57

Learning schemes for Genetic Programming

Anna 1. Esparcia-Alcazar & Ken Sharman
Dept. of Electronics + Electrical Engineering

The University of Glasgow
Glasgow G12 8LT
Scotland, UK
anna@elec.gla.ac.uk, k.sharman @elec.gla.ac.uk
ABSTRACT @

. res o = . It is then obvious that, in order to apply GP in

A leammg' capability is m?rOduced in engineering problems some modification must be made to
the Genetic Programming (GP) the standard algorithm that will help handle numerical

paradigm. This is achieved by enhancing
GP with Simulated Annealing (SA),
where the latter adapts the parameter
values (in the form of node gains) in the
structures evolved by the former. A
special feature of this approach is that,
due to the particularities of the -

representation used, it allows
engineering problems (in which

numerical parameters are important) to
be addressed, thus extending the
applicability of the GP paradigm.

We study two different learning
schemes, which we refer to as Darwinian
and Lamarckian according to whether
the learned node gains are inherited or
not. We compare the results obtained by
these two techniques to those obtained in
the absence of learning (both with node
gain representation and standard GP
representation). The results show the
great interest of both learning schemes.

The application presented is a classical
Digital Signal Processing problem: the
equalisation of a noisy communications
channel.

1. Introduction

After our first contacts with GP it became clear that although
the method is very powerful in discovering structures (of
functions or computer programs) it lacks the ability of
successfully identifying the parameters associated to them.

values. :

This is fully accomplished by the introduction of node
gains. A node gain is a parameter that multiplies the output
value of a node. These gains are then adapted by a Simulated
Annealing (SA) algorithm., :

In an analogy taken from Nature, GP provides the
evolution of a population of individuals (representing
particular solutions to the problem at hand) whereas SA is
the learning process of each specific individual.

The hybrid GP/SA was a major breakthrough in the sense
that it pioneered the use of GP in engineering problems. Till
its introduction (Sharman & Esparcia-Alcézar, 1993), GP

had been mainly applied to benchmark problems such as the
prisoner’s dilemma, travelling salesman, game strategies,
artificial ant, various XORs and multiplexers etc. which aim
at either evolving a behaviour pattern or a Boolean
expression and therefore do mnot require numerical
parameters.

The work related in this paper aims at three objectives:

o reassessing the advantages of the representation using a
node gains + learning scheme.

o studying the subtleties of the learning process, its
importance and effects.

e determining in which way the learning is going to be
carried out.

The outline of this paper is as follows. Section 2 provides
a background on our work and the two techniques used.
Section 3 deals with different issues of the representation
using node gains. Section 4 is focused on the importance of
learning and the various aspects of it that have been
addressed. In section 5 we present a selection of results,
which are analysed in section 6. Section 7 adds further
comments and outlines future areas of research and finally in
section 8 we present some conclusions.

58

2. Background on Genetic
Programming and Simulated Annealing

Genetic Programming (GP) is 2 subclass of the standard
Genetic Algorithm (GA) which was introduced in the early
90s (Koza, 92). GP is a general purpose search algorithm
whose aim is obtaining functions or executable computer
programmes. This is in contrast to the standard GA whose
aim is to evolve data (usually in the form of strings of bits or
other symbols). GP emulates natural evolution and survival
of the fittest in artificial populations. It employs a population
of individuals, each representing a possible solution to the
underlying task in the form of an expression tree. The
performance of these trees is rated by applying a problem
dependent evaluation function and some user-defined
criterion, which assign a fitness value to each prospective
solution. These fitness values guide the evolution of the
population, which takes place by creating new individuals by
means of genetic operators such as crossover and mutation.

Simulated Annealing (SA) is a stochastic searching
strategy based on an analogy to the annealing process in
statistical mechanics (i.e. the behaviour of systems with
many degrees of freedom in thermal equilibrium at a finite
temperature). SA is applied to the parameters of each tree,
which have the form of gain values that are associated to
each node (or element) of the tree.

GP is a global search strategy, whereas SA is a semi-
global one. Both have the characteristics of being able to
escape from local optima and of not requiring gradient
information to guide the search.

