
ART IF IC IAL L IFE , ADAPT IVE
BEHAV IOR, AGENTS AND ANT
COLONY OPT IMIZAT ION
Pos te r Pape rs
Kar th ik Ba lak r i shnan and
Vasant Honavar, cha i r s

Ant Algorithm for Construction of Evlutionary Tree

Shin Ando, Hitoshi Iba
School of Engineering, University of Tokyo, Tokyo, Japan

1 Introduction

This paper proposes an implemetation of ant algo-
rithms for constructing evolutionary tree.

An evolutionary tree analyzes the nucleotide and
amino acid sequencesis to infer phylogenetic relation-
ships and evolutionary hypotheses. It is an unrooted
binary tree. The sequence of the leaves are not given
on the internal nodes. An evolutionary tree with n
leaves has n − 2 internal nodes and m = 2n − 3
edges. The number of possible trees with n leaves
is

∏n
i−3 (2i− 5). Most version of evolutionary trees

problems are NP complete and exploration of such
tree structure-space is both computationally demand-
ing and time-consuming.

2 Suffix Representation

An evolutionary tree is represented in following suffix
representation:
Tx0 Tx1 Tx2 + Tx3 + +Tx4+.
An ant must visit N leaves and internal vertices N-1
times in between. The vertices are not labeled, indi-
cated as +. The constraints on suffix representation
uses the idea of Stack Count .
We assign leaves with the Stack Value of +1 and in-
ternal vertices with -1. The Stack Count of a tree is
the sum of the Stack Value of all its vertices. The
Stack Count of any complete tree and subtree is 1.
While adding up the vertices of a valid representation
in sequential order, Stack Count never subceed 1. The
ants are prohibited from constructing incomplete tree
by constraints of Stack Count. The standard probabil-
ity for choosing next city, pheromone update is used
. A specific rule is applied for the probability that
the ant will bind the branches at the vertex to form a
larger branch.

D FITCH Neighbor Ant
-3 85% 78% 82%
3-6 60% 33% 78%
6- 35% 12% 64%

Table 1: 8-leaf simulation comparison

3 Scoring a Tree

The circular tour length, C(S) , along the tree edges
is calculated from distance matrix [δij] without an ex-
plicit knowledge of the correct evolutionary tree. C(S)
is used for evaluating tree structure that the ants have
found. The details of conventional methods for deter-
mining tree structure is found in .

4 Simulated Experiment

Based on a specific evolutionary tree, random se-
quences of nucleotide are generated by Seq-Gen . The
parameters are, maximum distance in the matrix and
sequence length. The 8-leaf and 16-leaf trees were sim-
ulated.The inputs were fed to FITCH and Neighbor
algorithm of the PHYLIP programs for comparison.

Results of the simulation are summarized in Table1.
In the simulated experiment, the algorithms showed
comparable results against existing software.

4.1 Multiple Alignment Examples

The method was tested on 15 species of Cytochrome
P450 CYP050A (http://cpd.ibmh.msk.su/). The
comparison is made to FITCH and Neighbor pro-
grams. The Ant algorithms gave the best score and
created a very feasible structure.

ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AGENTS AND ANT COLONY OPTIMIZATION POSTERS 131

Behavioural Selection Pressure Generates
Hierarchical Genetic Regulatory Networks

Josh C. Bongard Rolf Pfeifer
Arti�cial Intelligence Laboratory

University of Z�urich
CH-8057 Z�urich, Switzerland

[bongard|pfeifer]@ifi.unizh.ch

Introduction

The �eld of 'evo-devo'|evolutionary developmental
biology|is making rapid inroads to biological ques-
tions that encompass phylogenetic evolution and on-
togenetic development, speci�cally in regards to ge-
netic regulatory networks (GRNs). However, there is
relatively little understanding so far of how selection
pressure shapes GRNs (Carroll 2000). We have shown
that by enhancing evolutionary algorithms with ge-
netic regulatory networks, it is possible to not only
evolve simulated agents that can perform behavioural
tasks, but it is also possible to analyze both evolved
GRNs, and the evolutionary history of them in the
evolving population (Bongard 2002). Here we show
that successful evolutionary runs produce heirarchical
GRNs: there is a dominant unidirectional ow in gene
regulation, and relatively few cyclical gene regulation
pathways. Arti�cial Ontogeny extends the genetic al-
gorithm to include ontogenetic development. In the
results presented below, agents are tested for how fast
they can travel over an in�nite horizontal plane dur-
ing a pre-speci�ed time interval. The �tness determi-
nation is a two-stage process: the agent is �rst grown
from a GRN (the growth phase), and then evaluated
in its virtual environment (the evaluation phase). See
(Bongard 2002) for methodological details.

