GP-Beagle: A Benchmarking Problem Repository for the Genetic
Programming Community

Robert Feldt
feldt@ce.chalmers.se
Computer Engineering
Chalmers University

SE-412 96, SWEDEN

Michael.ONeill@Qul.ie
Computer Science
University of Limerick

IRELAND

Abstract

Experimental studies in genetic program-
ming often only use a few, artifical prob-
lems. The results thus obtained may not
be typical and may not reflect performance
on problems met in the real world. To
change this we propose the use of common
suites of benchmark problems and introduce
a benchmarking problem repository called
GP-Beagle. The basic entities in the reposi-
tory are problems, problem instances, prob-
lem suites and usage information. We give
examples of problems and suites that can
be found in the repository and identify its
WWW site location.

1 INTRODUCTION

A large fraction of genetic programming (GP) research
is empirical. New ideas are implemented and tested in
experiments on a number of problems. Sometimes the
performance of the new idea is compared to a base-
line GP system. Even though this can show the rela-
tive merit of the new idea it does not easily extend to
comparing the merits of different GP extensions. Fur-
thermore, the problems used are often artificial so the
results may not be representative of the performance
on real-world problems. If real-world data are used the
number of different problems is often limited. This can
lead to happenstance results that is not typical of the
performance on the majority of problems.

In this paper we introduce GP-Beagle, an infrastruc-
ture for establishing, maintaining and promoting a
publically available repository of benchmarking prob-
lems for empirical investigation and performance eval-
uation of genetic programming systems. It includes
both individual problems and benchmarking suites of

Michael O’Neill, Conor Ryan

Peter Nordin
Complex Systems
Chalmers University
SE-412 96, SWEDEN

William B. Langdon
CWI, Kruislaan 413
1098 SJ Amsterdam

NETHERLANDS

problems. It defines a nomenclature and structure for
different entities related to benchmarking, specifies at-
tributes needed to describe each problem and suite and
lists the publications in which they have been used.
Inspired by the recent successes of the open source
movement the repository is available under a GPL-
like usage agreement where the use of the problems is
free but published results must be reported back to
the repository. This ensures that the repository can
give an up-to-date view of the use of the problems and
the knowledge gained. The GP-Beagle effort is sup-
ported by a WWW site, currently under development,
at http://www.gp-beagle.org.

We believe that GP-Beagle will enable the GP commu-
nity to make faster progress since it will promote the
use of sound experimental methods, provide a common
ground for comparisons, enable faster elimination of
ideas that are not fruitful and evoke discussions about
the problems we use in our research and their respec-
tive merits. However, this effort will be successfull
only if we all, as a research community, make use of
and extend the repository. We hope to convince you
that taking part in this effort will be beneficial both
to you and to the community as a whole.

There are a number of existing problem databases in
areas related to GP and much can be gained by using
them !. However, we think a new repository is needed
for GP since GP can attack other types of problems
and existing databases are mainly pools of problems
and do not give an up-to-date view of the use of the
problems. Furthermore, establishing a community-
specific repository have the potential of raising the
awareness and use of experimental studies far more
than the act of pointing to existing databases.

Section 2 elaborates on experimental research and the
pros and cons of using benchmarks. In section 3,

!One example is the UCI Machine Learning repository
with about 100 classification and regression data sets [1].

the components and structure of GP-Beagle are intro-
duced and in section 4 we detail the attributes used
to describe the entities in the repository. Examples of
problems and suites in the repository are described in
section 5 and section 6 concludes the paper.

2 EXPERIMENTAL RESEARCH
AND BENCHMARKS

Experimental research is an important part of the sci-
entific method and it’s importance in computer science
has been recently stressed [7] 2. Even though experi-
ments can never prove a theory they allow us to test
theoretic predictions in reality and to explore areas
where theory can not (yet) reach. The main benefits of
conducting experiments is that they help build a reli-
able knowledge base of adequate theories and methods,
they give observations that can lead to unexpected in-
sights and that they accelerate progress since they help
to quickly eliminate unfruitful approaches and weed
out erroneous claims. Experiments thus guides engi-
neering practice and theory development in promising
directions.

