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Abstract

Genetic Programming (GP) is one of a number of biologically inspired

search techniques known collectively as Evolutionary Algorithms (EAs).

These algorithms use the metaphor of Darwinian Evolution to discover so-

lutions to problems that humans, and/or other search methods have found

difficult to solve. GP differs from the other main classes of EAs in that

it specifically seeks to produce solutions that are executable computer pro-

grams.

Considering the large amount of books, papers and articles on GP, over

5,000 items in the official GP Bibliography, relatively few have addressed

the problem of understanding the very basic biases of GP operators, i.e.,

how they sample program spaces.

This thesis begins to address this lack of knowledge by considering GP’s

defining variation operator, sub-tree swapping crossover. It first analyses

crossover’s bias with regard to program sampling in terms of program length,

providing a number of empirically verified theoretical models.

With this knowledge in hand, the thesis investigates how length bias

affects GP runs, particularly with regard to the sampling of unique programs

and bloat. From this work a new bloat theory is presented, Crossover-Bias,

and a method, Sampling Parsimony, to directly alter the rate of resampling

and hence control bloat is created.

To counteract the length bias of crossover a new technique is introduced,

Operator Equalisation, which enables length classes to be sampled according

to pre-determined probability distributions. This provides essential informa-

tion regarding GP runs and can be shown to improve GP performance.



We then turn our attentions to the sampling of programs within length

classes and its implications for structural convergence within GP. From this

work we show that sub-tree swapping crossover will sample programs with a

frequency determined by arity proportions, our length work being a special-

isation of this process. A new theoretical model based on arity histograms

is then provided.
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Chapter 1

Introduction

The programming of computers has long been seen to be the preserve of

humans. To determine a set of instructions in order to accomplish a task

is primarially a design activity based upon expert knowledge. Genetic Pro-

gramming [Koza, 1992] provides a method to automate this process so that

machines can discover, with minimal human intervention, programs that

will satisfy a given set of requirements.

This thesis uses the idea of finding such a group of instructions as a

search process as defined in the discipline of Artificial Intelligence (AI)

[Russell and Norvig, 2003]. We know all the available program components

and how they can be structured. However, we do not know the correct

combination required to reach our solution. We have to, therefore, search

through the space of possible combinations of program components in order

to find such a solution. For all but the simplest of programs we do not have

sufficient computing power available to search through all the possible com-

binations, a problem known as combinatorial explosion. An informed search

is, therefore, required, one that will concentrate the search in promising ar-

eas thereby making best use of computational resources.

1



Darwinian Evolution [Darwin, 1859] is the inspiration for the search

method employed by GP. At its most basic, the essential components of

this process used by GP can be described as follows: we have a population

of individuals that can reproduce, i.e., make copies of themselves. During

reproduction random copying errors, mutations, will be made affecting cer-

tain individual traits. Mutations will in turn be passed on to the children of

those children. If there is competition for resources individuals more suited

to the environment will live longer and produce more children. Their traits

will, therefore, become more frequently observed in the population, a process

known as natural selection [Ridley, 1993].

Although not strictly required for evolution to take place, sexual repro-

duction is a key element in the evolution of higher animals and a fundeman-

tal ingredient in GP. Sexual reproduction allows the genes that determine

traits to be taken from either parent and recombined (or crossed over). The

benefits of sexual reproduction have been debated vigorously. For exam-

ple, recombination can be seen as method to speed evolution as a kind of

macro-mutation, many benficial traits being combined in one operation. An

alternative theory is that it allows destructive or negative traits to be re-

moved quickly rather than waiting for a copying error to take place. The

sexual reproduction operator in GP is known as crossover and is the primary

variation method used in typical GP implementation [Poli et al., 2008a].

It is important to note that one could use one of a number other AI

search methods. In fact, one could argue that documented successes in GP

should be at least empirically compared to other such methods. A more

satisfying approach would be to determine which method is most likely to

be sucessful with a certain problem or set of problems based upon a theo-

retical framework of defining characteristics. Thereby, avoiding painstaking

2



trial and error. This is particularly relevent when one considers the No

Free Lunch theorem (NFL) [Wolpert and Macready, 1997]. This can be de-

scribed, at its simplest, as follows: there is no algorithm that will solve,

on average, all classes of problems better than any other algorithm. It is

important, therefore, to match an appropriate algorithm to the problem at

hand.

This thesis takes a first step in the creation of such a framework by

clarifying the biases of GP’s sub-tree swapping crossover [Koza, 1992]. This

operator works through a process of creating children by directly swapping

groups of parent program components, known as sub-trees.

Of course we are not limited to simply mathematically describing the

biases of our operator, no matter how useful this undoubtedly is. We can

also see how operator biases affect GP runs. With this knowledge we can

make recommendations as to experimental set-ups and even suggest new

operators to counter or alter such biases.

With this in mind, the remainder of the thesis is structured as fol-

lows:

Chapter 2 provides an introduction to AI and search, describing

how GP uses Darwinian Evolution to search the program space. Particular

attention is paid to problem representation, notably the use of syntax trees

that can be directly executed by an interpreter (or compiled for faster

execution). Such trees contain nodes with connections between them. The

number of connections a type of node may accept is termed its arity. Trees

can be manipulated by sub-tree swapping crossover, which as its name

suggests swaps parts of trees between individual programs. An analysis
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of the biases associated with sub-tree swapping crossover form the major

component of this thesis. Recent research into the nature of program spaces

is also discussed in this chapter, notably regarding distributions of fitness

and how they scale in relation to program size. Within the typical tree

based GP representation, program length and size relate to total nodes

within a program and are synonymous. Consideration is also given to the

phenomenon of bloat, the growth of program size during a GP run without

a significant return in terms of program fitness.

Chapter 3 provides a number of hypothetical models, generalisations

and approximations (with experimental verification) to explain how sub-tree

swapping crossover samples the search space in terms of program length. It

is found that under repeated application, sub-tree swapping crossover will

distribute a population in terms of length according to a Lagrange Distri-

bution of the Second Kind. This is a family of distributions which has two

parameters. The first is an average of internal tree node arities in the popu-

lation. The second is the mean program length at generation zero. Without

careful adjustment this distribution has a strong bias to sample small pro-

gram length classes.

In Chapter 4 we look at how our mathematical models can help us de-

scribe GP search notably in relation to the sampling of unique programs and

sampling by length classes. It is shown that the length bias of sub-tree swap-

ping crossover is compounded with the combinatorial explosion of possible

programs as length increases, i.e., it becomes increasingly difficult to sample

specific larger programs using this operator. Without the sampling of such

classes of programs we are unlikely to discover new solutions of sufficient

sophistication to solve all but the simplest of problems. Interestingly mean

program length is shown to have an effect on the degree of this sampling
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bias towards smaller programs (variance in length values increases with the

mean). This chapter also examines how crossover interacts with initialisa-

tion leading to a new bloat theory, Crossover-Bias. Length limits are also

shown to increase the degree of sampling bias which can in turn speed bloat

instead of slowing it down.

Chapter 5 looks at the effect of program resampling caused by sub-tree

swapping crossover’s bias to sample smaller programs. A new method to

control the rate of resampling by altering program fitness is introduced.

The method which we call Sampling Parsimony is shown to have a direct

effect on program growth, an effect that can be explained in terms of the

Crossover-Bias bloat theory.

Chapter 6 introduces a novel technique, Operator Equalisation, which

can counteract the length bias produced by crossover or any other GP vari-

ation operator. This takes the form of a wrapper that can be placed around

existing reproduction code which enables GP to sample according to pre-

determined length distributions. This technique can provide valuable in-

formation regarding the nature of GP search and the problems to which it

is applied. It is also shown that for certain problems, GP search can be

improved by the simple alteration of length bias obtained by this technique.

To complete our picture we look in Chapter 7, at how node labels, alleles,

diffuse within length classes to enable us to determine how programs will

be sampled within those classes. For mixed-arity representations, trees that

contain internal nodes which accept differing numbers of inputs, sampling

is not uniform within classes but determined by arity proportions within

the population as a whole. With this in mind, our length work is shown, in

Chapter 8, to be a specialisation of a broader model that predicts sampling

frequencies from arity proportions or histograms. A theoretical model that
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predicts the sampling of programs according to this mix is produced. This

work explains why a population of programs, when GP with sub-tree swap-

ping crossover is applied, is highly unlikely to converge to a single structure

even if program fitness has converged.

Finally, Chapter 9 summarises the results from Chapters 3 to 8 and

discusses the contributions made by this thesis. It also lists a number of

avenues for future work based upon the findings presented here.
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Chapter 2

Genetic Programming and

Crossover

2.1 Artificial Intelligence, Automatic Program-

ming and Search

Artificial Intelligence is a broad, multi-discipline subject, normally associ-

ated with the automation of human intelligence [Cawsey, 1997] or an ide-

alised, rational version of this [Russell and Norvig, 2003].

Sub-divisions of AI are often defined in terms of their applications,

for instance: expert systems [Jackson, 1999], natural language processing

[Jurafsky and Martin, 2000], machine vision [Snyder and Qi, 2004], etc. We

can also add automatic programming [Koza, 1992] to this list, i.e., to enable

a computer to build other computer programs to a desired quality with

minimal human intervention.

Central to all AI applications is the concept of knowledge representation

[Callan, 2003], how we store, manipulate and draw inferences from informa-

tion about the world that interests us [Davis et al., 1993]. For automatic
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programming we are interested in the storage and manipulation of compo-

nents of computer programs, primarily functions, their inputs and a sequence

of activation.

A common problem found in all areas of AI is that of having to search

through a number of potential solutions efficiently. For automatic program-

ming our search consists of investigating different combinations of program

components and determining their ability to solve a pre-defined problem.

Unfortunately, the number of potential solutions will increase exponentially

with each new feature to be considered, a problem termed combinatorial

explosion. One soon reaches limits where problems become intractable if

search is addressed with only a simple enumeration of all potential solu-

tions. Efforts can be made to address this using a specific type of blind

search (one that addresses only the problem definition) that may be more

suited to a problem at hand. Examples in AI literature include breadth first

search, depth limited search, etc. Another possible solution is to reduce the

search space, the set of all possible solutions, by introducing certain con-

straints making areas of the space, or combinations of features, known to

be invalid, unavailable. Although both of these ideas should be considered,

one is still likely to face an intractable number of potential solutions for all

but the very simplest of problems.

An alternative technique is to use an informed search strategy, one that

uses knowledge beyond simply the problem definition. This is achieved

using a heuristic function, one that provides guidance during the search

by exploiting additional information about the problem. For example, we

may, with automatic programming, wish to first use components judged

more likely to be useful to the problem. This would of course be a human

generated rule, i.e., counter to our aim of reducing human involvement.
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If there are regularities in the search space that can be exploited, a more

sophisticated approach would be to learn heuristics dynamically, or from

experience as the search takes place [Russell and Norvig, 2003]. AI provides

a number of techniques to achieve this by allowing relatively good sub-

optimal solutions (according to an objective measure) to be retained and

then altering those solutions in order to try to obtain a better solution.

The most common of these methods is hill-climbing. Here, a number of

solutions are generated from our previous best solution, by making normally

small alterations. The best, newly generated solution, is retained and the

process continues until a solution cannot be improved, i.e., we reach the

top of the hill. A common variant of hill climbing is simulated annealing

[Kirkpatrick et al., 1983], where potential solutions can be accepted, even

if not the highest ranked, according to a certain probability that decreases

with each successive round of solutions.

One can easily imagine how hill-climbing and simulated annealing can

be applied to generating computer programs. We would generate a random

solution and then make a number of random amendments, e.g., adding new

components, re-ordering etc, thereby creating a number of new programs.

Each program would then be run and the result of which assessed using an

objective measure, the best being selected for the next round. This process

would continue until the program could not be improved.1

It is important to note, the best solution found may not be the optimal

solution, i.e., it may not be possible to alter the solution to improve it,

whilst a better solution could have been obtained using a different starting

point or having been presented with a different set of amendments during

the search. Such solutions are termed local optima, whilst the best solutions

1Variations of this approach are described in [O’Reilly and Oppacher, 1994,
O’Reilly and Oppacher, 1995].
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in the search space are called the global optima.

We are not limited to analysing one solution at a time we could look

at groups of solutions and carry out the process in parallel. Such a pro-

cess is called beam search. This offers the ability to identify potentially

more successful searches and to concentrate resources on them by aban-

doning those less successful. A modification of this process is to make

additional amendments using groups of components found in other suc-

cessful solutions with the expectation that they will produce a better im-

provement. At this point, our search method has begun to resemble the

process of Darwinian evolution and is indeed the approach taken by a

group of search methods collectively termed Evolutionary Algorithms (EAs)

[Bäck and Schwefel, 1993, Eiben and Smith, 2003]. In addition, the swap-

ping of components from successful individuals is particularly relevant to

two sub-types of EAs called Genetic Algorithms (GAs) [Holland, 1975] and

Genetic Programming. The following sections discuss Darwinian evolution,

EAs, GA and GP in further detail.

Finally, it is important to discuss the No Free Lunch theo-

rem. This theorem arises from a series of results, presented in

[Wolpert and Macready, 1997], that show that there cannot exist a search

algorithm, that will on average, be superior to all other search algorithms for

all classes of problems. In effect, there is no super search algorithm that can

be selected with the confidence it will always be better than any other search

algorithm for any problem presented. It is important to note that these re-

sults also indirectly show that some search algorithms will perform better

than others for certain classes of problem. One can also see that although

a certain algorithm may be very successful in solving a highly specific prob-

lem, other algorithms may be more successful at solving a broader range of
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problems, albeit not to the same degree [Schwefel, 2000]. One should, there-

fore, match a potential search algorithm to a problem. Characterising the

biases of search algorithms, as attempted for GP in the following chapters,

is an essential part of this process.

2.2 Darwinian Evolution

Spurred on by the independent discovery of his theory by Alfred Russel

Wallace, Darwin published On the Origin of Species by Means of Natural

Selection [Darwin, 1859] to explain how species adapt over time to exploit

the niches in the environments that they inhabit. The theory can be sum-

marised as follows:

• A species consists of a population of individuals that can reproduce

with variation.

• More offspring are created than can survive given the resources of the

environment.

• Those offspring that are most adapted to the environment are more

likely to survive and hence produce more offspring.

• Therefore, favourable variations will be preserved and species will

evolve, i.e., adapt to exploit their environment.

Darwin termed this continual process of preservation of favourable vari-

ations, Natural Selection, a term deliberately chosen to contrast to Artificial

Selection, the process of breeding animals for traits deemed desirable by

humans.

It is important to note that within the commonly used term to describe

this process, survival of the fittest, fittest is employed to describe the best
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adapted individuals to the environment. To illustrate this, one can easily

imagine a case where increased physical strength would become a disad-

vantage with regard to survival if the resources required to maintain such

strength were to become scarce.

Although the term evolution is only used at the very end of Darwin’s

book, a degree of gradual change is required for such adaptation to take

place. Individuals already carry with them the ability to survive in a partic-

ular environment, major departures are far more likely to be disadvantageous

in terms of survival than smaller changes [Dawkins, 2006a].

Darwin’s theory was developed without any biological knowledge of ge-

netics, i.e., how traits were inherited or modified. Indeed, it was not un-

til almost a century later that Watson and Crick [Watson and Crick, 1953]

identified the structure of the deoxyribonucleic acid (DNA) molecule which

carries the genetic information used during reproduction. DNA having been

identified as being the material of inheritance only a decade previously with

the publication of [Avery et al., 1944].

Genetics is a young subject and major discoveries are still being made

[Silver, 2007]. We can, however, draw some simple facts regarding the mech-

anism of inheritance. First, DNA replicates to produce more DNA. Second,

DNA is transcribed into ribosenucleic acid (RNA) which is translated into

proteins. Third, these proteins go on to affect the development of the off-

spring in conjunction with the growth environment.2

DNA is made up of a series of chemical bases: adenine, guanine, cytosine

and thymine. Adenine and thymine pair with each other as do guanine and

cytosine to produce the well known double helix structure. Each sequence of

2This sequence of events is commonly termed the central dogma of genetics. There can
also be a number of alternate flows between DNA and RNA. However, this one-way model
of information transfer has been the primary influence on the development of EAs.
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three pairs contains the information to produce an amino acid, the building

blocks of protein [Jones, 2000].

The term gene has traditionally been used to define a region of a DNA

molecule which, through the various intermediate stages discussed, affects

the development of a particular aspect of an organism [Dawkins, 2006b].

The development of a trait can be influenced by many genes, and genes can

affect many traits. A strand of DNA is called a chomosome whilst gene

positions on the chomosome are termed loci, the varying gene values are

called alleles.

Variation can be achieved through simple copying errors, or mutations,

of genetic material that will affect the eventual development of an individual

so that it will exhibit different traits from its parent.

In higher biological life forms, variation in the form of sexual reproduc-

tion also takes place. Here, genetic material is taken from both parents so

that a child will receive a mix of traits from each of its parents. Further

variation takes place in that the genetic material contained in egg/sperm

cells donated by each parent has been created by recombining (or crossing

over) inherited genetic material from each parent’s parents.

The evolutionary advantages of recombination in biological systems are

still being debated, however the competing theories can broadly be divided

into the following categories:

• Recombination is a form of macro mutation where multiple advan-

tageous mutations that arose in separate individuals can be assem-

bled quickly in a single individual [Dawkins, 2006b, page 44]. We are

equally likely to produce an individual that has multiple disadvanta-

geous mutations but this individual’s combination of traits will soon

be removed in successive generations by natural selection.
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• To remove harmful mutations quickly by not having to wait for an

opposite mutation event to take place. This evolutionary advantage is

commonly termed Muller’s Ratchet [Felsenstein, 1974].

• As a defence against parasites. Individuals are constantly being altered

to keep ahead of other species that may evolve to take advantage of

certain combinations of a host species traits. Popularly known as The

Red Queen Theory [Ridley, 1994].

This section has described Darwinian evolution and the very basic mech-

anisms of inheritance. In the next section, we look at how the processes

presented here can be abstracted and used to define a broad set of search

algorithms.

2.3 Evolutionary Computation

From the previous section we can see how the process of Darwinian evolu-

tion can be viewed as a specialised form of beam search. We have a popu-

lation of individual solutions which have varying degrees of survival success

based upon fitness. At each step, or generation, variation is applied to more

successful individuals using either small alterations and/or by recombining

components, i.e., mutation or crossover.

If we add a method to create our initial population and a stopping con-

dition to decide when to end our search, we have the essential components

of an Evolutionary Algorithm. To illustrate this, skeleton pseudo code that

describes most typical forms of EAs is presented in Figure 2.1.

EA populations are initialised with individuals that have been created

randomly or seeded with individuals that are known to possess some ben-

efit regarding the problem at hand. Stopping conditions typically include:
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Initialise population

Evaluate fitness of population

while( stopping condition not met )

for( each new population member )

Select parent(s) based upon fitness

Mutate and/or recombine parents to produce child

Determine child fitness

Add child to new population according to insertion policy

endfor

endwhile

Figure 2.1: Skeleton pseudo code for a typical evolutionary algorithm.

finding an acceptable individual, reaching a pre-set maximum number of

generations, or convergence of individuals’ structure or fitness within the

population.

Although the structure of the algorithm remains consistent amongst

EAs, the implementation of components is highly reliant on the repre-

sentation chosen for an individual. The major sub-types of EAs pri-

marily divide in terms of individual representation. Evolution Strategies

(ES) [Rechenberg, 1973] uses real value vectors, Evolutionary Program-

ming [Fogel et al., 1966], finite state machines, GA, typically a fixed length

string/vector with a predefined alphabet and classical GP employs syntax

trees.

In order to gauge the success of an individual, it is passed to a fitness

function which will normally return a numerical value indicating to what

degree an individual solves a particular problem. This allows individuals to

be compared when being selected as potential parents, the more successful

individuals having a greater probability of selection.

