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Abstract

This paper describes in detail a mechanism used to bias the choice of crossover locations
when evolving a list data structure using genetic programming. The data structure and it
evolution will be described by RN/95/70.

The second section describes current research on biasing the action of reproduction
operators within the genetic programming field.

1 Directed Crossover

Often some tasks are easier than others and so evolve more quickly. It is obviously wasteful
to perform crossover in code that is working correctly and the directed crossover mechanism
described in this paper succeeds in dynamically redistributing crossover locations to code in
need of improvement as the population evolves. The current mechanism only considers code at
the level of individual operations or adfs but could obviously be refined.

In the evolution of the list abstract data structure each operation (e.g. insert) is allocated
a separate GP tree within each individual in the population. Together with the five ADFs
(which also have a unique tree each) this makes a total of fiveteen trees per individual. By
keeping a record of which trees are executed and with what outcome (i.e. scores on subsequent
fitness tests) the current performance of each tree within an individual can be described. This
description is used to bias which trees are chosen for crossover. Once a tree has been selected
the crossover points within it are chosen in the usual random way.
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In 90% of crossovers the first parent’s fitness and execution path is used to bias the choice
of crossover location. The location is chosen to avoid disrupting code that is working, to avoid
wasting crossovers by changing code that is never executed and is biased in favour of changing
code that appears to be performing poorly. The number of times the tree might be used by
parts of the fitness cases which have not be executed is estimated (unknown). This is used as
a dampening term to avoid emphisising results for trees which have been executed only a few
times.

The tree in which crossover is to be performed is selected by choosing three trees at random
(with reselection) from the 15. A tree cannot be one of these three if:—

e The tree is believed to be correct.

This is decided by the fitness tests. If a tree has passed sufficient number of tests, it may
be regarded as correct, even if when used in combination with other trees one or more
consistency tests fail.

e The tree has never been executed,

e The tree has never been executed in a test sub sequence which subsequently failed a
consistency check (nak) and it is anticipated that it would not be executed by any of the
fitness test cases that have not been used (unknown).

However a tree may be selected as the crossover location immediately if either:—

e The number of times it was used in a test subsequence which subsequently passed its
consistency check (ok) is less than nak, or

e both it has never been run successfully and unknown is zero.
Otherwise, the following ratio is calculated:

nak + unknown

1
ok + unknown (1)

When ratios for three trees have been calculated, crossover occurs in the tree with the
highest ratio.

If 100 trees are examined before three meeting these requirements are found, the tree with
the highest ratio found so far is selected. If none have been found, the tree is selected at random
from the 15.

To save space, the trace information is tightly packed during which some resolution is
lost. An implementation of the above algorithm is available (for non-commercial purposes) via
anonymous ftp, node cs.ucl.ac.uk directory genetic/gp-code

As far as is known, this is the first time program execution paths have been used to guide
the choice of GP crossover location. The following section describes other approaches which
use program syntax, fitness measures or population performance.
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2 Other Approaches to Biasing GP Evolution

Koza [K0z92] and most others use a crude aspect of program syntax (i.e. is the program a
terminal or function) to stochastically guide the location of crossover points. This section
describes some more sophisticated techniques at guiding the GP evolution.

A number of other papers show (albeit on very different problems) benefits in directing or
biasing the operation of the crossover or other genetic operators. For example Rosca [RB94]
uses the runtime behavior of each program to define a “fitness” for each subtree within it.
These fitnesses are used to bias the choice of which subtrees to protect from crossover.

D’haeseleer [D’h94] describes methods, based upon the syntax of the two parent programs,
for biasing the choice of crossover locations.

Gruau |Gru96] argues strongly that GPer should be forthright in using program syntax to
guide the GP and shows improved GP performance by using an external grammar to define
more tightly the syntax of the evolving programs.

Whigham [Whi95] also uses a grammar to constrain the evolving trees but the grammar
itself evolves based on the syntax of previously successful programs (in fact the best of each
generation). The grammar does not become more constrictive but instead the rules within
it are allocated a fitness which biases (rather than controls) the subsequent evolution of the
population.

The work on strongly typed GP ([Mon93], [Mon94], [Mon95], [HWSS95] and [HSW96])
also shows that constraining the GP to search only parts of its search space by forbidding
semantically invalid programs improves performance.

Other approaches to protect code from crossover are Peter Angeline’s [Ang93| genetic library
and Peter Nordin’s [NFB96] use of “introns”?] More recently Angeline [Ang96] has advocating
evolving the probability of crossover occurring at different points in the program along with the
program itself. He also suggests multiple crossovers to produce an offspring. The ETL group
[Id96] is also believed to be active in this area and other work will be reported in [KGFR96].

Blickle [BT94, Section 4] claims improved performance by marking tree edges when they
are evaluated and ensuring crossover avoids unevaluated trees, however the improvement is
problem dependent.

The approach in [Tac95| is different in the genetic operator itself is not biased, instead
improved offspring are produced by producing multiple offspring per parent pairing and using
a (possibly simple) fitness function to ensure only the best are released into the population and
so able to bread themselves. [Cre95l Section 2.2.1] uses a similar technique.
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