
Design Optimization Integrating the Outer Approximation
Method with Process Simulators and Linear Genetic

Programming

Larry M. Deschaine, PE Frank D. Francone
Science Applications International Corporation Register Machine Leaning Technologies
Larry.M.Deschaine@alum.mit.edu ffrancone@aimlearning.com

Abstract

Fast process optimization is a challenge. Processes are
often complex and the intricate simulators written to solve
them can take hours or days per simulation to run.
Optimization techniques that require many calls to a
simulator can take days or months to solve. While
advances in optimization algorithms, such as the outer
approximation method have reduced the solution time by
a factor of ten or more when compared to other methods,
long solutions times still can occur. This work explores
the development of simulating a simulator to enable
optimal solution development in an accelerated time
frame. The technique used to develop the simulated
simulator is linear genetic programming (LGP). LGP
approximated a complex industrial process simulator that
took hours to execute per run with a high fitness program
- applied (testing) data set R2 fitness of 0.989. The LGP
solution executes in less than a second. This success
opens up the possibility of optimizing functions faster
using these LGP derived high fitness simulator
approximations. Since the LGP simulated process
simulator now executes in less than a second, as opposed
to hours, using an intensive multiple call optimization
technique such as genetic algorithms and evolutionary
strategies is now also feasible.

Outer Approximation Method

The optimization model employed in this work is the
Outer Approximation Method, as presented by Karatzas
and Pinder (1993 and 1996). The method is a global
minimization technique that uses a cutting plane approach
to determine the optimal solution. The algorithm starts by
determining a polytope that encloses the feasible region,
which is defined by a set of vertices. The feasible region
is determined as the space where all of the constraints are
satisfied.

The objective function, the function to be minimized,
is formulated as a concave function. Based on the

characteristic property of concave functions that the
minimum always occurs at one of the most outer points of
the feasible region, the algorithm determines the vertex of
the enclosing polytope that minimizes the objective
function. Next, it examines if the selected vertex is
feasible. If all constraints are satisfied, it declares this
vertex as the optimal solution. Otherwise, a cutting plane
is introduced that eliminates this vertex and its
surroundings, creates a new enclosing polytope that is a
better approximation of the feasible region and the
process is repeated. The goal of this process is not to
determine the best approximation of the feasible region,
but rather to determine the most extreme point of the
feasible region without eliminating any part of it (Fig. 1).

Figure 1. The Concept of the Outer Approximation
Method.

 This method solved a problem about 15 times faster
than MINOS. While it is a very efficient, effective
approach, solution speed can be accelerated even more if
the simulation model can be accelerated. Between 20 and
100 calls to the simulator is common using this method.

Linear Genetic Programming
LGP is examined for possible use in simulator
acceleration. LGP is the direct evolution of binary
machine code through the use of evolutionary operators
such as crossover and mutation. It searches for the
structure of the solution [the computer program] and the
constants simutaneously. In effect, it will simulate the
simulator. An algorithm that specifically evolves a
computer program at the machine code level [Nordin
1994, Nordin & Banzhaf 1995(a&b), Nordin, Francone &
Banzhaf, 1996, and Nordin, 1999] was used in this work.
An evolved LGP program is a sequence of binary
machine instructions. Thus, an evolved LGP program
might be comprised of a sequence of four, 32-bit machine
instructions. When executed, those four instructions
would cause the CPU to perform operations on the CPU’s
hardware registers. Here is an example of a simple, four
instruction LGP program that uses three hardware
registers:

register 2 = register 1 + register 2 (1)
register 3 = register 1 - 64 (2)
register 3 = register 2 * register 3 (3)
register 3 = register 2 / register 3 (4)

One of the three hardware registers in this sample LGP
program is selected as the output register. Once the output
register is selected, a fitness evaluation for this sample
LGP program would consist of the following steps:

1. Initialize the hardware registers with the input
values for the fitness instance;

2. Execute the above four instruction program {(1)-
(4)} on the hardware registers as initialized; and

3. Evaluate the value in the selected output register
for fitness against the fitness function.

While LGP programs are apparently very simple, it is
actually possible to evolve functions of great complexity
using only simple arithmetic functions on a register
machine [Nordin & Banzhaf 1995b]. It is this concept,
whether this LGP algorithm can evolve a complex
function with a high degree of fitness using various
register functions that was tested.

Implementation. The process in which evolved programs
are produced is the tournament. The LGP tournament
algorithm is constructed as follows:

1. Initialize a Population of Programs. Create a
population of randomly generated programs.

2. Tournament Contest. Randomly select four
programs from the population. Evaluate them for

how well they map the input data to the output
data. This step is known as the program “fitness”
evaluation. Two programs are selected as
winners, and the other two are tagged as losers.