With typical EA implementations there is little or no distinction be-
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tween the representation that is to be manipulated and the eventual solu-

tion. Within traditional GP, for example, the syntax tree representation is

executed without modification. Where a mapping does exist the representa-

tion is termed a genotype and the eventual solution is called a phenotype in

order to be consistent with evolutionary terminology. Although typically the

exception, interesting work has been carried out using a distinction between

genotypes to be manipulated and phenotypes to be evaluated. For example,

in GA, vectors have been used to generate neural nets to control mobile

robots [Michel, 2001], whilst in GP, syntax trees have been used to gener-

ate electronic circuits [Koza et al., 2003], both using intermediate mapping

phases.

It is important to note that EAs only use the metaphor of Darwinian

evolution; no attempt is made to replicate the exact biological processes

found in nature. GA and GP, however, as their names suggest, make an

attempt to utilise some similarities to genetics in their implementation. GA

in particular uses the analogy of a chromosome as a potential solution with

parts of the string implementation being thought of as genes which in turn

contain individual locations, or loci, that may contain one specific value, an

allele, selected from a specific alphabet.

Although the analogy to genetics is severely restricted, certain math-

ematical results within evolutionary biology, have been found to be use-

ful in analysing the mechanisms of EAs. For example, Price’s Selection

and Covariance Theorem [Price, 1970], which predicts the change of fre-

quency of a gene within a population, in one generation, has been applied

to gene frequencies in both GA and GP [Langdon and Poli, 2002], and used

to help understand the evolution of solution size (program length) within

GP [Poli and McPhee, 2008].
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Recently it has been suggested that computer scientists should look be-

yond the constraints of traditional EAs providing algorithmic analogues to

new findings in molecular biology, particularly with regard to factors that

affect genotype/phenotype mapping. A new broader field named computa-

tional evolution has been proposed [Banzhaf et al., 2006]. Although such

research holds great potential, this thesis concentrates on one existing EA

technique, GP, taking the view that it is a search method in the AI sense,

and, as such, should be compared to other alternative methods within that

sphere.

2.4 Genetic Programming

After almost 20 years of research, as one would expect, there are an enormous

number of alternatives to the basic algorithm and operators used in GP, see

[Poli et al., 2008a] for a recent summary. We present here an outline of the

basic model as described in Koza’s original work [Koza, 1992]. This is the

basis of all theoretical and experimental work presented in the thesis and

has been deliberately chosen so as to provide a common reference for GP

researchers who will be familiar with the founding work. It is also important

to note that tree-based variable length representations used by Koza are still

the mainstay of mainstream GP experimentation.

Both GA and GP differ from other EAs in their extensive use of the

crossover as a means of variation [Eiben and Smith, 2003]. GP is inspired

from GA but it is important to note that GP is a superset of GA3 in spite of

being the younger technique. Where they differ, is in terms of representation.

GAs will commonly use fixed length vectors (or strings) designed to contain

3It is straightforward to construct typical GA implementations using GP com-
ponents. See also work extending GA theoretical analysis to GP, for example
[Poli and Langdon, 1998b]).
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Initialise population

Evaluate fitness of population

while( stopping condition not met )

for( each new population member )

choose( reproduction method )

Replication : select one parent and copy

Mutation : select one parent, copy and mutate

Recombination : select two parents and recombine components

endchoose

Determine child fitness

Add child to new population according to insertion policy

endfor

endwhile

Figure 2.2: Skeleton pseudo code for classical GP.

inputs to a function, whilst classical GP uses variable length syntax trees

that can be actioned, using an interpreter, on input data and the result

compared to test data provided. In effect, GAs seek to optimise the output

of a function by discovering appropriate input values, whilst GP seeks to

provide a function that maps inputs to outputs.

The basic GP algorithm is a specialised form of that described in figure

2.1. Commonly in GP, however, crossover, replication (copying without al-

teration) and mutation are applied mutually exclusively, according to fixed

probabilities [Koza, 1992, Koza, 1994]. Also, often, only one child is pro-

duced as a result of recombination. Skeleton pseudo code of the classical

GP algorithm is shown in figure 2.2.

GP experiments are normally run with stopping criteria based upon a

maximum number of generations or the discovery of an acceptable solution.

A stopping condition commonly found in GA, structural convergence of

solutions, is not used in GP [Banzhaf et al., 1998, page 278]. We discuss the
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reasons for this and suggest alternatives in Chapter 7.

Syntax tree representation and sub-tree swapping crossover can be seen

as the defining elements of GP [Eiben and Smith, 2003]. Note, Koza did

not use mutation in his early work [Koza, 1992, Koza, 1994] to show that

GP was not performing a simple random search. This thesis, therefore,

concentrates on search biases inherent in the choice of this representation

and variation operator. Syntax trees, and the crossover operation applied

to them, are described in the following two sub-sections.

2.4.1 Syntax Trees

With the application of variation operators such as crossover and mutation,

it is important that our chosen representation will produce valid offspring.

This is necessary for two reasons. Firstly, that resources are not wasted on

checking the validity of child programs, and secondly, to reduce the overall

size of search space. The use of syntax trees ensures that offspring will

be syntactically valid, i.e., that they can at the very least be parsed and

interpreted.

In graph theory, trees are defined as a connected graph without circuits

[Truss, 1999], i.e., a graph in which all nodes are connected and for which

there is only one route to each node from any other node in the graph/tree.

Trees are non-reentrant i.e. child nodes have only one parent.

For GP purposes, syntax trees contain two distinct types of nodes called

functions and terminals. These are often alternatively termed internal nodes

and external nodes (or leaves) respectively. The term non-terminal is also

often used to denote a function/internal node. As their name suggests, func-

tions accept inputs and produce an output, whilst terminals return values

only.
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Figure 2.3: Pictorial representation of a syntax tree for the algebraic ex-
pression: (5 ∗ x) +

√
z − y. Internal nodes are used for the operators ∗, +,√

and −. External nodes are used for the constant 5 and the variables x, y
and z. GP program length/size is 8 nodes.

The total number of nodes in a syntax tree used to represent a GP

program is termed program length although the equivalent term program

size is often used. Within this thesis the terms are used interchangeably.

Figure 2.3 shows a pictorial representation of a syntax tree for the alge-

braic expression: (5 ∗ x) +
√

z − y.

Such trees can be implemented in a number of ways. The ECJ System

[Luke, 2008] uses a pointer, or linked list type structure. These are concep-

tually easy to understand, although there is an overhead in the storage of

pointers (one for each function argument).

Other systems, such as TinyGP [Poli et al., 2008a, Appendix B], employ

array based implementations using prefix or postfix notations. These can

be efficiently stored as variable length structures in programming languages

such as C, C++ and Java.
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Table 2.1: A comparison of different array based storage representations for
the algebraic expression: (5 ∗ x) +

√
z − y as shown in Figure 2.3.

Method Representation

Postfix Notation 5x∗zy−√+

Prefix Notation +∗5x
√−zy

S-Expression (+(∗5x)(
√

(−zy)))

Koza originally used Lisp S-Expressions [Koza, 1992, Koza, 1994] to rep-

resent GP trees. These are syntactically the same as prefix notation but with

parentheses or brackets to indicate the beginning and end of a sub-tree. As

the arities of functions are known in advance, the interpreter can parse the

tree without ambiguity even without brackets. There is, therefore, no need

for the storage of such visual clues when implementing a GP system. A GP

system implementing an S-Expression representation need only add appro-

priate brackets to an individual’s representation when outputting data.

Table 2.1 shows a comparison of different array based storage represen-

tations for a sub-tree for the expression in Figure 2.3.

Interestingly, XML (eXtensible Markup Language)

[XMLCoordinationGroup, 2008] constructs have the same syntactic

structure as S-Expressions and can be parsed in a similar way. XML is

unlikely to be used as an internal storage representation, i.e., one that will

be directly manipulated and interpreted, due to its reliance on textual tags.

However, GP systems could readily make use of the myriad XML software

tools available to store, examine and retrieve individuals or populations of

individuals in light of these similarities.

Although the use of syntax tree representation allows GP to avoid

syntactic problems, the practitioner must also be aware of implementa-

tion issues regarding the choice of functions and terminals. For example,

Koza [Koza, 1992, pages 81–86] states that for GP to work effectively the

21



function and terminal sets must have a property termed closure. This can

be broken down into two further properties: type consistency and evaluation

safety [Poli et al., 2008a]. The first ensures that functions can accept all val-

ues returned by other nodes. This can be illustrated by looking at a function

set that includes arithmetic functions and logical operators such as an IF

statement. Obviously a boolean output cannot be returned to an arithmetic

operator, e.g., multiplication. This particular problem could be solved by

returning a numerical value, e.g., a -1 for FALSE and +1 for TRUE. An

alternative method to ensure type consistency is to build initialisation and

variation operators that will guarantee that types are correctly matched;

strongly typed GP [Montana, 1995] is one such method.

The second property, evaluation safety, concerns runtime issues where a

program cannot be evaluated correctly. For example, a common problem is

found in arithmetic problems where a division function is desired. If during

program evaluation the input to the denominator parameter of the division

function is zero, a mathematical error will occur. This is often solved with a

bespoke protected division operator that returns a numerical value for such

an occurrence. Often 1 is used; in Chapter 6 a function called PDIV replaces

division with an operator which returns the numerator if the magnitude of

the denominator is less than 0.001.

Of course one must also choose functions and terminals that will enable

GP to solve the problem at hand, a property termed sufficiency [Koza, 1992,

pages 86–88]. This is normally a human activity based on knowledge and

experience although useful functions and terminals, or combinations of those

nodes, can be discovered automatically. Identifying important program com-

ponents falls under an activity called trait mining [Tackett, 1995]. More re-

cently the discovery of important GP tree fragments has been attempted us-

22



ing a specialised algorithm [Smart et al., 2007]. The dynamic discovery and

reuse of important program components, in an attempt to add scalability to

GP, has been investigated by a number of researchers. The most well known

technique, Automatically Defined Functions (ADFs) [Koza, 1994], divides a

tree into function defining branches and result producing branches, the lat-

ter being able to call the former multiple times. Other methods designed

to introduce modularity to GP experimentation include Koza’s Encapsu-

lation Operator [Koza, 1992] and component library production methods

[Angeline and Pollack, 1992, Rosca and Ballard, 1996].

Although obviously an important subject, within this thesis standard

test problems have been used that satisfy both closure and sufficiency prop-

erties in order that we may concentrate on specific search bias issues.

Finally, it is worth pointing out, that numerous variants of tree-

based representations exist. Common alternatives include: Linear GP

[Nordin, 1994], Graph Based GP [Teller and Veloso, 1996, Poli, 1999] and

Cartesian GP [Miller, 1999]. We shall, however, concentrate on the classic

syntax tree representation for the analysis presented in this thesis.

2.4.2 Sub-Tree Swapping Crossover

Sub-tree swapping crossover is, as its name suggests, a recombination op-

erator that swaps sub-trees between donating parents. The process can be

described as follows: first, two parents are presented to the operator, having

been chosen by an appropriate selection method. Two crossover points are

then chosen, one within each parent, according to a node selection strategy.

The sub-tree rooted at the selected crossover point in the first parent is re-

moved and replaced with the sub-tree rooted at the crossover point in the
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Figure 2.4: Pictorial representation of sub-tree swapping crossover. A
crossover point, represented by an arrow, is chosen in each of the parents.
The sub-tree below the crossover point in the first parent, designated by a
dotted box, is then replaced by that of the second parent to produce the
child program.

second parent.4 The resulting tree then becomes the child of these programs

and is placed into the population.

Figure 2.4 illustrates sub-tree swapping crossover for two selected par-

ents.

The first parent providing the root of the new program, i.e., with the

sub-tree component excised, is termed the root donating parent. The second

parent provides the new sub-tree component for the child and is called the

sub-tree donating parent. In some implementations, the second parent will

receive the sub-tree removed from the first and a second child will also be

4Note, as normally there is a possibility of parents being reselected to produce addi-
tional children, sub-tree swapping crossover works on copies of parents.
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produced.

Practically, for pointer based systems, this process is relatively straight-

forward to implement, the pointers to the selected sub-trees are simply

swapped between parents. Sub-tree swapping crossover is also relatively

easy to achieve when GP is implemented using Lisp like S-Expressions or

prefix notation. One selects crossover points as normal, records their posi-

tion and then traverses each sub-tree from that point until no more nodes

can be read, the final position being the end position of a continuous string

to be excised. Both sub-strings are then swapped between parents. If two

children are required, the excised string from one parent will need to be

stored temporarily. Note, it is also possible to carry out sub-tree swapping

crossover using a GP representation based upon postfix notation, although

the process is slightly more complicated and requires the use of a stack

structure, see [Banzhaf et al., 1998, pages 326–327] for a description.

Common node selection strategies include uniform selection, where all

nodes have an equal probability of being selected for crossover and 90/10

selection, where internal nodes are chosen with a 90% chance of selection

and terminals the remaining 10%. 90/10 selection is often used to limit

the production of single node children normally associated with low fitness;

Koza also points out that such a policy also limits simple terminal swapping,

a process similar to point mutation [Koza, 1992]. Uniform selection is used

predominantly in this thesis although 90/10 selection is addressed in Section

3.5. Both methods have been termed as standard crossover in various GP

publications leading to some confusion. It is more useful to see these forms

of crossover as variants of standard crossover which can be defined more

broadly as a sub-tree swapping crossover operator that chooses crossover

points by using a pre-determined probability distribution based on a func-
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tion/terminal distinction only. Interestingly, if we extended our definition

to node return type we could also include strongly typed crossover.

Using alternative node selection strategies, there are also a number

of more sophisticated sub-tree swapping crossover operators designed to

achieve a number of theoretical goals. The most common of these are a

broad class of operators called homologous crossover operators. The rea-

soning behind these crossovers is to swap genetic material from similar po-

sitions within the parent trees. This is analogous to the recombination of

genes during biological reproduction and also similar to that found in typical

GA implementations, i.e., one-point, two-point and uniform crossover meth-

ods commonly used with binary vector representations [Beasley et al., 1993].

Examples of such operators in GP include context-preserving crossover

[D’haeseleer, 1994]; here crossover points were constrained to have same

coordinates. GP one-point crossover [Poli and Langdon, 1998b] and uni-

form crossover [Poli and Langdon, 1998a] use the notion of a common re-

gion where an algorithm is used to identify the limits to a common tree shape

from the parents’ root nodes to allow node selection only from both parents

in this area. Uniform crossover also allows the swapping of multiple nodes

from each of the parents within the common region so that genetic material

can be mixed to a greater degree than that found by simply swapping a

single sub-tree.

Differing methods can have a dramatic effect on the sampling of program

size. For example, in [Langdon and Poli, 2002] it was shown that one-point

crossover will restrict program growth as child programs cannot increase

in depth beyond that of their parents; a maximum depth is therefore set

by the initial generation. Also, as its name suggests, size fair crossover

[Langdon, 2000] is designed to prevent excessive code growth by choosing a
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crossover point in the first parent as normal whilst only selecting a node in

the second parent for which its sub-tree is not unfairly large.

In this thesis, we have restricted our analysis to standard sub-tree swap-

ping crossover, which, although by no means the full story of sub-tree swap-

ping crossover, forms the basis of most other methods and will provide a

common starting point for their analysis.

Finally, it is important to note that the crossover methods presented here

take no account of individual fitness either of the parents or the resultant

child.5 The recombination exercise is purely a mechanical process applied to

a mating pool of individuals presented by selection. This distinction becomes

significant when we discuss a new theory for bloat in Section 4.5. Bloat, an

important subject in GP, is discussed in the following section.

2.5 Bloat

The tendency for programs to grow rapidly during a run has been observed

from the early days of GP research. In light of the bias of traditional GP

initialisation methods to produce relatively small programs, some program

growth is expected if programs are to display necessary levels of sophisti-

cation to solve complicated problems. The term bloat is used to describe

program growth without a significant return in terms of program, i.e., that

programs have increased to such a size that the resources required to evalu-

ate them, now outweigh any, relatively small, improvements made in fitness.

Although it is important to distinguish bloat from pure program growth,

it remains a significant problem in GP experimentation and as such has

5There is no reason why recombination operators may not address eventual fitness of
a child. A number of non-destructive operators have been devised that will not return
a child that is less fit than a parent, see [Soule and Foster, 1997, Langdon et al., 1999].
More recently, context-aware crossover [Majeed and Ryan, 2007] examines the effect on
child fitness of potential donated sub-trees.
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received a considerable amount of attention.

Numerous theories to explain bloat have been put forward. Replication

Accuracy [McPhee and Miller, 1995] argues that the success of an individual

depends on its ability to be functionally similar to its parents. As variation

operators on average tend to reduce fitness, larger programs have an evo-

lutionary advantage in that they can reduce the effects of such operators.

Removal Bias [Soule and Foster, 1998b] divides program components into

active and inactive code in terms of their effect on fitness. Inactive code

tends to be towards the bottom of a tree and is, therefore, smaller than

active code. Programs that excise inactive code will have an evolutionary

advantage in that they will have a similar fitness to their parents. Inactive

code will be relatively smaller, on average, than the code it is replaced with;

therefore, programs will grow.

The Nature of Program Search Spaces Theory [Langdon et al., 1999] is

based on research that shows that after a certain size threshold, the distribu-

tion of program fitnesses will converge. As there are more larger programs

than smaller ones with the same fitness, search methods will simply find

more longer representation solutions than smaller ones.

A further bloat theory, crossover-bias [Dignum and Poli, 2007], based

on research presented in this thesis regarding the interaction between selec-

tion and length distributions presented by sub-tree swapping crossover, is

described in Section 4.5.

Bloat has traditionally been controlled by the application of program

length or depth limits, i.e., children are prevented from being created if they

exceed specific, pre-defined, lengths (number of nodes) or tree depths. Prac-

tically, this is achieved by returning one of the parents or by repeating the

process until a child with an acceptable length is produced. The application
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of length limits in relation to bloat is analysed further in Section 4.6.

In addition to applying length or depth limits, more sophisticated

methods to control bloat have also been suggested [Langdon et al., 1999,

Soule and Foster, 1998a, Luke and Panait, 2006]. The most common of

these is parsimony pressure [Koza, 1992, Zhang and Mühlenbein, 1993,

Zhang and Mühlenbein, 1995, Zhang et al., 1997].6 With this method, a

value is added to the fitness function that will penalise programs as they

increase in size, the penalty typically being a function of program length.

Recent work has extended this method to dynamically alter the penalty in

light of changing experimental characteristics [Poli and McPhee, 2008]. In-

spired from such techniques, an alternative parsimony method based on the

resampling of programs is presented in Chapter 5.

Rather than altering all program fitnesses to control bloat the Tarpeian

method [Poli, 2003] sets the fitness of a certain proportion of larger pro-

grams, determined stochastically, to the minimum fitness, in effect creating

dynamic fitness holes in a problem’s fitness landscape. As the implemen-

tation consists of a wrapper around evaluation code, unnecessary fitness

calculations can be avoided.

In order to combat bloat, one can also ensure that variation operators

are biased to sample certain program lengths, for example, size fair crossover

described in the previous section or size fair mutation [Langdon, 2000,

Crawford-Marks and Spector, 2002]. Shrink Mutation [Angeline, 1996] is an

extreme approach where sub-trees are replaced by a randomly selected ter-

minal ensuring program size reduction.

A new method to directly control the sampling of program size, hence,

preventing bloat is presented in Chapter 6. In the next section we discuss

6Parsimony is used in the sense of being careful when giving.
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the importance of program length to GP experimentation.

2.6 GP Search and Program Length

By choosing a syntax tree representation for our potential solution, we have

in effect chosen the nature of our search space: the set of all distinct syntax

trees up until some length limit. This limit may be directly applied through

a specific length limit, indirectly through a depth limit, or be simply a

computational barrier, i.e., a length after which the tree can no longer be

processed.

For problem specific reasons, one can limit the space further by ignoring

certain program types, known from previous research to contain low quality

solutions. However, one can say that program length will at some point

become the limiting factor of our search space.

