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Abstract

The accurate discrimination of unexploded ordnance from
geophysical signals is very difficult. Research has
demonstrated that using a machine learning technique
known as linear genetic programming in concert with
human expertise can extend the accuracy of unexploded
ordnance discrimination past currently published results.
This paper describes how linear genetic programming
offers the promise of creating real-time unexploded
ordnance discrimination.

THE UXO CHALLENGE

When military munitions do not function as intended
or fully detonate, they become unexploded ordnance
(UXO). Many challenges arise if and when the UXO is
found on land destined for use for something other than
military testing or training. [Van Antwerp 2001]. It has
been estimated that more than 16 million acres of land on
closed, transferred, and transferring ranges are potentially
contaminated with UXO [GAO 2001]. The estimated cost
for remediating the U.S. training ranges alone is at least
$14 billion, and this number is likely understated [GAO
2001]. In aggregate, UXO poses a potentially significant
problem in the United States as former military lands are used
for other purposes. The scale grows rapidly if battlefields and
minefields located worldwide are included in this estimate.

Fortunately, it is relatively easy to identify UXO using
a variety of geophysical sensors. Available sensors include
magnetometers; radar; and active electromagnetic, chemical,
and electro-optical sensors. Unfortunately, separating a
UXO anomaly in geophysical data from noise anomalies
or scrap metal originating from successfully detonated
munitions is more difficult. This difficulty results in a
large number of “false alarms” that require dangerous
(and expensive) exposure of the feature, and physical
examination to determine if the source of the feature is
scrap or UXO. As many as 75% of all anomalies investigated
are false alarms such as scrap metal, ordnance debris,
cans, and wire [Butler et al., 2001]. Active research

continues on a number of fronts to enhance the quality of
data collected and the methods of data analysis.

Among the contributing difficulties are the size, shape,
and composition of the UXO. The size can vary from small
arms munitions (such as a 37-millimeter-diameter projectile)
to large-target, airborne-delivered munitions (such as a
2,000-pound bomb that is 477 millimeters in diameter and
1.74 meters long). Shape can vary from spherical (a projected
grenade is 40 millimeters in diameter, and a hand grenade
is 64 millimeters in diameter) to linear (a 4.5-inch rocket
is 114 millimeters in diameter and 1.9 meters long). As for
composition, beyond a variety of explosives that carry
differing chemical signatures, composition can range from
ferrous iron (which is magnetic) in the 2,000-pound bomb to
generally aluminum (which is nonferrous) in rocket bodies.

CURRENT EVALUATION TRENDS AND
LIMITATIONS

It has been determined that geophysical surveys (a) can
detect UXO within definable limits, (b) cannot effectively
discriminate UXO anomalies from “false alarm” anomalies,
and (c) cannot always identify UXO [Butler et al., 2001].
The challenge exists, therefore, to more effectively use the
geophysical data collected. The means to evaluate the
geophysical data traditionally fall into two general areas:
signature matching and analytical modeling.

Signature matching is a technique that has had fair
success. In theory, a particular bomb with a specific weight
and shape should have a unique signature. In practice,
however, a number of things will alter the geophysical
signature that is measured. If carefully performed
geophysical measurements are compared to a database of
historical measurements that have been exposed and
identified, a match of “signatures” and ordnance may be
developed [Damarla and Ressler 2000]. This approach
requires that a significant body of information be gathered
in a consistent fashion for comparison and evaluation.

Beyond these requirements, some specific physical
limitations also constrain this approach. The physical
characteristics of the soil at a particular site may mask the
parameter being measured, resulting in an overall reduced



signature; therefore, the approach is site- and even soil-
specific. In addition, for a particular ferrous metal target, the
orientation of the UXO in the earth (north to south versus
east to west) will present significantly different measurements.
Add the third dimension, and any change in the attitude of
the feature from flat lying to vertical can significantly alter
the measured response. If we consider that the remnant
magnetization of the iron body is dependent upon the
metallurgical properties and the thermal, mechanical, and
magnetic history of the specimen [Breiner 1973] and also
consider the thermal effects due to frictional heating that
occurs when a bomb passes through soil, we can see that a
broad variety of signatures may result from a single type of
target, with a single orientation, within a single soil type.

