabove. Thesetwo
tiersidentify the mostpromisingspeciesandthosethatare
very closeto a solution. Thus,it is possibleto follow ary
speciedrom its inceptionto theendof therun.

Figure5 shaws that only one speciesxistedin the popu-

lation until the 5th generationthatis, all organismswere
sufciently compatibleto begroupednto a singlespecies.
In successiegenerationgheinitial specieshrankdramat-
ically in orderto make roomfor thenew speciesandeven-

tually becameextinct in the 21stgeneration Extinctionis

shavn by awhitetrianglebetweerthegeneratiorit expired

andthe next generation.The initial specieswith minimal

structurewasunableto competewith newer, moreinnova-

tivespeciesThesecondpecieto appeain thepopulation
meta similar fatein the 19thgeneration.

In the 21stgenerationa structuralmutationin the fourth
speciesconnectedhe long pole anglesensorto a hidden
nodethat had previously only beenconnectedo the cart
position sensar This innovation allowed the networks to
combinetheseobsenations,leadingto a signi cant boost
in tness (andbrighteningof the speciesn gure 5). This
innovative speciesubsequentlgxpandedput did nottake
over the population. Nearly simultaneouslyin the 22nd
generationayoungerspecieglsomadeits own usefulcon-
nection, this time betweenthe short pole velocity sensor
andlong pole anglesensorleadingto its own subsequent
expansion.In the 28th generationthis samespecieanade
a pivotal connectionbetweenthe cart positionandits al-
readyestablisheanethodfor comparingshortpolevelocity
tolongpoleangle.Thisinnovationwasenougtto solvethe
problemwithin onegeneratiorof additionalweight muta-
tions. In the nal generationthe winning speciesvas11
generation®ld andincluded38 neuralnetworksout of the
populationof 150.

Most of the specieghat did not comecloseto a solution
survivedthe run eventhoughthey fell signi cantly behind
aroundthe 21stgeneration.This obsenrationis important,
becausat visually demonstratethatinnovationis indeed
being protected. The winning speciesdoesnot take over
theentirepopulation.

4.3 FUTURE WORK

NEAT strengthenghe analogybetweenGAs and natural
evolution by not only performingthe optimizing function
of evolution, but also a compl&ifying function, allowing
solutionsto becomeincrementallymore complex at the

samdime asthey becomemoreoptimal. Thisis potentially
a very powerful extension,andwill be furtherexploredin
futurework.

One potentialapplicationof complei cation is continual
coevolution. In acompaniorpaper(Stanley andMiikkulai-

nen2002)we demonstratéhow NEAT canaddnew struc-
tureto anexistingsolution,achiezing morecomplex behar-
ior while maintainingprevious capabilities. Thus,anarms
raceof increasinglymore sophisticatedgolutionscantake
place. Stratgyies evolved with NEAT not only reacheda
higherlevel of sophisticatiorthanthoseevolvedwith x ed-
topologiesbut alsocontinuedto improve for signi cantly

moregenerations.

Anotherdirectionof futurework is to extendNEAT to tasks
with a high numberof inputs and outputs. For suchnet-
works,theminimalinitial structuremayhaveto bede ned

differently thanfor networks with few inputsandoutputs.
For example,afully connectedwo-layernetwork with 30
inputsand 30 outputswould require900 connections.On
the otherhand,the samenetwork with a ve-unit hidden
layerwould requireonly 300 connectionsThus,thethree-
layer network is actually simpler, implying that the mini-

mal startingtopologyfor suchdomainsshouldincludehid-

dennodes.

Finally, the NEAT methodcan potentially be extendedto
solutionrepresentationstherthanneuralnetworks. In any
domainwheresolutionscanbe representedvith different
levelsof compleity, thesearcHor solutionscanbegin with
a minimal representatioithat is progressiely augmented
as evolution proceeds. For example, the NEAT method
may be appliedto the evolution of hardware (Miller et al.
200a,b),cellular automata(Mitchell et al. 1996), or ge-
netic programgKoza1992). NEAT providesa principled
methodologyfor implementinga compleifying search
from aminimal startingpointin any suchstructures.

5 CONCLUSION

Themainconclusionis thatevolving structureandconnec-
tion weightsin the style of NEAT leadsto signi cant per
formancegainsin reinforcementearning. NEAT exploits
propertiesof both structureandhistory that have not been
utilized before. Historical markings,protectionof innova-
tion throughspeciationandincrementabrowth from min-
imal structureresultin a systemthatis capableof evolv-
ing solutionsof minimal compleity. NEAT is a unique
TWEANN methodin thatits genomesangrow in com-
plexity asnecessaryyet no expensve topologicalanalysis
is necessargitherto cross@er or speciatehe population.
It forms a promising foundationon which to build rein-
forcementearningsystemdor complec realworld tasks.
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Abstract

We consider the dynamics of variable-length Genetic
Algorithms (GAs) with strings of length

using a recently developed exact, coarse-grained for-
mulation where the relevant coarse-grained degrees of
freedom are “building block” schemata. We derive an
exact formal solution of the equations showing how
a hierarchical structure in time and degree of coarse-
graining emerges, the effect of recombination being
to successively form more ne-grained objects from
their more coarse-grained building blocks, where in
this case the building blocks can come from strings of
different lengths. We examine the limit distributions
of the dynamics in the case of a at tness landscape,
one-point homologous crossover and no mutation. By
taking advantage of the existence of a set of conserved
quantities in the dynamics we provide exact solutions
for the cases and use these to investigate
the phenomenon of inter-length-class allele diffusion.
We also study the general case showing what exact re-
sults may be easily derived using our particular coarse-
grained formulation.

Introduction

University of Montana, USAUniversity of Birmingham, UK
wright@cs.umt.edu j.e.rowe@cs.bham.ac.uk

terms of the underlying string variables, are far removed
from traditional elements of GA theory such as the Schema
theorem and Building Block Hypothesis (BBH) [5, 6].

The underlying microscopic equations, however, can be
rewritten naturally in a basis other than the string basis
[7, 8, 9] yielding evolution equations that offer the bene t
of a very intuitive interpretation, that illuminate the content
of the Schema theorem and the BBH, that naturally coarse
grain from string equations to schema equations, that yield
an interpolation between the microscopic and the macro-
scopic and that offer new exact results or simpler proofs of
known results. These equations lead to many insights into
the dynamics of GAs offering an exact Schema theorem
that naturally incorporates a form of the BBH, although it
is important to emphasize here that the “building blocks”
that naturally emerge in this formulation are dynamic and
not necessarily short or even t! However, creation events
due to recombination can be precisely understood in terms
of these BBs. Originally applied to a canonical GA (pro-
portional selection,-point crossover and mutation) the ba-
sic elements have been extended to GAs with arbitrary se-
lection schemes and any homologous crossover [1] and,
importantly, have been extended to Genetic Programming
(GP) by Poli and coworkers [10, 11].

The dynamics engendered by a “canonical” GA and, in-Tpere has been increasing interest in variable-length repre-
deed, genetic dynamics in general, is exceedingly COMgentations from different points of view [12, 13, 14] . In
plicated. This is true even in the case of what one mightnis paner we will use a coarse-grained BB formulation to
think of as “toy” tness landscapes such as counting onesn egtigate the dynamics of variable length GAs up to a
or needle-in-a-haystack. Ir_1 fact, up until quite recently [1], jaximum size . We present formal solutions for an
to our knowledge, no solutions have been found for the dy-pomologous crossover operator and arbitrary tness land-
namics in the presence of recombination for arbitrary St”ngscape and mutation showing how the solution naturally ad-
lengths even in the case of a at tness landscape, thoughyits an interpretation in terms of a hierarchy of BBs. We

there has been recent noteworthy progress in the Specighen consider the asymptotic behaviour of the dynamics for
a at tness landscape, both at the formal level, discussing

case of “genepool” recombination [2, 3], where for a given
recombination event allele mixing is over the entire pOpu-generajizations of Geiringer's theorem, and at the explicit
and and vari-

lation not just between twq _pargntg. F.or binary strings Oflevel, deriving exact solutions for
xed length, , the probability distribution that describes
the dynamics is obtained by solving coupled, non-linear

difference equations. Important results have been derived his work is, of course, susceptible to the standard criti-
about this system of equations by viewing them as a dy<isms - what is the relevance of considering a small num-
namical system [4]. However, these coupled equations, irPer of loci and at tness landscapes? There are several

ous exact results for arbitrary



ways of rebutting such criticism. Firstly, simple models by at least one bit from . is the

can lead to intuitive insights that would be less transparenprobability that  remains unmutated and

in a more complex model. An important example of that is is the probability that the string
the minimal two-bit deceptive problem [15]. Another ex- mutate to the string being the Hamming
ample, is the vyork of Spears.[16] where limit distribut.ions distance between the strings and . Note that mu-

for recombination and mutation for xed. Ien'gth GAs in a tation preserves the length class of a string or schema.
at tness landscape were investigated in simple two and is the probability of nding a string  after
three-bit problems. Interestingly, even in this case he had t%election and crossover and is given by

resort to numerical rather than analytical calculations. Ad-
ditionally, understanding the structure of the dynamics in (2)
simple problems can lead to insight about how to construct

results or proofs in more general problems and potentially

lead to insights which may be of bene t for practitioners.

where is the probability for selecting the string
is the probability of implementing the mask

on the common region between the two strings and we sum
over only even masks as this ensures that the tail comes
from the second parent which, without loss of generality
we assume to be of length, and therefore that length is
5reserved. is the mask conjugate to. The total num-
ber of possible masks on the common region is

for a given mask represents the part of the string
inherited from the rst parent, which we assume to be

2 Coarse-Grained Evolution Equations

In this section we introduce the notion of coarse-grained
evolution equations in a BB basis, discussing their inter-
pretation and advantages at a formal level. We will not
derive the coarse-grained exact evolution equations her
but refer the reader to the original literature [7, 9, 10, 11].
Our interest here is variable-length GAs with homologous
crossover. As homologous crossover operators conserve
length classes [18] we will consider the corresponding . . .
evolution equation for strings or schemata within a given of length , and is that part inherited from the sec-

length class , composed of strings of a xed length, and ©nd: Both and are schemata. (2) has a form
consider arbitrary string length . where similar to that for the xed length case and can be inter-