Results

Sixty independent evolutionary runs of 300 genera-
tions each were conducted, using a variable length,
oating-point genetic algorithm with a population size
of 300. The best �tness curve of the most success-

Figure 1: a: Most successful, evolved agent. b: Its
GRN viewed as a graph.

Figure 2: Evolutionary change of gene networks.

ful run is plotted in Fig. 2. The GRN of the �ttest
agent in each generation was transformed into a di-
rected graph, and Warshall's algorithm was used to
compute how many of the genes in each GRN were
part of a cyclical genetic pathway, and scaled to the
range [0; 1]. Finally, for each of these GRNs, 10 ran-
dom graphs were generated with the same number of
nodes and directed edges. The proportion of nodes
lying along a cyclical path was computed using the
same method as for the GRNs, and divided by the to-
tal number of nodes, to determine the random graph's
cyclicality. The cyclicalities were averaged for each set
of 10 random graphs, and are also plotted in Fig. 2. It
can be seen that after generation 15, when the agents
in the population begin to move, and thus are selected
based on their behaviour, the evolved GRNs begin to
exhibit much lower cyclicality than the random graphs
of the same size, which indicates this is an evolved re-
sponse to selection pressure.

References

J. Bongard (2002). Evolving modular genetic regula-
tory networks. To appear in IEEE Congress on Evo-
lutionary Computation, CEC 2002, Honolulu, USA.

S. B. Carroll (2000). Endless forms: the evolution of
gene regulation and morphological diversity. In Cell
101:577{580.

ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AGENTS AND ANT COLONY OPTIMIZATION POSTERS132

Solving Approximation Problems by Ant Colony Programming

Mariusz Boryczka

University of Silesia, Sosnowiec, Poland

e-mail: boryczka@us.edu.pl

Zbigniew J. Czech

Silesia University of Technology, Gliwice, and

University of Silesia, Sosnowiec, Poland

e-mail: zjc@polsl.gliwice.pl

Abstract

A method of automatic programming, called

genetic programming, assumes that the de-

sired program is found by using a genetic al-

gorithm. We propose an idea of ant colony

programming in which instead of a genetic

algorithm an ant colony algorithm is applied

to search for the program. The test results

demonstrate that the proposed idea can be

used with success to solve the approximation

problems.

1 INTRODUCTION

Given a problem one usually builds an appropriate

computer program to solve the problem. Automatic

programming makes possible to avoid a tedious task

of creating such a program. In automatic program-

ming the program is obtained by specifying �rst the

goals which are to be realized by the program. Then,

based on this speci�cation, the program is constructed

automatically. A method of automatic programming,

called genetic programming, was proposed by Koza

(Genetic programming: On the programming of com-

puters by natural selection, MIT Press, Cambridge,

MA, 1992). In genetic programming a desired pro-

gram is found by using a genetic algorithm.

2 ANT COLONY PROGRAMMING

This work introduces an idea of ant colony program-

ming in which instead of a genetic algorithm, an ant

colony algorithm is applied to search for the program.

We consider approximation problems which consist in

a choice of an optimum function from some class of

functions. Such a function should approximate in a

best way another, known function, or some values of an

unknown function speci�ed in a �nite number of points

from its domain. Approximation problems are encoun-

tered in analysis of numerical data, modeling physical

phenomena, analysis of statistical observations etc.

While solving an approximation problem by ant colony

programming we use two approaches. In the �rst,

expression approach, we search for an approximating

function in the form of an arithmetic expression rep-

resented in the pre�x notation. The arti�cial ants

(agents) build the expression as a tree consisted of

terminal symbols and functions, communicating with

each other through the pheromone trails. In the sec-

ond, program approach, the desired approximating

function is built as a computer program, i.e. a se-

quence of assignment instructions which evaluates the

function. The process of program generation consists

in expanding the program by consecutive instructions

taken from some prede�ned set.