The modeling approach commonly focuses on the
response of munitions to particular geophysical sensors.
The model-based approach may be either exact or use an
approximate forward-modeling algorithm to determine the
set of model parameters needed to replicate the measured
responses and relating the model parameters to physical
parameters or targets [Khadr et al., 1998]. The variables
associated with remnant magnetization described in the
preceding paragraph are effectively focused to identify a
limited class of ordnance. This kind of approach can be
general as applied to a particular sensor [Norton and
Witten 1998]. Recent advances related to time-domain
electromagnetic methods are summarized and advanced in
Pasion and Oldenburg 2001. There is little information in the
published literature describing integrated sensor analysis for
a more comprehensive interpretation of the geophysical data.

It is the integration of various sensors as well as
expert-derived and machine-learning-derived approaches
that we are exploring as part of this research and development
(R&D) work. The integration algorithm we chose to
integrate this information is linear genetic programming
(LGP). Field deployment optimization is accomplished
using evolutionary strategies.

GENETIC PROGRAMMING

Genetic programming (GP) is the automatic,
computerized creation of computer programs to perform a
selected task using Darwinian natural selection. GP
developers give their computers examples of how they
want the computer to perform a task. GP software then
writes a computer program that performs the task
described by the examples.

GP is a robust, dynamic, and quickly growing discipline.
It has been applied to diverse problems with great
success—equaling or exceeding the best human-created
solutions to many difficult problems [Banzhaf et al., 1998;

Koza et al., 1999; Deschaine 2000; Deschaine et al., 2001;
Deschaine and Francone 2002].

THE GENETIC PROGRAMMING
ALGORITHM

Good, detailed treatments of GP may be found in
Banzhaf et al., 1998 and Koza et al., 1999. In brief, the
particular type of GP used in this work is LGP. The LGP
algorithm is conceptually surprisingly simple. It starts with a
population of randomly generated computer programs. These
programs are the “primordial soup” on which computerized
evolution operates. Then, LGP conducts a “tournament” by
selecting four programs from the population—also at
random—and measures how well each of the four programs
performs the task designated by the LGP developer. The two
programs that perform the task best “win” the tournament.

The LGP algorithm then copies the two winner programs
and transforms these copies into two new programs through
crossover and mutation transformation operators. In short,
the winners have “children.” These two new child programs
are then inserted into the population of programs, replacing
the two “loser” programs from the tournament. LGP repeats
these simple steps over and over until it has written a program
that performs the selected task.

LGP creates its “child” programs by transforming the
tournament-winning programs. The transformations used are
inspired by biology. For example, the LGP mutation operator
transforms a tournament winner by changing it randomly.
For instance, the mutation operator might change an addition
instruction in a tournament winner to a multiplication
instruction. Likewise, the LGP crossover operator causes
instructions from the two tournament-winning programs to
be swapped—in essence, an exchange of genetic material
between the winners. LGP crossover is inspired by the
exchange of genetic material that occurs in sexual
reproduction in biology.

LINEAR GENETIC PROGRAMMING
USING DIRECT MANIPULATION OF
BINARY MACHINE CODE

Machine-code-based LGP is the direct evolution of
binary machine code through GP techniques [Nordin 1994;
Nordin and Banzhaf 1995a; Nordin and Banzhaf 1995b;
Nordin et al., 1998; Nordin 1999]. An evolved LGP program,
therefore, is a sequence of binary machine instructions.
For example, an evolved LGP program might be comprised
of a sequence of four, 32-bit machine instructions. When
executed, those four instructions would cause the central
processing unit (CPU) to perform operations on the
CPU’s hardware registers. Below is an example of a



simple, four-instruction LGP program that uses three
hardware registers.

register 2 = register 1 + register 2
register 3 = register 1 – 64
register 3 = register 2 * register 3
register 3 = register 2 / register 3

While LGP programs are apparently very simple, it is
actually possible to evolve functions of great complexity
using only simple arithmetic functions on a register machine
[Nordin and Banzhaf 1995b; Nordin et al., 1998].

After completing a machine-code LGP project, the
LGP software decompiles the best evolved models from
machine code into Java, ANSI C, or Intel Assembler
programs [Register Machine Learning Technologies 2002].
The resulting decompiled code may be linked to the
optimizer and compiled, or it may be compiled into a DLL
or COM object and called from the optimization routines.