. In this case, if one considers the evolution of length preted similarly, i.e. strings are created by BBs, the differ-

strings then one of the parents in the crossover operatiofi'c€ in this case being that one of the BBs can come from
must be a length string as well while the other parent & Parent of other than length. Once again we emphasize

may be of arbitrary size. The action of the homologousthat these _BBs are dyna_mical not static slchema averages
crossover we will use can be simply understood by align-2nd are neither necessarily small or even t!
ing the two parents at the rst loci then implementing a The microscopic equation (1) can be coarse-grained to an

mask de ned on the common region of the two strings. For arhitrary schema of order and de ning length
example, with and the common region is as-  contained within strings of size to nd
sociated with the rst four loci. A one-point crossover be-
tween the second and third loci would yield and
while a crossover between the fth and sixth loci (of ©)

the second string) is not allowed. Hence, the total number

of possible masks on the common region is

. . . . . where the sum is over all schemata,, that differ by at
qu prlmary.object of interest will be the.proportlon of least one bit from in one of the de ning bits of
strings of agiven type, ; o of a given schema, In other words any schema competing with and belong-

' ' W',thm a '6”9”‘ class ing to the same partition. is the
. Thus, we de ne a schema relative to a given 'engthprobability that remains unmutated and

class. However, it is important to note that all proportions ) .

will be relative to the total population size summed over all is the probability that

length classes. In the in nite population limit, which we the schema mutate to the schema with

will generally assume throughout, is simply the being the Hamming distance betwee;n the schemgltand

probability for nding the string . For a string ~ we : is the probability of

have nding a schema  of length class after selection and
crossover and is given by

(1) (4)

where the sum is over all length-classstrings that differ



where is the probability for selecting a schema The interpretation of this equation is that is a

from strings of length class . foragivenmask o, ce which creates strings by bringing BBs from

represents the part_of the sche_main_herited from the strings of length and  together. The rst term on the
rst parent and is that part inherited from the sec- g hand side tells us how the strings themselves are prop-
ond. Now, and are the BBs for the schema

gated, or survive, into the next generation, the destructive
- Thus, we see that BBs at one level are composed Oftet of crossover renormalizing the tness of the strings.
more primitive (lower order) BBs which in their turn aré \qte that the equation is linear but for the presence of string
composed of lower order blocks etc. thus leading t0 a hi-reation, |t s this division into a linear term and a source
erarchical structure. is the set of crossover masks ”j,at that allows for a natural formal solution which leads to fur-
endina thataffect , i.e. the number of “allele mixing” o insight into the nature of GA dynamics while at the

masks, is their number. determines the  g56 time offering the possibility of exact, analytic calcu-
survival probability of the schema and depends on the propyations in certain circumstances.

erties of the particular schema, such as order and de ning

length, and, importantly, also depends on the length distriNeedless to say solutions of these dynamical equations

bution of the strings and their corresponding tnesses [18].are hard to come by. They represent, for binary alleles,
coupled non-linear difference equations, or in

he continuous time limit - differential equations. Here, we

cul ing is sel . I consider the formal solution for the case of homologous
par_t|Cl|J ar: string |sbs_e|> ect?d and SurVIveshcrossm:erl, oralterzossover and mutation and for any selection scheme lin-
natively how it is built up from its BBs. The novel element ear in . The equation (7) is always of the same

here compared to standard GAs is that the BBs come from, ., 'j o 4 rst order, linear, inhomogeneous difference
strings of potentially different sizes. (1) then tells us how (differential) equation. Its iterated solution is

the string is preserved by mutation or formed by mutation

from some other string of the same partition. 8)

As with all coarse grained evolution equations the interpre
tation of (1) and (2) is very intuitive: (2) tells us how a

We can put the basic equation (1) into a yet more ele-
gant form, the corresponding equation for schemata fol-
lows trivially, by introducinga -dimensional population
vector for each length class, , whose elements are

: - Equation (1) takes the form where . The interpretation of (8)
) follows naturally from that of (7). Considering rst the
case without mutation, the rst term on the right hand side
where the -dimensional mutation matrix ~ isreal, 9ives us the probability that a string survives from

symmetric and time independent and has elements to withput being destroyeq by crossover. In other words
is the Greens function or propagator for [1].

- For selection schemes linearin |n the case of a at tness landscape without mutation for
: can be written as instance . In the second term,
6 each element, , Is associated with the creation of a
®) string at time via the juxtaposition of two BBs from
strings of length and  respectively and associated with
a mask . The component corresponding to of the
matrix is the probability that the
resultant string survives from its creation attim& . The

where the “cloning” matrix, , Is diagonal . N
and describes both selection and survival under>-m OVer mgsks, stnn'g Iengths,a_md IS S|mply the sum
crossover Explicily, for proportional selection over a_II poss[ble creat_lon events in the dynamics. Ina more
' ' . explicit notation we will denote the propagator for a string
Finally, the by

components of the *“source” vector are given by ) ) )
which cor-  This formal solution above has a very natural diagramatic

interpretation both at the level of xed length strings which

responds to the BB sources, from strings of length can be extended to the present case.

and respectively, for the string . De ning the

cloning-mutation matrix we have ..
9 3 Geiringer’s Theorem

For any dynamical system xed points and their stabil-
(7) ity are of particular interest. Hence, in this section we
will discuss the xed point distributions for xed and



variable-length GAs. For a xed-length GA evolving on and
a at landscape in the absence of mutation the xed point
of the dynamics for a string is

Here, we see a generalization of the concept of Robbins
9) proportions, the corresponding proportions in the variable

length case being . We will see in the next

section that there are natural analogs of the linkage dise-

where as a string argument means the symbpeated quilibrium functions as well.

times. This result is the well known Geiringer’s theorem
[17] for a general crossover operator. Any population that . .
factorizes in this manner is said to be in linkage equilbrium4  EXplicit Solutions -
and the resulting allele frequencies are known as Robbins
proportions. This result emerges naturally from equationIn [1] it was shown for xed length strings in the contin-
(8), specialized to the case of a single length class, uous time limit how an exact explicit solution correspond-

which yields for a at landscape in the absence of muta-ing to (8) could be found for a at tness landscape. Even
tion in this case however, the result is highly non-trivial due to

the complicated combinatorics of the various BB creation
events. In the case of variable length strings one would ex-
pect the combinatorics to be even more complicated. Be-
(10) fore considering the general case we will therefore look at

some relatively simple cases for with no mu-
tation and using one-point crossover where we also include
As , hence as crossover before the rst bit and immediately after the last
unless the summation over time leads to a cancellatiomit of the shortest parent. For we must solve:
of this damping factor. Given that the BB constituents
of are associated with damping factors
and , Where is
the total number of non-zero crossover masks, this can only (12)
occur if there is no damping of the consituent BBs and this
only happens if they are-schemata as then . for strings of length two and
Thus, the only term that survives in the hierarchical solu-
tion of (8) is the product of -schemata [9].
The type of recombination employed controls how fast the (13)
transient corrections to the limit distribution die out. The
damping is controlled by , hence the bigger it is
the faster the corresponding transient dies out [1]). for strings of length one. The corresponding “source” terms
A . . are respectively
The general approach to equilibrium is characterized by
the exponential decay of linkage disequilibrium functions (14)
where
denotes the population average of Thus, (15)
These linkage disequilbrium functions
will be seen to be natural variables in which to understandl he explicit forms of the equations of motion are
the dynamics and approach to equilbrium. In GAs a set of
variables that have also been viewed as natural for consid-
ering the dynamics are “building blocks”. (16)
The generalization of Geiringer’s theorem to the variableWhere and
length case has recently been derived [18]
(11) (7)
where . and are the prob-

where abilities to get any string of length one and length two re-

spectively. Note that homologous crossover preserves the
length distribution [18].



With this simple problem equations (16) and generation. This equation can be simply solved using equa-
(17) have an intuitive interpretation that allows us imme-tion (8) to yield
diately to investigate the phenomenon of allele diffusion

between different length classes that is an important char- (21)
acteristic of variable-length genetic dynamics. The factor

describes the sur- where is the xed point
vival probability per generation of a particular length-  of the dynamics in agreement with the general xed point
string. For length-one strings so  of (11). We may expand

itis only in the presence of length-two strings that that thereto nd

is a non-zero decay probability. This probability grows as

a function of due to the fact that there are more de-

cay channels open to the string. For length-one strings the

only creation source is via theschema which im-

plies a diffusion of alleles of type from length-two to 22)
length-one strings. For length-two strings the two corre-

sponding creation terms are associated with getting the rst _ ) )

bit of the string from a parent of length one and the second\Ote that even if inter-length-class allele dif-
bit from a -schema associated with strings of length two fu3|on_W|II generate a!leles in length-one strings at some
and the rst and second bits fromschemata associated later time. Thus, unlike the xed length case a particular
with strings of length two. This second term is exactly the @llle in a given length class may be regenerated without
same as would be found in a xed-length GA. The novel the mter\_/ent_lon of mutation. No_te that at the xed point
element is to be able to construct the desired length-twdhe contributions to  are determined solely by the

string by interaction between aschema associated with Proportions of this allele from all possible length classes.
length-two strings and a length-one string. Thus, in orderHence, _recomb|nat|on in the vanabl_e- length case maxi-
to solve for the dynamics for length-two strings one mustMally mixes the alleles among all available length classes.

rst solve for the dynamics of the size one strings. As from Haying found the exact solution for strings of length one we

(17) one can see that their dynamics depends on the dynaminay proceed to strings of length two. As can be seen from
ics of the -schemata it would seem that the dynamics of equation (16) we need to solve rst for the dynamics of the
the length-one and two strings are inextricably interwinedyyo -schemata and . From (16), one notices that

and must be solved for simultaneously. However, this isthere are no source terms for from length-one strings.
not so. The reason why not is that there exist constantgjence, one nds that

of the motion that can be exploited. To see this consider
. The -schema proba- (23)
bility may be determined from (16)
and notes that the allele is conserved in agreement with
(11). The -schema can
(18) be simply solved for to yield

thus adding this to (17) one nds (24)

(19)  where the survival probability per generation for is
and the xed point is given by
once again in agree-
ment with equation (11). Note that the exponential ap-
proach to this xed point is the same as for

and hence is an invariant of the motion. It
basically expresses the conservation of the alleleas-
sociated with the rst bit position and in this sense is
analogous to the conservation law

forany associated with xed length  Finally, using the explicit solutions (21), (23) and (24) we
GAs. In the variable-length case however there is no conmay deduce the solution of (16). and
servation of alleles within a given length class due to theare a time-dependent source of strings . Substi-
phenomenon of inter-length-class allele diffusion. With tuting in (16) the solutions (21), (23) and (24) one nds
this conservation law in hand the equations (17) and (16)
can be decoupled. We write (17) as

(20)

where we now revert to the propagator notation used in sec-
tion 2, being the survival probability per (25)



In the limit ; thus, we see the xed The solution and associated xed point are given by (26) as
point emerging in agree- inthe case above. Length-two strings satisfy

ment with equation (11).