To date ant colony programming has not been applied

to automatic programming.

3 CONCLUSIONS

The test results demonstrate that the ant colony pro-

gramming approaches are e�ective, especially the pro-

gram approach. There are still some issues which

remain to be solved. The most important is the is-

sue of constants which regards the choice of constants

which are to be enclosed in the set of terminal sym-

bols. These constants are crucial for the work of the

ant colony algorithm. The future work on ant colony

programming includes an extension of the solutions to

multivariate approximation problems.

Acknowledgments

The work presented in this paper is carried out under

the State Committee for Scienti�c Research (KBN)

grant no 7 T11C 021 21.

ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AGENTS AND ANT COLONY OPTIMIZATION POSTERS 133

Evolution of Asynchronous Cellular Automata:
Finding the Good Compromise

Mathieu S. Capcarrere

Logic Systems Laboratory

School of Computer and Communication Sciences

Swiss Federal Institute of Technology, Lausanne

CH-1015 Lausanne, Switzerland

E.mail: mathieu.capcarrere@epfl.ch

ABSTRACT

One of the prominent features of the Cellular Automata
(CA) model is its synchronous mode of operation, meaning
that all cells are updated simultaneously. But this feature
is far from being realistic from a biological point of view as
well as from a computational point of view. Past research
has mainly concentrated on studying Asynchronous CAs
in themselves, trying to determine what behaviors were an
“artifact” of the global clock. In this paper, I propose to
evolve Asynchronous CAs that compute successfully one of
the well-studied task for regular CAs: The synchronization
task. As I will show evolved solutions are both unexpected
and best for certain criteria than a perfect solution.

The model used is fully asynchronous. Each cell has the
same probability pf of not updating its state at each step.

THE ADVANTAGES OF REDUNDANT

CELLULAR AUTOMATA

The extremely weak capabilities of binary CAs to cope with
even limited asynchrony called for the use of redundant CA
to deal with full asynchrony. I call redundant CA, a CA
which uses more states in the asynchronous mode than
is necessary in the synchronous mode to solve the same
task. The idea behind redundancy is that the information
in a CA configuration is not only the current state and the
topology, but also the timing.

A Simple and Perfect Time-Stamping Method

If we are looking for a method to perfectly correct asyn-
chrony, then all information should be maintained. That
is to say, all the 3-tuples (c, i, t), where c is the state of
cell i at time t, of the synchronous case should be recon-
structible in the asynchronous case. A time-stamp added
to each cell so that the cell may know if it is ahead of one
of its neighbors does the trick. The minimum value of the
time-stamp, not to confuse between being ahead or being
late, is 3. If each cell stores both its current and last state,
the new CA is both able to know if it can update and how
it should update. Thus we can design a 3 ∗ q

2 state CA
that simulates perfectly, whatever pf , a q-state CA.

CO-EVOLUTION OF SYNCHRONIZING

CELLULAR AUTOMATA

The evolution of binary CAs does not produce very good
results on real asynchrony. In the previous section, a sim-

ple method to deal perfectly with full asynchrony was de-
signed using 3 ∗ q

2 states. However if we consider a task
like the synchronization task, we have a perfect example of
a lossy task, i.e., a task where there is no need to maintain
absolutely the full information present in the synchronous
case to solve the problem in the asynchronous case. The
question is then to find the good compromise between the
number of states needed, i.e., between the q states neces-
sary in the synchronous case, and the 3 ∗ q2 we know to be
sufficient to simulate perfectly the synchronous CA in the
asynchronous mode. I thus proposed here to try to evolve
4-state CAs, following the cellular programming approach
developed by Sipper.

Globally the evolutionary runs are very successful, and if
we consider a fitness of 0.98, for pf < .01, as equivalent
to a fitness of 1.0 in the synchronous case1, the success
rate is equivalent to the evolution of binary CAs in the
synchronous case.