The linear machine code approach to GP has been
documented to be between 60 and 200 times faster than
comparable interpreting systems [Fukunaga et al., 1998;
Nordin 1994; Nordin et al., 1998]. This speed allows for
more extensive search of the solution space, resulting in
models of higher accuracy [Deschaine and Francone 2002].

WHY MACHINE-CODE-BASED LINEAR
GENETIC PROGRAMMING?

At first glance it is not at all obvious that machine-
code-based LGP is a strong candidate for the modeling
algorithm of choice for the UXO discrimination challenge.
The problem is complex and multidimensional, but over the
past 3 years, a series of tests has been performed on both
synthetic and industrial data sets. LGP has consistently
produced very good results on a variety of data sets when
compared to other machine-learning techniques [Deschaine
and Francone 2002].

In brief, the machine-code-based LGP software has
become our modeling tool of choice for addressing the
UXO challenge for several reasons.

•  Its speed permits us to conduct many runs in realistic
timeframes on a desktop or multi-CPU computer,
resulting in consistent, high-precision models.

•  The LGP algorithm is well designed to prevent
overfitting and to produce robust solutions.

•  The models produced by the LGP software execute
very quickly when called by an optimizer.

•  Tests show that solutions exceeding the best published
UXO discrimination results have been achieved.

•  The solutions are directly interpretable by an expert
geophysicist to ensure they make sense. For example,
LGP directly derived Darcy’s Law from sparse noisy
data, and the output was clearly Q=KIA.

UXO DISCRIMINATION AND LINEAR
GENETIC PROGRAMMING

The U.S. Department of Defense (DOD) has been
responsible for conducting UXO investigations at many
locations around the world. These investigations have
resulted in the collection of extraordinary amounts of
geophysical data with the goal of identifying buried UXO.

Evaluation of UXO/non-UXO data is time-consuming
and costly. The standard outcome of these types of
evaluations is maps showing the location of geophysical
anomalies. In general, what these anomalies might be
(e.g., UXO, non-UXO, boulders) cannot be determined
without excavation at the location of the anomaly.

To test whether this LGP approach was viable, we
analyzed publicly available data from the Jefferson Proving
Ground (JPG) Technology Demonstration Program, which
are posted on the Joint UXO Coordination Office Web page.
DOD made this information publicly available so that anyone
could use the data to develop UXO discrimination algorithms.

The JPG test site consisted of 160 buried anomalies.
Some were UXO, while others were non-UXO. The
experiment was designed to test various geophysical
instruments and analysis algorithms to see if any one
method was significantly better than the others.

To conduct a fair comparison test of our analysis versus
those that took part in the actual technology demonstration
project, we neither contacted the people in charge of the test
site nor the vendors who collected the information. The
analyst had no insight into the data or guidance about the
project other than the posted raw data sets and the public
report. Furthermore, the public report, which contained
information on how the other algorithms performed on the
test plot, was not reviewed by the analyst until the initial
solution had been produced.

The geophysical data sets available to the public for
independent UXO-discrimination-algorithm development
fully disclose which targets are UXO and which are not.
To assess the validity of the algorithm we had developed,
we randomly segregated the data into three sets to create a
blind data set.



The test protocol was as follows: to determine the
viability of using LGP, we first placed information about
the 160 anomalies in the LGP algorithm and ran various
tests. The LGP was able to perfectly discriminate between
UXO and non-UXO. Because we left no data out to test
the algorithm, the results indicated only that the LGP
technique might work. That is, we now had information it
was possible that a signal was present in the data that was
useful for discrimination between UXO and non-UXO.
This type of test is not valid for the final solution, as the
algorithm may simply have been memorizing, instead of
generalizing, the data set.

To develop an algorithm that will repeatedly predict
UXO versus non-UXO with known accuracy, the algorithm
must perform well on multiple data sets, including a blind
data set. The JPG test site data sets contained a small number
of examples, only 160 data points. To create our data sets
for this analysis, we randomly divided the data set into three
sets: 50 points for training, 50 for validation, and 60 for an
applied data blind test. Of these, there were 110 non-UXO
anomalies and 50 UXO targets in the data set. The applied
data set had 15 UXO targets and 45 non-UXO anomalies.