The philosophy of GP is inspired by natural evolution,
which is an inherently random process with no other
restrictions than the ones given by the environment. This
means that GP is controlled by a fairly simple algorithm. We
consider that any arbitrary restrictions are undesirable, as
they represent a form of “divine intervention". Therefore, it
is an objective to try and keep the number of spurious
parameters down to the minimum possible, and let evolution
take care of everything.

On the other hand, having equated SA to learning leaves
us with an open field of possibilities to explore. There are a
number of circumstances that can affect the Jearning process
of an individual and which can be translated by analogy into
parameters that control the SA algorithm.

A more in depth analysis of GP can be found in Koza,
'(1992) and of SA in Szu & Hartley (1987). The
hybridisation of GP and SA for application in Digital Signal
Processing (DSP) is explained in Sharman & Esparcia-
Alcazar (1993), Sharman, Esparcia-Alcézar & Li (1993),

Esparcia-Alcazar & Sharman (1996a), Esparcia-Alcazar &
Sharman (1996b) and Esparcia-Alcazar (1997).

3. Representation using node gains

3.1 Node vector and gain vector

The introduction of node gains is one the main differences
between this system and standard GP.

An individual, which encodes a possible solution to the
problem at hand, is represented by two vectors: 2 vector of

nodes, 71 and a vector of gains, g .
nz-x}

g={g, & 81 o

n={n0 n,

where: .
le R is the length of the tree,
n; SRM o R,
ge R,

i=0. 151
i=0.1051

A(n) is the number of arguments (or arity) of n;

n; € 0;

0 is a set of allowed operations

0 can be represented as the union of two sets:
0=0; UOT)
which are usually referred to as function set and terminal
set, respectively. The terminal set is characterised by

Mn)=0 v n e Ot 3
and the function set by
AMn) >0 Vn € Og @

For DSP we use the following sets:
O ={+,-,*,/.*2, /2,+1,-1,nlN,psh, 2}
0;={1, cN, xN, yN, stkN}
where N € R is an index number. These operations are
described in Sharman, Esparcia-Alcazar & Li (1995) and
Esparcia-Alcazar & Sharman (1996a).
A restriction on 7 is that it must be a syntactically correct

tree. The two necessary and sufficient conditions for

syntactical correctness are
1-1

Yam=1-1 &)
i=0 '
i-1
DAz
j=0
In standard GP it is usual to represent 7i as an expression
in polish (prefix) notation. In the GP/SA system, this can be
done in a compact way including g as well.

For instance, an individual represented by the vectors:
i={+, X0, Y1})
g={0.5, 2.0, -1.4} ®

~ would be written in polish notation as
(10.51 + ([2.0] X0

Vi O<i<l (6

[-1.4] Y1))

59

3.2 Crossover

Let T} and T be two syntactically correct trees selected for
crossover, with lengths / and m respectively, and whose
expressions are:

”:.u-n}

A= {"1.0 nyy -2
T = {" L(1-2)
& = {gx,o 811 8iu-2 81,u-1
n, = {"z.o Ry 3 (m-2) "z.()n-x)}
T, = 3,
8 = {gg,o 821 82.(m-2) 82.(m-1

Let us assume that T is acting as the “mother” and T as
the “father”; this means 7 provides the root and 7, the
branch to be inserted. Further assume that the crossover
points are i, 0<i</, for Tyandj, 0 <j<m, for T>.

Let the subtrees starting at i and j comprehend all the
nodes up to p and g in their respective trees.

The result of the crossover, Ty, is a tree of length I- p +
g, whose expression is:

T,,=
’-im:{nx.o Mgy Moyt Pogegeny Myttt nl.(l-l)}
81 ={81.o © 8y 825 7 Bagrgn Suim T Sien

The gain vector g;., has components inherited from T;

and T,. In an alternative scheme, the components would be
set to 1 or initialised with random values. This distinction is
the basis of the Lamarckian and Darwinian learning
schemes, that will be dealt with later.

3.3 Importance of node gains

The interest of using node gains can be understood better
using the tree in equation (7) as an example. This is depicted
in Figure 1, where the gains are represented as weights
associated to the links between nodes.