The solutions can be put into a more elegant and trans-
parent form by introducing the notion of generalized
linkage disequilibrium functions. We de ne
and

. Thus, both these functions characterize )
deviations from the corresponding xed points. Immedi- Thus we see a coupling to length-one and length-three
ately we see an important distinction from the xed length Sources. The -schemata equations for ~  and
case where a single bit cannot have BBs and linkage occurs however can be solved by eliminating length-
between different bits. Here the “building blocks” of ~ three sources using the conservation law
are any length-one string and any string of any length that - One obtains
contains . Due to the phenomenon of inter-length-class
allele diffusion there is a concept of linkage disequilibrium
for a single bit. This is due to the fact that linkage dise-
quilibrium can be generalized to take into account correla-
tion between corresponding bits in different length classes.

(30)

(31)

Similarly, for the BBs are the length class two schema

and any string of any length that contains. In both  where , and are as above in the
cases we see that one of the BBs is associated with a coarsase. To solve (28) we still require , ,
graining over all possible length classes and hence is not a . and

schema associated with a xed length class. Explicitly, is conserved as the nal bit of the longest string cannot
mix with anything else and therefore is unaffected by inter-

(26)  length-class allele diffusion. can be solved for
in terms of the solution of . obeys
and
We now consider the solution for strings of length . As we already have the solution for and
For we have this can simply be solved for. satis es
(33)
(28) Once again, given that we have the solutions for

where and this can be simply solved. Finally,
Once again this is a linear equation in but satisifes

with sources for which we have to solve equations for
length one and two strings aneschemata from two strings
and - and -schemata from length-three strings. Analo-

gously to the case length-one strings satisfy an

equation that is coupled toschemata of different length,

in this case and . However, as in the

length-two case using the conservation law (34)
allows

us to write the equation as This is the only non-trivial equation left to solve as it is

coupled to . Both equations are rst order linear
(29) inhomogeneous difference equations and can be decoupled



by going to a second order linear inhomogeneous differ-
ence equation which can be readily solved. Due to length
constraints we will present the results elsewhere. With
these solutions in hand may readily be solved

for. Note that -schemata from other than length-class

It is worth taking stock of what we have done here. In theStrings act as sources for, however, there are no more
case in terms of the underlying string variables “primitive”, i.e. lower order, sources. Hence, in the sense
there are six coupled equations to be solved. By going to £f section 2 this equation is really homogeneous with no
coarse-grained schema, or BB basis, one is able to imple3B sources and hence can be written as

ment the conservation laws most naturally, thereby decou-

pling the equations and nding an exact, explicit solution. (37)
For there are fourteen coupled equations. The .
only extra complication relative to the case how- 'Where the elements of the matrix can be read off from

ever was the fact that after implementing the conservation(36) and the values of the coef cients , and . The

laws two equations remained non-trivially coupled and hadCiagonalization of this matrix yields the decay rates of the
various -schemata. With the-schemata solution in hand

to be decoupled by going to a higher order difference caua e may start to reconstruct theschemata respecting the

tion. hierarchical structure outlined in section 2. We will not
o ) ] pursue this further in this paper restricting attention to some
5 Explicit Solutions - arbitrary more speci ¢ results.

immediately sees that the quantity
is conserved. Additionally, for the
hength-one strings all “sources” for

appear with the same coef cient, . Hence,

satis es (26) the only difference now being that

In this section we wish to make some observations abouFrom (35) one
the general case - arbitrary. An important element,
seen in the last section, is the existence of conservatio
laws which may be used to facilitate the solution of the
dynamics. Generally, the conserved quantities are

(35) Using the conservation of the last bit of the longest string
of which there are . Hence, from the dynamical equa- One may also determine the evolution of the last bit of
tions one may eliminate  variables. As in the above the next longest string and the last bit of the string of
cases of one may use this fact to obtain the ex- length by using the conservation law
act dynamics of certain schemata. These conservation laws . For the next to last bit
are more naturally expressed in terms of schemata ratheif the longest string the solution is
than strings. For instance, the conservation law

in terms of string variables is

(38)
. This is a dif cult constraint to implement at the
level of the string equations themselves. where
As we have emphasized, with the coarse-grained BB ap- and
proach advocated here dynamical solutions are built up hi- which is the

erarchically beginning with low order BBs and proceeding expected xed point from (11).
to higher ones. As the lowest order ones arg&chemata
it is of interest to investigate the general equation for a

schema from length class. One nds that 6 Conclusions

We have investigated the dynamics of variable-length GAs
using a coarse-grained BB representation of the dynami-
cal equations. We showed that the formal solution of the
equations could be interpreted in an analogous manner to
where that of the xed length case, i.e. the hierarchical construc-
tion of more ne-grained schemata from their more coarse-
grained BBs. The novel element here is that these BBs
could come from strings of different lengths. We discussed
brie y the xed point distribution of the equations for a at
tness landscape using a one-point homologous crossover
operator and no mutation showing how a generalization of

(36)



Robbins proportions emerged that involved a generalized [4] Vose, M.D. (1999)The Simple Genetic Algorithm: Founda-

notion of a BB. We then turned to a more explicit construc-

tion of the entire dynamics and quanti ed the approach to [5]
the xed point. For
plicit solutions utilizing the existence of conservation laws

we were able to nd ex-

for certain quantities. This in itself shows the utility of the

coarse grained BB representation, the
the string level corresponding to 14 simultaneous rstorder [7]

problem at

difference equations which need to be solved.

From the resultant solutions we were able to investigate the
phenomenon of inter-length-class allele diffusion. We saw

that the diffusion rates, or mixing times, for different al-

leles or combination of alleles depended strongly on the

length distribution of strings, which in the case of a at t-

ness landscape is time independent. For instance, the dif{9]
fusion rate for the allele
slower than that of the same allele in length-class-two or10j
one strings if
if the proportion of length-three strings is small. We also
can see that the closer the string bit to the beginning of
the string then typically the faster it mixes, simply becausey11)
there are more things with which it can mix. In this sense in
the variable length case the degree of exploration versus ex-
politation carried out by recombination is inhomogeneous
depending on the bit's position in the string and the distri-[12)
bution of lengths, diversity being encouraged more at the
beginning of strings than at the end. Another interesting
aspect of inter-length-class allele diffusion is the fact that
for a given length class a lost allele from a particular bit 13)
position can be recovered if the allele exists in the corre-

in length-class-three strings is

which is the case

sponding bit of another length class string.
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Abstract

Self-adaptation has been widely used in
Evolution Strategies (ES) and Evolutionary

Programming (EP), where it has proved useful in
varying the mutation step size for continuous
objective variables. To date, relatively little

work has been performed on applying self-
adaptation to the canonical Genetic Algorithm
(GA). This research applies a simple discrete
model of self-adaptation to test functions with

differing characteristics. We show that the

discrete model is able to provide more reliable
problem solving than the classical lognormal

self-adaptation scheme on the test problems
examined. We find that although self-adaptation
parameter choices representing conventional
thinking perform best for unimodal functions,

very different parameter settings are required for
optimum performance on multimodal functions.

These results are discussed in terms of the
strategy parameter variety needed for self-
adaptation to work effectively and we outline a

self-adaptation mechanism designed to capitalize
on these findings.

INTRODUCTION

Jim Smith
Intelligent Computer Systems Centre
University of the West of England
Bristol, United Kingdom

james.smith@uwe.ac.uk

1991). For the purposes of self-adaptation, the main
difference between GAs and ES/EP is that GAs usually
employ a binary representation. With such a
representation, a per-bit mutation rate is used to control
the rate of bit-flipping mutations applied to an individual.
For a non-adaptive GA, this parameter is fixed across the
population and throughout the course of a run. However
it is natural extension to encode the mutation rate into
each individual, to allow it to vary across the population
and in time. Back (1992) used these ideas and performed
seminal work showing that self-adaptation in GAs is
possible. Following Béck's work, several authors have
experimented with self-adaptation of mutation rates in
GAs (see for example, Back & Schiitz, 1996; Smith &
Fogarty, 1996; Hinterding, 1997). Design decisions that
must be addressed with this approach are the choice of
representation for the strategy parameter and, related to
this, the means by which the strategy parameter is itself
varied to allow adaptation to occur. Back's early work
remained close to the traditional interpretation of a GA
and used a binary encoding of the strategy parameters
with corresponding bitwise mutation. Current thinking is
that a real-valued representation is preferable (Glickman
& Sycara, 1998). This then allows the use of lognormal
adaptation of strategy parameters as shown in (1) where
the parameter controls the step size of, the
individual's mutation rate.

i exp( N(OD) 1)

In a self-adaptive Evolutionary Algorithm (EA), the
representation for individuals in the population is Recent empirical (Liang et al. 1998; Glickman & Sycara
extended to include strategy parameter information. The000) and theoretical (Rudolph 1999) work has shown
EA operates as normal, evolving the population accordinghat self-adaptation schemes which adapt too quickly can
to the fitness of its members, with the additional step oflead to premature convergence to low step sizes, with the
stochastically varying the strategy parameters ofsearch getting 'stuck’ at local optimum. This has lead to
individuals selected for reproduction. Self-adaptation ofan interest in alternative variation schemes.

mutation rates is possibly the most common application o

self-adaptation, largely stemming from its widespread use(%
in ES (Schwefel, 1981) and EP (Fogel, Fogel & Atmar,

mith (2001) introduces a dynamical systems model of a
A with self-adaptation of mutation rates. The model is
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Abstract

Within a genetic algorithm, all genes may not be
created equal. This concept is the central idea
A second and equally
important idea is that this inequality in gene

importance or salience can be detected and
identified within a GA. To support these ideas, a
directly measuring genetic

explored in this paper.

technique for
diversity within a GA population and thereby

indirectly measuring gene-specific importance is
Diversity graphs are offered as a
powerful technique for visualizing measurement
results. Our theories, metrics and tools are tested
on GAs for two problem classes and four

provided.

different selection methods.

1 INTRODUCTION

University of Central Florida, Orlando, FL 32816
aswu@cs.ucf.edu

and moving to less salient genes similar to the way a row
dominos falls. Domino convergence and variations in
gene importance have been shown to occur in genetic
algorithms attempting to solve exponentially scaled
fithess problems.

