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Abstract 
With the continuing exponential growth of the Internet 
and the more recent growth of business Intranets, the 
commercial world is becoming increasingly aware of 
the problem of electronic information overload. This 
has encouraged interest in developing agents/softbots 
that can  act as electronic personal assistants and can 
develop and adapt representations of users information 
needs, commonly known as profiles. 
  
As the result of collaborative research with Friends of 
the Earth, a leading environmental campaigning 
organisation, we have developed a general purpose 
information classification agent architecture and are 
applying it to the problem of document classification 
and routing.  Collaboration with Friends of the Earth 
allows us to test our ideas in a non-academic context 
involving high volumes of documents. 
   
We use the technique of genetic programming (GP), 
(Koza & Rice 1992), to evolve classifying agents.  
This is a novel approach for document classification, 
where each agent evolves a parse-tree representation 
of a user's particular  information need. The other 
unusual features of our research are the longevity of 
our agents and the fact that they undergo a continual  
training process; feedback from the user enables the 
agent to adapt to the user’s long-term information 
requirements. 

1. Introduction 
Information overload is a common and pressing problem in 
industry, commerce and academia. A significant amount of 
effort has been expended to address this issue, with both 

academic and commercial development of agents (or 
“softbots”) to provide information filtering. 
 
Our work differs from others in four important aspects: 
 
1. we use Genetic Programming to evolve parse trees as 

the key technology for our agents 
2. we grow hybrid solutions that may emulate any 

combination of “standard” information retrieval 
techniques 

3. we concentrate on long-lived agents with continuous 
training, using unobtrusive “natural feedback” 

4. our work is aimed at routing information within 
organisations with large-scale information  overload 
problems 

 
In this paper we describe the development of a particular 
application, that of an Information Routing Agent which 
classifies and re-routes documents according to their textual 
content. 
 
The paper is structured as follows: Section 2 provides the 
background to our research and places our requirements in 
context; Section 3 summarises related work; Section 4 
explains our approach to the design  of a document filtering 
application; Section 5 describes the internal working of our 
Information Routing Agent; Section 6 presents early results 
and discusses further work; and Section 7 concludes. 

2. Background 
Friends of the Earth (FOE) is a leading environmental 
campaigning organisation. FOE's UK activities are 
geographically distributed and it has formal  links with FOE 
International offices across the world. The information 
requirements of the head office, the regional offices, and 
the international offices, are diverse and a large variety of 
information must be efficiently exchanged and shared 
between them.  FOE responds to thousands of inquiries 



each week from the public, press, teachers, academics, 
industry and government. Timeliness and accuracy of 
information is essential to FOE's strategic objectives. 
 
Until recently FOE has used mainly paper-based 
information management systems. This is becoming 
unmanageable: research documentation alone currently 
totals about a million pages and is expected to double in the 
next three years.  To manage this growth FOE plans to 
introduce a more efficient information management system 
involving innovative use of IT; the involvement of 
University College London (UCL) via a collaborative 
research project is an essential part of this plan. 

2.1 The Working Environment 
FOE's activities at head office are distributed between 
several groups each specialising in a different research area. 
Each group organises its own information and uses its own 
cataloguing and indexing procedures. Whilst this structure 
is essential to support the development and application of 
specialist knowledge and skills, there are occasions that 
require the sharing of information. The strong culture of 
mutual support at FOE means that the different groups are 
highly co-operative in sharing information, yet the process 
is very labour-intensive.  Furthermore, the present system is 
highly reliant on individual knowledge of what information 
is available and where and how it is stored. If a person is ill 
or leaves, that knowledge is lost. The existence of 
information is not always clear and duplication (including 
the associated unnecessary costs) is a potential problem. 
 
The initial perceived need is for information management 
systems that are not dependent on individual knowledge; 
however, the system must continue to support the 
fundamental need for each research group to determine the 
relevance or otherwise of any given document in a different 
way. 

2.2 Classification and Routing 
Our approach is to file inbound documents (including 
email) centrally, with a standard system for filing and 
cataloguing, but with the additional development of 
autonomous classification agents which will automatically 
re-route new documents to the appropriate research group. 
What is actually re-routed may be as simple as the location 
code for the document - our technique allows but does not 
require the physical routing of the document itself.  In fact, 
retaining the documents in the central file store may be the 
best way to support sharing between the groups. 
 
An interesting part of this system is the development of the 
autonomous agents. Our design has three aims: 
 
1. to provide each research group with a percentage 

“confidence” value for each document, to indicate the 

degree of confidence with which the Information 
Routing System believes that this research group would 
be interested in that document. This is far more useful 
than a simple binary value. 