We know of no studies of the current level of experi-
mental practice in GP research. Studies on the neural
network community and computer science in general
have revealed that the amount of experimental evalu-
ation is low [5] [8]. A study of 190 neural networks ar-
ticles published in 1993 and 1994 showed that only 8%
presented results for more than one real-world prob-
lem, 29% did not employ even a single realistic learn-
ing problem and one third did not present any quanti-
tative comparison with a previously known algorithm
[5]. Even though some of the efforts in the ANN com-
munity to raise the level of experimental assessment
have probably “spilled over” to the GP community we
suspect that the situation in the GP community is not
much different. A collective strive for better assess-
ment practices thus seem called for.

Benchmarks are an effective and affordable way of con-
ducting experiments and have been successfully used
in many areas 3. A benchmark is a collection of prob-
lems with well-defined performance measurements and
a prescribed method how to evaluate performance. If
they are chosen in a good way they allow repeatable
and objective comparisons. The essential requirements
on a benchmark are (based on [6]):

e Volume: the benchmark should include several

>This section draws heavily on the two papers [7] and
[6].

3 A notable example are the “spec” problem suites used
for benchmarking computer performance.

and diverse problems,

e Validity: common errors that invalidate the re-
sults should be avoided,

o Reproducibility: problems and experiments
should be documented well enough to be repro-
ducible,

e Comparability: results should be comparable with
the results in other studies.

Conducting experiments with only a few problems
makes it difficult to characterize a new algorithm or
extension. If only problems of the same type are used
the results may not show the typical performance. By
including several problems of different types we can
get a fuller picture of how the algorithm performs in
general.

Methodological errors that threaten validity include
the choice of a problem suited to the investigated al-
gorithm, reporting the result on a data set that was
used for training or using the test data set for tun-
ing parameters. These errors can be avoided by using
a well-defined evaluation procedure that separates be-
tween training, validation and testing.

If a paper does not describe the exact setup of an ex-
periment the result can not be reproduced.

If results of different studies can not be compared it is
difficult to choose between algorithms and ideas pro-
posed in different studies. This slows down progress.

In addition to these four requirements, practitioners
have the requirement of representability: benchmark
problems should resemble the problems met in the real
world. A risk with using artificial problems is that
they have a limited information content * so that there
is no room to discover and exploit different layers of
complexity. For example, there might be no use in
having a meta-learning ability, such as assembling in-
formation on search directions while searching, on the
multiplexer problem. Comparing machine learning al-
gorithms on simple problems with only one, central
”idea” to ”get” might evaluate problem solving ability
in an unfair way.

The use of benchmarks has some disadvantages. One
risk is that algorithms are specifically tailored to per-
form well on the benchmark problems. Another risk is
that benchmarks focus too much on a single, numer-
ical performance measure. This can hinder progress

4In an information theoretic sense. For example, a scal-
able artifical problem, such as Gaussian described in table
1, has the same information content (kolmogorov complex-
ity) regardless of how the parameters are varied.

because researchers optimize a local optima instead of
exploring new and innovative avenues of research. An-
other problem is that it is not clear how fair compar-
isons should be carried out. For example, it might be
unfair to compare the accuracy of two GP algorithms
without taking their execution time or the time needed
to set them up or the time needed to tune their pa-
rameters into account. Finally, benchmarks have to
evolve with the needs of the community and applica-
tion areas; if they are static they will fail to reflect new
knowledge and will thus become irrelevant.

At the current level of maturity of experimental prac-
tice in the GP community we think that the advan-
tage of establishing and using common problems and
benchmarks outweighs these potential drawbacks. By
constantly remind ourselves of these pitfalls their neg-
ative effects can be avoided. Furthermore we have de-
signed GP-Beagle to explicitly try to address them.

3 THE GP-BEAGLE PROBLEM
REPOSITORY

GP-Beagle is designed to be a one-stop place for
all information on GP problems and benchmarking
suites of problems. The basic philosophy is that GP-
Beagle should define an open framework that can be
easily extended were suites of problems can evolve as
knowledge is gained on them and the algorithms they
are used to evaluate. Thus, GP-Beagle does not sim-
ply supply a number of problems, it also collects and
presents information on their use. To guarantee that
the usage information is up-to-date the problems are
supplied under a usage agreement. The agreement
states that the problems can be freely used but that
information on their use should be reported back to
the repository. It also encourages researchers to sub-
mit new problems to the repository. Any problems are
accepted as long as they meet basic criteria (has been
used in published work and several instances of the
same type of problem are not already in the reposi-
tory).