In subsequent works, (Goldberg, 1999) and (Srivastava &
Goldberg 2001) explored how gene salience and domino
convergence can be used to develop GAs with a serial
mode of processing. A serial GA consists of small

populations and short epochal runs. During each epoch
different salient genes converge to their respective
optimal values. Between each epoch, a continuation
operator is activated to rejuvenate the diversity of less
salient genes while leaving more important (and

previously converged) genes alone.

Without continuation operators, GAs for exponentially
scaled problems tend to converge around highly salient
genes. The GA may then drift and stall at a less than
optimal solution due to lack of diversity in less salient

Within a genetic algorithm (GA), all genes may not be9€Nes.
created equal. Anecdotal evidence of this can be obtainethe use of epochs and continuation operators was found
from any student of genetic algorithms who has attemptednproductive for problems with uniformly salient genes

to solve a symbolic regression problem. For examplee.g.,, OneMax).

For these types of problems, the

consider a GA which finds the coefficients for the traditional GA’s implicit parallelism, larger populations,

following equation:
yzal+bC+oxt + dC+exd + fx+ g+ hcos(x)(1)

and single long epoch were found to still be the most
productive method of processing.

Intuitively, we expect genes representing the variaales We Dbelieve that the idea of gene-specific temporal

throughh to have varying impacts on fithess evaluation _
due to differences in the exponential order associated withNctions.
each term. We would further expect thgene andb-
gene to be the most important in determining fitness of a
individual. The values for genasthroughh would be

salience provides a valuable insight into how a GA
In the case of exponentially scaled problems,
the concept opens up new opportunities for developing
ﬁontinuation operators to fine tune GA performance. But
in order to use this approach, we must first find an

largely irrelevant in terms of raw fitness until these first€fféctive method to determine if a problem includes genes

two genes converged to some local optimum.

The idea of a gene’s importance or temporal-salience haghers.

with non-uniform salience and if so, a method for
identifying those genes that are more important than
This is particularly important in problems with

already bee_n described in.(Thierens, Goldberg & PEI'Eira/,ery |arge numbers of genes Whareriori know|edge of
1998). A side effect of this property is the phenomenomyene salience is less likely. In this work, we present a
of “domino” convergence introduced in (Rudnick, 1992).simple method for detecting domino convergence and
A GA with non-uniformly salient genes convergesidentifying genes with high levels of importance. We
serially over time starting with the more important geneshow how tracking gene diversity within a GA population



can provide the information we need to obtain aThroughout these initial experiments, we notice that there
measurement of gene salience. appeared to be a strong correlation between gene-salience
Ue focuses on two metrics T[?éld_divers_ity of alleles within a single gene and also

) H\Ilthln partial chromosomes ("sub-genotypes"). The final
Yersion of our measurement methods used this idea and
gre described below.

Our measurement techniq
first is the variation in unique alleles associated with eac
gene in a population. Unique allele counts plotted ove
time (generations) constitutes a convergence profile for
given problem and selection method. This profile clearly

indicates the presence or absence of domino convergenéel  UNIQUE ALLELES

Our second metric consists of a ratio of uniqué subype giaring point for our method of determining genetic
genotypes to alleles and assigns a numeric salience VaIHR/ersity within a GA is to count the number of unique

to (_aach gene. .Grap.hk_:ally presenteq, this_ ratio gives USHfieles for each gene within a population at a given time.
salience profile identifying genes of higher importance. An allele can be thought of as a single representation

In this work we describe the general nature of thdnstance of a gene. For example, using bit strings to
experiments we performed to test the use of diversity asrepresent a 9-bit gene allows fordifferent alleles.

salience indicator. Experiments include GAs for differentF
problem classes and various selection methods. Th romosome will be identified as @here 1> i > n andn

range of problem classes a_nd selec;ion method; allow "é%]uals the total number of genes which make up a single

to validate our method against previous theoretical WorI&hromosome Two additional subscripndj are added

performed by other researchers. to further specify a genet indicates a specific time or
generation. | identifies an individual chromosome where

2  MEASURING GENE SALIENCE 1>j >p andp equals the population size. For example,

Gs3, 100, 12denotes the third gene located on individuds12
THROUGH GENETIC DIVERSITY chromosome at generation 100.

The concept of gene salience or importance is all around(g, ,) will be used to denote the count of unique alleles

us. For example, normal human beings are born with twgy G within the total population at the start of generation
eyes. Yet there exist numerous variations in eye coloy-

within the population. On a simplistic level, we can )

assume that the genes which affect the number of eyes in  U(Gi) = [{ Gt | GiijJ Gk where 1> j,k>p} |

ones head are more important than those affecting eygo illustrate, assume that at the start of generation 54
color. We can also assume that a lack of diversity in thguring a GA's run, the third gene on all chromosomes
number_of_eyes genes relative to eye_color genesontained bit representations (genotypes) for one of the
indicates that the first is more salient than the others. following numbers: 12, -47, 178 or 3 (phenotypes). The

The same concept applies to genetic algorithms with norJpopulat_lon has evol\_/ed to contain c_h_romosomes with only
uniform gene importance. Over time, diversity of salientfour unique alleles in the third position. In this e>§ample,
genes diminishes faster than that of non-salient gene¥(Gssd = 4. Note that we are not concerned with how
Less salient genes are not subject to the same selectiBiRNY genes contain a given allele, only the number of
pressures due to their low fitness impact. The diversity gfnique alleles within the population. U5 provides a
alleles for each gene in a population relative to othef€asure of the.dlversny of; @ithin the population at the
genes provides a good indication of gene salience. Trdart of generation

less diverse, the more important. Interesting results were obtained by following the

Using this idea we began investigating various ways t@€havior of a population using this measure. A low {}(G
measure genetic diversity (or lack there of) within a GAfor a given gene relative to other genes in a chromosome
Initial experiments looked at uniqueness of entireindicates that the population is converging towards a few
chromosomes within a population. It was assumed thatelect alleles thus towards some local —optimum.

this method would provide a good showing of genetiddnfortunately, the difference between Y{Gor all genes
diversity and illustrate how a population convergesW'th'” a GA was sometimes very small. This limited our

toward a small number of similar individuals over theability to draw any firm conclusions regarding a specific
course of multiple generations. This method was teste@i€ne’s level of importance. Nor did this single statistic
but found to be unsatisfactory. Looking at entireProvide a total picture of what was occurring within the
chromosomes did not single out specific genes noBA as a whole. Additional information was required.
indicate their specific importance. Nor did this method

clearly show the presence or absence of doming.2 UNIQUE SUB-GENOTYPES

convergence. We also investigated convergence to fithe
values as a way of tracking convergence and diversity;
This also proved to be less than satisfactory in identifyin
salient genes.

or notational purposes a single gene location within a

ounting unique alleles gave us a way to track
onvergence of a given gene. But what about the rest of
he genetic material within a chromosome?

To answer this question, we have developed the idea of a
partial chromosome or "sub-genotype". A sub-genotype



is the entire chromosome excluding a single gene. Fahe symbolic regression problem. Based on the work
notational purposes,;Swill represent a chromosornse researchers previously cited, we should find no important
sub-genotype with respect tq &b the start of generatidn  genes in the OneMax problem.

The sub-genotype for a specific gene consists of th
concatenation of all genetic material in the chromosom
excluding the gene itself. 1. A GA was executed for 50 runs of 100 generations
each. All runs were initialized with a different
random number seed.

eExperiments were conducted as follows:

The example below illustrates how allele representations
and sub-genotypes are derived from a hypothetical five-
gene chromosome associated with individual 9 af. All unique alleles and associated sub-genotypes were
generation 60: counted for each gene during each generation.

3. The allele and sub-genotype counts from step 2 were
averaged across all 50 runs.

4. A ratio of the values from step 3 was calculated for
each generation. Ratios were summed and divided

Original Chromosome #9 at Start of Generation 60:
Gene: #1 #2 #3 #4 #5

Value: 1010 1111 0011 0000 1101 by 100 for an average ratio across all generations.
_ 5. The results from 3 and 4 were plotted for each
Derived Gene Values and Sub-Genotypes: problem as a set of six diversity graphs.
Gl,GO,Q: 1010, §eo'g= 1111 0011 0000 1101
Gag00= 1111, $g00=1010 0011 0000 1101 3.1 GAPARAMETERS AND SETTINGS
Gse00= 0011, §600= 1010 1111 0000 1101 Our experiments used one of four selection methods:
Gugos= 0000, Se0o= 1010 1111 0011 1101 Fitness Proportional, Tournament, Rank Proportional and

Random. Features and parameters incorporated into our

Gse09= 1101, $600= 1010 1111 0011 0000 GA for all experiments included the following:
Population Size = 200 Individuals, Representation
U(S,) will be used to denote the count of unique sub-ﬁ/lemod = Bit String, Number of_Genes per Chromosgme
genotypes within the total population at generation = 8, Number of Bits per Gene = 9, Crossover Type = 2-

Point, and Crossover Rate = 100%.

U = - iJ where 1> j,k > ) . . .
S0 =S 1801 S ] 2 With the exception of one experiment, mutation was not

employed in any of our experiments. Our diversity
2.3 RATIO OF SUB-GENOTYPES TO ALLELES metrics are based on counts of unique alleles and sub-

As a final measure of diversity, we also looked at the rati@enotypes. Mutation has the effect of increasing overall

of sub-genotype counts to the count of unique allelegdiversity in a population and tended to obscure though not
This ratio (R) is equal to the sub-genotype count dividednide our results. Leaving out mutation allows us to
by the unique allele count and can be shown as follows: remove its effects from our measurements and focus on
the evolution of individuals using only genetic material
Ri=U(S) V(G available from the initial population. One can think of the
Examples illustrating the importance of this relationshipresults of our mutation-less experiments as providing a
will be given later. For now, it is sufficient to say that baseline measure of gene salience and selection pressure
this ratio "amplifies" the measurement of gene-specifiovithin a GA.
salience and provides an better indicator of this important

characteristic. 3.2 COUNTING UNIQUE ALLELES AND SUB-
GENOTYPES
3 EXPERIMENT DESIGN The method proposed in this paper for identifying gene-

Many experiments were performed to capture the metricSpeCifiC salience requires that the number of unique
y exp P P glleles and sub-genotypes be determined for each gene in

e om0 e o Chnese SX0ereTLach generaton e are many iferent methods ta
Y an be used for such a counting function, some more

identify the salient order of genes within a chromosomeeﬁicient than others. The method employed for our

Experiments involved calculating and then graphing - : -
U(GL), U(S) and R for a variety of problem classes experiments was simple though not necessarily the most

and selection methods. An analysis of the data obtaine(?ﬁ'c'ent computationally.

from the experiments supports our proposal that geneti_AII genes consisted of 9-bit binary strings_ repr_esenting
diversity can reveal gene-specific salience in a GA. integer values from—255 to +255. During fitness

. : .evaluation, these genotypic strings were converted to their
Two different problem classes were tested and included i henotypic decimal equivalents. Genes were left in their

this paper: Symbolic Regression and OneMax. It was ouf,. : :
expectation that gene-specific salience would be found inrlglnal string format for counting purposes.