For syntax tree representations, the number of programs of a

particular length grows exponentially as program length increases

[Langdon and Poli, 2002]. As discussed in Section 2.1, if we were to choose

programs using a blind method such as random search or an enumeration,

we would soon come up against the problem of combinatorial explosion. A

more sophisticated search method is, therefore, required.

Strong theoretical and empirical evidence has been provided to show

that beyond a certain problem dependent length threshold, the distribution

of functionality for S-Expressions, i.e., our syntax trees, will, without side

effects, remain constant [Langdon and Poli, 2002].7 As fitness is derived

within GP directly from functionality, fitness will also reach a constant dis-

tribution. Ideally, to conserve resources, one would like to sample from, or

7This work forms part of a wider investigation into the convergence of distribution of
fitness landscapes for a variety of computer types, see [Langdon, 2002a, Langdon, 2002b,
Langdon, 2003, Langdon and Poli, 2006].
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at least up until, the shortest length at which an acceptably high fitness

value can be obtained. Whether a search algorithm such as GP is capable

of finding such a solution without sampling some larger classes is, of course,

debatable. Indeed [Langdon et al., 1999] argues that there may be smoother

fitness gradients leading to solutions at larger program sizes.

In light of our chosen syntax tree representation, understanding the bias

to sample certain lengths by our operators is imperative if we are to under-

stand the success of GP in the discovery of solutions for particular classes

of problems. This thesis, therefore, pays particular attention to the sam-

pling of program length for our chosen search operator – sub-tree swapping

crossover.

A number of theoretical results already exist in this area, notably using

schema theory. Schemata are templates that describe genotypic similari-

ties. Using schemata it is possible to produce equations that calculate the

probabilities of particular classes of programs reaching succeeding genera-

tions. Schemata were originally used by Holland [Holland, 1975] to pro-

vide a theoretical basis for the analysis of GA and have been extended by

GP researchers to study the mechanisms of GP. Of particular interest is

[Poli and McPhee, 2001] where schemata were used to understand the ef-

fects of the application of sub-tree swapping crossover in the case of linear-

GP, i.e., only terminals and functions of arity 1 were used. Under these

conditions the operator was found to distribute the population, by length,

according to a Gamma distribution whose parameters could also be calcu-

lated. Also of note are [Poli and McPhee, 2003a, Poli and McPhee, 2003b]

where a Cartesian node reference system is used to define program spaces.

This representation enabled manipulation of schema equations to predict

the evolution of program size with and without the application of fitness
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for mixed arity trees for symmetric8 sub-tree swapping crossover. Results

from this research area are used throughout this thesis, particularly in the

following chapter.

Recent research, presented in [Keijzer and Foster, 2007], has looked at

the distribution of tree sizes undergoing repeated application of sub-tree

swapping crossover, using an analysis of the affect on visitation length. This

is the sum of the number of nodes traversed in a tree to visit every node

starting from the root node. Empirical evidence is provided to support

the conjecture that any crossover bias affects the distribution of tree sizes

but has no affect on the sampling of program shapes. We provide further

evidence for this conjecture in Chapters 3, 7 and 8.

2.7 GP and Machine Learning

Finally, although this thesis treats GP as primarily a search algorithm, one

could also view GP, or any algorithm that improves its performance over

time, as a form of Machine Learning [Mitchell, 1997]. Within this discipline,

GP typically falls within the sphere of supervised learning where a group of

training instances consisting of inputs matched with correct outputs are

provided. The aim of the process is to learn the correct function (or set of

rules) to match input to output data. Symbolic Regression problems (fitting

a mathematical formulae to observed data) and their typical presentation in

GP experimentation [Koza, 1992] are a good example of this. GP can also

be applied to unsupervised learning, where correct outputs are not provided

and the system looks for patterns within the input data. One can see such

learning in typical data mining techniques where similarities in data sets

are discovered, for an example see [Freitas, 2002, Chapter 7]. Banzhaf et al.

8Crossover points are selected independently within each parent.
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[Banzhaf et al., 1998] argue that many GP applications are closely related to

reinforcement learning. Here, although correct outputs are not provided, a

function to determine quality of solutions discovered is used and the resulting

values fed back to the system. As any complex fitness function could fall

into this category, one could imagine a fitness function that also penalises

increased program length, such as common parsimony pressure methods as

described in Section 2.5, to be a form of reinforcement learning.

2.8 Summary

In this chapter we have described how the discovery of computer programs,

that perform pre-defined tasks, can be achieved using search techniques as

defined in the discipline of AI. Blind search techniques are faced with the

problem of combinatorial explosion, an inability to generate and evaluate

all potential solutions as more components are added. One must, there-

fore, use information about the search space (heuristics), in order to guide

the search so that resources are directed to investigate areas with a higher

likelihood of solution discovery. This can be achieved dynamically by eval-

uating generated solutions and reusing components from those that have

been most successful. If a population of potential solutions are generated

and components are recombined using stochastic methods, our search be-

comes analogous to Darwinian evolution. As their name suggests, evolution-

ary algorithms are a class of search methods that use this analogy. One of

these methods is GP which, although many variants now exist, traditionally

evolves syntax trees – structures that can be evaluated by execution using

an interpreter or compiler without further modification. This form of GP

typically uses a specialised recombination operator called sub-tree swapping

crossover, which swaps sub-trees between parent programs.
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In order to successfully match a search method to a potential problem,

we need to examine the biases of its associated operators. If one wishes

to analyse GP, a good starting point is to investigate sub-tree swapping

crossover. Given GP’s choice of syntax tree representation, of particular

interest to our analysis will be how our operator samples program size. This

is the subject of the next chapter.
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Chapter 3

Program Length

Distributions

3.1 Introduction

With the advent of a greater understanding of program search spaces—

for example we now know that the functionality of programs reaches a

limit as program length increases [Langdon and Poli, 2002, Langdon, 2002b,

Langdon, 2003]—acquiring knowledge on how GP operators sample program

length classes has become more and more urgent. Ideally, we would like to

sample the length class where the smallest optimal programs can be found.

Unfortunately, in general: a) one does not know where solutions (let alone

the most compact ones) are, and b) genetic operators present specific length

biases which are often unknown or only partially known and, therefore, are

difficult to direct and control.1 In any case, a characterisation of operator

bias is needed in understanding how GP will sample the search space in the

first instance before technically-sound, problem-specific, modifications can

1Chapter 6 presents a generalised technique called operator equalisation designed to
address both of these issues.
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be made.

In this chapter, we provide an exact characterisation of the limiting

distribution of tree sizes towards which sub-tree swapping crossover with

uniform selection of crossover points, when acting on its own, pushes the

population. Obtaining this type of result is complex, so we initially limit

our attention to the case where the primitive set includes only terminals and

primitives of one other arity. Trees of this type are described as a-ary trees,

a being the common arity of non-terminal primitives, i.e., functions/internal

nodes. A probability distribution is derived in Section 3.3 detailing the ex-

pected proportion of trees with a specific number of internal nodes when

the population is at equilibrium. The resulting distribution is then gen-

eralised in Section 3.4 to describe the distribution for mixed arity trees.

Our generalised internal node distribution is then modified in Section 3.5 to

describe the 90% function/10% terminal node selection policy (see Section

2.4.2) commonly used by GP practitioners. In all cases empirical evidence

is provided to verify the distributions proposed.

In Section 3.6, we transform the distributions for a-ary and mixed ar-

ity trees to complete program length distributions, i.e., those that include

terminals as well as internal nodes. Strong empirical evidence is provided

for the a-ary tree distribution, whilst the mixed arity distribution is shown

to be an accurate approximation of experimental results with only minor

discrepancies. The reasons for these discrepancies are analysed in Chapters

7 and 8.

Results presented in this chapter point to a consistent bias for standard

sub-tree swapping crossover to excessively sample smaller programs under

typical GP experimental conditions. The effects of such a bias on GP search

are analysed in detail in Chapters 4 and 5 of this thesis.
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3.2 Mathematical Preliminaries

3.2.1 Branching Processes and Lagrange Distributions

In probability theory, a Galton-Watson process [Watson and Galton, 1875],

is a discrete-time branching process that models a population in which each

individual in a generation produces some random number of descendants

before its demise. The probability of producing a descendants, pa, is fixed.

This leads to a family tree like structure.2

Branching processes have at least one application in GP: if no limits are

placed on tree creation, e.g., length or depth, the tree shapes produced by

the GROW method [Koza, 1992] often used to initialise populations and to

perform sub-tree mutation, obey such a branching process. In this case a is

the arity of the primitives and pa the probability of choosing primitives of

arity a when constructing new random trees.

The distribution of tree sizes for a branching process follows a Lagrange

distribution [Consul and Shenton, 1972, Good, 1975]. More precisely, the

probability of a process leading to a total of ℓ individuals being generated is

Pr{L = ℓ} =















0 if ℓ = 0,

1
ℓC(tℓ−1)

{

(g(t))ℓ
}

for ℓ = 1, 2, 3, · · · ,
(3.1)

where g(t) =
∑

a pa ta is the probability generating function of the distribu-

tion pa and C(tm) denotes the coefficient of tm in the expansion of (g(t))ℓ.

If one considers a process where only nodes of arity a and 0 are allowed

2Note, the original work [Watson and Galton, 1875] was designed to answer the ques-
tion of why family surnames disappear.
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(i.e., p0 + pa = 1), then g(t) = p0 + pat
a. So, for ℓ > 0 we have

C(tℓ−1)
{

(g(t))ℓ
}

= C(tℓ−1)
{

(p0 + pat
a)ℓ

}

= C(tℓ−1)

{

ℓ
∑

k=0

(

ℓ

k

)

pℓ−k
0 pk

a t ak

}

the final bracketed term being the binomial expansion of (p0 + pat
a)ℓ. Since

C(tℓ−1) will pick out the coefficient of the power of t for which ℓ − 1 = ak,

i.e., k = ℓ−1
a , we then have

Pr{L = ℓ} =















1
ℓ

( ℓ
ℓ−1

a

)

(1 − pa)
ℓ− ℓ−1

a p
ℓ−1

a
a if ℓ − 1 is a multiple of a,

0 otherwise.

(3.2)

Note that, since only arity 0 and arity a primitives are allowed, a tree

with ℓ − 1 nodes has n = ℓ−1
a internal nodes and ℓ = an + 1. So, we can

rewrite the previous equation as

Pr{N = n} = CT (a, n) (1 − pa)
(a−1)n+1 pn

a , (3.3)

where

CT (a, n) =
1

an + 1

(

an + 1

n

)

(3.4)

is a generalised Catalan number [Hilton and Pederson, 1991] which repre-

sents the number of possible different trees with n internal nodes of arity a

(and, of course, (a− 1)n + 1 leaves). This formulation can be interpreted as

saying that in a branching process all trees of a particular size have identical

probability of being created, and this probability depends only on how many

nodes/primitives of each kind the tree contains. This also means that the

different parts of the trees created by a branching process are uncorrelated.
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3.2.2 Moments of the Tree-Size Distribution in a Branching

Process

It is possible to compute the moments of Lagrange distributions starting

from the cumulants gi of the probability density functions generated by the

power series in t of g(t) [Good, 1975, Consul and Shenton, 1972]. The mean

progeny produced by a branching process is

E[L] =
1

1 − g1
(3.5)

and the variance is

V ar[L] =
g2

(1 − g1)3
(3.6)

where g1 = E[A] and g2 = V ar[A], A being a stochastic variable representing

a node’s arity. Since trees contain only arity 0 and arity a nodes, we can

easily compute these two cumulants

g1 =
∑

k

kpk = apa (3.7)

g2 = E[A2] − (E[A])2 = a2pa − (apa)
2 = a2pa(1 − pa) (3.8)

So, the mean tree size in our branching process is

E[L] =
1

1 − apa
(3.9)

and the variance is

V ar[L] =
a2pa(1 − pa)

(1 − apa)3
. (3.10)

From these two, we then obtain then the second non-central moment

E[L2] = V ar[L] + (E[L])2 =
(a − 1)apa − a2p2

a + 1

(1 − apa)3
(3.11)
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Note that (3.9) matches the formula for the mean size of programs built

by the GROW method reported in [Luke, 2000] and that (3.9) is a special

case of it.

3.3 The Distribution of Program Lengths for A-

ary Trees under Sub-Tree Swapping Crossover

In the absence of selection, if a population of GP trees undergoes repeated

crossovers, it tends to a limiting distribution of sizes and shapes. This is

the result of the specific bias of sub-tree swapping crossover.3 Effectively

after a while, every node in every individual in the population will have

been placed at its particular position as a result of one or multiple crossover

events. So, any correlations present in the shapes in the initial generation

will have been broken by crossover.

As we saw in the previous section, complete decorrelation in the different

parts of a tree is a characteristic of branching processes. Within the class

of trees of a given size, each shape is equally likely. So, one can postulate

that the limiting distribution of tree sizes under repeated crossover will be

one where the same happens. That is, we assume that at the fixed-point,

the shape distribution is

Pr{Shape with n nodes of arity a} = w(n, a) (1 − pa)
(a−1)n+1 pn

a (3.12)

where w(n, a) is an appropriate sequence of weights to be determined and

pa is a parameter, also to be determined. So, the probability of picking a

3Naturally stochastic effects, such as drift, mean that in any finite population there is
still random variation. However, in large populations these effects can be neglected.
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tree with n internal nodes from the population is

Pr{n} = CT (a, n) w(n, a) (1 − pa)
(a−1)n+1 pn

a (3.13)

What constraints do we have on the parameters w(n, a) and pa? Firstly,

they must be such that the distribution of shapes is indeed a probability

distribution. In particular we require

∑

n≥0

Pr{n} = 1. (3.14)

Secondly, it is well-known that on average sub-tree swapping crossover

does not alter the mean size of program trees in a population

[Poli and McPhee, 2003b]. So, we also require that

∑

n≥0

(an + 1)Pr{n} = µ0, (3.15)

where µ0 is the average size of the individuals in the population

at generation 0. Thirdly, we require (3.13) to be a generalisation

of the results reported in [Poli and McPhee, 2001, McPhee et al., 2001,

Rowe and McPhee, 2001, Poli and McPhee, 2003b] for 1-ary trees, which we

rewrite here as

Pr{ℓ} = ℓrℓ−1(1 − r)2, (3.16)

where

r = (µ0 − 1)/(µ0 + 1). (3.17)

We can do this by setting a = 1 in (3.13) and ℓ = n+1 and so Pr{ℓ} in (3.16)
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is the same quantity as Pr{n} in (3.13). Equating the results we obtain

w(n, 1) (1 − p1) pn
1 = (n + 1)(1 − r)2rn (3.18)

since CT (1, n) = 1. The most natural match between r.h.s. and l.h.s. of

(3.18) appears to be one where p1 = r and w(n, 1) = (n + 1)(1 − p1).

This last constraint completely rules out that w(n, a) be constant. Indi-

cating that the length distribution under subtree crossover cannot be purely

the result of a branching process (i.e., it is not Lagrangian). Instead, it

suggests that Pr{ℓ} is the product between the frequency provided by a

branching process and the length ℓ of programs. So, we postulate that in

general

w(n, a) = (an + 1)f(pa) (3.19)

where f(pa) is a function of pa to be determined.

With this assumption, we impose constraint (3.14), i.e., that probabili-

ties sum to 1, obtaining

f(pa) =
1

∑

n≥0(an + 1)CT (a, n) (1 − pa)(a−1)n+1 pn
a

. (3.20)

The denominator of this equation is (by definition) E[aN + 1] =
∑

n(an +

1)Pr{N = n}, where Pr{N = n} is given in (3.3). So, it is the expected

length of the trees generated by a branching process where arity a nodes are

used with probability pa and arity 0 nodes used with probability 1− pa. So,

from (3.9) we have

f(pa) = (1 − apa), (3.21)

and so w(n, a) = (an + 1)(1− apa). As a result, we can now explicitly write
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the tree-size distribution at the crossover fixed-point:

Pr{n} = (1 − apa)

(

an + 1

n

)

(1 − pa)
(a−1)n+1 pn

a (3.22)

where we used the explicit expression of CT (a, n) in (3.4). This is the

fixed-point tree-size distribution we were looking for. This distribution be-

longs to a family of distributions called Lagrange distributions of the second

kind [Janardan and Rao, 1983, Janardan, 1987].

We can now impose constraint (3.15) to infer the value of pa:

µ0 =
∑

n≥0

(an + 1)Pr{n}

=
∑

n≥0

(an + 1)(1 − apa)

(

an + 1

n

)

(1 − pa)
(a−1)n+1 pn

a

= (1 − apa)
∑

n≥0

(an + 1)

(

an + 1

n

)

(1 − pa)
(a−1)n+1 pn

a

= (1 − apa)
∑

n≥0

(an + 1)
an + 1

an + 1

(

an + 1

n

)

(1 − pa)
(a−1)n+1 pn

a

= (1 − apa)
∑

n≥0

(an + 1)2
1

an + 1

(

an + 1

n

)

(1 − pa)
(a−1)n+1 pn

a

= (1 − apa)
∑

n≥0

(an + 1)2CT (a, n) (1 − pa)
(a−1)n+1 pn

a

= (1 − apa)
∑

n≥0

(an + 1)2 Pr{N = n} (from (3.3))

= (1 − apa)E[L2] (by definition)

and so, from (3.11),

µ0 = (1 − apa)
(a − 1)apa − a2p2

a + 1

(1 − apa)3

=
(a − 1)apa − a2p2

a + 1

(1 − apa)2
.
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By solving this equation for pa we obtain

pa =
2µ0 + (a − 1) −

√

((1 − a) − 2µ0)
2 + 4(1 − µ2

0)

2a(1 + µ0)
(3.23)

which, encouragingly, for a = 1 collapses to the familiar pa = µ0−1
µ0+1

(see (3.17)).

In order to verify empirically the distribution proposed, a number of

runs of a GP system in Java was performed. A relatively large population

of 100,000 individuals was used in order to reduce drift of average program

size and to ensure that enough programs of each length class were available.

The FULL initialisation method [Koza, 1992] was used. With this method,

initial trees included µ0 = d + 1 primitives for a = 1 and µ0 = 1−ad+1

1−a

primitives for a > 1. Each run consisted of 500 generations.

Histograms were collected from the final generations (in order to ensure

the effects of our chosen initialisation method have been washed-out4), each

bin being the number of internal nodes contained within a program. The

results were averaged over twenty runs. As we can see in Figures 3.1 to

3.3, there is strong empirical evidence to support our proposed distributions

particularly for the first 100 classes where there is less statistical noise.

It is also important to note that both the theoretical and experimental

distributions show that there is a distinct bias to sample smaller programs

a subject addressed in Chapters 4 and 5.

Finally, in Figure 3.4, we validate our distribution against the Linear-GP

case where all internal nodes have an arity of 1. Our theoretical analysis

in this section has shown that this is a special case as the value for pa

is simplified considerably. As we can see from both our theoretical and

4It would of course be interesting to see how may generations are required to negate
length effects of chosen initialisation methods. This is discussed in Section 9.2.
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Figure 3.1: Comparison between theoretical and empirical internal node
distributions for trees created with arity 2 functions and terminals only,
initialised with FULL method (depth = 3, initial mean size µ0 = 15.00,
mean size after 500 generations µ500 = 14.19). Population Size = 100,000.

empirical distributions the sampling peak has moved from very smallest

number of internal nodes. The rapidly declining rate of the sampling of

smaller programs is, however, evident after this point.

3.4 Generalisation of Program Length Distribu-

tions for Mixed Arity Trees

Before attempting to extend the theoretical analysis to mixed arity trees

it is useful to consider if the a-ary tree equation in (3.22) could be gener-

alised using standard mathematical techniques. The advantages of such a

generalisation for branching processes are explained in [Haccou et al., 2005]

but can be sumarised here as the model may in addition to being easier to

obtain, be simpler to understand, have fewer parameters and may also be

computationally more tractable.
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Figure 3.2: Comparison between theoretical and empirical internal node
distributions for trees created with arity 3 functions and terminals only,
initialised with FULL method (depth = 3, initial mean size µ0 = 40.00,
mean size after 500 generations µ500 = 39.13). Population Size = 100,000.