Since evolutionary algorithms are general search algo-
rithms that can be applied to a large number of areas
it would not be wise to specify one benchmark suite
to be used in all research. GP-Beagle does not pre-
specify a number of suites but starts by recording the
collections of problems that are actually used. Thus,
the suites are de facto collections of problems. Over
time it is anticipated that special suites will evolve for
different sub-areas of GP research such as for exam-
ple classification, regression or artificial problems. It
is also anticipated that when a mass of problems and

usage data have been assembled suites can be con-
structed in a rigorous way, using recent ideas on how
to quantify the features of benchmarking suites [3].

GP-Beagle is implemented on a WWW server as a
set of Perl-scripts accessing a MySQL database. The
database consists of records for each of the basic enti-
ties: problems, problem instances, de facto and bench-
marking suites and usage information. This implemen-
tation minimizes ® the amount of human resources
needed to maintain the repository. Statistics on the
use of problems in the repository can be automati-
cally collected. The structure of the repository and
the GP-Beagle usage agreement is further described
below. Section 4 gives a detailed view of the entities
in the repository.

3.1 STRUCTURE OF THE REPOSITORY

The basic entity of the repository is a problem. A prob-
lem is either a data set, a data generator or a simu-
lator. Both of the latter are programs that generate
data to be used in fitness evaluation. The difference
is that a data generator is used off-line, ie. by gener-
ating a data set prior to starting the GP run, while a
simulator is used on-line in a dynamic evaluation of a
GP individual. A problem can be either artificial or
real-world.

Specifying which problem has been used in an exper-
iment is not enough to allow full reproducibility and
comparability of results [6] [2]. For instance it is not
enough to specify which data set has been used; one
must describe how the data set have been divided into
training, validation and testing sets. For a simula-
tor or data generator we need to know which parame-
ters have been used, how many fitness cases have been
generated and so forth. To encompass this level of
detail GP-Beagle introduces the concept of a prob-
lem instance. This is a fully specified description of
the problem and how it has been used ¢. Thus, each
problem in the repository can have multiple instances
but each instance can only stem from one problem. A
problem defines a family of possible instances.

A collection of problem instances that have been used
together in an experimental study is called a problem
suite. A homogeneous suite consists of problem in-
stances from the same problem, while a heterogeneous
suite have instances from several problems.

SHuman assistance will be needed to review that new
submissions to the repository are complete, to create new
benchmarks etc.

SAn instance may contain multiple samples from the
same problem data set.

A special kind of problem suites are the benchmarking
suites. These suites are not de facto suites that have
already been used in actual research. Instead they
are explicitly added to the repository to promote new
kinds of experiments or to define suites consisting of
diverse problem instances.

In addition to these four basic entities the GP-
Beagle repository contains usage information. The us-
age information details in which studies each prob-
lem instance and suite have been used and the re-
sults and knowledge obtained. This information can
be easily accessed when browsing the repository. GP-
Beagle also collects statistics on the use of problems so
that hot-lists can be presented. This way a researcher
can easily find the problems that are often used and
that would thus give good opportunities for compara-
tive analysis.

3.2 THE GP-BEAGLE USAGE
AGREEMENT

The problems in the GP-Beagle repository are avail-
able free for any academic or commercial use as long
as any published information generated by this use is
reported back to the repository. Specifically the infor-
mation that should be reported includes (general and
suite-specific information):

1. Reference to paper where the experiment is de-
scribed, and
2. The set of problem instances used, and

3. The goal of the experiment and a rationale for
choosing this specific set of problems (if any), and

4. Any knowledge gained on the set of problems such

as their suitability for achieving the goal.

and for each problem instance used (instance-specific
information):

1. The result obtained on the performance measure
defined for the problem instance, and optionally

2. The execution time.
A new problem instance can be generated or an exist-
ing instance can be altered as long as the new instance
is supplied back to the repository together with the
following information:

1. The reason for creating the new instance, and

2. A description of why the previously existing in-
stances was not adequate.

4 ATTRIBUTES OF ENTITIES IN
GP-BEAGLE

The following attributes are kept in a record on a prob-
lem in the repository:

e Name: A unique name for the problem. Once
assigned the problem will always have this name
and can thus be uniquely referred to in papers and
discussions.