At the beginning of each experiment amx n array 4 FINDING TEMPORAL SALIENCE
(coun) was constructed for storing unique allele counts

wherem = 100 was the number of generations in a ruriven the introduction to this work, it is fitting that
andn = 9 wasthe number of genes in each chromosomesSymbolic regression be the first problem used to test our
All array elements were initialized to 0. diversity measurement technique. Predetermineaidy

. values were provided as input to the GA's fitness function.
A hash table was used to keep track of unique alleles. Thiye GA's task was to find optimal values for coefficients

table was queried for the existence of each allele during ,.oughh. Positionally, these coefficients corresponded
the counting process. A gene value not found in the hag genes 1 through 8 on a chromosome.

table was considered to be a new unique aHdlee first N
of its kind. The corresponding element ¢ount was  Intuition and knowledge of the problem lets us know that
incremented by 1 and the gene was added into th&e first gene (@ will be the most salient and have the
hashtable. If an allele was found to already exist in th@reatest impact on fitness evaluations due to its
hash table, no action was taken. The uniqueness of ti@sociation with the ternax. The population should
allele had already been noted and added to the count fépnverge around this one gene before all others. G
that gene during that generation. The following pseudotepresenting the coefficient fdox® would be next in
code further illustrates this process: importance followed by & G,,Gs and so on.

Experiments were run per the design in Section 3 using

o ) tournament selection. Unique alleles and sub-genotypes

for (i=1; i<=number_of_genes; i++){ for all runs were counted, averaged and plotted on a set of
clear hash table; diversity graphs (see Figure 1).

for (j=1; j<=population_size; j++){ Figure 1(a) shows the convergence profile for this

extract gene G i from chromosome; problem/selection method combination. Allele diversity

if (G i not in hashtable){ for the gene associated with thecoefficient - U(GQ) -
add 1 to count[generation][il; drops fastest followed by U@sand the other genes. By
add G . to hashtable: generation 41, only one allele for;Gexists in the

} population. The gens salience caused a single value to

quickly take over this gene in the entire population. This

graph also shows a similar but delayed behavior for G

} though G over the course of 100 generations. The result

} is a staggered look to the graph clearly indicating the
domino convergence occurring in this experiment.

A similar process was utilized to count unique sub-Figure 1(b) shows the diversity of sub-genotypes for this
genotypes associated with each gene. It should be notegbblem. Diversity for all sub-genotypes drops decreases
that the counting method described here is basegver time as the GA converges to a single result.

primarily on the number of genes in a chromosome and i
therefore usable with both small scale GAs and GAs wit
larger gene sizes (number of bits) or populations.

else no action necessary;

igures 1(d) and 1(e) provide an offline view of allele and
sub-genotype counts. Both of these graphs contain the
average number of unique alleles or sub-genotypes over
100 generations. For our test problem,aad G have
3.3 VISUALIZATION OF DIVERSITY the lowest average unique number of alleles. On average,

Results were written from theountarray to a comma- ©Only 7.7 different values for {Gexisted during each
delimited text file at the end of each experiment. The filggeneration due to this gesesalience. Although hard to
contained the count of unique gene values and sufi€ll from the graph, Ghas the greatest sub-genotype
genotypes for all 100 generations. Using data from thi§iVersity. ~ On average, any given individual in the
file, two graphs were plotted for each term describedOPulation will include one of 105 A&hrough-G gene
previously (U(Gy), U(S,) and R.) One graph shows combinations regardless (_)fl@value. It was foun(_j that
the change in the term over time (by generation) giving ugenerally the lower thg unique allele count, the higher the
an online view. The second graph shows an offline®ub-genotype count within the GA.
average value for each term for the entire GA run. Thusrom these first four graphs, we can see thaar@ G or
for each experiment, a suite of six graphs was preparesbefficientsa andb respectively, are the more important
which, when viewed as a set, provided an excellengenes and exert a higher degree of selection pressure than
picture of the changing genetic diversity within a GA.the other genes in this GA. But these graphs alone may
Examples of these diversity graphs are providechot be enough to clearly indicate gene salience. A more
throughout the remainder of this work along with ourreliable indicator has proven to be the ratio of sub-
analysis. genotypes to gene values (WS U(G,)). These ratios
are plotted for our same test problem in Figures 1(c) and
1(f).
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Figure 1: Diversity Graphs for 8-Term Symbolic Regression Problem Using Tournament Selection

As mentioned earlier, this ratio R@5tends to amplify A variation on the preceding symbolic regression problem
our ability to detect gene-specific importance and make ivas developed to check the previous results. In this
easier to pick out the genes with greatest salience. Figusecond problem, the positional order of terms was mixed.
1(f) is most important to us and we have called this typ& he resulting equation is:

of plot a“salience profil€. From Figure 1(f) it is very _ 4
clear which genes in our GA are more salient than others. y = ax+bd +ccos(rdx +e+ i + gl +hx



Assuming our proposal is correcty, &4, and G, should 5 OTHER SELECTION METHODS
exhibit behavior that typifies genes of higher importance.

Figure 2 shows the salience profile for this reordered>raphs in Figures 1, 2 and 3 were associated with GAs
problem. As expected, .GG, and G had the highest Using tournament selection. How well does our
average ratio of unique sub_genotypes to a||e|esth(1§ measurement technlque work with other selection

the eight genes. methods?  To answer this question we present
convergence and diversity profiles for GAs solving
200 equation (1) using random and fitness proportional

.
®
S

selection (Figures 4 and 5 respectively). Space does not
allow a detailed description of the results. However, a
few points should be noted.
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The plots for random selection show that lack of directed
selection pressure leads only to drift in gene diversity.

Gene-specific salience also appears in GAs run with
fitness proportional selection. The exponential effect of
the selection method causes the GA to converge very
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Average of Unique Sub-Genotypes over Unique Alleles

N
S

L= [1 O ] rapidly around highly salient genes. As a result we do
A s ¢ o e r & w not see the stair stepped or staggered type of convergence
Gene ID profile found in Figure 1. The salience profile is stronger

for genes of higher importance.

Figure 2: Saleince Profile for Symbolic Regression  The important concept to be seen in these graphs is the
Problem with Reordered Terms impact of selection method. Rank or tournament
selection is best for detecting domino convergence and

This second experiment confirms that our measuremerfi€ntifying the gene order in terms of salience. However,

technique can identify salient genes regardless of thefftness proportional selection provides a very clear
position within a chromosome. indication of the importance of the most salient genes in a

] ] ] ) chromosome. As a result, fithness proportional selection
As mentioned in Section 3, most of our experiments werghay be most useful when results for other selection
run without mutation. For sake of completeness, Wenethods are less clear.

incorporated bit mutation at a rate of 0.01 in a third . , )
experiment using equation (1). Figure 3 shows thé&XPeriments testing our method on rank fitness were also

salience profile for this GA. A comparison of Figure 3Performed. We do not include the diversity and salience

with Figure 1(f) shows that mutation reduced but did noProfiles for these experiments as they were very similar to
elimnate the indication of gene-specific saliencethose of tournament selection. When combined with a

calculated from R(. Using a magnifieg-axis, the stair OneMax problem, proﬁles f(_)r binary tournament and rank
step pattern indicating the presence of domingsélection were nearly identical as was expected based on

convergence is still apparent. showings in (Blickle & Thiele, 1995).
20

w 6 OTHER PROBLEM CLASSES

?_‘ 1 It appears that we have found a simple method for

S 1417 — identifying domino convergence and gene-specific

S salience in a GA. But what about detecting a lack of gene

g0 ] importance? Random selection results in the elimination

S ot of gene salience regardless of the problem type. Can we

R also show that a problem class in and of itself lacks

2 e salient genes. To further test our technique, we ran a GA

PR A - 4ﬂ_‘—’_‘—’_‘—r using a OneMax problem. The fitness function merely

<, : : : : : : : counts the number of ones in the entire chromosome. This
e L problem has been shown to have uniform salience across

Gene ID

all genes. Figure 6(a) and (b) contain convergence and

salience profiles for this problem using tournament

Figure 3: Salience Profile for Symbolic Regression  selection. We can see from these plots that no gene is
Probliem with Mutation = .01 more salient than another.
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with Tournament Selection

7 CONCLUSIONS

Tournament Selection

would allow practitioners to potentially develop operators
that may improve GA performance on a particular

In this work we have presented a simple but usefuproblem. Our detection method is based on a count of the
method for detecting domino convergence and geneinique gene alleles and unique sub-genotypes that occur
specific salience within a given problem. It is notwithin a short run. While both of these counts provide
uncommon for certain regions of GA individuals to some indication of gene salience, it is the ratio of the sub-
consistently converge early. Those regions are typicallgenotype count to the unique allele count that appears to
expected to be regions that have high impact on thgive the clearest picture as to which genes have the
fithess function. The ability to detect high impact regionsstrongest impact on the GA search process.



We tested our method for detecting salient genes oselection methods. We have already mentioned the
problems in which genes are and are not expected to has#ikingly similar results found for rank and tournament
varying impact. From results we are clearly able to detectelection which concur with theoretical studies. Diversity
salient genes when they exist, regardless of their positiographs would show where new selection methods are
within a chromosome. similar to existing methods and where they differ.