241 @ g0

*>Yn

-1

£

Figure 1: A tree and the system it represents using node
gains. - ‘
The system equationis :
Yn= 8o (81 X + &2 Y1) ®
The tree depicted in Figure 1 represents the equation of a
first order system, where X0 is the current input and Y1 is
the output in the previous instant (see references). When no
gains are used, i.e. g = 1, the system is unstable, as it has a
pole on the unit circle. On the other hand, with a proper set
of gains, such as the ones given by equation (8), the system
is stable.

It can be argued that the same can be achieved using
constant nodes, as shown in Figure 2.
The system equation for this tree is:

yn=xn+co Vo1 (10)

With an appropriate value of C0, e.g. CO = -0.7, the
system shown in Figure 2 is stable and equivalent to the one

- in Figure 1, but the first thing that can be noticed is that the

size of the tree has increased. Also, by adding one constant
we have only achieved to stabilise the gystem. If we were
interested in the other parameters present in the previous
equation, further constants (and multiplication nodes) should
be introduced.

(x9 (%)
9 ®

Figure 2: A similar system, without node gains

“This leads us to an important characteristic of the GP/SA
method: the use of node gains means that the same system
can be represented by shorter, more compact trees. This
“compacting effect” is going to affect the performance of the
method in two ways:

o shorter subtrees are less susceptible of disruption by
Crossover
¢ handling shorter trees is less computer intensive.

4. Learning

4.1 Characteristics of learning

Two characteristics of learning in natural systems are
going to be of interest for us (Anderson, 1995). The first
characteristic is that learning slows down the reproduction
(crossover) rate, because time devoted to learning cannot be
spent in reproduction. In a population that learns, the
production of a given number of individuals can take
between tens to hundreds of times more than when no
learning is performed. This can be a drawback in problems
where the value of the parameters doesn’t have much
influence in the output.

Learning can also diminish the differences in fitness
between individuals, which helps preserve genetic diversity
in the population. This means that the whole population
won’t converge to a particular structure that happens to be
good under a certain environment. This characteristic is of
great interest in environments that are likely to experiment
changes.

4.2 Need for learning

The tree in Figure 1 has more degrees of freedom than
the one in Figure 2 because there are three gain values that
need to be adjusted, instead of only one constant. This

60

implies that there will be many combinations of gains that
represent good solutions to the problem at hand, but also that
there will be many that will represent unstable systems or
simply bad solutions. This is the reason why learning is
needed and here is where Simulated Annealing comes in. As
stated before, what we refer to as learning is the adaptation
of the node gains by SA.

Taking into account the characteristics mentioned above,
we can give two general rules as to when to apply a learning
scheme:

e when the performance of a system is sensitive to
parameter variations; for instance, when a wrong selection of
parameters can make the system unstable (as seen in Section
3). »
e when environmental changes are expected; for
instance in equalisation in mobile systems, where the
unknown channel is constantly varying.

4.3 Learning by Simulated Annealing
The reasons why we chose SA as a learning algorithm are
twofold. On the computational front, due to the simplicity of
implementation. On the philosophical front, due to the
similarity to the learning process in nature, in two ways.
First, as an individual undergoes learning, the probability of
a big gain jump decreases. This is in accordance with what
we observe in nature: the amount that an individual can learn
decreases in time. Second, big decreases in fitness are
mainly restricted to the early stages of the learning process.
Pursuing the natural analogy, when the individual is young it
can still accept a decrease in “status” but that is less likely as
it grows older.
The SA algorithm works as follows:
1. Perturb g(i) to get g(i)'
9. Evaluate the fitness, i)’ using the perturbed
gain vector §' (i)
3. If (i)’ 2 fi)) then accept the perturbation:
g(i+1) = g(i)' and continue
Else accept the perturbation with probability

i@\
1+e T and continue

4. Reduce the temperature T according to an
annealing schedule and go back to step 1

4.4 Darwinian and Lamarckian learning
schemes ‘
In standard GP evolution follows Darwinian rules.
Darwinian evolution is a two-step process, taking place as
follows,
1. random genetic variations take place,
recombination and mutation only
2. “artificial selection” favours the survival of the fittest
among these variants.

caused by

~ directed.

The former implies that individual learning does not
affect the genetic material and therefore cannot be inherited.