3. Transform the “Winner” Programs. The two
“winner” programs are then copied and
transformed probabilistically by:

• Exchanging parts of the “winner” programs
with each other to create two new programs
(crossover); and/or

• Randomly changing each of the tournament
winners to create two new programs
(mutation).

4. Replace the “Loser” Programs. Replace the
“loser” programs in the population with the
transformed “winner” programs. The winners of
the tournament remain in the population
unchanged.

5. Iterate Until Convergence. Repeat steps two
through four until a program is developed that
predicts the behavior sufficiently.

Search Parameters. Various parameters are used to
direct and facilitate the search for a good solution. These
are described below.

Crossover Rate. Crossover operates by exchanging
sequences of instructions between two tournament
"winners". This results in two programs being inserted
into the population in place of the two "losers" in that
tournament.

Mutation Rate. Mutation transforms programs in the
LGP algorithm. Mutation has the effect of causing
random changes to occur in tournament "winners". The
mutation is applied probabilistically to all programs that
have won tournaments, regardless of whether a "winner"
has been selected for crossover.

Reproduction Rate. Reproduction copies a program and
places the copy in the population in addition to the
original program. It is a function of the crossover and
mutation rates as follows: 100-mutation- (crossover*(1-
mutation)).

Demes. A deme is a subset of the program population to
essentially isolate groups of populations from each other.
This paradigm mimics biologists belief that genetic

diversity is enhanced when populations are separated
from each other geographically.
Number of Demes. The number of demes pertains to the
how the population of programs is divided.

Crossover Percentage Between Demes. As discussed
above, cross over occurs between programs in the same
population. By dividing the population into demes,
crossover now occurs both within each deme as well as
between demes. The percentage of crossover between
demes determines the percent of tournaments that will
result in crossover between programs in adjacent demes.
The algorithm works as follows:

1. Select a deme at random
2. Select one of the two adjacent demes at random
3. Select two programs from each of the selected

demes, the better of which is chosen for
crossover.

4. Crossover the selected program from each deme.
The offspring of the crossover replace the two
tournament losers.

Inter-Deme Migration Rate. This controls the rate at
which the percent of tournaments that result in migration
of programs between adjacent demes is set. The algorithm
works as follows:

1. Randomly select a deme
2. Randomly select one of the two adjacent demes
3. Randomly select one program from each deme.
4. Evaluate the fitness of each program, and replace the

worse program with the better one from the other
deme.

Dynamic Subset Selection. Dynamic subset selection
uses a subset of the training set to help evolve solutions
that are more generalized. It works by periodically
changing which subset of the training set is used for
training purposes, and hence helps avoid over training or
memorization.

Selection by Age. The algorithm keeps track of the usage
of each individual training instance. The training set is
chosen in proportion of the time since the training
instance was last used. The least recent training instances
are preferentially chosen during the next training set
assembly.

Selection by Difficulty. The algorithm also keeps track of
how difficult the population is at finding a particular
training instance. By setting this parameter, solutions that
are more general are found to the more difficult portions
of the training set.

Stochastic Selection. This parameter is used to select
training instances randomly.

Training Subset Change Frequency Equivalents. This
parameter determines how frequently the training subset
is changed, in generation equivalents. Since the LGP uses
the tournament selection criteria, a generation equivalent
is one half of the population size.

Linear Genetic Programming Analysis

The LGP technique was previously demonstrated as
being resistant to developing false positive relationships
[Deschaine, 2000]. The first test for this work was to
create a synthetic data set based on widely known and
used physical law; Darcy’s Law. It is a simple linear
equation that describes the flow of water through porous
media. The equation is Q=KIA, where Q = flow [L3/T], K
= hydraulic conductivity [L/T], I = gradient [L/L], and A
= area [L2]. The data set was constructed by adding 10%
random variation to the inputs in an attempt to confuse the
algorithm. The solution (after intron removal,
simplification and optimization) is precisely Darcy’s Law,
represented in ANSI C as:

f[0]+= v[2] (1)
f[0]*= v[0] (2)
f[0]*= v[1] (3)

The second test was to use a data set that contained
both the input [five production related variables] and the
output from a complex process simulator [Rice, 2001].
The data set consisted of 7547 solutions generated from
various values from the five input variables common to
making production decisions.

The LGP analysis was designed to capture the
structure of the underlying data set. This was done by
randomly dividing the data set into three subsets:

Training: 2506 data points,
Validation: 2520 data points, and;
Applied (or Testing): 2521 data points.

The learning occurred on the training data set. The
best evolved programs were selected using the training
and validation data set. Whether the “true” structure of
the solution was captured is again measured by using the
applied data set. In other words, the applied data (also
referred to as testing data) played no part in training or in
best program selection. Accordingly, the results on the
applied data measure how well the evolved solution
generalizes to unseen data.