A comparison of salience profiles for varying selection
methods indicate that choice of selection method caReferences

enhance or diminish gene-specific salience depending RBlickle. T. & Thiele. L (1995). A Comparison of

the desires of the GA researcher/developer. Ouggjaction Schemes Used in Genetic Algorithifigi-
experimental evidence shows that fitness proportion eport  No 11 Computer Engineering and

selection magnifies_ a gene's selection PressUrgs o mmunication Networks Lab (TIK), Swiss Federal
Tournament or rank fithess selection methods reduce th?ﬁstitute of Technology (ETH), Zurich, Switzerland
pressure and allow the temporal salient nature of more ' ' '
genes to shine through. Goldb(_erg, D. E. (1999). Using Time Eff_icien;ly: Genetic-
. . . Evolutionary Algorithms and the Continuation Problem,
Choice of selection method is an example of how genéy, “proceedings of the Genetic and Evolutionary
salience can be manipulated on a chromosomal- %omputation Conference: GECCO 199¥/olume 1 pp.

problem-wide scale. But can we manipulate selection;, 519 \organ Kaufman Publishers: San Francisco.
pressure at the gene level? The use of continuation '

operators is a step in that direction. We believe that thBudnick, W. Michael (1992)Genetic Algorithms and
ability to identify salient genes within a GA will help Fitness Variance with an Application to the Automated
researchers in those development efforts. Design of Artificial Neural Networks Unpublished

. : . . doctoral dissertation, Oregon Graduate Institute of
While the information presented here is of value we dQScience and Technology

recognize that our methods have their limitations.
Specifically, our methods were designed for GAs withSrivastava, R.P. & Goldberg D.E. (2001). Verification of
fixed gene positions and would not be directly applicabléhe Theory of Genetic and Evolutionary Continuatibm,
to locus-variable situations such as messy GAs or GABroceedings of the Genetic and Evolutionary
with variable length chromosomes. We believe theComputation Conference: GECCO 2001Morgan
development of methods for detecting gene salience iKaufman Publishers: San Francisco.

these other GA categories will be a productive area fo*i’hierens, D., Goldberg, D. E., & Pereira, A. B. (1998).
future research. Domino Convergence, Drift and the Temporal-Salience
In addition, our research focused on gross numericgbtructure of Problems, Ifhe 1998 IEEE International
counts of unique allele values and sub-genotypes Thigonference on Evolutionary Computation Proceedings
approach can suffer from scalability issues which may b@p. 535-540, IEEE Press: New York, NY.

addressed by taking measurements on restricted GA runs

(e.g., short duration or small populations.) These

restricted runs can reduce processing time while still

providing information about the problem. Such gross

numerical counts also make no attempt to evaluate genes

or sub-genotypes qualitatively. Further research in these

areas are expected to provide a greater understanding of

genetic diversity within a GA.

Despite these limitations, we feel the knowledge gained
from our research has immediate value. We can now
detect domino convergence within a GA and thus non-
uniform gene salience. In addition, we can identify

important genes within these GAs and begin to use this
knowledge towards development of better control

mechanisms.

In terms of immediate applications, our method may be
helpful in a number of ways. The programming effort
required to extract our measurements (V(Gi,t), S(Gi,t) and
R(Gi,t)) is relatively small. A few lines of code added to
any fixed position GA would allow a quick view of any
gene-specific temporal salience that the GA might
encounter.

We feel our diversity graphs will be useful in
development and evaluation of new genetic operators and



Variable Dependence Interaction and Multi-objective Optimisation

1

Ashutosh Tiwari and Rajkumar Roy

Department of Enterprise Integration,
School of Industrial and Manufacturing Science,
Cranfield University, Cranfield, Bedford,
MK43 OAL, United Kingdom (UK).
E-mail: {a.tiwari, r.roy}@cranfield.ac.uk
Tel: +44 (0) 1234 754072, Fax: +44 (0) 1234 750852

Abstract

Interaction among decision variables is inherent
to a number of real-life engineering design
optimisation problems. There are two types of
interaction that can exist among decision
variables: inseparable function interaction and
variable dependence. The aim of this paper is to
propose an Evolutionary Computing (EC)
technique for handling variable dependence in
multi-objective optimisation problems. In spite
of its immense potential for real-life problems,
lack of systematic research has plagued this field
for a long time. The paper attempts to fill this
gap by devising a definition of variable
dependence. It then uses this analysis as a
background for identifying the challenges that
variable dependence poses for optimisation
algorithms. The paper further presents a brief
review of techniques for handling variable
dependence in optimisation problems. Based on
this analysis, it devises a solution strategy and
proposes an algorithm that is capable of handling
variable  dependence in  multi-objective
optimisation problems. The working of the
proposed algorithm is demonstrated, and its
performance is compared to that of two high
performing evolutionary-based multi-objective
optimisation algorithms, NSGA-Il and GRGA,
using two test problems extracted from literature.
The paper concludes by giving the current
limitations of the proposed algorithm and the
future research directions.

INTRODUCTION

minimum weight, the surface design of automobiles for
improved aesthetics and the design of civil engineering
structures for minimum cost (Rao, 1996). A survey of
industry and literature reveals that along with multiple
objectives, constraints, qualitative issues and lack of prior
knowledge, most real-life design optimisation problems
also involve interaction among decision variables (Roy et
al., 2000). However, lack of systematic research has
plagued the field of interaction for a long time. This can
mainly be attributed to the lack of sophisticated
techniques, and inadequate hardware and software
technologies. However, in the last two decades, with the
improvements in hardware and software technologies
some research has been carried out in this area especially
in the field of statistical data analysis (Draper and Smith,
1998). This has been further augmented in the recent past
with the growth of computational intelligence techniques
like Evolutionary Computing (EC), Neural Networks
(NNs) and Fuzzy Logic (FL) (Pedrycz, 1998). This paper
focuses on the development of an evolutionary-based
algorithm for handling variable interaction in multi-
objective optimisation problems.

2 TYPES OF VARIABLE
INTERACTION

In an ideal situation, desired results could be obtained by
varying the decision variables of a given problem in a

random fashion independent of each other. However, due
to interaction this is not possible in a number of cases,

implying that if the value of a given variable changes, the

values of others should be changed in a unique way to get
the required results. The two types of interaction that can
exist among decision variables are discussed below.

2.1 INSEPARABLE FUNCTION INTERACTION
The first type of interaction among decision variables,

Real-life engineering design optimisation problems, a&known as inseparable function interaction, is discussed in
opposed to the theoretical problems (test cases), are thdd@tail by Tiwari et al. (2001). This interaction occurs
that are encountered in industry. Some examples of the¥éhen the effect that a variable has on the objective



function (Taguchi, 1987). This concept of interaction cariThe above example
dependence among decision variables has the following

be understood from Figure 1.

reveals that the presence of

effects.

y y 4 y

n A n 5 n 5
(a) (b) (©)

Figure 1: Examples of Interaction (a) No Interaction
(b) Synergistic Interaction (c) Anti-synergistic Interaction
(Phadke, 1989)

In GA literature, the inseparable function interaction, as
defined above, is termed as epistasis. The GA community
defines epistasis as the interaction between different
genes in a chromosome (Beasley et al., 1993). A review
of literature reveals that the evolutionary-based
techniques for handling inseparable function interaction
can be classified into two broad categories based on the
approach used for the prevention of building block
disruption. These categories involve managing the race
between linkage evolution and allele selction (Harik,
1997), and modelling the promising solutions
(Muhlenbein and Mahnig, 1999).

A number of real-life examples can be found in literature
that involve this type of interaction. For example, the
temperature (T) of an ideal gas varies with its pressure (P)
and volume (V) as T=kPV, where k is the constant of
proportionality. This equation has cross-product term PV
clearly demonstrating the interaction between P and V in
the definition of T.

2.2 VARIABLE DEPENDENCE

The second type of interaction among decision variable
known as variable dependence, is the main focus of th
paper. This interaction occurs when the variables ard
functions of each other, and hence cannot be varie

Both variablesA and B cannot simultaneously take
random values in their respective ranges. If variable
A takes a valué\,, variableB can take only those
random values that lie betweerf(A;)+c] and
[f(A))+d]. With the change in value &, the range of
random values thaB can take also changes. So, the
variables cannot be varied independently of each
other.

The above discussion implies that the presence of
dependence among decision variables modifies the
shape and location of variable search space. In case
of no dependence among decision variables, both
variablesA and B can independently take random
values in their respective ranges making hd
search space rectangular in shape. However, the
presence of dependence makes the search space take
the shape and location based on the nature of function
f(A).

A

=

I T

Figure 2: Relationship between Stress(S) and
Temperature(T)

(FRIV: Feasible Region with Independent Variables and
FRDV: Feasible Region with Dependent Variables)

The dependence among decision variables is frequently
gbserved in real-life problems. As an example, the
{r’gsistance K) of a wire is defined in terms of two
ariables, namely Temperatuf® @nd StressS), whereT
andS are as defined below.

independently. Here, change in one variable has an impa& F(S,T)

on the value of the other. A typical example of this typet
of interaction is the case when the functipiis A>+B? g
whereA andB are as defined below.

Randon(Ty,T5)
f(T) RandonS;,S,)

A Randonta, b)
B f(A) Randonfc,d)

As can be seen, variabkeis fully independent and can
take any random value betweanandb. On the other
hand, variableB is not fully independent and has two

This real-life problem is analogous to the example
discussed earlier. As illustrated in Figure 2, the presence
of dependence among decision variables modifies the
variable search space. In case of no dependence among
decision variables,T-S search space is rectangular in
shape. It is shown as FRIV (Feasible Region with

components. The first component, which is a function ofndependent Variables) in Figure 2. In presence of

variableA, takes values depending on the valueA.dfhe

dependence among variables, the modified search space is

second component is a random number lying betveeen shown as FRDV (Feasible Region with Dependent
andd. It should be noted that in case of no dependenc¥ariables) in Figure 2.

among decision variableg, and b define the range of
variableA, andc andd define the range of variabke



report any dedicated technique that can deal with variable
DEPENDENCE dependence. However, as shown in Table 1, the survey of

literature in related areas of research reveals some
Complex variable dependence poses a number déchniques that can be used for inferring dependency
challenges for multi-objective optimisation algorithms. Inrelationships among decision variables and identifying
the presence of variable dependence, the decisiandependent variables.

variables cannot be varied independently of each other. rop6 1. Techniques for Identification of Dependency
Also, the search space gets modified creating a new Relationships and Independent Variables
feasible region based on the dependence among decision

variables. This is demonstrated in Figure 2. Depending
upon the nature of variable dependency, additional
features (such as bias (non-linearity), multi-modality, |,cnification
deception and discontinuity) may also be introduced in of
the problem. A generic Genetic Algorithm (GA) | Dependency
independently varies the decision variables and works in Relationships
the feasible region that does not take variable dependence

into account. So, it creates solutions that have limited
practical significance since they do not lie in the actuat— 5 ircaton
feasible region of the search space. Therefore, there is a of
need to develop GAs that have mechanisms for handlirlg independent
variable dependence in their search processes. Variables

3 CHALLENGES POSED BY VARIABLE

Neural Networks (NNs) (Hertz et al.,
1991; Richards, 1998; Gershenfeld,
1999)

Probabilistic Modelling (PM) (Pelikan et
al., 1998; Larranaga et al., 1999; Evans
and Olson, 2000; Muhlenbein and
Mahnig, 1999)