On the other hand, another classical theory of evolution,
Lamarckism, is essentially a theory of directed variation. In
the face of an environmental change, an organism would
react by incorporating preferentially favourable genetic
information, which would then be transmitted to offspring.
The latter, also known as “inheritance of acquired
characters”, has taken over the meaning of the word
Lamarckism, and it is by this definition that we will use it.

Although Lamarckian evolution (in any of its meanings)
has not been observed in biological history’, it can be said
that the evolution of human culture (or learning in higher
mammals) is Lamarckian in character: knowledge is
transmitted from one generation to another. ‘

We implement Lamarckian evolution in the GP/SA
system by allowing the annealed node gains to be inherited
by the offspring, as seen in section 3.2. In Darwinian
evolution, the gains are set to 1 or initialised with random
values before the annealing takes place.

5. Results

5.1 The four methods
We will be comparing four methods: three of thern use node

gains and the fourth uses no gains (i.e. the gains are equal to
1). The latter we refer to as NGNL (no gains - no learning).

In the first three methods the gains are initialised at
random in the first population. In the Darwinian learning
scheme the gains are also initialised at random for every
individual that is born and then subjected to annealing. In
Lamarckian learning the annealed gains of the parents aré
inherited by the offspring, which then undergo their own
annealing process. Finally, in the last method we are testing
the gains are part of the structure. They remain fixed (i.e.
there is no learning) except in case of a random mutation,
and thus are inherited by the offspring. We refer to this as
RGNL (random gains - no learhing) . ’

A further difference between the methods is the number
of constant nodes that can be-employed. All methods will
employ a given number n (here, n =7) of predefined
constants, Tn NGNL there will also be a further N-n
constants that will be initialised with random values®. This 18
to compensate for the absence of node gains.

The comparison is based on a DSP application:
channel equalisation problem. This is fully explained 10 the

references (Sharman, Esparcia-Alcazar & Li, 1995 2"
Esparcia-Alcézar & Sharman, 1996b)

. e 10
1 Although genetic changes can be due toO exposyr aot

radiation or chemical agents, these changes are rancot

g thE
rmini®® =
et N

2 This leaves another open issue, namely det
range of the random constants (and also their number:

5.2 Fixed environments

5.2.1 Overview .

Strictly speaking a fixed environment would be one in which
the population has reached equilibrium, ie. the average
fitness remains approximately constant. When tackling DSP
problems, however, we are not usually concerned about what
happens after an optimum has been reached, but rather about
reaching it. _

In the particular case of the experiments related here we
are interested in both the solutions and the evolutionary
process itself. We will then define as a fixed environment a
GP run of the channel equalisation problem in which the
unknown channel does not change for the duration of the
run. The run proceeds for up to a given number of node
evaluations (as explained below) regardless of whether or
not a suitable solution has been found or equilibrium has
been reached. '

Two cases are studied: a linear channel (LC1) and a
nonlinear one (NLC).

5.2.2 Study of the performance

We can divide the study of the performance into two aspects.
The first one is related to how well the solutions obtained
perform with unseen data, i.e. the generalisation ability.

It is a matter of discussion among the GP community
whether or not the existence of local learning schemes
decreases the generalisation ability (and therefore the
quality) of the potential solutions. Some argue that learning
will cause overfitting of the training data and therefore,
when the data is changed, the performance will be poor

because the solution was biased towards the training data.

We are willing to see whether or not this is the case with
our learning schemes. To do so, we run each experiment a
number of times using 70 samples (of which the first 20 are
rejected for the fitness calculation as transient). The
termination criterion for evolution is that the number of node
evaluations equals or exceeds a given limit (1e8 for LC1,
3e8 for NLC). The solutions are tested with a further 10100
samples (of which the first 100 are rejected) to obtain a
fitness value and a bit-error-rate. These two values
themselves provide a measure of “how good” the solutions
are.

We also compare the fitness in the test with the one
obtained during evolution and measure the discrepancy as
follows:

d

1 ' No.OfRuns

= - 2
- N0.0fRunS ‘24 (f“-".‘ feval,-)

This gives an idea of how well the fitness during
evolution can predict the subsequent behaviour of the
solutions obtained by each method, therefore being a
measure of reliability.

Table 1 and Table 2 give the averages of these values.