e Description: A textual description of the problem.
Should ideally give some basic knowledge on the
domain, describe the parameters in a DataGener-
ator or Simulator, if attribute values are missing
in a DataSet etc.

e Version: A version number to reflect updates to
the problem.

e Type: DataSet / DataGenerator / Simulator

e Sub-type: Regression / Binary Classification / 5-
Classification etc.

e Origin: Artificial/Real-world. Artificial problems
are further characterized as whether their diffi-
culty can be varied.

e Source: Who submitted the problem.

e Status: Suggested / Reviewed. Indicates if the
problem have been reviewed and thus “officially”
entered the repository.

e Number and type of attributes: Total number of
attributes, number of continous and discrete at-
tributes.

e Number of instances: Number of instances in a
DataSet.

e File: A gzip:ped tar file with all the files in the
problem.

The unique attributes of a problem instance record:

e From problem: The problem that the instance is
derived from.

e Description: Describes how the instance was de-
rived from the “parent” problem, what compo-
nents it consists of, why previously existing in-
stances of this problem was not adequate etc.

e Reason created: Reason for creating the instance.

e Performance measure: Describes the “fitness”
value used to evaluate algorithms on the instance.

e Number of instances: Number of instances that
can be used in evolving a solution (ie. these in-
stances can be divided in validation and training
sets).

e Number of test instances: Instances in test set
that cannot be used in any way to evolve a solu-
tion.

e GP result: Give an example of a good result ob-
tained with a GP technique.

e GP paper: Pointer to a problem instance usage
info record describing the paper in which the good
result was obtained.

e Other result: Give an example of a good result
obtained with a non-GP technique.

e Other paper: Briefly describe the technique used
and give reference to paper where result can be
found.

e Simple result: Give result achieved with a simple
technique (for example plurality rule in classifica-
tion task or a technique based on linear separation
in regression).

The record for a suite contains the following unique
attributes:

Type: DeFacto / Benchmark.

Problem instances: Instances in the suite.

Sub-type: Heterogeneous / Homogeneous

Performance measure: Performance measure for
suite.

In addition to the above, basic entities the repository
contains two types of usage information records: in-
stance usage info and suite usage info. The unique
attributes of the instance usage info are (the suite us-
age info record is similar):

e Paper: Paper where experiment with instance is
described. Pointer to GP bibliography.

e Technique used: Algorithm or technique used.
e Performance obtained: Performance obtained.

e Time: Execution time to evolve a solution with
the performance above.

We have contemplated using a standardized way to
report the execution time but we do not think that
one “right” way to do it is yet available. One possible
way would be to report the actual execution time nor-
malized with the spec benchmark result for the CPU
used as in [4]. However, a number of objections can be
raised to this scheme so we have chosen not to specify
one way on how to measure the time needed.

5 EXAMPLES

Below we give examples of some entries in the reposi-
tory. One is a problem, one is a problem instance, one
is a de facto suite and one is a proposed benchmark.
The descriptions are brief and primarily intended to
give you a picture of the kind of information that can
be found in the repository. More details can be found
at the GP-Beagle web site.

5.1 PROBLEM:
Gaussian(n,u,01,u2,02,f s f15fn)

The Gaussian problem is a DataGenerator problem.
It’s record in the GP-Beagle database is shown in ta-
ble 1. The data file for the problem, gaussian.tar.gz,
contains the following files:

e readme.txt - A description of the files included in
this tar file, and

e gaussian.description - The data from the record
shown in table 1, and

e gaussian.c - The DataGenerator implemented in

ANSL-C, and

e usage.info - Description of how to compile and use
the DataGenerator, and

e data.info - Description of the data file generated
when the generator is run.

The files are typical of what should be included for
a DataGenerator problem; they will differ for other
types of problems.

5.2 PROBLEM INSTANCE:
KddCup99-disctoint-1%

The KddCup99-disctoint-1% is a problem instance
sampled from the KDD Cup 1999 data (a real-world
5-class classification DataSet problem). The problem
instance record is shown in table 2. Note that the ref-
erence to the GP paper is given as the bibtex key in the

Table 1: Record for the Gaussian problem

Name: Gaussian (11,012,035, :J1.4n)

Type: DataGenerator SubType: Binary Classification Version: 1.0, 2000-05-22
VariableDifficulty: Yes | Status: Suggested Origin: Artificial
Instances: Varying Attributes: Varying # of numerical | File: gaussian.tar.gz

Source: Carla Fredrica Gauss, cfgauss@math.rocks.org

Description: Discriminate instances generated from either of two multivariate (n attributes)
gaussian distributions with mean and stddev (w1, o1) and (p2, o2), respectively. The ’f’
parameter governs how many false input attributes, uniformly sampled on [f, 5], should be
added to each instance.