In order to generalise, first, rather than viewing a as simply the identi-

cal arity of a particular set of functions, we can choose to use this as the

expected number of children of a non-terminal picked from a function set,

i.e. an average arity. An average a, which we will call ā to avoid confusion,

can be calculated for mixed function arities from experimental initialisation

parameters as follows

ā = E(arity(F )) =
∑

f

arity(f)P (F = f) (3.24)

where f is a non-terminal to be used in a GP experiment, arity(f) is

a function returning the arity of the non-terminal f , and P (F = f) is

the probability that a particular non-terminal f will be selected as a non-

terminal node by the tree inititialisation procedure. For traditional FULL

and GROW initialisation methods non-terminals are chosen with equal prob-
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Figure 3.3: Comparison between theoretical and empirical internal node
distributions for trees created with arity 4 functions and terminals only,
initialised with FULL method (depth = 3, initial mean size µ0 = 85.00,
mean size after 500 generations µ500 = 79.99). Population Size = 100,000.

ability [Luke, 2000]. Alternatively, ā can be given simply by the calculation

of non-terminal average arity from the initial population. For larger popu-

lations these will, of course, be almost identical.

With this new definition of a, we have the problem that the term an + 1

in the binomial coefficient
(an+1

n

)

in (3.22) may be non-integer. So, the

next step is to alter the definition of binomial coefficient so that it will also

work with non-integer data values, as demanded by our new average arity

version of a. This can be done simply by using the Gamma function as an

alternative for the factorials used, i.e., Γ(n + 1) = n! [Ghahramani, 1996].

As a result we can rewrite the binomial coefficient as follows

(

n

k

)

=
n!

(n − k)!k!
=

Γ(n + 1)

Γ(n − k + 1)Γ(k + 1)
(3.25)
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Figure 3.4: Comparison between theoretical and empirical internal node
distributions for trees created with arity 1 functions and terminals only,
initialised with FULL method (depth = 15, initial mean size µ0 = 16.00,
mean size after 500 generations µ500 = 16.15). Population Size = 100,000.

Therefore
(

an + 1

n

)

=
Γ(an + 2)

Γ(an − n + 2)Γ(n + 1)
(3.26)

which, substituted into (3.22), gives us the distribution

Pr{n} = (1 − āpā)
Γ(ān + 2)

Γ((ā − 1)n + 2)Γ(n + 1)
(1 − pā)

(ā−1)n+1pn
ā (3.27)

Using the same experimental set-up as Section 3.35 a comparison of theo-

retical predictions and observed results, averaged over twenty runs, is shown

in Figures 3.5–3.7. Figure 3.5 is particularly interesting since it represents

the behaviour of the primitive set for the Artificial Ant problem [Koza, 1992].

The other two figures represent hypothetical function sets where an even

spread of primitive arities are present. In all cases the match between pre-

dictions obtained from Equation 3.27 and empirical data is striking (note,

5The FULL initialisation method is again used. In this case functions are chosen with
uniform probabililty.
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Figure 3.5: Comparison between theoretical and empirical internal node
distributions for trees created with arity 2, 2 and 3 functions and terminals
only, initialised with FULL method (depth = 3, initial mean size µ0 = 21.48,
mean size after 500 generations µ500 = 23.51). Population Size = 100,000.

that sampling noise is more marked in the longer-length classes because

there are fewer programs in each).

As we can see from both our predicted and observed results there is a

distinct bias towards the sampling of smaller programs as was found for

a-ary trees. The use of mixed arity function sets does not alter this bias.

3.5 Crossover with 90% Function / 10% Terminal

Crossover-Point Selection Policy

The theoretical results on the evolution of size during GP runs developed

in [Poli and McPhee, 2001, Poli and McPhee, 2003b, Poli et al., 2007] and

in the previous sections assume that crossover points are selected uniformly

at random out of the set of all primitives in a tree (including terminals).

This assumption simplifies the, already complex, mathematics required to
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Figure 3.6: Comparison between theoretical and empirical internal node
distributions for trees created with arity 1, 2, 3 and 4 functions and terminals
only, initialised with FULL method (depth = 3, initial mean size µ0 = 25.38,
mean size after 500 generations µ500 = 23.72). Population Size = 100,000.

obtain results in this area. However, GP researchers and practitioners

commonly use a 90%-function/10%-terminal crossover-point selection pol-

icy [Koza, 1992, pg114]. We will call this policy 90/10 for brevity. It is,

therefore, interesting to investigate to which extent the theory for uniform

crossover point selection applies to this, non-uniform case. In this section,

we present an analysis of this issue.

The starting point for our analyis is that in the 90/10 policy crossover

points are still uniformly distributed within each class of nodes (internal

vs. terminals). So, 90/10 crossover may still have the symmetries required

to model the tree population using a branching process as was done in

Section 3.3. This, in turn, suggests that some form of modified Lagrange

distribution of the second kind might still be applicable to describe the

limiting distribution of tree sizes for 90/10 crossover.

We are not in a position to say what the exact size distribution under
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Figure 3.7: Comparison between theoretical and empirical internal node
distributions for trees created with arity 1, 3, 3 and 4 functions and terminals
only, initialised with FULL method (depth = 3, initial mean size µ0 = 32.12,
mean size after 500 generations µ500 = 33.29). Population Size = 100,000.

90/10 crossover would be. However, we note that the 90/10 policy has a

considerable effect on the proportion of programs of size 1, (i.e., with no in-

ternal nodes). This is because such programs are only created if the crossover

point in the root donating parent is the root node itself and the crossover

point in the subtree donating parent is a terminal. In the 90/10 policy the

probability of a leaf node is artificially set to 10%, which, with typical prim-

itive sets, is notably smaller than with uniform selection of crossover points.

Naturally, in the same conditions, the probability of the root node being

chosen grows, but not enough to compensate for the drop the probability

of selecting terminals. So, their product – the probability of creating size 1

programs – is much smaller than in the uniform case. Naturally, if there is

a drop in the frequency of size 1 programs, there must be a corresponding

increase in the other length classes.

On the basis of these observations, it is clear that the distribution of tree
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sizes under 90/10 crossover cannot be a pure Lagrange distribution of the

second kind. However, we might expect to see a “Lagrange-like” distribution

for programs with one or more internal nodes, i.e, with a size greater than

one. We conjecture that the following family of distributions may provide

a reasonable first order approximation of the true limiting distribution of

sizes for sub-tree swapping crossover with a 90/10 node selection policy:

Pr 90/10{n} =















α if n = 0,

(1 − α) Pr{n,ā,pā}
1−Pr{0,ā,pā}

otherwise,

(3.28)

where α is a constant and Pr{n, ā, pā} stands for the extension to the La-

grange distribution of the second kind in Equation (3.27). In this formula

the denominator 1−Pr{0, ā, pā} has the effect of normalising the numerator

Pr{n, ā, pā} in such a way to make it a probability distribution for n ≥ 1.6

That is,
∑

n≥1

(

Pr{n,ā,pā}
1−Pr{0,ā,pā}

)

= 1. Then the multiplication by (1 − α) en-

sures that Pr 90/10{n} is a probability distribution for any value of α ∈ [0, 1],

ā > 0 and pā ∈ [0, 1/ā].

To corroborate this conjecture we performed GP runs with the same con-

figuration as in Section 3.3 except that this time we used 90/10 crossover.

Figure 3.8 shows a comparison between empirical size distributions observed

at generation 500 in our runs and corresponding Pr 90/10{n} modified La-

grange distributions for the case of trees made up with primitives of average

arity ā = 1.5, 2 and 2.5 (see caption of Figure 3.8 for additional information).

The theoretical models were obtained by setting α equal to the number of

programs with no internal nodes and finding the value of pā which min-

imised the mean square error between empirical data and Equation (3.28).

Naturally, our choice of α guarantees a perfect fit for n = 0. Its value,

6Naturally Pr{n, ā, pā} is already a probability distribution for n ≥ 0.
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Figure 3.8: Comparison between empirical size distributions and modified
Lagrange size distributions obtained by best fit for trees made up with prim-
itives of average arity 1.5, 2 and 2.5 initialised with FULL method (depth
= 3, initial mean sizes µ0 = 8.12, µ0 = 15.0 and µ0 = 25.37, respectively)
and manipulated by subtree crossover with 90%/10% node selection policy
(mean sizes after 500 generations µ500 = 8.06, µ500 = 14.86 and µ500 =
26.68, respectively).

however, influences the scaling of the whole distribution for n > 0. It is,

then, remarkable to see that such choice allows a very accurate match be-

tween our conjectured theoretical distribution and the distribution observed

in real runs.

These results suggest that many of the implications and applications

of the size bias of sub-tree swapping crossover with uniform selection of

crossover points discussed in the following chapters carry over to the case of

90/10 crossover.
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3.6 Complete Program Length Distributions

In this section, our objective is to extend equations (3.22) and (3.27) to

allow us to predict program length distributions that include terminals as

well as non-terminals. As a first step in this direction, let us look at what

we can say for certain regarding the relationship between number of internal

nodes and program length. First, we know for a-ary trees where the arities

of all nodes in the tree are the same, the length, ℓ, of a program can be

expressed exactly in terms of the number of its internal nodes, n, using the

following equation:

ℓ = a × n + 1, (3.29)

where a is the (fixed) arity of the internal nodes. Therefore, rearranging

Equation (3.29) to obtain internal nodes in terms of length, i.e.,

n =
ℓ − 1

a
, (3.30)

and substituting this into Equation (3.22), we obtain that, for a-ary trees,

Prl{ℓ} =















Pr{ ℓ−1
a } if ℓ is a valid length (i.e., ℓ−1

a is a non-negative integer),

0 otherwise,

(3.31)

where Prl{ℓ} is the limiting distribution of program lengths. This distri-

bution applies, for example, to Boolean function induction problems where

often all functions are binary and symbolic regression problems where often

only the standard four arithmetic operations are used.

Figure 3.9 shows an observed plotted length distribution for 2-ary trees,

with invalid (even) lengths removed, compared to that predicted by Prl. The

observed values are averages over twenty independent runs with populations
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Figure 3.9: Comparison between theoretical and empirical program length
distributions for 2-ary trees initialised with FULL method (depth = 3, initial
mean size µ0 = 15.0, mean size after 500 generations µ500 = 14.19). Invalid
even lengths are ignored.

of 100,000 individuals run for 500 generations.7 As we can see there is a very

close fit between the two curves.

Our next step is to extend the generalised formula for mixed-arity trees

(Equation (3.27)) so as to predict length distributions rather than internal

node distributions. We know that for a program length of 1, a single termi-

nal, there will always be 0 internal nodes. Therefore, the predicting single

node programs is a simple one-to-one mapping with the generalised formula

for 0 internal nodes. However, other lengths can be obtained by different

combinations of internal nodes of different arities. For example, one can

obtain programs of length 3 by using one internal node of arity 2 or two

internal nodes of arity 1.

As a first approximation, we will assume that we can still estimate the

expected number of internal nodes in a tree of length ℓ by applying Equa-

7These and all other experimental parameters were chosen as in Sections 3.3 and 3.4
for ease of comparison.
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Figure 3.10: Comparison between theoretical and empirical program length
distributions for trees created with arity 1 and 2 functions initialised with
FULL method (depth = 3, initial mean size µ0 = 8.13, mean size after 500
generations µ500 = 8.51). All lengths are valid.

tion (3.30), simply using ā instead of a. We can then substitute the result

into Equation (3.27) to obtain the approximate distribution of lengths we

are looking for. Naturally, between the variable ℓ and the variable n there is

a difference in scale (the factor ā). So, we will need to normalise the values

produced by Equation (3.27) to ensure the new distribution sums to 1.

Putting all of this together, we obtain an approximate model of the

limiting distribution of program lengths in the case of primitive sets of mixed

arities. Namely:

Prv{ℓ} =















Prg{0} if ℓ = 1,

Prg{
ℓ−1

ā
}

ā if ℓ is a valid length greater than 1.

(3.32)

Note, we do not require ℓ−1
ā to be an integer.

Since there were approximations in the original derivation of Equa-

56



0 10 20 30 40 50 60 70 80 90 100
0    

2,000 

4,000 

6,000 

8,000 

10,000

12,000

14,000

16,000

18,000

Program Length (Nodes)

Fr
eq

ue
nc

y

 

 

Theory
Empirical data (a=7/3)

Figure 3.11: Comparison between theoretical and empirical program length
distributions for trees created with arities 2, 2 and 3 functions initialised
with FULL method (depth = 3, µ0 = 21.48, µ500 = 23.51). Invalid length 2
is ignored.

tion (3.27), and we added further approximations in the derivation of Equa-

tion (3.32), one might wonder whether the model is sufficiently accurate to

be of practical use. Figure 3.10 shows observed and theoretical values of the

limiting length distribution experiment set up for internal nodes of arities of

1 and 2 where all lengths are valid, whilst Figure 3.11 compares the theoret-

ical and empirical distribution obtained in a GP run with the primitive set

of the Artificial Ant problem, which has internal nodes arities of 2, 2 and 3,

for IF-FOOD-AHEAD, PROGN2 and PROGN3, respectively. Note, with

this choice there is no way of generating programs of length ℓ = 2. Finally,

Figure 3.12 shows the results of using arities of 1, 2, 3 and 4. Note that in

order to highlight the fit for larger and less common programs we used a log

scale for frequency.

As one can see, Equation (3.32) accurately models the distributions ob-

served in real runs in all cases, with only minor deviations at the very short

57



0 10 20 30 40 50 60 70 80 90 100
10

1

10
2

10
3

10
4

10
5

Program Length (Nodes)

Fr
eq

ue
nc

y 
(L

og
 S

ca
le

)

 

 

Theory
Empirical data (a=2.5)

Figure 3.12: Comparison between theoretical and empirical program length
distributions for trees created with arities arities 1, 2, 3 and 4 functions
initialised with FULL method (depth = 3, µ0 = 25.38, µ500 = 23.72). All
lengths are valid.

program lengths where some of the assumptions behind the model are less

applicable.8 However, generally both the model and the actual runs show

that in almost all cases sub-tree swapping crossover will sample with a higher

frequency smaller programs.

3.7 Conclusions

In this chapter we have provided an exact model for the limiting distribution

of a-ary tree sizes for sub-tree swapping crossover, with uniform selection

of crossover points, on a flat fitness landscape. Then we have generalised

this model to predict lengths for mixed arity populations. The generalised

model was then used to approximate the size distribution obtained with sub-

tree swapping crossover with a 90% function /10% terminal node selection

8Curing the slight mismatches for earlier lengths would require a more accurate esti-
mation of number of internal nodes of each arity for small ℓ. We investigate more precise
models in Chapter 8.
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policy. Finally, we turned our attention to complete programs, i.e., with

terminals, the previous models being expressed in terms of the number of

internal nodes, and found that an accurate model of program lengths could

be produced for a-ary trees while a strong approximation can be created for

mixed arity trees.

All models suggest that this form of crossover has a distinct bias to sam-

ple smaller programs. This bias has a number of significant effects regarding

GP search which are investigated in the following chapters.
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Chapter 4

Program Sampling,

Initialisation and Bloat

4.1 Introduction

Now that we have a number of formulae to predict our distributions of

program lengths under sub-tree swapping crossover, the next step is to see

how we can apply this to practical GP applications. In Sections 4.2 and

4.3 we analyse how crossover will sample the program search space and the

importance of average program size. We then (Section 4.4) look at how

initialisation can combine with crossover to affect both fitness and program

size during a GP run. In light of this, we provide in Section 4.5 a new bloat

theory, Crossover-Bias, that explains how selection and sub-tree swapping

crossover combine in a process that will progressively sample larger and

larger programs. Finally, in Section 4.6 we study empirically the effects of

applying size limits and find that such limits can speed growth towards the

limit.
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4.2 Sampling of Unique Programs

As was done for Linear-GP in [Poli and McPhee, 2001, Poli et al., 2002], we

can now compute the expected resampling probability for unique programs

of different sizes. In particular, let us imagine that our GP system operating

on a flat landscape is at the fixed point distribution and let F and T be the

sizes of the function and terminal sets, respectively. Let us further assume

that all functions in F are of arity a. Since, there are FnT (a−1)n+1 different

a-ary programs with n internal nodes in the search space, it is possible to

compute, using Equation (3.22), the average probability psample(n) that each

of these will be sampled by sub-tree swapping crossover, namely

psample(n) =
(1 − apa)

FnT (a−1)n+1

(

an + 1

n

)

(1 − pa)
(a−1)n+1 pn

a . (4.1)

It is easy to study this function and to conclude that, for a flat landscape,

using this form of crossover GP will sample a particular short program much

more often than it will sample a particular long one. For example, when

µ0 = 15 as in Figure 3.1, GP will heavily resample short programs. As-

suming, we have a boolean problem with five functions and four terminals1

the same program of length 1 is resampled on average every 22 crossovers,

every 638 crossovers for programs of length 3, and every 16,653 crossovers

for length 5. As program size grows the sampling probability drops dramat-

ically. For example, the resampling rate for unique programs of length 15 is

1 in over 128 billion (see Table 4.1 for details). It is important to consider,

therefore, that not only is the practitioner faced with an expected combina-

torial explosion of unique programs as length increases but this inability for

any operator to sample particular larger unique programs is exasperated by

1For example a 4 Bit Even Parity Problem with a function set consisting of AND, OR,
NAND, NOR and XOR.
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Table 4.1: Unique program (UP) sampling probabilities, by program length,
for sub-tree swapping crossover applied to a flat fitness landscape as pre-
dicted by Equation (4.1). A problem with five boolean functions and four
terminals has been used as an illustration. µ0 = 15, internal nodes are
calculated using Equation (3.30).

Length Length Probability UP Count UP Sampling Probability

1 0.18169764 4 4.5424E-02
3 0.12534415 80 1.5668E-03
5 0.09607632 1,600 6.0048E-05
7 0.07732465 32,000 2.4164E-06
9 0.06401091 640,000 1.0002E-07
11 0.05397082 12,800,000 4.2165E-09
13 0.04609649 256,000,000 1.8006E-10
15 0.03974959 5,120,000,000 7.7636E-12

sub-tree swapping crossover’s bias to sample smaller programs. In the next

section we look at altering experimental parameters to help reduce this bias.

4.3 Sampling of Program Size

With some problems we may have an initial idea of likely program lengths

that may be required to provide an acceptable solution. For example, this

knowledge may range from knowing that a minimum length is required in

that enumerated search has been unsuccessful up to a length when the search

was found to be intractable, or simply that previous attempts using spe-

cific designs or other search algorithms had provided some initial success

at certain solution lengths. Also, for classical test problems, a great deal

of information is available about the distribution of program functionality

(including fitness) as the length of programs is varied (see, for example,

[Langdon and Poli, 2002]). So, it is possible to infer from such distributions

what are the best length classes on which to concentrate the search for solu-

tions. Our first step is to see how we can use the parameters of the limiting

distribution of sub-tree swapping crossover to at least begin to sample a
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significant number of programs of a particular size.

To begin, the a parameter and its mixed arity equivalent, ā, are derived

from our function set which we assume is fixed for the experiment, i.e., that

all functions are deemed likely to be required to solve the problem. We

could of course alter our initialisation procedure to sample more of a certain

function, hence, altering our average arity. However, such an approach is

limited by the functions available. We could only skew initialisation towards

sampling arity 2 or 3 functions for the Artificial Ant problem, for example.

Little could be done with the Parity problem we have presented in Table 4.1

as all functions have an arity of 2. With this in mind another alternative

could be to alter the functions so they have larger arities but ignore certain

inputs. This would, however, create large parts of the parse tree that would

be ignored, the affects of such a measure on a GP run would need to be

analysed separately.

We are, therefore, left with our values for pa and pā which are in turn

derived from a and ā respectively, which we do not want to change, and

the mean program size of the initial generation µ0. This latter value can be

directly altered by manipulating the parameters of our initialisation method

in order that significantly large trees are produced.