These results show that, in average, Darwinian learning
outperforms the other methods, the differences being more
noticeable in the case of NLC, which is a more difficult

11)

Table 1: Comparison of results (50 runs for LC1)

fitness | BER fitness d
(in test) (in test) (after
evolution)
Darwinian | 09765 | 0 0.9825 0.0018
Lamarckian| 0.9679 | 0.00806] 0.9704 0.0002
RGNL 0.9731 | 0.00006] 0.9890 0.0037
NGNL 0.8231 | 0.03045 0.8933 0.0487
Table 2: Comparison of results (24 runs for NLC)
fitness | BER fitness d
(in test) (in test) (after
evolution)
Darwinian | 0.9620 | 0.00564 0.9816 0.0013
Lamarckian| 0.9261 | 0.01071 0.9620 0.0052
RGNL 0.7418 | 0.02920 0.9655 0.2090
NGNL - - - -

problem. On the other hand, the discrepancy in LC1 is lower
for Lamarckian learning, whereas in NLC the lowest value
corresponds to Darwinian learning; both results show that
learning methods generalise better than non learning ones.
The second aspect in measuring the performance is the
success rate. This is given by the ratio of successful runs '
over the total number of runs. We define a successful run as
one in which the fitness of the best solution measured during
the evolution is greater than 0.9. The values are shown in
Table 3. :

Table 3: Success rates for i.Cl and NLC

LC1 NLC
(50 runs) (24 runs)
Darwinian 1 ' 0.92
Lamarckian 0.96 0.83
RGNL 1 0.92
NGNL 0.78 -

Darwinian learning maintains the advantage because it has
both high success rates and low discrepancies. RGNL has
higher success rates than Lamarckian learning, but on the
other hand, as shown in the previous tables, it also has a
greater discrepancy, which makes its solutions less reliable.

5.3 Variable environments

5.3.1 Overview
A variable environment is one in which the unknown
channel is modified during the run.

The implementation of this is as follows. Evolution
proceeds as explained in the previous section for LC1, up to
1e8 node evaluations approximately. Then a new set of data
is generated for the modified channel LC2. LC2 has the
same structure as LC1 but one of its coefficients is slightly
different in absolute value and has opposite sign.

62

The population is then re-evaluated and re-annealed and
evolution continues for approximately up to 3e8 node
evaluations.

5.3.2 Study of the performance

The solutions are tested as explained before with 10100
samples generated for the channel LC2. A comparison of
the solution performances is given in Table 4.

Table 4: Comparison of results in a variable
environment. Averages of 51 runs for LC1 — LC2

fithess | BER fitness d
(in test) (in test) (after
evolution)
Darwinian | 0.9078 |0.002047 0.9592 0.0030
Lamarckian] 0.8930 {0.001986 0.9606 0.0208
RGNL 0.8296 }10.038525 0.9146 0.0313
NGNL 0.6062 10.195249 0.7719 0.1242

Darwinian learning maintains the advantage, both in
fitness and reliability, clearly over RGNL and NGNL and
slightly over Lamarckian learning.

If we now study the success rates, given in Table 5, it
turns out that the Darwinian learning scheme has a slightly
lower probability of success than Lamarckian learning.
Nevertheless, the performance of the solutions obtained by
this method is higher.due to the low discrepancy.

Table 5: Success rates (51 runs for LC1 - LC2)

Darwinian 0.9608
Lamarckian 0.9804
RGNL 0.8431
NGNL 0.5882

6. Analysis

6.1 Statistical comparison: Mann-Whitney test
for two independent samples

We are not satisfied with the conclusions drawn in the
previous section because the fitness distributions are
unknown. Therefore, we can’t be confident that the
comparison of average values we have performed is
sufficient. In this section we analyse the results statistically
in order to attain confidence in these conclusions.

For this purpose we employ a Mann-Whitney test to
compare the methods two by two. The details of the test are
not given here (Conover, 1980); it is enough to know that
the test aims atproving the hypothesis (Hp) that two given
samples come from the same population (or the alternative
hypothesis that they don’t).

For a certain level of significance, o, Hj is rejected if the
test statistic T lays outside the critical interval [wqpn, Wi.onl,
where w, is the p™ quantile of T. If Te&[Was, , Wi-or2] then Hy
is accepted.