 
2. to support the observation that each research group has 

a different perspective on the shared information which 
itself will shift with time. Thus, we require agents that 
are able to undergo continuous adaptation over long 
periods (perhaps the entire career of a researcher, or for 
as long as the research group is active).  

 
3. to establish a general technique which can be used for a 

variety of documents, for example email, Web pages, 
Usenet etc. 

 
Our Information Routing System consists of many 
Information Routing Agents per research group. All of 
these agents are identical in structure; they differ only in 
that they classify documents according to the different 
perspectives of the different research  groups. Thus, for the 
remainder of this paper, we shall discuss the design and 
implementation of just one such agent. First, however, we 
provide a brief survey of related work. 

3. Related Work 

3.1 Adaptive Agents for Information Filtering 
There are a number of existing software systems which use 
adaptive agent techniques for information filtering. The five 
systems briefly outlined below illustrate the wide range of 
different machine learning methods all of which generate or 
adapt a user profile (a representation of the users 
information need) with the changing requirements of the 
user. 
 
1.  NewT - a USENET news reader - uses a Genetic 

Algorithm to  manage a population of profiles; each 
profile reflects the users interest in a different subject. 
NewT uses the vector  space model to query incoming 
news articles. (Sheth 1994) 

  
2.  MAXIMS - an email assistant - uses machine based 

reasoning (MBR) to filter email. MAXIMS stores 
exemplars or instances (situation/action pairs) together 
with priority weightings. (Metral 1993) 

 
3.  NewsWeeder (MDL) - a USENET assistant - uses 

Minimum Description Length to classify documents. 
(Lang 1995) 

 
4.  Magi - a mail interface agent - uses Decision tree 

algorithms.  (Payne 1994) concludes that there is a need 
for better feature extraction techniques and notes that 



using all words of the document as features will cause 
the search space to be too large. Payne explores the idea 
of prototypical learning. (Payne 1994) 

  
5.  General Magic provide a commercial email assistant 

which sits on a mail server and applies filters to 
incoming documents, routing them to interested parties. 
(General Magic 1996) 

3.2 Information Retrieval Techniques 
Traditional information retrieval (IR) techniques (Sheth 
1994, Belkin & Croft 1992) rely heavily upon their own a 
priori representation scheme for documents, as described 
below.  These representations can be used to generate a 
query (a filter) to implement the document classification 
requirements of a user. 
 
Standard representation and query profiles include: 
 
1.  Statistical - vector (tuple) weighted terms. (Vector 

Space model) (Salton & McGill 1983). 
  
2.  Latent Semantic Indexing (LSI) - vector but each vector 

represents a “concept”. (Dumais, Furnas, Landaver & 
Harshman 1990) 

 
3.  Probabilistic - allows feature detection to be embedded 

within  a probability framework. (Belkin & Croft 1992) 
 
4.  Natural language. 
 
Boolean - can be extended to use contextual information 
such as words within titles, words within abstract, words 
within main body of text (assuming the document has these 
standard fields) (Marcus 1991). A similar technique using a 
thesaurus is used by (Gauch & Smith 1989). 
 
All of these traditional methods impose an a priori 
determination of how the information need of the user is to 
be structured. The choice of method therefore determines 
how accurately the query represents the user's information 
need; the method which works well for one user's 
classification requirements may not work well for another 
user. 
 
Our Information Routing System must deal with many 
different groups whose requirements will change with time; 
thus, we aim to develop a system which can determine the 
user's information need and use this to select the 
appropriate representation for the query. 
 
We (superficially) abandon the standard techniques because 
their fixed structures do not reflect the rich variety of our 
users' possible requirements. Rather, a genetic 
programming (GP) approach is taken whereby the GP can 
evolve hybrid techniques appropriate for the context. Thus, 

the traditional techniques are generalised rather than truly 
abandoned. 

4. A New Approach to Document Filtering 
Agent Design 

Each agent in our Information Routing System is identical 
in design and adheres to the following model: 
 
1.  A document is presented to an agent and the agent 

generates a confidence score for that document. 
 
2.  According to the confidence score and a given 

threshold, the agent decides whether to route the 
document to the user. 

 
3.  The user receives notification of an interesting 

document, together with a confidence value. 
 
4.  After reading the document, the user provides feedback 

(explicitly or implicitly) to the agent. 
  