Regression Analysis (RA) (Frees, 1996;
Draper and Smith, 1998; Evans and
Olson, 2000)

Tree Diagrams (TDs) (Banzhaf et al.,
1998; Richards, 1998; Larranaga et al.,
1999)

Direct Analysis (DA) (Gershenfeld, 1999)

4.1 IDENTIFICATION OF DEPENDENCY
4 TECHNIQUES FOR HANDLING RELATIONSHIPS

VARIABLE DEPENDENCE Table 2 presents an analysis of the techniques that can be

Most of the dependent-variable optimisation problems déised for inferring dependency relationships from the
not have known dependency relationships. In thesa@vaiable sets of variable values. This table highlights the
problems, multiple sets of variable values are availabléollowing.

from which the dependency relationships need to be NNs: As can be seen from Table 2, the NNs require a
|nferr?d. An .Opt|m|sat|0n algonthm that IS Capab|e.0f priori know'edge regarding the C|assification Of
handling variable dependence should be able to infer yariables as dependent and independent (Hertz et al.,
these relationships from the given data, identify the  1991). Since this information is rarely available in

independent variables and manage the search process egg|-life problems, the choice of the NNs is ruled out
accordingly. Due to the lack of systematic research in this spite of their other attractive features.

area, the literature in the field of optimisation does not

Table 2: Analysis of Techniques for Identification of Dependency Relationships

Techniques for Identification of Dependency Relationships

Comparative Analysis

Regression Analysis (RA)

Neural Networks (NNs)

Probabilistic Modelling
(PM)

Difficulty of
Implementation

Medium

High

Very high (due to many open
issues)

Dependent on degree of RA

Dependent on number of

Dependent on choice of

Relationships

variables)

Accuracy equation hidden units modelling method
Computational Expense Low High Medium
Nature of Dependency Explicit Explicit (for given dependent Purely implicit

Features

Identification of Multiple
Dependency
Relationships

Multiple RA equations

Built-in multiple relationships
(based on choice of NN
structure)

Built-in multiple relationships

Identification of
Independent Variables

Through multiple repetitions
of RA

Not possible

Not required

Difficulty of Data Addition

Medium (repetition required)

Medium (repetition required
by most NNs)

Low (updating required)




PM: PM is also a very powerful technique, requiringany cyclic dependency in those relationships. To attain
little information regarding the nature of variables.this, a strategy that ensures good ‘book keeping’ is
As shown in Table 2, it also has a number of otheadopted. The salient features of this strategy are discussed
features that are required for dealing with real-lifebelow.

problems. However, the application of PM to model The RA that is used in GAVD breaks down a
multiple interacting decision variables is a relatively regression equation until it becomes non-
new area of research, and a number of research issues decomposable. In this way, all the underlying
need to be addressed before it could be chosen for relationships émong the décision variables  are
handling real-life problems having multiple real identified.

variables (Evans and Olson, 2000).
) . - A Dependency Chart (DC), which is a tool for DA, is
RA: t?—iblethzt r?ve;adlsmmaé Lhe thmuglxle iVeXp“C't d maintained to keep track of the variables that are
équations that are aentined by the give goo identified as dependent (D) and independent (1) in the
insight to th_e_ de5|gn_er regardmg_ the relationships regression process. In this way, unnecessary
among decision variables. RA is also_easy 10 o otiions of RA are avoided for the variables that
implement and maintain (Frees, 1996). Further, it o o aready been identified as ‘D’ or ‘I'. This also
addresses most of the above-mentioned I|m|tat|ons_ of ensures that the regression equations do not involve
NNs and PM. However, the accuracy of RA is ;
, any cyclic dependency.
dependent on its degree.
When determining the regression equation for a given
variable, only those variables that are marked as ‘I’
4.2 IVDAER’\:Z:QEQTION OF INDEPENDENT or are unmarked in DC are considered as
independent. This guarantees that the variables that
The main strengths and weaknesses of the techniques are identified as ‘D’ are not considered as
used for the identification of independent variables are the independent in subsequent stages of the RA, thereby
following. ensuring that the regression equations obtained are as

TDs: The dependence among decision variables can "N-decomposable as possible. This also reduces the
be graphically represented using TDs, in which each number of variables that are considered at each stage

node represents a variable in the problem. TDs are of the RA.

easy to use and have good visualisation capabilities,

but they are difficult to be encoded in a computer5.2  STEP 2: IDENTIFICATION OF
language. INDEPENDENT VARIABLES

DA: DA involves the analysis of dependency TDs are used here for visual representation of
equations to identify the independent variables. Thigelationships among decision variables. A TD s
method is easy to be encoded in a computer languag®enstructed here to give a visual representation of the
but is difficult to visualise. dependency relationships to the user. The end nodes of
this tree are the independent variables. The TD also aids
in the identification of cyclic dependencies that may be
5 PROPOSED GA FOR VARIABLE present in the given dependency equations. Since TDs are
DEPENDENCE (GAVD) difficult to be encoded in a computer language, the DC is
used to automate the process of identification of
independent variables and remove any cyclic dependency.

. S ; . : Here, the DC is used to identify the independent variables
the discussion in Section 4, the RA is chosen in GAVD t s those that are marked as ‘I. The construction of this

;jri?/ﬂ% d"?:rliﬁmir:q(e)?g”giq/% Egé‘sa'f:_cg‘ss f(grsb?gu;ngatcijc?r:éhart also aids the identification and removal of cyclic
: oo n ies f h ions.

of dependency relationships, and DA to automate thgependenues fom the dependency equations

identification of independent variables. The steps

This section proposes a novel algorithm ‘GA for Variable
Dependence (GAVD)’, described in Figure 3. Based o

involved in GAVD are described below. 5.3  STEP 3: OPTIMISATION
Being a high-performing latest algorithm, Generalised
51 STEP 1: IDENTIFICATION OF Regression GA (GRGA) has been chosen as the
DEPENDENCY RELATIONSHIPS optimisation engine for GAVD. GRGA is a multi-

. . . . . . objective optimisation algorithm that uses RA for

This step is omitted in those cases in which thg,anqiing complex inseparable function interaction (Tiwari

dependency relationships are known. In the other caseg 5 2001). Here, the independent variables, identified in
this step analyses the given data for identifying multiplee previous step, define the GA chromosome. For each
dependency equations, while keeping the computationg)ienagive solution generated by the GA, the dependency
expense as low as possible. GAVD uses RA in such a way, jations are used to calculate the values of the
that it not only identifies all non-decomposable yonendent variables. It should be noted here that the
relationships among decision variables but also removas, nds on independent variables are treated as variable



limits and those on dependent variables are treated a@ecision variables. Therefore, the overall computational
constraints. complexity of GAVD is the complexity of GRGA
Since GAVD uses GRGA as its optimisation engine, thé'ncreased with t_he complexity of the RA, where in most
basic operations of GRGA also form part of GAVD. In cases the latter is much smaller than the former.

addition, it uses the RA to model the relationship among

Given:

» Objective functions (F's) and constraints

« Variable bounds
HHI::> * Multiple sets of variable values
v

Perform Regression Analysis (RA),
considering first variable as dependent

v

l Set first regression coefficient to zero

l€
3 =
’_Lb{ Re-perform RA H Set next regression coefficient to zero

N . .
= All regression coefficients analysed?

J Mark all RA variables in Dependency Chart (DC), L
i as Dependent (D) or Independent (1)

Set next regression coefficient to zero

Re-perform RA,
considering next unmarked variable as dependent ———
and all unmarked or ‘I variables as independent

v

l Mark F's as peak nodes of Tree Diagram (TD)

l
l Decompose first F l
]

v
HHI::> l Decompose first child node of F ,4
-
Are all nodes at this
level non-decomposable?
Yes

Are all immediate children
of F analysed?

Yes
Are all F's analysed?
Yes

Use GRGA as optimisation engine:

* GA chromosome defined by independent
variables (end nodes of TD or marked ‘I" in DC)
HH * Dependent variables (marked ‘D’ in DC)
calculated from dependency equations

« Bounds on independent variables treated as
variable limits

* Bounds on dependent variables treated as
constraints

Figure 3: GA for Variable Dependence (GAVD)

Decompose all dependent nodes

Decompose next child node of F

Decompose next F ‘—

f (%o,
54 AWORKED EXAMPLE 1 0. %3)

X3 f2(X2,X4,X5)
This worked example demonstrates the application of

GAVD to a pr0b|em that has dependence among |t§—he flowchart of Figure 3 identifies the fOlIOWing StepS

decision variables. This problem is given below. for solving this problem.
Objective_ Function: FF (x(, Xp. X3 X4 X5) Determine the following equation fay.
xi(L) i xi(U),i 1..5

Xl Vl(X2,X3,X4,X5)
Given: Multiple _ Sets_of _Variable _Values

No change is observed in correlation coefficient,
Suppose the underlying relationships among decision when the RA is performed with the regression
variables that need to be identified are as follows. coefficient ofx, set to zero. The new equation is as

follows.



X Vp'(Xg.Xg,Xs5) X3, X4+ and % constitute the GA chromosome.

. - . X; and % are determined from the dependenc
Correlation coefficients reduce, when the RA is ! % P 4

X . e equations.
performed with the regression coefficients>af X, .
andxs set to zero in steps. Bounds on x x, and % are treated as variable
. limits.
Mark x; as ‘D’ andXxs, X4 andxs as ‘I’ in the DC )
(Table 3). Bounds on xand % are treated as constraints.

Determine the following equation fog in terms of
those variables that are so far identified as ‘I’ or are Table 3: Dependency Chart (DC) for Worked Example
so far unmarked in the DC.

Dependency Variables

Chart (DC) X1 Xz X3 X4 Xs
X2 V2(X3,X4,X5) Xl D | | |
Correlation coefficients reduce, when the RA is | Regression | X, D I I I
performed with the regression coefficientsxgf x4 Equations Xs
andxs set to zero in steps. Xa
Mark x, as ‘D’ andXs, X4 andxs as ‘I' in the DC Xs
(Table 3).
The variables marked ‘I’ in the DC are independent
whereas those marked ‘D’ are dependent.
Use the dependency equations determined above for

drawing the TD for the problem (Figure 4). The
nodes that are encircled in this figure represent the
independent variables. All other variables are treated

as dependent.