The quantiles may be approximated by

(N +1)
» Tyt nem:——o—

Wip,=nN+1)-w,

where x, is the p™ quantile of a standard normal random
variable.

Accepting H, implies that the two methods compared
don’t have a significant difference in performance. Rejecting
Hy means that the method with higher T has a better
performance.

6.1.1 Mann-Whitney iest for LC1

We choose o = 0.05 (i.e. a confidence of 95%) and
looking up in a standard normal table we get xg005 = -1.96,
Since 50 runs were performed for all methods, n = m = 50,
the quantiles are:

101

1
Wo,ozs=50'T'—1.96- 50 o1

12
Wi0025 = 50-101 - Wooes = 2809.31

Therefore the critical interval is [2240.68 , 2809.31].

The results for this test are shown in Table 6

The conclusion that can be drawn from this test is that the

Table 6: Mann-Whitney test for LC1.
Critical interval: [2240.68, 2809.31]

= 224068

Comparison (1/2) T T2 Result

Darwin / Lamarck 2505.5 | 2544.5 | Accept Ho
Darwinian/ RGNL | 2247 2803 Accept Ho
Lamarckian / RGNL | 2267 2783 Accept Ho
Darwinian/ NGNL | 3307 1743 Reject Ho
Lamarckian / NGNL | 3214 1836 Reject Ho
RGNL / NGNL 3309 1741 Reject Ho

Darwinian, Lamarckian and RGNL schemes are

indistinguishable, and all of them outperform NGNL
Therefore we can conclude that, in this example, using node
gains is better than not using them, but nothing can be
concluded about learning.

6.1.2 Mann-Whitney test for NL.C

We’ll consider 24 runs for all cases, so n = m = 24 and the
critical interval is [492.95 , 683.05]. The results of the test
are shown in Table 7.

Table 7: Mann-Whitney test for NLC.
Critical interval [492.95, 683.05]

Comparison(1/2) | T1 T2 Result
Darwin / Lamarck 658 518 | Accept Ho
Darwinian/RGNL | 724 | 452 | RejectHo

Lamarckian/RGNL | 673 503 | AcceptHo
Darwinian /NGNL | 763.5 | 4125 | RejectHo

Lamarckian /NGNL | 717 | 459 | Reject "'_‘f

RGNL / NGNL 633 543 | Accepto.

63

These results present us with a paradox. The Darwinian
and Lamarckian schemes are indistinguishable, Darwinian
outperforms RGNL but Lamarckian is indistinguishable
from RGNL. We attribute this to the fact that the formula for
calculation of the quantiles is not exact, but rather an
approximation. However, the numerical values of the
statistic T in the Lamarckian/RGNL comparison seem to
indicate that Lamarckian learning performs slightly better
than RGNL. This conclusion would be supported by the fact
that the fourth method, NGNL, is outperformed by both the
Darwinian and Lamarckian learning schemes, being at the
same time indistinguishable from RGNL.

6.1.3 Mann-Whitney test for LC1— LC2

In this case, for all methods n = m = 51 and the critical
interval is [2333.64 , 2919.36]. The results for this test are
shown in Table 8.

Table 8: Mann-Whitney test for LC1-LC2.
Critical interval: [2333.64, 2919.39]

Comparison (1/2) ™ T2 Result

Darwin / Lamarck 2601 2652 | Accept Ho
Darwinian / RGNL 3035 2218 | Reject Ho
Lamarckian / RGNL | 3029 2224 | RejectHo
Darwinian / NGNL 3570 1683 | RejectHo
Lamarckian / NGNL | 3559 1694 | RejectHo
RGNL / NGNL 3233 1953 | Reject Ho

The conclusion that can be drawn from this test is that the
Darwinian and Lamafckian schemes are indistinguishable,
both of them outperform RGNL and NGNL, and RGNL
outperforms NGNL.

6.2 Darwinian vs. Lamarckian learning

The analysis in the previous section didn’t allow us to
determine whether one type of learning is preferable to the
other. Here we try to outline the differences between the
two.