5.   The feedback is used to improve the performance of the 

agent or to modify the agent's classification behavior in 
the light of changing user requirements. 

 
The agent's initial behavior is derived from a training set of 
example document classifications for a given user. 

4.1 Genetic Programming 
One of the primary ways in which our work differs from 
others is that we use the technique of Genetic Programming 
(GP) to derive the query  representation used by each agent. 
That is, we use a Genetic Algorithm to evolve a parse tree - 
the parse tree is a program which, when executed by an 
interpreter, will take a document as input and produce a 
confidence value as its output. 
 
The advantage of using GP is that, by making appropriate 
primitive functions available to the parse-tree evolver, the 
system may evolve a program which uses the best query 
representation method for the user's information need. 
Indeed, the parse tree might use more than one 
representation. For example, a vector based system has to 
generate a vector query, whereas a GP system could 
generate a parse tree equivalent to combinations of vector 
query, Boolean query, and any others that are supported by 
the tree primitives. 
 
With genetic algorithms the evolution/learning is used to 
determine the best query with respect to a rigid “DNA” 
representation. By contrast, a GP system can evolve both a 
query and a unique query representation for each context.  
 



The parse tree allows the maximum amount of flexibility 
enabling the agent to evolve a good  (hybrid) 
representation. This is a generalisation of earlier fixed 
representation systems, and thus results in a substantially 
richer representation. 

4.2 Feedback for a Long-Lived Agent 
Feedback is necessary for adaptation, and for long lived 
agents is crucial. An adaptive agent uses feedback to 
change the filter profile over time, driven by the user's 
changing and developing interests. Thus, in addition to the 
initial period of training, long-lived agents use feedback for 
repeated top-up learning.1 
 
Feedback for the agent is possible through both explicit and 
implicit user actions.  For example, the user may press 
buttons for the purpose of giving feedback, or the system 
may monitor the user's routine actions and infer feedback 
(described later). 
 
Long term feedback requires the occasional archival of 
whole populations of agents, even though from each 
generation only the best agent is used. If entire populations 
of agents were not archived (analogous to keeping the gene 
pool “in cold store”) then subsequent top-up learning would 
have to start the evolution from scratch, a very costly 
process. 
 
Thus, a necessary expense of longevity is the storage 
requirement of keeping entire populations of agents 
archived, ready for top-up learning. For example, if each 
agent initiated by a user requires a supporting  population 
of several hundred for the evolution process, then several  
distinct agents would require tens of thousands of agents to 
be maintained; this is not unlikely for a large institution like 
FOE. By today's standards of disk and memory hungry 
applications this is quite a modest requirement, growing in 
a linear relationship with the  number of active agents. 
 
Additional training of an individual agent takes place when 
user feedback reaches a pre-determined threshold.  Top-up 
training is then scheduled to occur when the user is absent 
(usually at night), thus masking entirely any associated 
processing costs. 

4.3 Natural Feedback 
The process of collecting feedback should not impinge on 
the user too much, since the agents are there to support, not 
hinder, the user.  (Imagine an employee who required you 
to give graded feedback on every action they took!). By 
observing the user's routine actions it is possible to infer 

                                                           
1Drawing an evolutionary analogy, Darwin is often 
misquoted with "survival of the fittest".  Rather, he refers to 
survival of species most able to adapt. 

feedback (Farringdon 1996b), for example the agent can 
monitor the user's interaction with documents and based 
upon those actions make assumptions as to the quality of 
the service  it is providing. A simple example is to compare 
the predicted classification with the (mail) folder into which 
the document was refiled. Other examples of natural 
feedback include monitoring how frequently a document is 
accessed and whether it is sent on to other recipients. 
 
Of course, some documents will fall through the natural 
feedback net, where no inference may be made. For 
example, a user might immediately delete a document 
because a) it was junk, or b) privacy was very important.  
 
Such natural feedback is unobtrusive and effort-free for the 
user, thus a tremendously valuable technique. Additionally 
some accommodation should be made for users to initiate 
explicit feedback when they deem it necessary. 

5. Information Routing Agent 
The overall design of the Information Routing System is 
given in Figure 1. Each agent is a program which interprets 
a genetically-evolved parse tree in order to give a 
confidence value to a document. 
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Figure 1.  Design of the Routing Agent Environment 

 
Documents may arrive at the Information Routing Agent 
from various sources. These can include inbound email, 
Usenet feeds, documents found by other searching agents, 
and so forth. In a large organisation like FOE individual 
research groups would also offer their internally generated 
documents or documents they had found during the course 
of their work to the routing agent for redistribution. 
 