The difficulty of the problem (dimensionality, Bayes optimal classification rate and number of
false attributes) can be varied by varying the parameters of the problem. The Bayes optimal
classification rate (ultimate uncertainty in problem which no ML algorithm can do better
than) can be calculated for parameter choices with f equal to 0.

Generalization of a problem from Elena project.

Table 2: Record for the KddCup99-disctoint-1% problem instance

Name: KddCup99-disctoint-1%

FromProblem: KddCup99 | Status: Suggested Version: 1.0, 2000-05-18

Instances: 48984 # TestInstances: 311029 | File: kddcup99-disctoint-1.tar.gz

PerformanceMeasure: Average cost per test instance according to specified cost matrix

Source: Catherine Darwin, cdarwin@evolution-rules.com

Description: The data used in the KDD Cup 1999 competition had more than 4 million training
instances and 311,029 testing instances. This problem instance contains a 1% sample of the training
instances but all of the testing instances. The “disctoint” refers to the mapping from discrete input
attributes to numerical integers.

The task is relatively difficult since the class distribution in the test set is different from the class
distribution in the training set.

ReasonCreated: We wanted to test if a GP system can get competitive results even with the
simplest possible mapping (mapping the values of an unordered discrete attribute to integers
imposes an order that does not exist in the original data).

We took a 1% sample because we wanted to get a more manageable data set that would give
shorter execution times.

The test set was kept intact since we wanted to be able to compare to the results of the algorithms
in the KDD Cup.

GPResult: 0.1985 | GPPaper: gpbiblio:darwin:ieeetroec:2001

OtherResult: 0.2331 with bagged and boosted decision trees (winner KDD Cup’99)

OtherPaper: Elkan, C.: Results of the KDD’99 Classifier Learning Contest, http://www-
cse.ucsd.edu/users/elkan/clresults.html, May 2000

SimpleResult: 0.5220 with plurality rule and 0.2523 with a 1-nearest neighbor classifier.

GP bibliography. We are planning to implement con-
nections between GP-Beagle and the GP bibliography
so that papers can easily be located and searched.

5.3 DE FACTO SUITE: Probenl-medical

A recent paper by Brameier and Banzhaf used six
problems from the Probenl benchmark suite to com-
pare GP performance to that of neural nets [2]. Each
problem used had three different samples of the same
data set. We have put these three samples in the same
instances and thus this de facto suite contains 6 dif-
ferent problem instances. Its record is shown in table
37.

5.4 BENCHMARK SUITE:
Classification-diversel8

To give an example of a benchmark suite we have
created one by adding two large classification prob-
lems to the suite of 16 classification problems used in
[4]. Note that the KddCup99-disctoint-1% problem in-
stance described in table 2 is one of them. The record
is shown in table 4. Also note that some of the prob-
lem instances used are from the same problems used
in the Probenl-medical suite above. Since a differ-
ent sampling and evaluation procedure (10-fold cross-
validation vs. 3-fold cross-validation) was used in this
suite the instances are distinct even though they stem
from the same problems.

6 CONCLUSIONS

We have described GP-Beagle, an infrastructure for es-
tablishing, maintaing and promoting a publically avail-
able repository of benchmarking problems for empiri-
cal studies of genetic programming systems. By using
benchmarks the genetic programming community can
make faster progress since results from different stud-
ies can be more easily compared. Furthermore, bench-
marks chosen in a good way promotes sound empirical
studies since they include a broad and diverse set of
problems and prescribe the evaluation procedure and
performance measurements to be used.

To address some of the pitfalls of using benchmarks
GP-Beagle is an open framework where benchmarks
and problems can evolve; we have not pre-specified
some benchmarks that must be used. We anticipate
that over time the GP community, in a collective effort,

"In the paper, Brameier and Banzhaf does not report
an aggregated performance measure as is indicated in table

can assemble benchmarks for different sub-areas of GP
research in the framework supplied by GP-Beagle.