To illustrate this if we start with the Artificial Ant problem, we have

three functions: IF-FOOD-AHEAD, PROGN2, PROGN3 with arities of 2,

2, and 3 respectively. As seen in Figure 3.5 our value of ā for this group

of arities is 7/3. Knowing this we can alter the value of µ0 to enable the

sampling by crossover of different program length spaces. Figures 4.1 and

4.2 show how varying µ0 alters the crossover length distribution. We can

see that there is always a consistent higher sampling of smaller programs.

However, starting from a reasonable base figure relatively small increases in
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µ0 allow larger programs to be sampled more consistently.

As an illustration, the Artificial Ant problem is known to have no ideal

solutions before a program size of 11 [Langdon and Poli, 2002], if we were to

ensure that a percentage of programs sampled were to have at least 5 internal

nodes2 for a µ0 value of 5, 10, and 20 crossover would sample 16%, 36%,

and 54% of the population respectively for that program size or greater.

Thus, if we initialised the population so that the length distribution is

a Lagrange distribution of the second kind (as we will discuss in the follow-

ing section), we could perform an informed choice of what is the best µ0

to use to maximise the chance of solving a problem. Naturally, if, instead,

we initialised the population with a distribution that is very different from

a Lagrange distribution of the second kind, as is the case, for example, for

FULL or RAMPED initialisation, then it would take a number of gener-

ations before sub-tree swapping crossover transforms the size distribution

into something resembling such a distribution. However, at that point, a

good choice of µ0 would start paying off, i.e., effectively there is a race. If

one can find a solution before crossover reshapes the distribution, then the

limit distribution may not matter so much. For example, if one initialised all

the individuals in the population at a reasonable program length, and then

chose a very large population, there is a chance that a solution might be

found very quickly, i.e., before crossover shifts the mode of the distribution

away from the optimal. However, whenever runs take tens of generations,

then it might make sense to initialise so that the peak of the initial distri-

bution is beyond the optimal length, so that when crossover reshapes the

length distribution, the peak will do a scan of the best area.

2This estimate is derived from length = ān + 1.
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Figure 4.1: Comparison of probability distributions, derived from Equation
(3.27), for different µ0 values (ā is fixed at 7/3) for the Artificial Ant problem.
Note: the use of a logarithmic scale for the probability axis.

4.4 Initialisation and Crossover

By choosing to apply GP to a particular problem we have assumed that

both fitness based selection and crossover are likely to provide an efficient

search method to provide a solution. Normally, a GP initialisation method

(e.g. GROW, FULL, RAMPED, etc) takes no account of the eventual distri-

butions ‘desired’ by either crossover or selection (or any other GP operator

such as mutation). Naturally, eventual fitness values are not known in ad-

vance of a GP experiment. However, we now have evidence that sub-tree

swapping crossover will, with repeated application, distribute the popula-

tion according to a predictable distribution. Our next step is to investigate

the possible benefits or disadvantages of initialising a population by length

to take account of crossover.

We could of course write an algorithm to initialise the population accord-

ing to the eventual predicted distribution desired by crossover. The most
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straightforward programatical method, however, is to simply run some prior

generations of a GP experiment without fitness, thereby allowing crossover

to distribute program lengths without having to endure the cost of fitness

calculations.

To test this idea we took two out-of-the-box problems from the ECJ

evolutionary toolkit [Luke, 2008], the Artificial Ant and 4 Bit Even Parity

as previously discussed, making adjustments to remove mutation, to ensure

uniform selection of crossover points, and to prevent a depth limit being

applied. A population size of 1024 individuals was used and the results were

averaged over a hundred runs. All experiments were initialised using the

FULL method with a depth of 3. Each experiment looked at the effect of

running GP with zero, twenty or fifty initial generations where a constant

fitness value was applied before allowing the experiment to continue as nor-

mal. Naturally, the flat-fitness phase was much faster than normal, since

no fitness evaluation was required. During this phase crossover was free to
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Figure 4.3: Comparison of mean fitness values for populations with zero,
twenty and fifty prior generations of crossover without fitness for the Ar-
tificial Ant problem. Note, values for prior generations where the fitness
function returns a constant value are not shown.

distribute the population towards its limit size distribution.

As we can see in Figures 4.3 and 4.4, there is noticeable degrading in

mean fitness for the populations with initial crossover-only generations com-

pared to those where fitness is applied straight away. This is also seen in

Figures 4.5 and 4.6 where best fitness has been recorded. If we look at

Figures 4.7 and 4.8 we can see there is much greater variation in individual

fitness for the fitter populations.

The reason for this effect is in the sampling of smaller programs produced

by ‘Lagrange-like’ initialisation. A population distributed by length through

the application of crossover will contain large numbers of relatively small

programs. In both the Artificial Ant and Parity problems these short pro-

grams are associated with low fitness [Langdon and Poli, 2002]. Crossover

has, therefore, created a large proportion of smaller programs with rela-

tively poor fitness values, whilst FULL originally produced programs above
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Figure 4.4: Comparison of mean fitness values for populations with zero,
twenty and fifty prior generations of crossover without fitness for the 4 Bit
Even Parity problem. Note, values for prior generations where the fitness
function returns a constant value are not shown.

a reasonable threshold.3

We can also apply these findings to the problem of understanding the

origins of bloat, as we discuss in the next section.

4.5 Crossover-Bias Bloat Theory

As discussed in Chapter 2, bloat, the growth of program size during a GP

run without a significant return in terms of program fitness, is seen in many

GP experiments. Figures 4.9 and 4.10 show graphs of program growth for

the two problems described in the previous section. As we can see there is a

noticeable increase in program growth for the populations with ‘Lagrange-

like’ initialisation, the same populations that have a relatively lower rate of

program fitness improvement.

3It should be noted, however, that in problems where initial relatively high fitness
is associated with very small programs, the opposite may be true. This is investigated
further in Chapter 6.
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Figure 4.5: Comparison best fitness values for populations with zero, twenty
and fifty prior generations of crossover without fitness for the Artificial Ant
problem.

At first one might find this result very surprising. How is it that initiali-

sation has such a big effect on bloat, which is typically associated with later

generations of a GP run, when effectively the population starts stagnating?

An explanation for this lies in the combination of the crossover sampling

distribution and fitness. This process can be described simply as:

I In each generation selection will populate the mating pool with rela-

tively fit programs

II The sub-tree swapping crossover operator will then produce children

with a length distribution biased towards smaller programs irrespective

of their fitness

III If smaller programs cannot obtain a relatively high fitness they will be

ignored by selection in the next generation

IV Hence, average program size will increase as ever larger programs are
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Figure 4.6: Comparison best fitness values for populations with zero, twenty
and fifty prior generations of crossover without fitness for the 4 Bit Even
Parity problem.

placed into the mating pool

It is important to note that there is no change in the average size of

programs found in the mating pool from those produced in the resulting

child population, i.e., the next generation. However, the distribution has a

sampling bias towards smaller programs, with relatively few larger programs.

Although it is unlikely that within a single generation our population

will reach the limiting length distributions described in chapter 3, we know

that crossover will begin to distribute, in terms of length, the programs that

have been presented to it (i.e., in the mating pool) in a similar fashion.

This explanation fits completely within the mathematical analysis of the

dynamics of mean program size provided in [Poli, 2003], where the following
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Figure 4.7: Comparison fitness variance values for populations with zero,
twenty and fifty prior generations of crossover without fitness for the Arti-
ficial Ant problem

size evolution equation was derived4

E[µ(t + 1) − µ(t)] =
∑

l

N(Gl)(p(Gl, t) − Φ(Gl, t)) (4.2)

where E is the expectation operator, µ(t) is mean program size at generation

t, Gl represents all programs of a particular shape, N(Gl) represents the

size of programs of shape Gl, p(Gl, t) represents the selection probability

for programs of shape Gl and Φ(Gl, t) represents their frequency in the

population. As length classes are a super-set of shape classes we can rewrite

Equation (4.2) as:

E[µ(t + 1) − µ(t)] =
∑

l

l × (p(l, t) − Φ(l, t)) (4.3)

4A major finding of this paper is that for symmetric (where probability of node selection
points is independent of order of parent presentation) sub-tree swapping crossover opera-
tors, “The mean program size evolves as if selection only was acting on the population”.
The derivation of this equation is explained in Section 5.4 of [Poli, 2003].
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Figure 4.8: Comparison fitness variance values for populations with zero,
twenty and fifty prior generations of crossover without fitness for the 4 Bit
Even Parity problem

where p(l, t) is the selection probability for programs of length l and φ(l, t)

is their current proportion.

If, as is the case for the Artificial Ant and Parity problems, the selection

probability for short programs is consistently lower than their frequency,

then, everything else being equal, one must expect E[µ(t + 1) − µ(t)] > 0,

and hence bloat will occur.

For problems where initially relatively high fitness can be obtained with

small programs, e.g., some symbolic regression problems, it will take a num-

ber of generations for fitter larger programs to be produced (see Chapter 6).

However, after this point bloat will then start to occur.

Recent work [Poli et al., 2008b] has analysed the Crossover-Bias theory

presented here further and found that population size can have a significant

effect with regard to code growth, particularly that individuals in smaller

populations will grow at a slower rate than those in larger ones. The reason

for this is that populations need to be significantly large for smaller programs
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Figure 4.9: Comparison mean number of nodes for populations with zero,
twenty and fifty prior generations of crossover without fitness for the Arti-
ficial Ant problem

to be sampled consistently. The authors have termed this work a Refined

Crossover-Bias Theory.

4.6 Effects of Size Limits

The standard technique to control bloat, namely the application of a depth

or length limit, is known to have significant effects on GP dynamics (see,

for example, [Crane and McPhee, 2005]). Unfortunately, we don’t have a

mathematical model for the limit distribution of sizes (neither in terms of

internal nodes nor in terms of lengths) in the presence of length limits.

However, we can conduct experimentation to study their effects on such a

distribution. Figures 4.11 and 4.12 show the affect of applying length limits

of 50, 75 and 100 nodes, using ECJ, set-up as in Section 4.45 to the Artificial

Ant and 4 Bit Even Parity problems. The effect of the length limit is that

5Similar results were also reported for a different set of experimental parameters in
[Dignum and Poli, 2008] which have been modified here to ensure consistency.
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Figure 4.10: Comparison mean number of nodes for populations with zero,
twenty and fifty prior generations of crossover without fitness for the 4 Bit
Even Parity problem

programs become more frequent in the smaller length classes.

In the presence of fitness, this effect can be counteracted but not can-

celled by selection. So, one should expect more sampling and resampling of

short programs. However, following the line of reasoning of the Crossover-

Bias bloat theory (see Section 4.5) we know that for most problems these

programs cannot be solutions, and in fact are typically very unfit, and, so,

longer programs will even more be preferentially selected, leading to more

bloat. Thus, size limits effectively increase the tendency to bloat since they

induce more sampling of short programs, and, so, in the presence of non-flat

fitness landscapes, GP populations rush towards the limit even more quickly

than in the absence of the size limit! This effect is particularly clear if

one looks at the peak (i.e., the mode) of the program length distribution

with and without length limits. Figures 4.13 and 4.14 show how the mode

(averaged over 100 independent runs) changes generation by generation for

different limits in the case of the Artificial Ant and 4 Bit Even Parity prob-
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Figure 4.11: Comparison of sampling frequencies, at generation 100, asso-
ciated with length limits for the Artificial Ant Problem applied to a flat
fitness landscape.

lems (this time with selection). We can see that smaller size limits encourage

GP to sample larger programs in the early generations before the size limit

is reached.

These results suggest that, if size limits are imposed to combat bloat,

then these should not be applied from generation 1, but much later and

on demand, for example, if the average program size exceeds some pre-

fixed threshold. This would avoid speeding up program growth in the early

generations of a run.

Naturally, virtually all methods to combat bloat give more selective pref-

erence to shorter program than to longer ones. If in so doing they cause an

oversampling of the short programs w.r.t. the base case (i.e., in the absence

of the anti-bloat method). Therefore, anti-bloat methods may change the

program size distribution in a somehow similar way to size limits. As a

result, we should expect this phenomenon to still take place also with other

bloat-control mechanisms, although perhaps with a lesser degree.
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Figure 4.12: Comparison of sampling frequencies, at generation 100, associ-
ated with length limits for the 4 Bit Even Parity Problem applied to a flat
fitness landscape.

4.7 Conclusions

In this chapter it has been shown that the bias for sub-tree swapping

crossover to sample smaller programs has a significant effect on GPs abil-

ity to search the program space. Although one would expect larger unique

programs to be sampled infrequently simply due to their number, we can

see this is exasperated by crossover. All is not lost, however, as we can

substantially reduce the bias by deliberately increasing the average size of

individuals in the population.

We next turned our attention to initialisation and crossover. One would

expect by initialising the population to match the size distribution desired

by crossover we would improve the performance of our GP run. For our test

problems the opposite is true: we encounter reduced fitness w.r.t. to that

seen using our original FULL initialisation. The reasons for this are straight

forward: both problems rely on a particular length threshold before fitness
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Figure 4.13: Comparison of modal (peak) classes associated with length
limits for the Artificial Ant Problem with selection. RAMPED initialisation
has been used with a maximum depth of 6 and minimum depth of 2.

can improve, and our bias towards smaller programs has produced many

more relatively unfit programs.

Increased code growth was also encountered for our ‘Lagrange-like’ ini-

tialisation. Again the roots of this lie within sub-tree swapping crossover’s

bias to sample smaller programs and can be used to describe a new bloat

theory, Crossover-Bias. Put simply crossover in itself does not alter average

program size, but it does produce a distribution skewed towards smaller pro-

grams. If the smaller programs are ignored by selection, average program

size will increase with each generation. For problems such as the Artificial

Ant and 4 Bit Even Parity where a size threshold exists for fitter programs,

bloat can be induced from generation zero via a ‘Lagrange like’ initialisation.

For other problems bloat will begin to occur in later generations as larger

fitter programs are discovered.

Finally, we looked at the effect of applying length limits to our test prob-

lems and found that this increased the sampling of the smallest programs,
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Figure 4.14: Comparison of modal (peak) classes associated with length
limits for the 4 Bit Even Parity Problem with selection. RAMPED initial-
isation has been used with a maximum depth of 6 and minimum depth of
2.

hence speeding bloat (to the length limit) during earlier generations, thereby,

defeating their original purpose of combating bloat during this stage of the

GP run.
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Chapter 5

Sampling Parsimony

5.1 Introduction

In the last chapter, we identified a major characteristic of sub-tree swapping

crossover: the resampling of smaller programs. In this chapter, we examine

the effects of resampling and how they might be controlled.

In Section 5.2, we find that on a flat fitness landscape, i.e., isolating

our bias, sub-tree swapping crossover will progressively resample programs

from smaller classes whilst only creating new unique programs in larger

classes. In Section 5.3 a novel method to control resampling is introduced,

sampling parsimony, that applies fitness penalties to programs that have

been resampled. From the application of this method it is found that the rate

of program growth can be reduced or increased through appropriate choice

of parameters, in effect providing a program growth control mechanism, the

mechanics of which can be explained using the crossover-bias bloat theory.

As resampling penalties have a direct effect on program growth, prac-

titioners need to be aware of this when implementing methods that ensure

unique programs are sampled. It is shown, however, that this effect can be
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controlled when an allowance for resamples is implemented, the appropriate

value of which is found to be problem specific.

5.2 Sampling and Resampling

Our first step is to see how sub-tree swapping crossover will sample the

search space on a flat fitness landscape. Our primary purpose for doing this

is simply to isolate the resampling bias for crossover. In particular, we are

interested in finding out how much resampling goes on. This gives us an idea

of the efficiency or otherwise of the search. It should be noted that whilst in

the presence of fitness gradients, selection will help to counteract crossover

bias (this is analysed further in conjunction with selection in Section 5.3),

there are situations where the crossover bias may become the prominent

search bias. This may happen, for example when GP search reaches an

area of neutrality, e.g., when GP operators, during an experimental run, are

unable to escape areas of similar fitness.

To empirically analyse crossover sampling we took two out-of-the-box

problems from the ECJ evolutionary toolkit [Luke, 2008]: 4 Bit Even Parity

and the Artificial Ant. As the Parity problem uses Boolean operators only we

know that, in the absence of selection, the limit program length distribution

to be that of a 2-ary tree similar to that shown in Figure 3.9, whilst, as

previously discussed, the Artificial Ant will tend to follow a generalised

distribution similar to the one in Figure 3.11.

Adjustments were made to ECJ to return a constant fitness value, remove

mutation, ensure uniform selection of crossover points, and to prevent a

depth or length limit being applied. A population size of 1,000 individuals

was used and the results for 200 generations were averaged over one hundred

independent runs. All experiments were initialised using the RAMPED
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method [Koza, 1992] with a maximum depth of 6 and minimum depth of 2.

The total number of programs for each length was recorded at each

generation along with the number of programs for each length that had

been sampled in a previous generation. Taking the Artificial Ant problem,

as we can see in Figure 5.1, at generation 200 the number of new unique

programs is extremely small compared to the total for that generation. The

majority of all programs sampled under these conditions are in the smaller

length classes.

As shown by the ratio between the number of new programs and the total

number of programs, plotted in Figure 5.2, it is clear that newly sampled

programs are only being generated at the larger length classes and that sub-

tree swapping crossover is progressively resampling more and more programs

in the smaller length classes.

This bias to resample can impact the efficiency of GP search in a number

of ways. Firstly, resampling is costly in terms of re-evaluations (although

thankfully we are only re-evaluating the smaller programs). Secondly, we

would like our search to address as many different potential solutions during

an experimental run i.e., to improve our chances of success in finding a

solution.

One could argue that, combined with selection, the re-presentation of

smaller program components to crossover may in fact be intrinsic to the

success of the GP search process i.e., to perform a more local search.1 How-

ever, from our previous analysis it seems unlikely that smaller programs

would even be presented to crossover (see Section 4.5) and resampling may

in effect speed bloat. This is analysed further in the following section.

1Without knowledge of the program spaces for particular problems this could equally
be a disadvantage in that we may prefer a broader search.
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Figure 5.1: Frequencies of new unique programs not sampled previously
compared to all programs generated at generation 200, for the Artificial
Ant problem applied to a flat fitness landscape. Invalid length 2 has been
removed.

5.3 Sampling Parsimony and Bloat

In section 5.2 we looked at how sub-tree swapping crossover likes to sample

smaller programs and the progressive resampling of programs (with asso-

ciated inefficiencies) that result from this. In this section we look at the

prevention of resampling and its effect on program length.

To understand the effect of resampling and to control it, a novel tech-

nique has been employed called sampling parsimony. This has two param-

eters, a resampling penalty to be applied, which is implemented as a per-

centage reduction of fitness,2 and a count of the number of times a unique

program can be sampled before that penalty is applied or removed.

Our first application is to look at how average program length will be

affected by the application of a super penalty (10,000%) ensuring that a

2As we are looking to minimise the fitness function value returned for the problems
used in this chapter, this penalty is actually a multiplier.
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Figure 5.2: Ratio of new unique programs not sampled previously compared
to all programs generated at generations 1, 20 and 200, for the Artificial Ant
problem applied to a flat fitness landscape.

resampled program will not be selected in the next generation. Using our

Artificial Ant and Parity ECJ problems with parameters as described in

Section 5.2 from Figures 5.3 and 5.4 we can see that, as we progressively

prevent resampling by lowering our resampling limit (the number of resam-

ples allowed before a penalty is applied), we increase the average size of the

programs in our population. We have in effect created an effective fitness

landscape [Langdon and Poli, 2002] where the ability for a child to exist

in the next generation is solely determined by whether that program has

previously been sampled.

From our earlier analysis, it is unsurprising that we see that by depressing

the fitness of resamples, we will increase the sampling of larger programs,

thereby increasing the average program size as we are in effect penalising

smaller programs. What is more interesting is that we have managed to

isolate the crossover-bias bloating effect as described in Section 4.5. In

essence, our method only penalises children and prevents them from being
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Figure 5.3: Comparison of average program size applying resampling limits
to the Artificial Ant problem with a flat fitness landscape.

parents rather than preventing their creation. GP, therefore, uses larger

programs as parents (see Figure 5.2), hence, increasing the average size

of children and thereby increasing the average program size in the next

generation. As smaller children are still created by crossover but have no

chance of being chosen by selection, this process will continue. With even

a relatively large resampling allowance of 200 on our flat landscape, the

penalty will greatly increase program size.