The routing/filtering agents can monitor any central 
document repository. A special case of the routing agent is 
the case where the agent monitors the mail spool of one 
user; effectively the router becomes an email assistant. This 
mechanism is discussed in detail in (Clack et al 1996). 

5.1 Parse Tree representation 
In this system a parse tree is a program that can be 
evaluated through the use of an interpreter which matches 
nodes of the tree to aspects of a document. During 
evaluation against a document the tree ultimately reduces to 
a single numerical value - the classification or “confidence 
value”. The method  used here has operators at each branch 
of the tree, all of which produce a  number. Leaves of the 
tree (terminals) are nodes containing word operators and 
arguments (words) or numerical-constant terminals. Thus 
any part of a tree can be interchanged with another part and 
the tree remains valid - perfect for flexible evolution and 
mutations. An example parse tree is shown in Figure 2.  

Exists
“Java”

50

Exists
“Agent”

Adjacent-exists
“sun” “microsystems”

+

25 30

*

+*

*

 

Figure 2. A Parse Tree Representation 

 
One drawback to this method is that word operator nodes of 
the tree are strongly bound to their arguments, so that 
evolution operators can not easily (in this numeric based 
approach) manipulate the words in a tree independently of 
the word operator. For example, a leaf of the parse tree may 
evaluate to the frequency of "complaint". During evolution 
it is not a simple matter to exchange the word "complaint" 
for another word, rather the node frequency-of-"complaint" 
is exchanged in its entirety. This ridged approach is useful 
because an evolutionary exchange of a word operator may 
not be for another leaf - but for a complete sub-tree. 
 
The parse tree operators all reduce to a single (real) 
number. Thus a tree of these operators reduces to one 
numerical value also. The available operators are listed 
below.  It should be noted that while the following 

operators are made available to the system there is no 
requirement for any particular one to be used.  
 
Feature Detectors: Word Operators 
 
• frequency {word}. 
 
Relative frequency (absolute-frequency / document-length) 
gives a comparable measure between documents.  
     
• exists {word}( == frequency > 0 ).  
 
Returns 0 for false and 1 for true. Testing for the existence 
of an individual word gives the same power as many other 
systems which use key-word-search and match for 
classification. Thus the evolved parse tree can be at least as 
powerful as a key word search.  
      
• pair-distance {word , word}. 
 
Mean distance between words in the document. The order 
that the words  are used in the document should not matter, 
for example "search space"  and "space to search" would 
both figure in the result of  pair-distance(search, space).  
 
• adjacent-exists {word , word}.  
 
Returns 0 for false and 1 for true. Adjacent words exist in 
the document. Pairs of words are often their own  units, for 
example {search space, world wide}.  
 
• adjacent-frequency {word , word}.  
 
Mean adjacent-words frequency. Pairs of adjacent words 
are important discriminators (more complex than single 
word discriminators). 
 
Binding Groups of Features: Numeric Operators 
 
• AND, OR, NOT.  
 
Boolean operators. Interpret zero as false, non-zero as true. 
Return 0 for false and 1 for true.  
      
• {+, -, *, /, =, <>, <, >=, Max, Min}.  
 
Standard numerical and relational operators. The relational 
operators return 0 for false and 1 for true. The relational 
operators might be thought of as being used to compare the 
current document with learnt discriminators. The numerical 
operators bias the importance of branches of the tree and 
combinations thereof.  



5.2. GP Evolution 
In this section we briefly review the method by which we 
evolve the parse tree which the agent uses to effect the 
document classification. 
 
We use standard GP evolution, starting with a random 
population of parse trees. All parse trees are run against all 
documents in the training set, with a fitness function 
selecting the best fraction of the population; the next 
generation is made up of these parse trees plus a certain 
number of parse trees generated using mutation and/or 
crossover. This standard method roughly approximates 
natural genetics except that in natural genetics mutation 
does not necessarily occur during breeding but may also 
occur during an organism's lifetime. 
 
The fitness function takes the confidence value produced by 
a parse tree when given a certain document as input; the 
resulting confidence value is then compared with the 
expected value for that training document.  The parse tree is 
then given a score for that document which is the square of 
the difference between the expected and actual confidence 
values. This process is repeated for all documents in the 
training set. The fitness score given to that parse tree is then 
the sum of all the scores obtained for all the documents in 
the training set. Thus, a parse tree giving perfect 
classification would have an overall score of zero.  As a 
parse tree gets increasingly worse at classification (in some 
way) the overall score increases. 