The basic entities in GP-Beagle are problems, problem
instances and problem suites. Problem instances are
concrete instances of a problem with a full description
of how they should be used. They allow for full re-
producibility of results. The repository also contains
information on the use of the problems and suites. All
problems are freely available as long as published re-
sults and problem extensions are reported back to the
repository.

GP-Beagle is implemented as a set of records in a
MySQL database. Perl scripts are used to extract in-
formation and update the data base. The interface
to the repository is via a web site at http://www.gp-
beagle.org. In order for this effort to really take off we
encourage you to visit the site, start using the reposi-
tory and submitting your problems and results.

References

[1] C.L. Blake and C.J. Merz. UCI repository of ma-
chine learning databases, 1998.

[2] Markus Brameier and Wolfgang Banzhaf. A com-
parison of linear genetic programming and neural
networks in medical data mining. IEEFE Transac-
tions on Fvolutionary Computation, in press, 2000.

[3] Jozo J. Dujmovic. Universal benchmark suites. In
Proc. 7Tth Int. Symp. on Modeling, Analysis and
Simulation of Computer and Telecommunication
Systems, pages 197-205, 1999.

[4] T.-S. Lim, W.-Y. Loh, and Y.-S. Shih. A compar-
ison of prediction accuracy, complexity, and train-
ing time of thirty-three old and new classification
algorithms. Machine Learning, Forthcoming, 2000.

[6] L. Prechelt. A quantitative study of experimen-
tal evaluations of neural network learning algo-
rithms: Current research practice. Neural Net-
works, 9(3):457-462, 1996.

[6] Lutz Prechelt. Some notes on neural learning algo-
rithm benchmarking. Neurocomputing, 9(3):343—
347, 1995.

[7] W. Tichy. Should Computer Scientist Experiment
More? IEEE Computer, 31(5):32-40, 1998.

[8] Walter F. Tichy, Paul Lukowicz, Lutz Prechelt,
and Ernst A. Heinz. Experimental evaluation in
computer science: A quantitative study. The Jour-
nal of Systems and Software, 28(1):9-77, January
1995.

Table 3: Record for the Probenl-medical de facto suite

Name: Probenl-medical

Type: DeFacto | Status: Suggested | Version: 1.0, 2000-05-24

Instances: 6 | Id number: 1 File: probenl-medical.tar.gz

Instances: Cancer-probenl, Diabetes-probenl, Gene-probenl, Heart-probenl,
Horse-probenl, Thyroid-probenl

PerformanceMeasure: Average classification error on the 3*6=18 test sets

Source: Markus Brameier and Wolfgang Banzhaf (originally from the Probenl bench-
mark), banzhaf@not.valid-email.de

Description: A subset of six medical classification problems was extracted from the
Probenl neural network benchmark. Each instance consists of three different samples
from one and the same problem.

Table 4: Record for the Classification-diversel8 benchmark suite

Name: Classification-diversel8

Type: Benchmark | Status: Suggested | Version: 1.0, 2000-05-24

Instances: 18 | Id number: 2 File: classification-diversel8.tar.gz

Instances: Cancer-lim, Cmc-lim, Dna-lim, Heart-lim, Boston-housing-lim, Led-lim,
Liver-lim, Pima-indians-lim, Satimage-lim, Image-segmentation-lim, Smoking-lim,
Thyroid-lim, Vehicle-lim, Voting-lim, Waveform-lim, Ta-evaluation-lim, KddCup99-
disctoint-1%, KddCup98-disctoint-5%

PerformanceMeasure: Average classification error rate

Source: Robert Feldt, feldt@ce.chalmers.se

Description: A broad and diverse suite of classification problems. Includes five
binary, seven ternary, one 4-class, two 5-class, one 6-class, one 7-class and one 10-
class classification problems. On “small” problems (less than 1000 instances in test
set) 10-fold cross-validation is used to estimate the classification error rate.

Sixteen of the problems have been used on 33 different ML techniques in a study
by Tien-Sien Lim et al. This allows for comparisons to a large number of machine
learning algorithms. Two additional data sets from the 1998 and 1999 KDD Cup
competitions were added to the benchmark because many of the problems used in the
Lim et al study was “small”.