The results were as follows:

FITNESS [R2] Single Solution Team Solution
Training 0.9934 0.9975
Validation 0.9893 0.9939
Applied 0.9783 0.9889

These results were obtained using the LGP system
described in [Francone, 2001]. Multiple runs were
conducted randomizing the values for population size,
maximum program size, maximum number of FPU
registers, DSS subset size, percent by difficulty, crossover
rate, homologous crossover rate, and mutation rate. The
reported results represent the progress at the end of the
218th run [64,290 generation equivalents]. The solution
was still improving at this time, albeit slowly.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 501 1001 1501 2001 2501

PROCESS SIMULATOR
[SORTED DATA POINT NUMBER]

LG
P

SO
LU

TI
O

N

Figure 2. Process Simulator vs. LGP Solution with an
R2 of 0.9889 – Applied Data Set Results.

As can be seen on the figure, for all but six of the 2521
applied data points, the agreement is good, and for most
of the data set, the agreement is very good, as evidenced
by the high R2 fitness. A second batch run achieved R2

fitness on the applied data set of 0.989. The fitness on the
training and validation data sets is 0.997. This
demonstrates analysis repeatability. For comparison,
using a statistical regression approach on this data set
yielded an R2 fitness of 0.80.

Summary and Conclusions

Linear Genetic Programming is demonstrated to be able
to represent a complex simulator with a much faster
computer code and a high degree of accuracy [R2 =0.989
to 0.997]. This LGP solution executes on a standard PC in
less than a second. The solution is written in assembler,
ANSI C and JAVA. Providing a representative function
of a simulator that executes with such speed and accuracy
opens up the option for not only solving faster
optimizations using the Outer Approximation method, but
now also genetic algorithms and other evolutionary
optimization techniques as well [as discussed in

Deschaine, 2001]. Once an optimal solution is determined
using an LGP simulated simulator, the solution cam then
be input to the full simulator for verification, as
warranted.

References

Deschaine, 2000. Deschaine, L. M., Tackling real-world
environmental challenges with linear genetic
programming, PCAI magazine, volume 15, number 5,
September/October, 2000, pp. 35-37.

Deschaine, 2001. Deschaine, L. M. McCormack, J., Pyle,
D., And Francone, F., Genetic algorithms and
intelligent agents team up: techniques for data
assembly, preprocessing, modeling and optimizing
decisions. PCAI magazine, May June 2001, pp 38-44.

Francone, F., Discipulus Users Manual, Version 3.0.
Register Machine Learning Technologies, 2001.

Karatzas 1993. Karatzas, G.P. and Pinder, G.F.,
Groundwater management using numerical simulation
and the Outer Approximation Method for global
optimization, WWR, Vol. 29, No. 10, pp. 3371-3378,
October 1993.

Karatzas 1996. Karatzas, G.P. and Pinder, G.F. The
solution of groundwater quality management problems
with a nonconvex feasible region using a cutting plane
optimization technique, WWR, Vol. 32, No. 4, pp.
1091-1100, April 1996.

Nordin, J.P. 1994. A Compiling Genetic Programming
System that Directly Manipulates the Machine Code.
In Advances in Genetic Programming, K. Kinnear, Jr.
(ed.), Cambridge MA: MIT Press.

Nordin, J.P., Banzhaf W. 1995a, Complexity
Compression and Evolution. In Proceedings of Sixth
International Conference of Genetic Algorithms,
Morgan Kaufmann Publishers, Inc.

Nordin, J.P., Banzhaf, W. 1995b. Evolving Turing
Complete Programs for a Register Machine with Self
Modifying Code. In, Proceedings of Sixth International
Conference of Genetic Algorithms, Morgan Kaufmann
Publishers, Inc.

Nordin, J.P., Francone, F. and Banzhaf, W. 1996.
Explicitly Defined Introns and Destructive Crossover in
Genetic Programming. Advances in Genetic
Programming 2, K. Kinnear, Jr. (Editor), Cambridge
MA: MIT Press.

Nordin, J.P., 1999. Evolutionary Program Induction of
Binary Machine Code and its Applications. Krehl
Verlag.

Rice, 2000. Brian S. Rice and Robert L. Walton of
Eastman Kodak Company, Industrial Production Data
Set, 2001.

	Larry M. Deschaine, PE					Frank D. Francone
	
	
	Science Applications International Corporation			Register Machine Leaning Technologies

	Dynamic Subset Selection. Dynamic subset selection uses a subset of the training set to help evolve solutions that are more generalized. It works by periodically changing which subset of the training set is used for training purposes, and hence helps av