We apply our resampling penalty method to our problems with selection

in Figures 5.5 and 5.6. We can see that our penalty increases program growth

within 100 generations. This is because we have, effectively, accelerated the

crossover bias effect (crossover creating small programs that selection then

ignores) already present in the ‘No Limit’ distribution. Practically, we can

see that this acceleration only happens beyond a problem specific value of

the number of resamples allowed, suggesting that experimental resampling

restrictions may not attract significant additional program growth once an
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Figure 5.4: Comparison of average program size applying resampling limits
to the 4 Bit Even Parity problem with a flat fitness landscape.

acceptable limit has been determined. Experimentation showed that no

changes are observed beyond 5 resamples for the 4 Bit Even Parity problem,

and approximately 15 for the Artificial Ant.

Finally, we reverse our method to apply a penalty to all programs from

the beginning. We only remove the penalty after a specific number of resam-

ples have been achieved. From Figures 5.7 and 5.8 we can see that program

growth is significantly reduced by applying a single sample penalty. Pro-

gressively increasing the sampling threshold before normal fitness is applied

will reduce program growth towards a limit of approximately 50 samples for

the Artificial Ant problem and exactly 2 for the 4 Bit Even Parity Problem.3

Again the threshold is problem dependent.

Although its effect on bloat is self evident, it remains to be seen whether

the sampling parsimony method can be successfully applied to improving

3Any value above 2 gives single node programs such an evolutionary advantage that the
population is soon dominated by programs of that length and crossover becomes unable
to produce programs of a larger size.
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Figure 5.5: Comparison of average program size applying resampling limits
to the Artificial Ant problem with selection.

overall program fitness over an entire run. We leave this for future work.

The current ‘blanket’ method is of course very unsophisticated in that we

prevent entire search spaces from being investigated without regard to pro-

gram fitness. However, this remains an interesting technique that is worth

exploring in greater depth and which might find application in a variety

of areas, including, for example, escaping experimental stagnation under

various conditions.

5.4 Conclusions

Both theory and experimentation show that the application of sub-tree swap-

ping crossover will quickly encourage a population to converge to a distribu-

tion that will exponentially sample smaller programs more frequently than

longer ones. As there are exponentially fewer unique smaller programs than

larger ones, the sampling of new programs becomes less likely during a GP

run if only crossover is applied. We also know from previous chapters that
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Figure 5.6: Comparison of average program size applying resampling limits
to the 4 Bit Even Parity problem with selection.

this bias becomes more acute with smaller average population sizes (see

Section 4.3) and with the application of length limits (see Section 4.6).

Although the application of selection will work against the crossover

bias, smaller programs will always be created by crossover. As it is unlikely

that these programs will be able to obtain a reasonable fitness, particularly

during later stages of a GP run, they will be ignored by selection for the

next generation and only larger parents will be selected. The continuing

application of selection and crossover, therefore, causes the mean program

size to increase, thereby creating bloat.

To explore what happens if one directly addresses this sampling-related

cause for bloat, we have introduced a novel technique called sampling par-

simony to influence program growth. This can be used to accelerate growth

as well as to reduce it. This effect has practical implications, i.e., if one was

to impose a unique program restriction on the creation of programs. We

have shown experimentally, however, that there is a problem specific limit
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to this effect based upon a resampling allowance, a parameter that could be

easily applied to such a mechanism.
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Figure 5.7: Comparison of average program size applying sampling penalties
to the Artificial Ant problem with selection. Penalty is only lifted after a
predetermined number of resamples have been reached.
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Figure 5.8: Comparison of average program size applying sampling penalties
to the 4 Bit Even Parity problem with selection. Penalty is only lifted after
a predetermined number of resamples have been reached.
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Chapter 6

Operator Equalisation

6.1 Introduction

An intrinsic feature of traditional Genetic Programming (GP) is its variable

length representation. Although, this can be considered one of the method’s

strengths, researchers have struggled with the phenomenon of bloat,1 the

growth of program size during a GP run without a significant return in

terms of program fitness, since GP’s inception.

Research has shown (see section 2.6), that beyond a certain minimum

program length the distributions of program functionality and, therefore, fit-

ness converge to a limit. Before that limit, however, there may be program-

length classes with a higher or lower average fitness than that achieved be-

yond the limit. Ideally, therefore, GP search should be limited to program

lengths that are within the limit and that can achieve optimum fitness. We

might want, for example, to restrict our search fixing program sizes at the

point where our smallest optimal or near optimal solutions can be found

thereby avoiding the need to search much larger spaces with the additional

1Bloat, and a number of techniques to control it, are discussed in section 2.5 whilst a
new bloat theory is described in section 4.5.
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computational effort that entails.2 For most applications simpler solutions

are also much more desirable than larger solutions.

This chapter describes a simple method, operator equalisation, that can

be applied easily to existing GP systems. This method forces GP to search

specific length classes using pre-determined frequencies so that we can con-

trol the sampling rates of specific program lengths.

This technique has several advantages. For example, whenever the length

distribution and the corresponding sampling bias provided by standard op-

erators is not suitable for a specific program space, we can change such a bias

freely making it possible to sample or oversample certain length classes we

believe can benefit our search. The user is given complete control over the

program length distribution, and bloat can be entirely and naturally sup-

pressed by simply asking operator equalisation to produce a static length

distribution.

The mechanics of operator equalisation are explained in Section 6.2. Two

test problems which are known to bloat under unconstrained conditions are

then described in Section 6.3. Next we look at how different, static tar-

get length distributions can influence performance regarding these problems

in Section 6.4. In addition to controlling bloat, operator equalisation also

enables us to automatically sample and exploit the best fitness values asso-

ciated with particular length classes. This is examined in Section 6.5, where

we look at how coarsely grained distributions can be used to determine

potential high fitness length classes.

2If there is little understanding of the program space i.e., likely ratios of solutions to
number of programs at length classes, such a method would certainly be justified in terms
of resources as a first attempt to discover an acceptable solution.
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6.2 Operator Equalisation

Investigations into the properties of program length have often used

the tool of histogram representation in order to compare frequencies

of programs sampled at particular lengths during a GP run (e.g., see

[Poli and McPhee, 2001, Poli et al., 2007, Dignum and Poli, 2007]). The

operator equalisation method aims at controlling the shape of length his-

tograms during a run. The method is loosely inspired by both the gray-

level histogram equalisation method [Rosenfeld and Kak, 1982] used in im-

age processing and digital photography to correct underexposed or overex-

posed pictures and the Tarpeian bloat control method [Poli, 2003] which,

with a certain probability, sets to zero the fitness of newly created programs

of above average length effectively suppressing their insertion in the popula-

tion. We have taken these ideas forward to see if by filtering which programs

are allowed to be inserted in the population we can directly manipulate those

frequencies in order to force GP to sample programs of particular lengths at

pre-specified rates.

The method requires users to specify the desired length distribution

(which we will call target) that they wish the GP system to first achieve

and then continue to use when sampling a program space. This allows one

to specify both simple well known probability distributions (Section 6.4) and

also coarser grained models (Section 6.5). During the initialisation of the

GP system a histogram object is created. This needs only to be primed

with the maximum size allowed, number of bins (the size of the bins be-

ing calculated from these) and of course the target distribution. Then the

method requires wrapping the existing code for offspring generation with

code that simply accepts or disallows the creation of a child based on its
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length. The wrapper is extremely simple:

repeat {

<create a child using standard genetic operators>

} until( histogram.acceptLength( child.length ) )

Internally, the histogram object maintains a set of numbers, one for

each length class, which act as acceptance probabilities. The acceptLength

method simply generates a uniform random number between 0 and 1 and

compares it against the acceptance probability associated with the length

class associated to child, returning true if the random number is less than

the acceptance probability, and false otherwise.

At the end of each generation the histogram object updates the accep-

tance probabilities for each class using the following formula:

newProbability = currentProbability + ( normalisedDiff * rate )

where normalisedDiff is the difference between the desired frequency in

target and the current frequency divided by the desired frequency. Small

discrepancies for large classes are, therefore, largely ignored. The user de-

fined parameter rate determines how quickly the distributions should con-

verge. After some experimentation the setting rate=0.1 was found to work

well and has been used in all experimentation presented in this chapter.

As one can see the method can easily be applied to existing GP appli-

cations with minimal changes: users need to modify only very few lines of

code in their existing GP systems.

6.3 Test Problems

Two GP problems of differing natures have been deliberately chosen, a par-

ity problem and a symbolic regression problem, to show the benefits and
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limitations of this approach. As will be shown, the first requires a relatively

large program size before fitness will significantly improve whilst the second

is able to achieve relatively high, though far from optimal, fitness values

with small program sizes.

The Even Parity problem attempts to build a function that evaluates to

1 if an even number of boolean inputs provided evaluate to 1, 0 otherwise.

We have chosen a relatively large input set of size 10. However, it is possible

to evaluate all possible fitness cases (1024) for each potential solution within

a reasonable time given the short length limit imposed.

Our second problem is a 10-variate symbolic regression problem: x1x2 +

x3x4 + x5x6 + x1x7x9 + x3x6x10 as described in [Poli, 2003]3, which we

have called Poly-10. 500 test cases are used each comprising of a (uniform)

randomly generated value for each variable ranging between -1 and 1 and

the resulting value of the equation.

As with the Even-10 problem only functions with arity 2 are used: ADD,

SUBTRACT, MULTIPLY and a protected division function called PDIV

which returns the numerator if the magnitude of the denominator is less

than 0.001. No Ephemeral Random Constants (ERCs) were used.

Both problems have been sourced from [Poli, 2003] with minor alter-

ations4 to enable comparison and analysis. Each problem is expected to

bloat under non-constrained conditions the reasons for which are described

in the original paper.

3This problem can be simplified to x1(x2 + (x7x9)) + x3(x4 + (x6x10)) + x5x6 to give
a smallest GP tree size of 19 nodes.

4Our Even-10 problem has no NOT function. So all functions have an arity of 2. Also,
Poly-10 here uses 500 fitness cases, where originally 50 were used.
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6.4 Equalising to Simple Program Length Distri-

butions

All experiments were initialised using the GROW method [Koza, 1992] with

a maximum depth of 6. Sub-tree swapping crossover with uniform selection

of crossover points was applied without mutation or replication. Elitism was

not applied. Tournament selection was used with a tournament size of 2 in all

experimentation. The algorithm was generational. All experiments used a

population of 10,000 and ran for 100 generations. Results were averaged over

100 runs. It should be noted that due to the wrapper-like implementation

there is no reason why mutation, replication or other forms of crossover could

not be applied in isolation or combination. In fact it is hard to imagine any

form of standard GP experimental set-up which could not be used easily.

In order to satisfy our stated desire of bloat free GP a strict, deliberately

small, length limit of 100 nodes has been chosen. This has the added benefit

of allowing us to evaluate a large set of fitness cases for each potential

solution within acceptable experimental run times.

6.4.1 Does Operator Equalisation Work?

Initial investigation using our parity and regression problems showed that

using a fairly unforgiving initialisation method (GROW), i.e., that in no

way matched to our desired length distributions, we could equalise program

lengths within approximately 20 generations. This is shown in Figure 6.1

for the Poly-10 problem equalised for a uniform length distribution.

With both problems there was a small dip for some of the early length

classes. This is due to the fact that when the population has a uniform

length distribution, crossover is less likely to produce short programs than
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Figure 6.1: Length histogram for Poly-10 regression problem with uniform
equalisation of program length classes.

is ordinarily the case in the absence of equalisation. This is illustrated in

Figure 6.2 where we look at the number of programs rejected by the wrapper

at generation 100. As we can see the number of programs rejected for these

length classes is extremely small. Our equaliser is, therefore, doing the best

with what it has been presented by the underlying GP system5. We can see

that the very smallest length classes are still reasonably well represented.

Although it is possible to imagine extreme conditions where infinite loops

could be encountered, for the experimentation detailed in the following sec-

tions, all runs were completed successfully and no unusually large run-times

were recorded. It is of course possible to add a simple retry limit to the

wrapper code to escape such loops.

5In other experiments (not reported) it was found that the dip is slightly worsened by
the use of larger tournament sizes since this increases the ability of selection to repeatedly
present certain program sizes. The effect is, by contrast, reduced when using a steady state
model, as GP can select newly created programs, i.e., those accepted by our equaliser,
immediately without having to wait for a generation to be completed.
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Figure 6.2: Number of equaliser rejections, at generation 100, for Poly-10
regression problem with uniform equalisation of program length classes.

6.4.2 Efficiency of Different Length Distributions

Having established that the operator equalisation algorithm works for the

test problems, our next step is to apply the method to see how the use of

elementary, easily recognisable, target probability distributions could affect

our search. In this thesis, we only consider static distributions, although

operator equalisation works also with dynamic targets (see Section 9.2 for

further discussion regarding this issue).

In Figure 6.3 we see the final length distributions for the parity problem,

i.e., at generation 100, for different target distributions. Each length class

is 2 nodes in size. Given that all the functions in our function set (AND,

OR, NOR, NAND, XOR and EQ) have an arity of 2, we have an individual

class for every possible length up to our size limit.

A number of distributions have been analysed. A uniform distribution

where each length is sampled with the same frequency, a triangular distribu-

tion which has a linearly increasing bias towards sampling larger programs,
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Figure 6.3: Length distributions, at generation 100, for the Even-10 parity
problem using a length limit of 100 nodes with different equalisation targets.

a ‘reverse’ triangle where smaller programs are sampled more often and

a reverse exponential distribution where we sample larger programs expo-

nentially more frequently than shorter ones. Note, the distribution for the

length limit with no equalisation is also shown. In all cases the target distri-

bution was reached very quickly. After some initial fluctuations, as we can

see in Figure 6.4, the average size for each of the experiments settles to a

fixed value.

If we compare the best fitness values recorded for different target dis-

tributions (Figure 6.5), we can see that the push towards sampling larger

programs has had a beneficial effect compared to using the simple length

limit.

The exponential distribution has a sharper upwards gradient for gen-

erations 20 to 60 than that of the triangular distribution although both

eventually converge to the same value. The bias towards the sampling of

smaller programs has had the most negative effect. Selection does, however,
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Figure 6.4: Average length (nodes) for Even-10 parity problem using a
length limit of 100 nodes with different equalisation targets.

manage to improve fitness in all of our experiments. Perhaps surprisingly,

all equalisation methods improve the best fitness value compared to the sim-

ple length limit during the early generations. The value of exploring certain

length classes during early generations is discussed further below.

Unlike the Even-10 problem we can see in Figure 6.6 that the imposition

of target length distributions has a negative effect on all forms of equalisation

for best fitness compared to our simple length limit for the Poly-10 problem,

any undersampling of smaller programs during the early generations having

the most marked effect. It has long been known that in symbolic regression

problems smaller programs can obtain relatively high fitness. In fact, the

reverse triangle distribution performs as well as the simple length limit up

to generation 15 and outperforms most other methods most of the time.

This indicates that in this problem the dynamics of the length distribution

is important, and GP benefits from exploring short programs for 10 or 15

generations and then progressively moves towards sampling longer programs,
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Figure 6.5: Best fitness (number of test cases matched) for Even-10 parity
problem using a length limit of 100 nodes and different equalisation targets.

as GP with a simple length threshold does. So, this suggests that there could

be benefits in using dynamic target distributions.

Methods to detect this bias are discussed in the next section.

6.5 Length Class Sampling

As we have a method to directly influence the sampling of particular length

classes, we can now look at two sampling techniques that can help us gain

an insight into the program space that we wish to search. These techniques

are presented in Sections 6.5.1 and 6.5.2.

Note that for the experiments described below the same GP system as in

Section 6.4 was used, but with two small, yet important, differences. Firstly,

in order to remove any initial length bias the GROW initialisation method

has been replaced with the RAND TREE method described in [Iba, 1996].

Secondly, to show that useful insights into the program space of a problem
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Figure 6.6: Best fitness (minus mean squared error) for Poly-10 symbolic re-
gression problem using a length limit of 100 nodes and different equalisation
methods.

can be achieved without undue computer resources, smaller length limits of

60 and 80 nodes and a much reduced population size of 1,0006 have been

used.

6.5.1 Single Length Classes

Using the RAND TREE method we can sample without bias specific length

classes. We can, therefore, look at the sampling of individual classes in

isolation. For our experimentation the search space was divided into 15

equal length classes with each class sampling two distinct program lengths

e.g. 1 and 3 for the first class, 5 and 7 for the second etc7. The objective

was to find out which area (length class) of the search space would appear

preferable to a GP system in the early generations of a run.

6As we have used a smaller population size we cannot directly compare the best fitness
results reported in this section with those reported in the previous section.

7Even sized programs are not possible for 2-ary trees.
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For the Even-10 problem (Figure 6.7) we can see quite clearly that there

is a small threshold where potential solutions cannot achieve anything better

than 512 correct classifications, exactly half the total possible. However, as

we move to larger program sizes we can see a distinct improvement in fitness.

Selection will, therefore, quickly guide GP to larger programs in the early

stages of a GP run.

Figure 6.8 shows that, for the Poly-10 problem, when we initially sam-

ple the program space, we find that the smallest programs do indeed have

relatively better fitness than their larger counterparts. This explains GP’s

concentration in this area during earlier generations in the experimentation

reported in Section 6.4. Of course, these areas do not contain optimal so-

lutions: we need at least 19 nodes to achieve that. However, to an initial

random sampling these areas display a higher proportion of relatively fit

programs than those of the larger program size search spaces sampled. This

explains why without operator equalisation GP first samples the short pro-

grams but then quickly moves towards the longer programs, where, upon

sufficiently sampling, better solutions can be found. This also explains why

equalisation with a reverse triangular distribution does well initially, but

cannot compete with standard GP later on (see Figure 6.6). Finally, it also

explains why equalisation with distributions that sample the longer pro-

grams more frequently, such as the reverse exponential distribution, produce

much worse fitness than standard GP and reverse triangular equalisation,

initially.8

8The fitness plot for the reverse exponential distribution in Figure 6.6, however, remains
parallel to the plot of standard GP, suggesting that given enough generations operator
equalisation with this distribution would eventually catch up.
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Figure 6.7: Best fitness for Even-10 problem sampling 15 distinct size classes
using the RAND TREE method. Results are averages over 100 samples of
1,000 individuals each (1,000=GP population size).

6.5.2 Multiple Length Classes

Of course the picture may change significantly if we sample two or more

classes, perhaps with differing proportions. Also, what may look like a

good sampling histogram initially (upon the random sampling produced by

initialisation) may later turn out to be sub-optimal after many generations

of GP exploration. So, in this section we look at how the picture changes

when using multiple length classes in combination and when comparing the

initial to the final generation of runs.

To this end, the length distribution was divided into 4 bins of size 20

nodes with each combination of bins sampled using frequencies that were

multiples of 20%. For example, bins 2 and 3 might have frequencies of 40%

each, while bin 1 might have a frequency of 20% and bin 4 a frequency

of 0%. Every combination, including those with multiple empty bins, was

sampled. There were 56 combinations in total. For each the resulting best
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Figure 6.8: Best fitness for Poly-10 problem sampling 15 distinct size classes
using the RAND TREE method. Results are averages over 100 samples of
1,000 individuals each (1,000=GP population size).

fitness values at each generation were tabulated. This produced a large

dataset which can be summarised using multiple linear regression formulas

resulting from fitting the data at generations 0 and 100. The formulae have

the following form:

bestF itness = β0 + β1X1 + β2X2 + β3X3 + β4X4 (6.1)

β0 is the constant term and βi being the coefficient of each of the length

classes Xi, X1 being the smallest class.