We define as a point in the gain space a particular vector
of gain values associated to a tree. Given an initial point we
define as a learning path the set of points obtained during
the annealing process concluding in a certain final point.
Because in Lamarckian learning the gain values are
inherited, the annealing process tends to exhaust a particular
path until an optimum point is reached. The process is in
many cases irreversible and can end in a “blind alley” from
which no better points can be reached. This behaviour
results in optima that can be reached very quickly but that
are useless if they happen to be local optima instead of
global ones. v

The Lamarckian learning scheme explores the gain space
intensively: when a “right pa » is found, Lamarckian-
evolved solutions will give a higher fitness. Otherwise, they
will get stuck at a point which, in spite of being good, is not
the best.

On the other hand, the Darwinian learning scheme
explores the gain space in an extensive way. As evolution

proceeds the population might converge structurally but
there remains parametrical diversity due to the random
initialisation of the starting points for annealing. This means
that the gain space can be explored more exhaustively; if a
particular structure takes over the population is because it
has a high fitness with many different gain vectors.
Intuitively: Lamarckian learning can be faster but
Darwinian tends to be more robust. ’

6.3 Influence of learning on evolution.

To trace the influence of learning on evolution we introduce
a new variable: the fitness at birth or fab. We will compare
the statistics of the fab and the fitness after learning, or fit.
With no learning, fit = fab. We are interested in the
variations in the distributions of fit and fab as the run
proceeds.

For this study 24 runs are performed for Darwinian, and
Lamarckian learning and RGNL with the same set up as in
section 5.2. In this case we are not interested in the solution
but in the evolutionary process itself and therefore the
experiments run for a longer time. (In practise the
termination criterion for evolution is a number of node
evaluations greater than or equal to 3e8).

The distributions for LC1 are shown in Figure 3 and
Figure 4. (The distributions for NLC showed similar results
and are not displayed to avoid repetition).

It can be seen that the fit distribution moves to the right
as the run proceeds. This displacement is slowest in
Darwinian learning and fastest in RGNL. In more difficult
problems we have observed that the fit distribution in RGNL
doesn’t reach the higher values of the scale. Instead, it gets
“stuck” at suboptimal values.

The fab distribution shows an increasing peak at zero in
Darwinian learning. This means that individuals that can
learn are selectively preferred to those that are naturally fit.
The opposite occurs in Lamarckian learning: the fab
distributions are displaced towards the right, as would be
expected.

In both cases the displacement of the fab distributions is
much slower than that of the fit for RGNL (remember that
for RGNL fit = fab). This shows how the presence of
learning slows down the evolution of the genotype.

6.3.1 The Baldwin effect

The Baldwin effect is a mechanism by means of which
learned behaviour and characteristics at the level of
individuals can significantly affect evolution at the level of
the species (French & Messinger, Hinton & Nowlan 1987).
It can be considered as Nature’s way of achieving something
similar to Lamarckian evolution but without its potential
drawbacks.

Any discussion about the Baldwin effect is only
meaningful in the case of Darwinian learning. In the
presence of Baldwin effect we would expect that the
evolution of the fab distribution would follow the fit one.
This is not observed in the experiments presented here; thus
nothing would seem to indicate the existence of this effect.

64

Figure 3: Evolution of the fit for Darwinian (top),
Lamarckian (middle) and RGNL (bottom). Averaged
histograms for initial, middle and final stages of the run.

One reason for this is that there is no penalty associated
to learning, as would be in a real world example. In our runs
all individuals learn “for free” therefore there isn’t any
selective pressure favouring a high fitness at birth. In fact
what happens is quite the contrary: good learners are
preferred to natural born fit individuals. '

The other reason is that the fab does not really measure
the fitness of the structure, which is what is affected by
evolution (and therefore by the Baldwin effect). The gains
are also involved and by initialising them at random we are
introducing a discontinuity in the fitness (which is then
smoothed by the learning). This indicates that the fab is not
a proper measure to track the Baldwin effect and that
alternative measures should be investigated.

7. Further comments: Extending the
analogy

The performance of the Darwinian and Lamarckian learning
schemes is influenced by the characteristics of the
experiments that have been related here, in particular:

Figure 4: Evolution of the fab for Darwinian (top) and
Lamarckian (bottom) learning. Averaged histograms for
initial, middle and final stages of the run.

e all individuals have the same probability of learning

(equal to 1)

e the maximum number of annealing iterations is fixed

e in the experiment with varying environments, the

unknown channel is modified only once.