Use GRGA as the optimisation engine. Figure 4: Tree Diagram (TD) for Worked Example

Table 4: Test Problems for Performance Analysis of GAVD

Problem Objective Functions (Minimisation) Dependency Equations
1
D(X) — 1 exp 4 , 0 x4 1
1 exp(4) 1 01x; 02x2 03x, 0lx> 03
p X9 Axg 02xg5 03xg 01x, 0.3x3Xy
Problem-1 I(X') 2 exp(2xp)cos8 Xy , 0 Xy 1 0 xg3 1 0 x4 1
s(fi.1) 2 (fg /)~ Data_ Generation: xo' X5  Normal(0,0.05)
fl D(x") (Figure 5(a))
fo s(f, 1) 1(X")
1
D(xX) —— L1 exp 3% , 0 x 1
1 oexn(3) 02 02 0.6 2 0 1
Problem-2 [(x") 3 exp(x5)CoS2 X, exp(X3)Cosd X3, 0 Xp,X3 1 Xp D DXz 0OX3, 3
roblem- 04 Data_ Generation: x,' X, Normal(0,0.05)
s(fy, 1) 2 (fp/1) (fg/1)cosB 1) Fi 5())
igure
f, D(X) 9
fo s(f, 1) 1(x)

high-performing multi-objective optimisation algorithms:
6 PERFORMANCE ANALYSIS NSGA-Il and GRGA. However, unlike GAVD, both these

algorithms do not take variable dependency into account.
In this section, GAVD is tested using two multi-objective
optimisation test problems that have dependence amo
their decision variables (Table 4). The features of thes -1 EXPERIMENTAL RESULTS
test problems make them particularly difficult for multi- All the tests reported here correspond to 100 population
objective optimisation algorithms. In the absence of angize, 500 generations, 0.8 crossover probability, 0.05
dedicated technique for handling variable dependencenutation probability, and simulated binary crossover with
this section compares the performance of GAVD with twolO crossover distribution index and 50 mutation



distribution index. The results obtained from these tests

are

shown in Figure 6 for Problem-1 and Figure 7 for

Problem-2. The (convergence metric) and (diversity
metric) values corresponding to these results are shown in
Table 5 (Deb et al., 2000). These results form the typical

set

obtained from 10 runs with different random number

seed values. No major variation was observed in the
results with the change in the seed values.

(b)
Figure 5: Dependency Relationships (a) Problem-1
(b) Problem-2

Table 5: Performance Metrics in Problems 1 and 2

Performance Problem-1 Problem-2
Metrics
£ 4\ NSGA-II 1.209567 | 0.090002 | 0.986345 | 0.083956
é % GRGA 0.009143 | 0.080121 | 1.654703 | 0.045431
g_? GAVD 0.008221 | 0.081124 | 0.001373 | 0.014564
6.2 DISCUSSION OF RESULTS

The following observations can be made from the results
obtained from Problem-1 (Figure 6, Table 5).

Since the dependency equation covers the full range
of x,, it does not alter the Pareto front. Therefore, the
Pareto fronts for the original problem (with no
dependence) and the dependent-variable problem
coincide with each other.

GRGA and NSGA-Il do not incorporate variable

dependence in their solution strategies. However,
since the original and the new Pareto fronts are
coincident in this case, the GRGA is able to locate
the Pareto front. However, NSGA-II gets trapped in
one of the local fronts.

The dependency equation is quadratic, making it
possible for the GAVD (that uses quadratic RA) to

exactly model the dependence. Hence, the Pareto
front that the GAVD sees coincides with the true

Pareto front. Furthermore, since GAVD uses GRGA

as its optimisation engine, it is able to converge to the
Pareto front and distribute the solutions uniformly

across the front.

The following observations can be made from the results
obtained from Problem-2 (Figure 7, Table 5).

In this problem, the original Pareto front occurs when
both x, and x; are equal to 0. Due to the given
dependency among these variables, this is no longer
possible. This causes modifications in the search
space and the Pareto front.

GRGA converges to the global Pareto front of the
original problem (with no dependence among its
decision variables). However, since the new Pareto
front does not coincide with the original one, the
results from GRGA are not feasible in this case.
Similar to the previous case, NSGA-Il gets trapped
on a local front, which in this case coincidentally lies
in the new search space.

Also, since GAVD uses quadratic RA, it is able to

exactly determine the dependency equation in this
case. Hence, the Pareto front seen by GAVD is the
same as that of the actual dependent-variable
problem. Therefore, GAVD converges to the Pareto
front and distributes the solutions uniformly across

the front.

Figure 6: GAVD Performance in Problem-1
(PFIV: Pareto Front for Independent Variables,
PFDV: Pareto Front for Dependent Variables,
EPF: Estimated Pareto Front)

Figure 7: GAVD Performance in Problem-2
(PFIV: Pareto Front for Independent Variables,
PFDV: Pareto Front for Dependent Variables,
EPF: Estimated Pareto Front)



7 EUTURE RESEARCH ACTIVITIES Evans, J.R. and Olson, D.L. (2000%tatistics data
o ~analysis, and decision modellingrentice Hall (USA).
The current limitations of GAVD and the corresponding : . .
future research activities are as follows. Frees, E.W. (1996)Data analysis using regression
] . o o models: The business perspecti®rentice Hall (USA).
The performance of this algorithm in identifying the ,
dependence among decision variables is limited b{Pershenfeld, N. (1999)The nature of mathematical

the degree of RA that it uses. Hence, in dealing wit odelling,Cambridge University Press, Cambridge (UK).

complex dependence, higher order RAs are requiretHarik, G.R. (1997)Learning gene linkage to efficiently

This implies that the use of more sophisticated nonsolve problems of bounded difficulty using genetic
linear modelling tools, such as Neural Networks,algorithms. PhD. Thesis, Computer Science and
have _the _potential_of improv_ing its performance, Engineering, University of Michigan (USA).

especially in modelling deceptive and complex non_Hertz, JA., Krogh, AS.. and Palmer, R.G. (1991).

linear functions. ; g
Introduction to the theory of neural computation.

GAVD also needs to be fitted with a mechanism thataddison-Wesley, Redwood City, CA (USA).

can learn the dependency relationships, and update it .

each time a new data is added, without having td-2"anaga, P., Etxeberria, R., Lozano, J.A,, and Pena,

repeat the whole process. .M. (1999).Opt|m|zat_|on by learning a_nd simulation of
Bayesian and Gaussian networkschnical Report No.

GAVD also needs enhancements to deal with noisfEHU-KZAA-IK-4/99, Intelligent Systems  Group,

data and qualitative issues in real-life problems. Department of Computer Science and Atrtificial
Intelligence, University of the Basque Country (Spain).
8 CONCLUSIONS Muhlenbein, H. and Mahnig. T. (1999). FDA - A scalable

evolutionary algorithm for the optimization of additively

There is currently a lack of systematic research in thgecomposed function&volutionary computationyol. 7,
field of variable dependence. This paper proposes afg. 4, 353-376.

algorithm capable of handling variable dependence in : . :
multi-objective optimisation problems. The performancePedrycz, W. (1998)Computational intelligence — an
of proposed algorithm is compared to that of two state-ofintroduction.CRC Press, New York (USA).

the-art optimisation algorithms (NSGA-Il and GRGA) Pelikan, M., Goldberg, D.E., and Cantu-Paz, E. (1998).
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analyzing these data. In any case, it is important to display
microarry data in a meaningful way to best illustrate
trends in gene expression.

An intuitive way to display microarray data is to find
an optimal order of genes such that genes with similar
expression profiles are blocked together. However, it is
NP-complete to find an optimal order of genes [1].
Several approaches have been proposed for solving this

Abstract

In this paper theFamily Competition Genetic
Algorithm (FCGA) is applied to analyze DNA-
microarray data. DNA Microarray technology is
a significant impact on genomics study. The
proposed approach consists of global and local
strategies by integrating the family competition,

1

edge assembly crossover, and neighbor-join
mutation. Experiments are performed to compare
the FCGA with several methods in some real-
world biological data sets. Numerical results
indicate that FCGA performs very robustly and
is very competitive with other approaches. Using
FCGA, we are able to find a gene order to
display the microarray data in a meaningful way.

INTRODUCTION

problem. For example, the hierarchical clustering
approach, a widely used tool [2-6], has been used to
approximate the solution. Since the constructing process
of the hierarchical tree is greedy, this approach may get
stuck at local minima. Some approaches have been
proposed to improve the solution quality of hierarchical
clustering approach, such as flipping the internal nodes in
the tree [7] and neural networks [8]. In this paper, finding
an optimal order of genes is formulated as a travel

DNA microarray technology can be applied to many salesman problem (TSP). Evolutionary approaches (EAs)
biological domains, such as drug discovery, molecula@re one of promising directions for solving TSPs.
diagnosis, and toxicological research. During the past few Evolutionary approaches have been successfully
years, the development of DNA-microarray technologyapplied to optimization problems that are inherently
had provided the means to monitor the expression levelsomputationally complex [9-11]. EAs are an adaptable
of a large number of genes simultaneously. concept for problem solving and especially well suited for

In the microarray experiments, messenger RNAssolving difficult optimization problems. They have been
(MRNA) are extracted from the cell culture. used to solve problems involving large search spaces,
Complementary DNAs (cDNA) are generated from thewhere traditional optimization methods are less efficient.
RNAs, amplified, labeled and then hybridized to a large In this paper, we propose thtamily competition
array of DNA probes immobilized on a solid surface. Thegenetic algorithm(FCGA) to find the optimal order of
array is then scanned by a laser to obtain the signal fogenes with expression profiles. The FCGA combines a
each probe region. From the signal strengths of the probgamily competition, the neighbor-join mutation (NJ), and
from a particular gene, one can infer the expression levelhe edge assembly crossover (EAX) [12]. The family
of the gene in the cell type under study. Fig. 1 is thecompetition, derived from (14-ES and Lin-Kernigan
schematic procedures for monitoring gene expressioheuristic, had been successfully applied to several
using DNA microarray. With many chips, the expressioncontinuous parameter optimization problems, such as
data can be represented by a real-valued expressigorotein docking [13] and thin-film coatings [14]. In our
matrix X whereX; is the measured expression level of pervious studies [15], we had successfully integrated the
genei in experimeni. family competition and EAX for solving traveling

However with thousands of genes and hundreds ofalesman problems (TSPs). In order to balance
experiments, it is difficult to evaluate the immense exploration and exploitation, we also designed the
amount of gene expression profiles. A large number ofneighbor-join mutation [16] to cooperate with the EAX.
approaches have been developed for analyzing the hugehe main difference in methodology between the present
microarray data. For examples, clustering, classificationyvork and our previous studies is the integrations of these
and genetic network analysis are usually adapted fomechanisms.