After the multiple linear regression was applied to the Even-10 problem

the following formula was found for our initial generation:

bestF itness = 424.897 + 96.256X1 + 103.899X2 + 110.831X3 + 113.911X4

(6.2)

As we can see there is a small improvement in best fitness as we search the
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larger classes. After applying GP search, at generation 100 the improvement

is more distinct as shown by the regression formula:

bestF itness = 509.914 − 36.000X1 − 12.000X2 + 216.276X3 + 342.748X4

(6.3)

For the Poly-10 problem for the first generation we obtain:

bestF itness = −179.595 − 15.509X1 − 54.645X2 − 56.678X3 − 52.763X4

(6.4)

while after 100 generations the picture is somewhat different:

bestF itness = −147.146 − 33.712X1 − 25.438X2 − 46.835X3 − 41.161X4

(6.5)

We can clearly see that for Poly-10 different parts of the search space yield

different results for our initial generation and later stages of GP search. As

one would expect from these results the best and worst combinations for

our 100th generation showed a strong dislike for the third class. A 100%

sampling of which, was indeed our worst result of -215.265, whilst more

interestingly a broader sampling of the surrounding classes yielded the best

results all of which were below -170.

6.6 Conclusions

In this chapter we have introduced operator equalisation, a programatically

simple method that can be easily applied to current experimental environ-

ments that allows us to finely bias GP search to specific program lengths.

In particular, the method can force GP to sample the search space using

static and arbitrary length distributions. This completely and naturally
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suppresses bloat.

This method has been applied to first seeing how simple bias can in-

fluence the results of two different but potentially bloating problems. The

Even-10 parity problem was shown to have a simple positive bias towards

longer programs within the ‘experimentally-friendly’ 100 node limit spec-

ified, whilst the Poly-10 regression problem was shown to have a positive

bias towards the sampling of shorter programs during early generations.

Using simple statistical techniques it has also been shown that we can

use the method to quickly gain information about the search space and the

best way to sample it with GP (with and without equalisation).

The primary aim of bloat free GP is to sample program spaces in such

a way that we allow GP to discover optimal or acceptable near-optimal

solutions without wasting resources searching ever larger spaces with little

return with regard to fitness. Here we have made some strong steps in this

direction. An automatic method of defining the appropriate search space

for a GP problem may not be so far off. For example, there is no reason

why the method introduced in this chapter cannot be applied to the initial

setting of size limits (either maximum or minimum), or even to define a

dynamic schedule for biasing the sampling of programs to certain sizes over

the entire run or during different stages of a GP run.
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Chapter 7

Allele Diffusion and

Structural Convergence

7.1 Introduction

In Chapter 3, a hypothetical model was provided to show that sub-tree

swapping crossover will sample exponentially more shorter programs for a-

ary trees when applied to a flat fitness landscape in the absence of muta-

tion, i.e., when its bias is isolated. This was extended by generalisation to

mixed-arity trees and then to true length-classes (from internal node counts).

Strong empirical support has been provided for the original model and each

generalisation. In this chapter we want to understand what other biases

sub-tree crossover presents beyond its length biases.

One can divide the space of all possible programs into subsets in a num-

ber of ways. As discussed in the previous chapters, one way is to group

programs by the number of nodes in the tree representing them. We will

call each such set a length class. A finer classification would be to divide

the programs by their tree shape. This is what we will call a shape class.
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Figure 7.1: A proposed solution for the Artificial Ant problem (a) and its
associated arity histogram (b).

Each program shape is characterised by the number of primitives/nodes of

each arity it contains. This can provide a (non-unique) signature for the

shape, which we will call an arity histogram, see Figure 7.1 for an example.

Of course, all shapes with a particular arity histogram also have an identi-

cal number of nodes. So, if we group programs by their arity histograms,

we obtain a sub-division of the program space, which is between the length

class and the program shape, in that many shapes (but only one program

size) can correspond to an arity histogram.1

An assumption of the original hypothesis in Chapter 3, indirectly cor-

roborated numerically in [Poli et al., 2007], was that all tree shapes within a

particular length class for a-ary trees would be equally likely, as all correla-

tions present within the shapes would be removed by the crossover operator.

This implies a diffusive process where any node is equally likely to be in any

position within the tree shape. If this diffusion process occurs, we can as-

1Naturally, the distinction between length-class and arity histogram disappears for a-
ary trees. Also, in both the single and the mixed-arity cases, the number of terminals is
always determined by the rest of the arity histogram.
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sume that sub-tree swapping crossover is unbiased in its exploration of the

search space within each length class, i.e., it will explore all programs with

equal probability within each length.

The appropriateness of bias (or lack of it) is problem dependent (see No

Free Lunch Theorems [Wolpert and Macready, 1997] discussed in Section

2.1). However, characterising the bias allows us to understand why GP

has been successful in solving certain problems or classes of problems and

unsuccessful with others. Understanding such bias also allows us to explain

how GP searches, when areas of neutrality are reached or when selection

reduces fitness variance in the population during the later stages of a GP run.

It also provides a starting point in the analysis of the effects of combinations

of GP operators.

In Section 7.2, a Cartesian node reference system is used to identify all

possible positions within a tree. Using this, we can, in this chapter, provide

evidence of a diffusion process showing that all correlations between nodes

are broken by repeated application of sub-tree swapping crossover in the

absence of selection and other reproduction operators.

We turn our attention to unique shapes within length classes in Sec-

tion 7.3. As predicted, shape classes are shown, empirically, to have equal

occurrence within each length class for a-ary trees, although as predicted

in Chapter 3, shapes with smaller lengths are more widely sampled than

those of larger lengths. Shapes within length classes for mixed-arity trees,

however, are not sampled equally. Empirical evidence is found to show that

only those within each distinct arity histogram class are sampled in such a

way. This extends previous research showing that the repeated application

of crossover is likely to distribute trees according to their arity histogram.

Earlier results for a-ary representations are a special case of this more gen-
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eral result.

From this characterisation of crossover’s biases, we are in a position to

explain the lack of structural convergence of GP solutions during experimen-

tation [Banzhaf et al., 1998, page 278]. Structural convergence is an effect

seen in other forms of evolutionary search, notably GAs, where it is often

used as a stopping criterion for experimental runs. This is discussed in Sec-

tion 7.4 along with potential broader convergence detection measures, while

in Section 7.5 we summarise our findings.

7.2 Allele Diffusion

Our first task is to test the assumption that crossover will remove any cor-

relations between nodes ensuring that all node labels are equally likely to

be found at any position within trees created purely from the application of

crossover.

Earlier work provided theoretical and empirical evidence to support this

claim for linear GP [Poli et al., 2002], where only internal nodes of arity

1 were used. This, of course, is a specific case of the a-ary assertion in

Chapter 3.

We have chosen to implement the technique used in [Poli et al., 2002]

where a node marker or dye is applied at specific positions within trees

during initialisation. The amount of dye is then recorded for each node

position in subsequent generations.

With linear GP it is possible to compare directly node positions within

length classes. This is not true, however, for a-ary trees or those with

mixed arities. We have chosen, therefore, to implement a Cartesian node

reference system to assign unique node positions for all possible trees based

upon the maximum arity that may be used. The exact method is described
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in [Poli and McPhee, 2003a]. However, it can simply be described as pro-

ducing a template based on a maximal tree, i.e., one where only the largest

arity is used without terminals up until a maximum depth. Each node is

assigned a unique integer number in the order of left-to-right breadth-first

traversal, 1 being the position of the root node.

For each set of experiments, a population of 100,000 individuals was

used. Dye was placed either at reference 1 (the root node) or at reference 5.

These positions have been chosen carefully to ensure dye was applied once to

every tree during initialisation for all chosen arity mixes, hence, simplifying

theoretical calculations. For all experimentation, a flat fitness landscape was

used and sub-tree swapping crossover with uniform selection of crossover

points was applied with no mutation or reproduction. All programs were

initialised using the FULL method with a depth of 3 (depth 0 being the root

node) and all results have been averaged over 20 independent runs.

In Figure 7.2a we can see that for the proportion of internal nodes with

dye, for 2-ary trees of length 11, we move rapidly to our expected value at

each of the first fifteen possible node references.2 For 2-ary trees initialised

with the FULL method with depth 3, each tree will have only one dye node

for each of the possible seven internal nodes, hence, after diffusion has taken

place we expect all positions to have a dye proportion of 1/7 for internal

nodes. Consistently similar results, i.e., convergence to predetermined pre-

dicted proportions are seen in additional experiments for 3-ary trees, and

mixed arity trees of 1, 2, 3, 4 & 5 and 2, 2 & 3 arity nodes.3 These are

shown in Figures 7.2b-d respectively.

2Note, it is possible for internal nodes to reach a position of 31 using our reference
system for 2-ary trees of length 11. A limit of 15 was chosen for consistency across
experimentation.

3All experimentation shown was subjected to a χ2
10% test which showed support for

the assertion that the first 15 positions, at generation 100, would each contain a number
of nodes determined by initial population proportions.
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Figure 7.2: Plots of the relative proportion of non-terminal dye alleles vs
node references for: (a) 2-ary programs of length 11, initial dye reference 1,
expected value: 1/7, (b) 3-ary programs of length 13, initial dye reference
5, expected value 1/13, (c) mixed arity 1, 2, 3, 4 & 5 programs of length
11, initial dye reference 1, expected value: 100,000/1,297,856.85, (d) mixed
arity 2, 2 & 3 programs of length 13, initial dye reference 5, expected value:
100,000/877,648.25. Note, selected tree lengths are smaller than the smallest
trees created by the initialisation method hence data is not recorded for
generation 0. Expected values for mixed arities are calculated from initial
internal node counts.

We next turn our attention to co-occurrence of pairs of non-terminals,

i.e., whether we can consistently see any correlation between dye positions.

In order to do this for each generation a 15 by 15 matrix is produced.

Each row and column records the first 15 positions using the Cartesian
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Figure 7.3: (a) describes a tree made up of mixed 1 & 2 arity internal nodes
with cartesian node references shown as node labels. Dotted lines indicate
node references not sampled by the tree, grey nodes indictate dye positions,
white nodes indicate background. (b) shows the first 7 rows and columns
of the co-occurrence matrix for this tree, D indicates a dye match, B a
background match and N, no match.

node reference system. For the first row in the matrix we determine if the

first node in the tree, using our reference system, has a dye or background

value. Then, for each associated matrix column, we determine whether this

matches (both have dye or background values) for any of the other positions

in the tree and record the match, or lack of, in the corresponding position

in our matrix, i.e., row is determined by node under investigation, column

for nodes to be matched. We repeat the process for each remaining row. A

matrix element (r, c) will record if position r in the tree has the same value

as that of position c. One of three values will be stored. A dye match (dye
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Figure 7.4: Plots of the mean relative frequency of co-occurrence of pairs of
non-terminal alleles vs. generation for 2-ary (a) and mixed arity 1, 2, 3, 4
& 5 (b) programs of length 11. Population initialised as Figure 7.2.

is present in both positions), a background match (no dye was present in

either position), or no match (dye was present in only one position). Note,

diagonals in the matrix are ignored as we will always obtain a match. See

Figure 7.3 for an example of co-occurrence matrix construction.

In Figure 7.4a we can see that for 2-ary trees initialised with dye at

the root position we quickly move to values predicted by a diffusive pro-

cess. Dye sits on the diagonal for the initial generation and hence is not

recorded but then we apply crossover and after approximately 20 genera-

tions we have reached our theoretical proportions: (1/7)2 ≈ 0.020408 for dye

matching, (6/7)2 ≈ 0.73469 for background matching, and 2(1/7)(6/7) ≈

0.24490 for no match. The same is true for our mixed arity trees. For

example, in Figure 7.4b, our population of 100,000 individuals was ini-

tialised with an average of 1,297,856.85 internal nodes, 100,000 of which

where marked with dye, our theoretical value for dye co-occurrence is

(100, 000/1, 297, 856.85)2 ≈ (0.07705)2 ≈ 0.00594. Background matching is,

therefore, (1 − 0.07705)2 ≈ (0.92295)2 ≈ 0.85184 and finally our no match

value will be 2(0.07705)(0.92295) ≈ 0.14223. Each of these values is also
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obtained within 10 to 20 generations. Similar results were also found for

our 3-ary and 2, 2 & 3 mixed arity experiments.4 See [Poli et al., 2002] for

similar results for linear GP, i.e., 1-ary trees.

From both sets of experiments we can see a diffusive process is at work.

Firstly, our expectation of an allele appearing at any node position in a tree

will be determined solely by the proportion found in the overall population

at the initial generation. Secondly, sub-tree swapping crossover will remove

any correlations between alleles for node positions within a tree.

7.3 Shape Bias

There is one final aspect of sub-tree swapping crossover that we should

analyse before we complete our picture: how we sample shapes within length

classes. The length distribution described in Chapter 3 is derived from an

expectation that all shapes will be sampled uniformly within length classes

for a-ary trees. In Figure 7.5, we can indeed provide experimental evidence

for 2-ary trees for our length classes chosen. However, looking at mixed

arities, we can see that there is a distinct bias to sample certain shape

classes more often than others within each length. It was found, however,

(see Table 7.1 as an example) that shapes with the same arity histogram are

sampled uniformly.

This bias for mixed arities is easily explained if we look at the dynamics of

the proportion of primitives of each arity in the population. On average, sub-

tree swapping crossover will replace as much as it removes; this also holds

true for node arities. To illustrate, see Figure 7.6 as an example of how the

proportion of primitives of each arity stays constant in a population when

4For all experiments tree lengths up to a maximum of 40 nodes were analysed, each
showed similar results.
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Figure 7.5: Scatter plots of (unique) shape counts by length for 2-ary (a)
and mixed arity 1, 2, 3, 4 & 5 (b) programs, for the first 9 possible lengths at
generation 500. Population initialised as Figure 7.2. Note, there are far more
possible shapes for larger length classes. Also, these classes are sampled far
less often than those of smaller lengths, hence the greater sampling noise.

sub-tree swapping crossover only is applied for our mixed arity experiments

described earlier. There is, therefore, no bias to remove or resample certain

higher or lower arities. So, not only does average size remain constant

under repeated application of crossover, but also the proportions of each

arity will remain constant within the population. Therefore, any (note,

highly sampled) smaller shapes with an unequal proportion of arities, or

those that can be produced using only a single arity, will modify those node

arities available for other classes. We return to this in Chapter 8 where a

hypothetical model is produced to predict exact length distributions from

arity histograms.

7.4 Convergence

First suggested in [Poli et al., 2002], we can now provide strong evidence

that GP’s inability to structurally converge is caused primarily through

sub-tree swapping crossover’s bias to first distribute a population in terms
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Figure 7.6: Plots of the proportions of arities for each generation. (a) shows
the first 500 generations for a population initialised with 2, 2 & 3 arities. (b)
shows the first 100 generations of a population initialised with 1, 2, 3, 4 &
5 arities, note the highly reduced scale in this example. Due to the reduced
scaling, terminals are not shown in (b) but follow a consistent proportion
as shown in (a), in this case centering tightly around a proportion of 0.675.
Populations initialised as in Figure 7.2.

of length and arity histogram and then to diffuse node labels within those

classes. As fitness converges during the later stages of a run, crossover will

make its program sampling bias emerge, hence, the processes described in

this chapter and Chapter 3 will prevent any structural convergence taking

place. No matter how strong the selection scheme, e.g., even if the mating

pool was populated solely by copies of a single individual (say by using a

tournament size equal to that of the population), the resulting child popula-

Table 7.1: Averaged counts at generation 500 for all program shapes for 2,
2 & 3 arity programs of length 7. Population initialised as in Figure 7.2.

S-Expression Count

( 2 0 ( 2 0 ( 2 0 0 ) ) ) 407.10
( 2 0 ( 2 ( 2 0 0 ) 0 ) ) 407.95
( 2 ( 2 0 0 ) ( 2 0 0 ) ) 401.05
( 2 ( 2 0 ( 2 0 0 ) 0 ) ) 404.25
( 2 ( 2 ( 2 0 0 ) 0 ) 0 ) 410.40

( 3 0 0 ( 3 0 0 0 ) ) 258.75
( 3 0 ( 3 0 0 0 ) 0 ) 258.05
( 3 ( 3 0 0 0 ) 0 0 ) 258.75
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tion created by sub-tree swapping crossover would first contain individuals

of differing lengths and secondly, node labels would be dispersed within

those individuals.5 This would not be true in a GA system using n-point

crossover acting on traditional fixed length vector representations, as there

is no opportunity to alter individual lengths or to move alleles to different

locations.

Although GP using sub-tree swapping crossover will prevent convergence

to a single syntactic structure, it will start to search within ever tighter

bounds and begin to resample heavily smaller classes (see Chapter 5). With

this in mind, we can suggest new stopping criteria for GP runs based on

structural convergence. A very simple method would be to determine the

undue influence of crossover by detecting if the ratio of smaller programs is

higher than some threshold. An inexpensive resampling measure based on

simple program hashes could also be used, possibly causing run termination

when a program has been resampled a pre-specified number of times. Ad-

ditionally, more sophisticated methods may look at the length distribution

as a whole, i.e., a convergence to the model distribution, or in conjunction

with fitness measures, such as a corresponding reduction in fitness variance.

7.5 Conclusions

This chapter has analysed the biases presented by GP sub-tree swapping

crossover in relation to the primitives forming GP trees. Strong evidence

has been presented to show that there is a diffusive process that takes place

within length classes when sub-tree swapping crossover is repeatedly applied

to a flat fitness landscape in the absence of selection. All node labels (alleles)

are equally likely to be found within any possible node position for each

5Barring the unlikely situation where the same crossover points are chosen in all cases.
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length class.

From our evidence, we now know that program shapes are highly likely

to be uniformly sampled within arity histogram classes. a-ary trees are a

special case in that there is only one arity histogram per length class. Hence,

programs will be sampled uniformly within each length. This, however, is

not true for mixed arities, where a more sophisticated process is taking place.

The reasons for this lie within the constant population proportions of each

arity during each generation and the highly sampled smaller programs with

unequal arity proportions.

Although we now know that GP using sub-tree swapping crossover is

highly unlikely to converge in terms of individual program structure, we

do have an understanding of a broader, population based, form of struc-

tural convergence. This allows us to propose a set of convergence measures

that, in the future, might be used for stopping conditions similar to those

found in GA experimentation. Further research is required to establish the

effectiveness of such measures.

In light of the empirical analysis provided here, in the next chapter a

mathematical model similar to those described in Chapter 3 is presented.

As with those models, this provides the probability of GP individual occur-

rence on a flat fitness landscape with the application of sub-tree swapping

crossover. However, this model has been extended to consider exact propor-

tions of internal node arities, i.e., arity histograms.
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Chapter 8

Arity Histogram

Distributions

8.1 Introduction

In Chapter 3, a number of models were proposed to predict a limiting dis-

tribution of GP tree sizes when sub-tree swapping crossover was applied

on a flat fitness landscape. The limiting distribution of internal nodes for

a-ary trees was shown to be a Lagrange distribution of the second kind.

Strong empirical support was found for this model and a generalisation,

still in terms of internal node counts, was obtained for mixed arity trees.

A further generalisation to true length classes, i.e., to also include external

nodes (leaves), was found to be successful for a-ary trees. The generalisation

to true length classes for mixed-arity trees was found to be less successful,

however, at smaller length classes.

In the previous chapter, we provided empirical evidence to suggest that

the probability of the occurrence of an individual in a GP population after

repeated application of sub-tree swapping crossover on a flat fitness land-
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scape would be determined by the individual’s arity histogram.1 If we are

to predict true length distributions for mixed arity cases, we will, therefore,

have to take into account differing internal node arities in our models. For

a-ary trees the arity histogram is, of course, simply the associated internal

and external node counts, which explains our earlier success with the a-ary

models.

In Section 8.2, we extend the reasoning from Chapter 3 and provide

a model to predict individual occurrence using arity histograms. This is

then extended to predict length class frequencies exactly. Strong empirical

evidence is provided in Section 8.3 to support this model; in particular we

show how the model can be successfully fitted to shorter length classes for

mixed arity cases. In Section 8.4, we discuss the sampling implications of the

model and its relationship to the work presented previously in this thesis.