In a “real world” situation, these characteristics wouldn’t
apply (which also accounts for the absence of Baldwin
effect).

Furthermore, the conclusions have been drawn from a
small set of problems. A wider range of experiments should
be necessary to increase the confidence in these
conclusions. o

" Further work will aim at resolving these issues.

8. Conclusions

We have addressed here two ways of implementing an SA
learning scheme in GP and their characteristics. We have
shown that, in the examples presented here, using node gains
provides better results than using random constant nodes
only. Also, the use of learning improved the performance in
the more complex problem addressed. '

We have introduced a measure of the generalisation
ability which allows us to show that overfitting is not 3
problem in GP/SA; on the contrary, the two learning
schemes generalise better than the non learning ones. This 18
due to the fact that learning efficiently explores the g8
space and as a result the structures that dominate 2
population are the ones with a high fitness over a number 0"
different gain vectors. This is indeed a paradox: learning
means the actual values of the gains have little influence ©7
the performance, which accounts for greater robustnes’
when dealing with noisy environments. No learning implieS
that the gain values are going to be 1 (or random), and that ¥

65

a bias like any other that learning would introduce, with the
difference that it cannot be overcome.

The differences in the behaviour of the two learning
schemes used (Darwinian and Lamarckian) have been
pointed out and, although no conclusion has been reached as
to which performs better, the Darwinian scheme looks
intuitively more indicated for a variety of problems, as the
more robust of the two.

Bibliography

R.W. Anderson, “Learning and Evolution: A Quantitative
Genetics Approach”, Journal of Theoretical Biology, no
175, 1995.

W.J. Conover, “Practical Nonparametric Statistics”, 2™ ed.
John Wiley & sons, 1980.

AL Esparcia-Alcdzar & K. C. Sharman, “Evolving Recurrent
Neural Network Architectures by Genetic Programming”
presented at the First International Conference on Geneuc
Programming, GP’96, Stanford University, USA, July
1996.

AL Esparcia-Alcdzar & K.C. Sharman, “Some Applications
of Genetic Programming in Digital Signal Processing”
Late Breaking Papers at the GP’96 conference, Stanford
University, USA, July 1996.

Al Esparcia-Alcdzar “An investigation into a Genetic
Programming technique for adaptive Signal Processing”,
Second Year Report, Department of Electronics and
Electrical Engineering, Glasgow University, Jan. 1997.

R.M. French & A. Messinger, “Genes, Phenes and the
Baldwin Effect: Learning and Evolution in a Simulated
Population”, Artificial Life IV.

S.J. Gould, “The panda’s thumb”, W.W. Norton &
company, 1980 ‘

G.E. Hinton & S.J. Nowlan, “How learning can guide
evolution”, Complex Systems, vol. 1, 1987

J. Koza, “Genetic Programming: On the programming of
computers by means of natural selection”. The MIT Press,
1992

B. Mulgrew, “Applying Radial Basis Functions” IEEE
Signal Processing Magazine, Vol. 13 No. 2, pp. 50-65,
March 1996.

K.C. Sharman & A.L Esparcia-Alcdzar, “Genetic Evolution
of Symbolic Signal Models”. Procs. of the 2™ |[EE/IEEE
Workshop on Natural Algorithms in Signal Processing,
1993.

K.C. Sharman & AL Esparcxa-Alcézar “Evolving Signal
Processing Algorithms by Genetic Programming”, Procs.
of IEENEEE Genetic Algorithms in Engineering
Applications, GALESIA, 1995.

H. Szu & R. Hartley, “Fast Simulated Annealing”, Physics
Letters A, Vol. 122, No. 3.4, June 1987.

Late Breaking Papers at the
Genetic Programming 1997
Conference _ |
Stanford University
July 13 -16, 1997

Edited by
John R. Koza
Computer Science Department
Stanford University

Stanford Bookstore
Stanford University
Stanford, California 94305-3079 USA
415-329-1217 or 800-533-2670

ISBN
0-18-206995-8 -