CONCLUDING REMARKS

CA asynchrony was often studied in itself in the past liter-
ature and it was often concluded that the global behavior
from a CA, the emergent behavior, was an artifact of the
global clock. This conclusion was not wrong in itself but
rather the wrong standpoint on a reality. Time is part of
the visual information contained in a CA. Now if we tackle
the asynchrony problem with this idea of restoring all the
information, then as we saw, we can easily design a totally
asynchronous CA that simulates exactly, with no loss of
information, any synchronous CA. However this presents
two main problems. First, the required number of states
is quite higher the original number of states. Second, it
is visually different from the original CA. The visual effi-
ciency of the original CA is lost. Evolution may then be
used to limit both these problems. As presented, the cellu-
lar programming algorithm was very successful at finding
4-state solutions that were both economic and still visually
efficient. Actually, it’s all a question of the possible com-
promise between the information loss and the necessity to
maintain that information.2.

1The faults introduce necessarily some cells in the
wrong state.

2Details on this work may be found in Mathieu S. Cap-
carrere. Cellular Automata and Other Cellular Systems:
Design & Evolution. Phd Thesis No 2541, Swiss Federal
Institute of Technology, Lausanne, 2002.

ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AGENTS AND ANT COLONY OPTIMIZATION POSTERS134

An Ant Colony Approach for The Steiner Tree Problem

Sanjoy Das

Elect. & Comp. Eng. Dept.
Kansas State University
Manhattan, KS 66506

sdas@ksu.edu
(785) 532-4642

Shekhar V. Gosavi

Mech. Eng. Dept
Kansas State University
Manhattan, KS 66506

shekharg@ksu.edu
(785) 532-2621

William H. Hsu

Comp. & Info. Sci. Dept..
Kansas State University
Manhattan, KS 66506

bhsu@cis.ksu.edu
(785) 532-6350

Shilpa A. Vaze

Elect. & Comp. Eng. Dept.
Kansas State University
Manhattan, KS 66506

shilpag@ksu.edu
(785) 532-4595

An instance of theSteiner treeproblem consists of:

1. A graph),(EVG , where V is a set of vertices (or
nodes) and VVE ×⊂ is a set of edges.

2. A weight associated with each edge, where the
weight is a mapping,

3. A set of terminal nodes, VT ⊆ .

The problem is to compute a minimum Steiner tree, i.e. an
acyclic subset),(SS EVS of G , with ,SVT ⊂ such that
the vertices included inT are all mutually reachable,
with the smallest possible cost function.,

ÿ
∈

=
SEe

ewSw)()(. (1)

We propose an ant colony approach to compute minimal
Steiner trees (Dorigo, Gambardella, 1997).

One ant is placed initially at each of the given terminal
vertices that are to be connected. In each iteration, an ant
is moved to a new location via an edge, determined
stochastically, but biased in such a manner that the ants
get drawn to the paths traced out by one another. Each ant
maintains its own separate list of vertices already visited
to avoid revisiting it. When any ant collides with another
ant, or even with the path of another, it merges into the
latter. An antm , currently at a vertexi , selects a vertex
j not in its tabu list)(mT , to move to, only if Eji ∈),(.

In order to ensure that the ants merge with one another as
quickly as possible, we define a potential for each vertex
j in V , with respect to an antm as follows,

)},({min)(kjd
k

m
j =ψ , (2a)

where,

ÿ
mm

mTk
≠

∈
'

)'(. (2b)

Here, 'm is any other ant, and),(kjd is the shortest
distance from the two vertices,j and k . The potential of
a vertex is, therefore, a measure of the minimum possible
additional cost required to join it with any of the partially
completed trees. Our algorithm tries to place ants with
lower potentials, but it also considers the actual cost of
moving an ant from its present location to the other

vertices. We define the desirability of a vertex with
respect to an antm , currently in vertexi as,

)(
)(

),(

1
m

j

m
j jiw γψ

η
+

= . (3)

The quantityγ is a constant. The ant’s position may be
updated using the following equation,

ÿ
∉

=
)(

][][

][][
)(

,,

)(
,,

,

mTk

m
kiki

m
jiji

jip βα

βα

ητ
ητ

. (4)

Here, ijτ and ijp are the trail intensity of edge),(ji and
the probability of an ant using that edge to move. Trail
updating rules and parameters were borrowed from
known work (Dorigo, Gambardella, 1997). The results
obtained are shown in Table 1.