Finally, we summarise our findings in Section 8.5.

8.2 Arity Histogram Model

From the work in the previous chapter, we know that we wish to predict the

occurrence of an individual with a particular arity histogram. If we choose

na to represent a count of arity a nodes, we can define a particular arity

histogram of an individual, as the tuple (n0, . . . , namax). Note, n0, is the

number of leaves, i.e., nodes with an arity of zero. Using our new notation

we can term our target probability, Pr{n0, . . . , namax}.

Below, we will attempt to identify this function by means of generalisa-

tion from previous results and intuition. The ‘acid test’ for the result of our

generalisation will be whether or not it fits the empirical data in a variety

of conditions.

1The set of counts for each arity.
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Let us start by reviewing Equation 3.22, the original model for a-ary

representations, shown below for reference:

Pr{n} = (1 − apa)

(

an + 1

n

)

(1 − pa)
(a−1)n+1 pn

a

We can see that in order to generalise it, we need to introduce the concept

of multiple arities, particularly the associated pa and na values.

First, we postulate that we now have a set of pa values each associated

with a single arity. If we interpret these as forming a probability distribution,

we can then imagine that product apa in the first term of the equation,

actually represents an ‘expectation’ of a.2 If this is correct, then the first

term (1 − apa) should be changed to (1 − ∑

a≥1 apa).

The original binomial coefficient term represents the number of ways of

choosing internal nodes of the same arity, a, from the length of the resulting

tree, an + 1. We need to alter this by selecting each arity count, na, from

the tree length that can be built with this collection of arities,
∑

a≥1 ana+1.

Our binomial coefficient term, therefore, becomes the multinomial coefficient
(

∑

a≥1 ana+1
n0,...,namax

)

, where n0 is the count of leaves, n1 is the count of the functions

with arity 1, etc.

The third term, (1 − pa)
(a−1)n+1, can be broken into two parts. The

superscript is simply the number of terminals for the tree, which we know

to be n0. As with the first term we alter (1−pa) to a mixed arity equivalent,

which we postulate to be (1 − ∑

a≥1 pa).

Continuing this analogy, the final term, pn
a , represents the value, pa, to

the power of the number of nodes, n. We need to now split out the term so

that each value of pa is associated with the appropriate na value. The most

natural way to do this is to turn the final term into the product
∏

a≥1 pna
a .

2In our a-ary model: E[a] = 0 ∗ (1 − pa) + a ∗ pa = apa.
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Putting this altogether, our new, mixed arity model becomes:

Pr{n0, . . . , namax} = (1 −
∑

a≥1

apa)

(∑

a≥1 ana + 1

n0, . . . , namax

)

(1 −
∑

a≥1

pa)
n0

∏

a≥1

pna
a

(8.1)

Note, the introduction of counts for program leaves will only affect the

second term and third terms. On closer inspection we can also see that there

is in fact no need to calculate p0.
3

Next, we need to create a model that will turn arity histogram probabil-

ities into those of length classes. The set of arity histograms that represent

a particular program length ℓ can be defined as:







n0, . . . , namax :
∑

a≥1

ana + 1 = ℓ







(8.2)

We can, therefore, calculate the probability of a particular program

length by summing the probabilities for each of the set of associated ar-

ity histograms, i.e.,

Pr{ℓ} =
∑

n0,...,namax :
∑

a≥1 ana+1=ℓ

Pr{n0, . . . , namax} (8.3)

8.3 Empirical Validation

As in Sections 3.3 to 3.6, in order to verify empirically the distribution

proposed, a number of runs of a GP system in Java was performed. A

relatively large population of 100,000 individuals was used in order to reduce

drift of average program size and to ensure that enough programs of each

length class were available. The FULL initialisation method was used with

3If we define p0 to be 1 −
∑

a≥1
pa and allow the fourth term to run from a = 0, we

could also omit the third term.
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non-terminals being chosen with uniform probability. Each run consisted of

500 generations. All results were averaged over 20 runs.

In order to confirm that our model still accurately predicts a-ary distri-

butions, Figures 8.1 and 8.2 show the model and observed data from the

final generation for 1-ary and 2-ary trees. pa values for the model have been

calculated using Equation 3.23.

It has not been possible to produce formulae to pre-determine each value

of pa for mixed arity representations. However, we can still fit the model

to our experimental data. This fit was achieved using a hill climber search

program (see Section 2.1) that reduced the mean squared error from that

observed in the final generation and that predicted by the distribution, by

altering the pa values.

As we can see in Figure 8.3 and Figure 8.4 we can now fit our true length

classes for mixed arities at earlier lengths. The model now not only captures

both the smooth descending values for a-ary length distributions but also

the fluctuating early values for mixed arity representations.

In essence, we now have evidence that we have isolated the fundamen-

tal components of the limiting length distribution for sub-tree swapping

crossover. Further work is required to make this a predictive model, i.e., we

need a formula to determine pa values for mixed arity representations. How-

ever, we can now place the findings from earlier in this thesis into further

context. This is discussed in the next section.

8.4 Sampling Implications

From our analysis we can now be confident in the assertion that the limit-

ing distribution of program lengths for a GP population after the repeated

application of sub-tree swapping crossover, is determined solely by the mix
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Figure 8.1: Comparison between empirical size distributions and an arity
histogram model created with arity 1 functions and terminals only, initialised
with FULL method (depth = 15, initial mean size µ0 = 16.00, mean size
after 500 generations µ500 = 16.15). Population size = 100,000.

of node arities in the initial population.

From the work provided in Chapter 7, we can see that there is no bias

for sub-tree swapping crossover to place a particular node label at any po-

sition in a tree. All programs with a particular arity histogram are, there-

fore, equally likely to be sampled by the application of sub-tree swapping

crossover in the absence of other variation operators. By extension, we can

also say that all programs of a certain length are equally likely to be sampled

for a-ary trees; this is not true, however, for mixed arity representations. If

one wishes to ensure uniform sampling within length classes, alternative

variation operators will need to be devised when mixed arity representa-

tions are employed. Using the operator equalisation method described in

Chapter 6 does not guarantee uniform sampling within the length classes

desired.4 We could of course extend the method to sample uniformly within

4Although, interestingly, as we have chosen to use 2-ary representations we can be
reasonably confident that the sampling was unbiased within length classes for the results
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Figure 8.2: Comparison between empirical size distributions and an arity
histogram model created with arity 2 functions and terminals only, initialised
with FULL method (depth = 3, initial mean size µ0 = 15.00, mean size after
500 generations µ500 = 14.19). Invalid even lengths are ignored. Population
size = 100,000.

length classes by storing a histogram of arity histograms, possibly using a

hashing function as lengths increase.

Looking more closely at Equation 8.1, we can see that the first term

will remain constant for all arity histograms whilst the second term, the

multinomial coefficient, will increase the probability for arity histograms

that can produce more shapes. The third and final terms decrease rapidly

with increasing values of the na’s producing the eventual smooth curve.

Therefore, arity histograms presented to Equation 8.3, that can produce

more shapes than other arity histograms in a particular length class, will

have a higher probability of being sampled within that class.

Disregarding the fluctuations shown in earlier length classes for mixed

arity classes, Equation 8.3 is decreasing. The crossover bias theory presented

in Section 4.5 was originally proposed based upon evidence presented by the

presented in Chapter 6.
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Figure 8.3: Comparison between empirical size distributions and an arity
histogram model obtained by best fit for trees created with arity 1 and 3
functions and terminals only, initialised with FULL method (depth = 3,
initial mean size µ0 = 15.00, mean size after 500 generations µ500 = 15.75).
Population size = 100,000.

internal node count models ([Dignum and Poli, 2007] and Chapter 3) and

their decreasing nature. Equation 8.3 and the empirical work provided in

Section 8.3 provides extra evidence to support this theory in that our more

pertinent true length model varies only slightly from the smooth descent

described for the internal node models presented in Chapter 3.

The internal node and true length a-ary models presented in Chapter 3

can be used as predictive models without modification. The true length

model for mixed arity trees, presented in Section 3.6 remains a strong model

for approximation if an exact fit for earlier length classes is not required.

One could use this to implement broad convergence measures suggested in

Section 7.4, for example. If a more exact model was required, a fit to internal

node counts could be used, albeit with a slight programming overhead.

The generalised mixed arity internal node model (Equation 3.27) is also
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Figure 8.4: Comparison between empirical size distributions and an arity
histogram model obtained by best fit for trees created with arities 1, 2, 3
and 4 functions and terminals only, initialised with FULL method (depth
= 3, initial mean size µ0 = 25.38, mean size after 500 generations µ500 =
23.72). Population size = 100,000.

an interesting starting point to further analyse the arity histogram model

proposed here. We can ask how was such a generalised model so successful

when only leaves were removed from the investigation? For example, would

Equation 8.3 collapse to Equation 3.27 with further analysis? This is left to

future work.

8.5 Conclusions

In light of the findings in Chapter 7, in this chapter we have extended our

work from Chapter 3 to now model limiting length distributions for sub-

tree swapping crossover using arity histograms as opposed to internal node

counts and average arities. This extension has allowed us to accurately

model not just the smooth descending curves of the internal node models

but also those of the more rugged true length distributions, i.e., those that
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also include leaves.

Although the model does not yet have the predictive power of the models

presented in our earlier chapters, as we do not have formulae to determine

appropriate pa values for mixed arity representations, this model has isolated

the fundamental components of sub-tree swapping crossover. From this,

we can now place our earlier findings into further context and have more

confidence in the assertions made.
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Chapter 9

Conclusions

9.1 Contributions Made by this Thesis

In this section, we list and describe the contributions made by this thesis.

In Chapter 2, the concept of automatic programming was introduced,

i.e., to enable a computer to build computer programs to a desired quality

with minimal human intervention. Care was taken to portray GP as only

one method that could be used to achieve such an aim. GP is an AI search

technique that uses the analogy of Darwinian evolution to iteratively im-

prove programs using a population of solutions, a selection method and a

number of variation operators.

To understand the likelihood of success for GP, or any other search

method, in discovering acceptable solutions to specific problems, or classes

of problems, we need to understand the biases of their associated operators.

As part of this process, this thesis takes one operator, GP sub-tree swap-

ping crossover, and analyses the biases inherent in its application. In light of

nature of program spaces theories, particular attention is paid to the effect

of its application on program length.
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Chapter 3 provides a number of theoretical models (with strong empirical

validation) that determine the limiting distribution of program sizes for

populations under the repeated application of sub-tree swapping crossover.

In effect this, therefore, reveals the bias of this operator in terms of program

length sampling. This distribution was found to be a Lagrange distribution

of the second kind. The distribution has two parameters: an average of

internal node arities and the mean program size of the initial population.

Under typical GP initialisations, these parameters produce a distribution

that will sample ever decreasing program sizes.

In Chapter 4, we analysed how these models help us understand typ-

ical GP search. The bias to sample smaller programs combined with the

combinatorial explosion of possible programs as length increases, makes it

increasingly difficult for GP to sample unique programs at larger lengths.

By increasing average program length in initial GP populations, hence al-

tering one of the parameters of the Lagrange distribution, it is shown that

we can reduce this bias. This chapter also looked at how initialisation can

affect program growth in light of sub-tree swapping crossover bias. From

this work, a new bloat theory has been produced called crossover-bias. This

chapter also contains work regarding the effects of length limits on program

sampling, showing that such limits can increase the bias to sample smaller

programs, hence accelerating bloat (up to the limit).

On the basis of the program resampling results presented in Chapter 4,

Chapter 5 introduced a novel technique to penalise resampling called sam-

pling parsimony. This works by altering program fitness, after a pre-defined

number of resamples, during a GP run. This was shown to have a direct

affect on program growth which could be explained using the crossover-bias

bloat theory.
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To directly control the sampling of program lengths by GP, bypassing the

biases exhibited by sub-tree swapping crossover or any other variation oper-

ator, Chapter 6 introduced another novel technique called operator equali-

sation. This took the form of a wrapper that can be placed around existing

reproduction code which enables GP to sample program lengths according

to pre-defined distributions. In a number of experiments, this was shown to

provide important information regarding the nature of GP search in relation

to the problems to which it was applied. It was also shown, that for certain

problems, GP search could be improved by simple alteration of length bias.

In Chapter 7, we looked at sampling by sub-tree swapping crossover

within length classes. Empirical evidence was provided to show that there

was no bias for node labels to be placed at particular tree locations and

that a diffusive process was taking place. For the a-ary tree representations

we could, therefore, conclude that programs would be sampled by sub-tree

swapping crossover uniformly within length classes. However, further evi-

dence was provided to show that for mixed arity tree representations, pro-

grams with certain counts of node arities were found to be more likely to be

sampled within length classes than others. Such arity counts were termed

arity histograms.

In Chapter 8 we extended our theoretical length models to incorporate

arity histograms. Strong empirical evidence was provided to support the

model provided, particularly for the early length classes of mixed arity rep-

resentations, an area that had previously been found difficult to model.

Finally, from the analyses provided in Chapters 3, 7 and 8 we can con-

clude that GP is highly unlikely to converge, structurally, to a single solution

when sub-tree swapping crossover is applied. However, if fitness values can

converge, a broader form of structural convergence will take place.
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9.2 Future Work

Within this thesis, we have looked at proposing and validating theoretical

limiting length distributions by comparison to observed data. Later observed

generations have been used, typically 500, to ensure we have indeed reached

a limit. As we now have confidence in these models, a further area of research

is to determine how quickly a population will converge to such a distribution,

i.e., to analyse conditions that may affect the strength of our biases. This

has particular relevance to the alternative structural convergence measures

described in Section 7.4, i.e., to allow us to determine how long we would

need to wait to see evidence of such convergence. Whether such methods

can improve the performance of GP runs, compared to existing GP stopping

methods, remains an interesting area of research.

In [Galvan-Lopez et al., 2008] initial attempts have been made to look

at length distributions when an artificial form of neutrality is applied. The

ability for neutrality to help solve certain problems in GP may lie within its

effect on the sampling of certain program sizes. Continuation of this work

may shed further light onto the effects of neutrality.

Daida and others have looked at structural difficulty problems in GP

[Daida and Hilss, 2003, Daida et al., 2003, Hoai et al., 2006]. In effect, cer-

tain tree structures are difficult to obtain using sub-tree swapping crossover,

particularly an inability to produce very full or narrow trees. This thesis

concludes that there is no shape bias for sub-tree swapping crossover, only

a bias to sample arity histograms, their structures being sampled equally

within histogram classes. A process involving both crossover and selection

must be involved in such structural bias. The bloat theory presented in

Section 4.5 was produced looking at the combined effects of GP operators;

similar research, therefore, seems likely to produce an explanation of this
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problem.

The operator equalisation method described in Chapter 6 has only cur-

rently been tested against static length distributions. There is no reason

why the method cannot be enhanced to follow a schedule, i.e., to change at

each generation the distribution desired. Another idea is to alter the desired

distribution dynamically to explore current high fitness peaks. We may also

wish to extend our method to explore length classes uniformly or to penalise

resampling associated with smaller classes.

Finally, this work aims to provide an understanding of the biases of sub-

tree swapping crossover. In order to achieve the wider aim of automatically

matching search operators to problems we would need to develop a form

of language to match their associated characteristics. Rather than simply

matching an existing operator, one can foresee a generative language that

could create search operators with required biases on demand.

9.3 Summary

This thesis has analysed the biases of sub-tree swapping crossover as used

within typical GP experimentation. It has provided a number of models

to show how, with repeated application, the operator will sample the pro-

gram space. Particular attention has been given to the sampling of program

lengths although the sampling of programs within those classes has also been

addressed. From this work, important results have been provided regard-

ing GP search in the areas of resampling, structural convergence and bloat.

Practical experimental advice has also been produced notably relating to

initilisation and the setting of size limits. In light of this research, the the-

sis has also introduced two novel additions to typical GP implementation,

sampling parsimony and operator equalisation, both of which have shed fur-
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ther light on GP search. The work also provides a starting point for further

analysis of GP search and the categorisation of search operator biases.

135



Bibliography

[Angeline, 1996] Angeline, P. J. (1996). An investigation into the sensitivity
of genetic programming to the frequency of leaf selection during subtree
crossover. In Koza, J. R., Goldberg, D. E., Fogel, D. B., and Riolo, R. L.,
editors, Genetic Programming 1996: Proceedings of the First Annual Con-
ference, pages 21–29, Stanford University, CA, USA. MIT Press.

[Angeline and Pollack, 1992] Angeline, P. J. and Pollack, J. B. (1992).
The evolutionary induction of subroutines. In Proceedings of the Four-
teenth Annual Conference of the Cognitive Science Society, pages 236–241,
Bloomington, Indiana, USA. Lawrence Erlbaum.

[Avery et al., 1944] Avery, O. T., MacLeod, C. M., and McCarty, M. (1944).
Studies on the chemical nature of the substance inducing transformation
of pneumococcal types. Journal of Experimental Medicine, (79):137–159.
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Vanneschi, L., and Esparcia-Alcázar, A. I., editors, Proceedings of the 10th
European Conference on Genetic Programming, volume 4445 of Lecture
Notes in Computer Science, pages 55–67, Valencia, Spain. Springer.

[Snyder and Qi, 2004] Snyder, W. E. and Qi, H. (2004). Machine Vision.
Cambridge University Press, Cambridge, England.

[Soule and Foster, 1997] Soule, T. and Foster, J. A. (1997). Code size and
depth flows in genetic programming. In Koza, J. R., Deb, K., Dorigo,
M., Fogel, D. B., Garzon, M., Iba, H., and Riolo, R. L., editors, Genetic
Programming 1997: Proceedings of the Second Annual Conference, pages
313–320, Stanford University, CA, USA. Morgan Kaufmann.

[Soule and Foster, 1998a] Soule, T. and Foster, J. A. (1998a). Effects of code
growth and parsimony pressure on populations in genetic programming.
Evolutionary Computation, 6(4):293–309.

[Soule and Foster, 1998b] Soule, T. and Foster, J. A. (1998b). Removal bias:
a new cause of code growth in tree based evolutionary programming. In
1998 IEEE International Conference on Evolutionary Computation, pages
781–186, Anchorage, Alaska, USA. IEEE Press.

[Tackett, 1995] Tackett, W. A. (1995). Mining the genetic program. IEEE
Expert, 10(3):28–38.

[Teller and Veloso, 1996] Teller, A. and Veloso, M. (1996). PADO: A new
learning architecture for object recognition. In Ikeuchi, K. and Veloso,
M., editors, Symbolic Visual Learning, pages 81–116. Oxford University
Press.

[Truss, 1999] Truss, J. K. (1999). Discrete Mathematics for Computer Sci-
entists. Addison Wesley, Harlow, England.

[Watson and Galton, 1875] Watson, H. W. and Galton, F. (1875). On the
probability of the extinction of families. The Journal of the Anthropolog-
ical Institute of Great Britain and Ireland, 4:138–144.

[Watson and Crick, 1953] Watson, J. D. and Crick, F. H. C. (1953). A
structure for deoxyribose nucleic acid. Nature, (171):737–738.

[Wolpert and Macready, 1997] Wolpert, D. H. and Macready, W. G. (1997).
No free lunch theorems for optimization. IEEE Transactions on Evolu-
tionary Computation, 1(1):67–82.

[XMLCoordinationGroup, 2008] XMLCoordinationGroup (2008). Extensi-
ble Markup Language (XML). http://www.w3.org/XML/.

145



[Zhang and Mühlenbein, 1993] Zhang, B.-T. and Mühlenbein, H. (1993).
Evolving optimal neural networks using genetic algorithms with Occam’s
razor. Complex Systems, 7:199–220.

[Zhang and Mühlenbein, 1995] Zhang, B.-T. and Mühlenbein, H. (1995).
Balancing accuracy and parsimony in genetic programming. Evolutionary
Computation, 3(1):17–38.

[Zhang et al., 1997] Zhang, B.-T., Ohm, P., and Mühlenbein, H. (1997).
Evolutionary induction of sparse neural trees. Evolutionary Computation,
5(2):213–236.

146