Figure 1 shows the performance of the published results
from ten analyses conducted by vendors who provide UXO
services as part of the JPG Phase IV project [Jefferson
Proving Ground 1999]. The horizontal axis shows the
performance of each algorithm in correctly identifying
anomalies that did not contain buried UXO, whereas the
vertical axis shows the performance of each algorithm in
correctly identifying anomalies that did contain buried
UXO. The angled line in Figure 1 represents what would
be expected from random guessing.

Figure 1. LGP UXO discrimination solution
compared to results from the JPG Phase IV UXO
Discrimination Project

Figure 1 points out the difficulty of modeling these
data. Most algorithms did little better than random guessing;
however, the LGP algorithm derived a best-know model
for correctly identifying UXO and for correctly rejecting
non-UXO using various data set configurations.

The gray dot in the upper right-hand corner of the
figure shows the LGP solution on the unseen data. Because
the number of data points was small, we used resampling
techniques to estimate the 95% confidence interval on this
solution. The black rectangle in Figure 1 shows that interval.

The JPG Phase IV data set is considered an easier data
set to succeed on than some because the type of scrap
metal used to seed the non-UXO targets was not derived
from UXO. It is easier to discriminate this metal from
UXO-derived metals. The JPG Phase V test plot uses
UXO-derived scrap metal. The authors will analyze these
data when they become available.

These results or conclusions are not meant to discredit the
other analyses or vendors in any way. Working with these
data over the past 8 months, testing various combinations of
inputs, data preconditioning, and the like, we have concluded
that the UXO problem is indeed an extremely difficult one
to solve. What we have demonstrated is that the information
content from the geophysical sensors combined with
advanced machine-learning techniques is sufficient to develop
high-accuracy UXO discrimination algorithms. We have
accomplished what we have set out to do. An advantage of
this approach is that it provides a confidence estimate of
whether a target is UXO or non-UXO, so the site-specific
remedial action plan, known as the dig sheet, can be
prioritized. It also identifies which sensor, or combination
of sensors, provides input valuable to UXO discrimination
such that data collection tasks can also be optimized.

The learning occurred on the training data set. The
best-evolved programs were selected using the training
and the validation data set. Whether the “true” structure of
the UXO discrimination solution was captured was again
measured by using the applied data set. In other words, the
applied data (also referred to as testing data) played no
part in training or in best-program selection. Accordingly,
the results on the applied data measured how well the
evolved solution generalized to unseen data. These are the
results, the unseen data results, shown in Figure 1.

The accuracy of the field-deployed tool is expected to
be within the area of this rectangle. This approach allows
for the dynamic incorporation of results from field
investigation. It is expected to become more accurate as
more data are used, and the spread of the confidence
intervals will narrow as more data and field-result (ground
truth information) become available for analysis.

Hence, the approach is consistent on projects in which a
test plot is constructed with about a dozen buried ordnance
items about which everything is known and for which the
results are expected to be translatable to masses of data
about which nothing is known. At first the confidence



interval will be wide, but the tool will become
increasingly more accurate as deployment occurs.

EVOLUTION STRATEGIES
OPTIMIZATION

Evolution Strategies (ES) was first developed in Germany
in the 1960s. It is a very powerful, general-purpose
parameter-optimization technique [Rechenberg 1994;
Schwefel 1995; Schwefel and Rudolph 1995]. Although
we refer in this work to ES, it is closely related to Fogel’s
Evolutionary Programming (EP) [Bäck and Schwefel
1993; Fogel 1992]. Our discussion here applies equally to
ES and EP. For ease of reference, we will use the term ES
to refer to both approaches.

ES uses a population-based learning algorithm. Each
generation of possible solutions is formed by mutating and
recombining the best members of the previous generation. ES
pioneered the use of evolvable “strategy parameters.” Strategy
parameters control the learning process; therefore, ES evolves
both the parameters to be optimized and the parameters
that control the optimization [Banzhaf et al., 1998].

ES has the following desirable characteristics for use
in our methodology:

•  ES can optimize the parameters of arbitrary functions.
It does not need to be able to calculate derivatives of
the function to be optimized, nor does the researcher
need to assume differentiability and numerical accuracy.
Instead, ES gathers gradient information about the
function by sampling [Hansen and Ostermeier 2001].