Table 1: Results from ten test runs

Graph Size Tree Weightw(S)

|V| |E| |T| Avg Best w*

50 100 13 61 61 61

50 63 9 82 82 82

50 63 25 138 138 138

75 150 19 89 88 88

100 125 25 235.3 235 235

100 200 50 225.5 224 218

REFERENCES

M. Dorigo, L. M. Gambardella, Ant Colony Systems: A
Cooperative Learning Approach to the Traveling
Salesman Problem,IEEE Transactions on Evolutionary
Computation, 1(1): 53-66, 1997.

+ℜ→Ew :

ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AGENTS AND ANT COLONY OPTIMIZATION POSTERS 135

An Individual-Based Approach to Multi-level Selection

T. Lenaerts

tlenaert@vub.ac.be

A. Defaweux,

adefaweu@vub.ac.be

P. van Remortel,

pvremort@vub.ac.be

B. Manderick

bmanderi@vub.ac.be

Computational Modeling Lab { Computer Science Department (DINF)

Vrije Universiteit Brussel { Belgium

http://como.vub.ac.be/

When trying to solve a complex problem, it is a nat-

ural reex to divide this problem in a number of sub-

problems and solve them separately. Afterwards, the

solutions to these subproblems can be combined in

order to solve the entire problem. This approach is

called divide-and-conquer and is applied in many cir-

cumstances.

Evolutionary Algorithms (EAs) are in this case

counter-intuitive since they try to evolve a solution for

the entire problem as a whole. EAs may show improve-

ment when they can create more complex evolutionary

units through some form of cooperative combination of

sub-solutions similar to divide-and-conquer. In other

words, instead of trying to evolve a single solution for

the problem, solutions may try to cooperate to solve

the problem. This cooperation results in groups of

individuals which have more functionality than an iso-

lated individuals. Hence, complexity, in terms of the

structure of the solution, becomes an emergent prop-

erty of the evolutionary system.

Inspiration on how to produce these cooperating

groups can be found in natural systems investigated

in the biological theories on Evolutionary Transitions

(Maynard Smith and Szathm�ary, 1997; Michod, 1997)

and multi-level selection (Sober and Wilson, 1998;

Keller, 1999). These theories capture the abstract

principles of how higher-level structures can evolve

from cooperative interactions between lower-level en-

tities.

Similar characteristics can be observed in these tran-

sitions; In a collection of competing elements coopera-

tive groups can emerge through spatial structuring or

localisation of these individuals and their o�spring. As

a result higher level units, which consist of cooperating

lower-level entities can emerge and hence complexity

can increase. This cooperative behaviour could not

have emerged in a single population due to the mal-

adaptiveness of this behaviour. As a result of this lo-

calisation in groups and the fact that the �tness of each

constituent of the group depends on the group com-

position, cooperative individuals were able to survive

and spread in the population.

We developed a model based on a set of necessary and

suÆcient conditions for the emergence of cooperation

proposed by Sober and Wilson (Sober and Wilson,

1998). The model consists of four iteratively repeated

steps; dispersal of the individuals in the population

into groups, reproduction in these isolated groups,

merging of these di�erent groups in some �tness pro-

portional manner and shrinking of the new population

to maintain the prede�ned population capacity.

This model results in a system where selection takes

place at two di�erent levels, i.e. at the level of the indi-

vidual and the level of the group. The obtained results

depend strongly on the iteratively executed disperse

step. Under the right conditions, the experiments

show that individual cooperative behaviour can only

emerge when the selective force at the higher level can

counter the selective force at the lower level. The sta-

tistical e�ects of these forces can be observed through

the use of the Price covariance equation.

References

L. Keller, editor (1999). Levels of Selection in Evolu-

tion. Monographs in Behaviour and Ecology, Prince-

ton University Press. Princeton, New Jersey.

R.E. Michod (1997). Darwinian Dynamics; Evolution-

ary Transitions in Fitness and Individuality, Princeton

Paperbacks, New Jersey.

J.M. Smith and E. Szathm�ary (1997). The Major

Transitions in Evolution, Oxford University Press

E. Sober and D.S. Wilson (1998). Unto Others,

The Evolution and Psychology of Unsel�sh Behaviour.

Harvard University Press. Cambridge. MA

ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AGENTS AND ANT COLONY OPTIMIZATION POSTERS136