5.3 A Worked Example 
This section illustrates how an information routing system 
would work in practice at Friends of the Earth.  
 
Upon being installed, the first task undertaken by an agent 
is to generate an initial population to produce a stable first 
solution classifier (parse tree).  
 
1. An existing store of pre-classified documents is required 

as a training set, commonly existing training sets include 
e-mail folders, web bookmark lists, and specific 
document directories. From these documents a set of 
key words is required to seed the initial populations. 
One method capable of generating such a set is to 
compare the relative frequencies of words (from the 
entire training set, or from individual documents) with 
their frequency in common usage (Quinlan 1992). 
Distinguished words will have maximum or significant 
deviation from common usage. 

 
2.  With a set of distinguished words prepared for seeding 

the first population, a significant period of learning is 
undertaken. This is exactly the same evolutionary 
learning process that takes place for top up learning 
(step 8) but is ab abnito. It is possible this process could

 
  take many days of background (low priority) processing. 

Impatient users could curtail this at any time, and allow 
top up learning to bring the agent up to satisfactory 
performance levels. 

 
At this point the agent is ready for normal operation, the 
rest of this example considers the chain of events triggered 
by one particular document coming to the attention of the 
pool of similar agents situated at Friends of the Earth 
(FOE).  
 
3. Tina e-mails a copy of this paper to FOE, where Peter 

has 3 agents on the lookout for articles pertaining to (i) 
autonomous agents, (ii) text filtering, and (iii) 
environmental issues. 

 
4.  The document is pre-processed, removing noise and 

reducing the search space. This is a typical first step in 
classification, and the precise actions of this agent are 
described in (Clack et al 1996). 

  
5.  Each agent takes the document as data, and using its 

parse tree returns a confidence score. 
 
6.  Peter is informed that his agents have an interesting 

candidate document, with the classifications {Text 
Filter: 90, Agents: 70,  Environmental: 60}. 

  
7.  His curiosity aroused, Peter reads the paper and files it 

under "agents". The act of filing is sufficient natural 
feedback for the system to queue some top-up learning. 
Top-up learning is carried out to improve upon sub-
optimal performance when enough new exemplars are 
available. If Peter had enough time to give explicit 
feedback, he could have hit a few buttons on an agents 
GUI to let it know that the environmental classification 
was way off the mark. 

 
8.  Hidden from any user, usually during the night, the 

agent can continue its evolutionary learning upon the 
parse trees, triggered by the feedback 7. using the new 
documents as additional training data. 

6. Results and Further Work 

A simple prototype has been tested on small test 
documents, taking about 6.5 minutes to learn to distinguish 
with 95% accuracy between test cases, and less than a 
second to provide a confidence score when applied to a 
larger file of about 6 kilobytes (all timings were carried out 
on a modest Sun Sparcstation IPC). These initial results are 
very encouraging and we are therefore pursuing the 
technique further; in particular, we need to pay attention to 
reducing the internal complexity of the algorithms 
(Farringdon 1996a, Clack & Yu 1996) in order to deal with 



the extremely high numbers of large documents used every 
day at FOE.  Our final aim is for a system that may take 
many days for the initial learning process but that will 
thereafter characterise any given document in a matter of 
seconds. 
 
We recognise that there are some problems that are very 
hard to overcome. Documents can contain text which will 
confuse any automated classification system; for example, 
post-scripts added at the end of email messages are often 
irrelevant and can be totally misleading.  An obvious area 
of further work is to apply heuristics to protect the agent 
from such misleading information. 
 
Our prototype currently uses many agents for each research 
group.  In future we might extend this to provide multiple 
agents per research group, thereby enabling 
sub-classification. 
 
A specific area of interest for us is a quantitative 
comparison of this adaptive genetic programming method 
against more traditional methods such as vector space 
analysis. 

7. Conclusion  

We have produced a first prototype Information Routing 
Agent which learns to classify documents by giving them a 
percentage “confidence score”  according to the presence or 
absence of words and other word relationships such as 
inter-word proximity. We have taken a novel approach to 
information retrieval, using Genetic Programming as a 
means to provide more flexible  and powerful query 
representation. 
 
The need for an adaptive text classification agent grows 
every day (in proportion to the size of the Internet and the 
increased use of on-line documents). Our early results show 
the viability of implementing such an agent using genetic 
programming methods.  An agent capable of initial and 
continued long term top-up learning would be of great 
benefit to a considerable population of computer users,  and 
is within the bounds of current machine learning 
technology. 
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