•  A substantial amount of literature over many years has
demonstrated that ES can solve a very wide range of
optimization problems with minimal customization
[Rechenberg 1994; Schwefel 1995; Schwefel and
Rudolph 1995; Hansen and Ostermeier 2001].

Although very powerful and not prone to getting stuck in
local optima, typical ES systems can be very time-consuming
for significant optimization problems. Canonical ES,
therefore, often fails the requirement of efficient optimization.

But in the past 5 years, ES has been extended using the
ES-CDSA technique [Hansen and Ostermeier 2001].
ES-CDSA allows a much more efficient evolution of the
strategy parameters and cumulates gradient information
over many generations rather than a single generation as
in traditional ES.

As a rule of thumb, where n is the number of parameters
to be optimized, users should allow between 100 and
200(n+3)2 function evaluations to get optimal use from

this algorithm [Hansen and Ostermeier 2001]. While this rate
represents a large improvement over previous ES approaches,
it can still require many calls by the optimizer to the model
to be optimized to produce results. It is still very important,
therefore, to couple ES-CDSA with fast-executing models,
which is where the LGP solution becomes important because
it executes in a fraction of a second on a standard PC.
This combination opens up the possibility of real-time,
fast, optimal UXO discrimination.

OPTIMIZING THE LGP-DERIVED UXO
MODELS

As discussed above, the problem of UXO affects millions
of acres worldwide and includes both training areas and
former battlefields. The estimated cost for remediating the
U.S. training ranges alone is at least $14 billion, and this
number is probably understated, particularly if worldwide
estimates are included. A very real cost of cleanup (or
non-cleanup) could be the injury or death of people.

Currently, too large a portion of the resources available
for responding to UXO challenges is expended on digging
up sites where UXOs are expected, but which turn out to
be false alarms—that is, false positives. Expenditures on
this activity result in limited funding being available for
remediation of genuine UXOs. Machine-code-based LGP
has derived the most accurate UXO discriminator among
published results to date [Jefferson Proving Ground 1999]
by a wide margin. This LGP UXO/non-UXO identification
success opens up the assessment and optimization of
response to the UXO issue on both the program and the
project level. Some examples of the possibilities include
the following:

•  The presence or absence of UXO can be assessed
using remote, nondestructive technology such as land- or
air-based sensors, including geophysics and various
wavelength sensors. When the sensor technology and
data collection have been developed to a high degree
of efficiency and accuracy, wide areas can be screened
and analyzed to reduce the footprint of regions
needing further investigation. This feature will help
manage the sheer size of the challenge.

•  Areas of interest identified as requiring further
investigation can be prioritized and ranked using good
information on the probability or absence of UXO. This
ranking will integrate the LGP UXO solution with
multicriteria/multiobjective decision support models.

•  Site-specific remedial action plans (or dig sheets) can
be optimally designed to focus efforts on high-probability
UXO-containing areas. When a decreased predicted
likelihood of UXO presence and a field-verified



absence of UXO are demonstrated, a stopping point
for remedial activities, based on scientific principals
and field validation, will be provided.

SUMMARY AND CONCLUSIONS

The work was conducted as an R&D effort by the authors
to establish whether sufficient information is contained in
geophysical sensor signals to develop high-accuracy UXO
discrimination algorithms. We have concluded that high-
accuracy UXO/ non-UXO discrimination is achievable.

We have completed the R&D phase of this work and
are in the early stages of building a comprehensive,
integrated modeling and optimization system to handle
complex UXO discrimination challenges. We believe a
combination of machine-code-based LGP (for modeling)
and ES-CDSA (for optimization) provides the best blend
of available tools and algorithms for this task.

The results described in this paper have been
independently peer reviewed and approved. To gain industry
acceptance, the results of these tools must be demonstrated
independently and in more realistic (i.e., impact area as
opposed to test plot) settings before LGP and ES-CDSA
can be used on a widespread scale in the UXO remediation
industry. The Environmental Security Technology
Certification Program (ESTCP) was established by DOD
to demonstrate and validate technologies that target urgent
environmental needs and apply DOD-wide. For these
reasons, the authors of this paper will seek independent
scientific endorsement by conducting one or several
demonstrations through ESTCP or similarly functioning
organizations. Future versions of this paper will include
the results of those demonstrations.
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